mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	 cda0e4b648
			
		
	
	cda0e4b648
	
	
	
		
			
			* refactor llama_batch_get_one * adapt all examples * fix simple.cpp * fix llama_bench * fix * fix context shifting * free batch before return * use common_batch_add, reuse llama_batch in loop * null terminated seq_id list * fix save-load-state example * fix perplexity * correct token pos in llama_batch_allocr
		
			
				
	
	
		
			656 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			656 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "arg.h"
 | |
| #include "common.h"
 | |
| #include "log.h"
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <cmath>
 | |
| #include <cstdio>
 | |
| #include <cstring>
 | |
| #include <ctime>
 | |
| #include <sstream>
 | |
| #include <thread>
 | |
| #include <mutex>
 | |
| #include <vector>
 | |
| #include <fstream>
 | |
| #include <unordered_map>
 | |
| #include <algorithm>
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #pragma warning(disable: 4244 4267) // possible loss of data
 | |
| #endif
 | |
| 
 | |
| static void print_usage(int, char ** argv) {
 | |
|     LOG("\nexample usage:\n");
 | |
|     LOG("\n    %s \\\n"
 | |
|             "       -m model.gguf -f some-text.txt [-o imatrix.dat] [--process-output] \\\n"
 | |
|             "       [--no-ppl] [--chunk 123] [--output-frequency 10] [--save-frequency 0] \\\n"
 | |
|             "       [--in-file imatrix-prev-0.dat --in-file imatrix-prev-1.dat ...]\n" , argv[0]);
 | |
|     LOG("\n");
 | |
| }
 | |
| 
 | |
| struct Stats {
 | |
|     std::vector<float> values;
 | |
|     std::vector<int> counts;
 | |
|     int ncall = 0;
 | |
| };
 | |
| 
 | |
| class IMatrixCollector {
 | |
| public:
 | |
|     IMatrixCollector() = default;
 | |
|     void set_params(common_params params) { m_params = std::move(params); }
 | |
|     bool collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data);
 | |
|     void save_imatrix(int ncall = -1) const;
 | |
|     bool load_imatrix(const char * file_name);
 | |
| private:
 | |
|     std::unordered_map<std::string, Stats> m_stats;
 | |
|     common_params                          m_params;
 | |
|     std::mutex                             m_mutex;
 | |
|     int                                    m_last_call = 0;
 | |
|     std::vector<float>                     m_src1_data;
 | |
|     std::vector<char>                      m_ids; // the expert ids from ggml_mul_mat_id
 | |
| };
 | |
| 
 | |
| // remove any prefix and suffixes from the name
 | |
| // CUDA0#blk.0.attn_k.weight#0 => blk.0.attn_k.weight
 | |
| static std::string filter_tensor_name(const char * name) {
 | |
|     std::string wname;
 | |
|     const char * p = strchr(name, '#');
 | |
|     if (p != NULL) {
 | |
|         p = p + 1;
 | |
|         const char * q = strchr(p, '#');
 | |
|         if (q != NULL) {
 | |
|             wname = std::string(p, q - p);
 | |
|         } else {
 | |
|             wname = p;
 | |
|         }
 | |
|     } else {
 | |
|         wname = name;
 | |
|     }
 | |
|     return wname;
 | |
| }
 | |
| 
 | |
| bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) {
 | |
|     GGML_UNUSED(user_data);
 | |
| 
 | |
|     const struct ggml_tensor * src0 = t->src[0];
 | |
|     const struct ggml_tensor * src1 = t->src[1];
 | |
|     std::string wname = filter_tensor_name(src0->name);
 | |
| 
 | |
|     // when ask is true, the scheduler wants to know if we are interested in data from this tensor
 | |
|     // if we return true, a follow-up call will be made with ask=false in which we can do the actual collection
 | |
|     if (ask) {
 | |
|         if (t->op == GGML_OP_MUL_MAT_ID) return true; // collect all indirect matrix multiplications
 | |
|         if (t->op != GGML_OP_MUL_MAT) return false;
 | |
|         // why are small batches ignored (<16 tokens)?
 | |
|         if (src1->ne[1] < 16 || src1->type != GGML_TYPE_F32) return false;
 | |
|         if (!(wname.substr(0, 4) == "blk." || (m_params.process_output && wname == "output.weight"))) return false;
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     std::lock_guard<std::mutex> lock(m_mutex);
 | |
| 
 | |
|     // copy the data from the GPU memory if needed
 | |
|     const bool is_host = ggml_backend_buffer_is_host(src1->buffer);
 | |
| 
 | |
|     if (!is_host) {
 | |
|         m_src1_data.resize(ggml_nelements(src1));
 | |
|         ggml_backend_tensor_get(src1, m_src1_data.data(), 0, ggml_nbytes(src1));
 | |
|     }
 | |
| 
 | |
|     const float * data = is_host ? (const float *) src1->data : m_src1_data.data();
 | |
| 
 | |
|     // this has been adapted to the new format of storing merged experts in a single 3d tensor
 | |
|     // ref: https://github.com/ggerganov/llama.cpp/pull/6387
 | |
|     if (t->op == GGML_OP_MUL_MAT_ID) {
 | |
|         //   ids  -> [n_experts_used, n_tokens]
 | |
|         //   src1 -> [cols, n_expert_used, n_tokens]
 | |
|         const ggml_tensor * ids = t->src[2];
 | |
|         const int n_as = src0->ne[2];
 | |
|         const int n_ids = ids->ne[0];
 | |
| 
 | |
|         // the top-k selected expert ids are stored in the ids tensor
 | |
|         // for simplicity, always copy ids to host, because it is small
 | |
|         // take into account that ids is not contiguous!
 | |
| 
 | |
|         GGML_ASSERT(ids->ne[1] == src1->ne[2]);
 | |
| 
 | |
|         m_ids.resize(ggml_nbytes(ids));
 | |
|         ggml_backend_tensor_get(ids, m_ids.data(), 0, ggml_nbytes(ids));
 | |
| 
 | |
|         auto & e = m_stats[wname];
 | |
| 
 | |
|         ++e.ncall;
 | |
| 
 | |
|         if (e.values.empty()) {
 | |
|             e.values.resize(src1->ne[0]*n_as, 0);
 | |
|             e.counts.resize(src1->ne[0]*n_as, 0);
 | |
|         }
 | |
|         else if (e.values.size() != (size_t)src1->ne[0]*n_as) {
 | |
|             LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)src1->ne[0]*n_as);
 | |
|             exit(1); //GGML_ABORT("fatal error");
 | |
|         }
 | |
|         LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[2], (int)src1->type);
 | |
|         // loop over all possible experts, regardless if they are used or not in the batch
 | |
|         for (int ex = 0; ex < n_as; ++ex) {
 | |
|             size_t e_start = ex*src1->ne[0];
 | |
| 
 | |
|             for (int idx = 0; idx < n_ids; ++idx) {
 | |
|                 for (int row = 0; row < (int)src1->ne[2]; ++row) {
 | |
|                     const int excur = *(const int32_t *) (m_ids.data() + row*ids->nb[1] + idx*ids->nb[0]);
 | |
| 
 | |
|                     GGML_ASSERT(excur >= 0 && excur < n_as); // sanity check
 | |
| 
 | |
|                     if (excur != ex) continue;
 | |
| 
 | |
|                     const int64_t i11 = idx % src1->ne[1];
 | |
|                     const int64_t i12 = row;
 | |
|                     const float * x = (const float *)((const char *)data + i11*src1->nb[1] + i12*src1->nb[2]);
 | |
| 
 | |
|                     for (int j = 0; j < (int)src1->ne[0]; ++j) {
 | |
|                         e.values[e_start + j] += x[j]*x[j];
 | |
|                         e.counts[e_start + j]++;
 | |
|                         if (!std::isfinite(e.values[e_start + j])) {
 | |
|                             LOG("\n");
 | |
|                             LOG_ERR("%f detected in %s\n", e.values[e_start + j], wname.c_str());
 | |
|                             exit(1);
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             if (e.ncall > m_last_call) {
 | |
|                 m_last_call = e.ncall;
 | |
|                 if (m_last_call % m_params.n_out_freq == 0) {
 | |
|                     save_imatrix();
 | |
|                 }
 | |
|                 if (m_params.n_save_freq > 0 && m_last_call%m_params.n_save_freq == 0) {
 | |
|                     save_imatrix(m_last_call);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         auto & e = m_stats[wname];
 | |
|         if (e.values.empty()) {
 | |
|             e.values.resize(src1->ne[0], 0);
 | |
|             e.counts.resize(src1->ne[0], 0);
 | |
|         }
 | |
|         else if (e.values.size() != (size_t)src1->ne[0]) {
 | |
|             LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)src1->ne[0]);
 | |
|             exit(1); //GGML_ABORT("fatal error");
 | |
|         }
 | |
|         ++e.ncall;
 | |
|         LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
 | |
|         for (int row = 0; row < (int)src1->ne[1]; ++row) {
 | |
|             const float * x = data + row * src1->ne[0];
 | |
|             for (int j = 0; j < (int)src1->ne[0]; ++j) {
 | |
|                 e.values[j] += x[j]*x[j];
 | |
|                 e.counts[j]++;
 | |
|                 if (!std::isfinite(e.values[j])) {
 | |
|                     LOG_ERR("%f detected in %s\n", e.values[j], wname.c_str());
 | |
|                     exit(1);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         if (e.ncall > m_last_call) {
 | |
|             m_last_call = e.ncall;
 | |
|             if (m_last_call % m_params.n_out_freq == 0) {
 | |
|                 save_imatrix();
 | |
|             }
 | |
|             if (m_params.n_save_freq > 0 && m_last_call%m_params.n_save_freq == 0) {
 | |
|                 save_imatrix(m_last_call);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| void IMatrixCollector::save_imatrix(int ncall) const {
 | |
|     auto fname = m_params.out_file;
 | |
|     if (fname.empty()) {
 | |
|         fname = "imatrix.dat";
 | |
|     }
 | |
| 
 | |
|     if (ncall > 0) {
 | |
|         fname += ".at_";
 | |
|         fname += std::to_string(ncall);
 | |
|     }
 | |
| 
 | |
|     // avoid writing imatrix entries that do not have full data
 | |
|     // this can happen with MoE models where some of the experts end up not being exercised by the provided training data
 | |
| 
 | |
|     int n_entries = 0;
 | |
|     std::vector<std::string> to_store;
 | |
| 
 | |
|     bool is_first = true; // for printing
 | |
|     for (const auto & kv : m_stats) {
 | |
|         const int n_all = kv.second.counts.size();
 | |
| 
 | |
|         if (n_all == 0) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         int n_zeros = 0;
 | |
|         for (const int c : kv.second.counts) {
 | |
|             if (c == 0) {
 | |
|                 n_zeros++;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (n_zeros != 0 && is_first) {
 | |
|             LOG_INF("\n");
 | |
|             is_first = false;
 | |
|         }
 | |
| 
 | |
|         if (n_zeros == n_all) {
 | |
|             LOG_WRN("%s: entry '%40s' has no data - skipping\n", __func__, kv.first.c_str());
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         if (n_zeros > 0) {
 | |
|             LOG_WRN("%s: entry '%40s' has partial data (%.2f%%) - skipping\n", __func__, kv.first.c_str(), 100.0f * (n_all - n_zeros) / n_all);
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         n_entries++;
 | |
|         to_store.push_back(kv.first);
 | |
|     }
 | |
| 
 | |
|     if (to_store.size() < m_stats.size()) {
 | |
|         LOG_WRN("%s: storing only %zu out of %zu entries\n", __func__, to_store.size(), m_stats.size());
 | |
|     }
 | |
| 
 | |
|     std::ofstream out(fname, std::ios::binary);
 | |
|     out.write((const char *) &n_entries, sizeof(n_entries));
 | |
|     for (const auto & name : to_store) {
 | |
|         const auto & stat = m_stats.at(name);
 | |
|         int len = name.size();
 | |
|         out.write((const char *) &len, sizeof(len));
 | |
|         out.write(name.c_str(), len);
 | |
|         out.write((const char *) &stat.ncall, sizeof(stat.ncall));
 | |
|         int nval = stat.values.size();
 | |
|         out.write((const char *) &nval, sizeof(nval));
 | |
|         if (nval > 0) {
 | |
|             std::vector<float> tmp(nval);
 | |
|             for (int i = 0; i < nval; i++) {
 | |
|                 tmp[i] = (stat.values[i] / static_cast<float>(stat.counts[i])) * static_cast<float>(stat.ncall);
 | |
|             }
 | |
|             out.write((const char*)tmp.data(), nval*sizeof(float));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Write the number of call the matrix was computed with
 | |
|     out.write((const char *) &m_last_call, sizeof(m_last_call));
 | |
| 
 | |
|     // Write the input filename at the end of the file to later on specify it in quantize
 | |
|     {
 | |
|         int len = m_params.prompt_file.size();
 | |
|         out.write((const char *) &len, sizeof(len));
 | |
|         out.write(m_params.prompt_file.c_str(), len);
 | |
|     }
 | |
| 
 | |
|     LOGV(1, "\n");
 | |
|     LOG_DBGV(1, "%s: stored collected data after %d chunks in %s\n", __func__, m_last_call, fname.c_str());
 | |
| }
 | |
| 
 | |
| bool IMatrixCollector::load_imatrix(const char * fname) {
 | |
|     std::ifstream in(fname, std::ios::binary);
 | |
|     if (!in) {
 | |
|         LOG_ERR("%s: failed to open %s\n",__func__, fname);
 | |
|         return false;
 | |
|     }
 | |
|     int n_entries;
 | |
|     in.read((char*)&n_entries, sizeof(n_entries));
 | |
|     if (in.fail() || n_entries < 1) {
 | |
|         LOG_ERR("%s: no data in file %s\n", __func__, fname);
 | |
|         return false;
 | |
|     }
 | |
|     for (int i = 0; i < n_entries; ++i) {
 | |
|         int len; in.read((char *)&len, sizeof(len));
 | |
|         std::vector<char> name_as_vec(len+1);
 | |
|         in.read((char *)name_as_vec.data(), len);
 | |
|         if (in.fail()) {
 | |
|             LOG_ERR("%s: failed reading name for entry %d from %s\n",__func__,i+1, fname);
 | |
|             return false;
 | |
|         }
 | |
|         name_as_vec[len] = 0;
 | |
|         std::string name{name_as_vec.data()};
 | |
|         auto & e = m_stats[std::move(name)];
 | |
|         int ncall;
 | |
|         in.read((char*)&ncall, sizeof(ncall));
 | |
|         int nval;
 | |
|         in.read((char *)&nval, sizeof(nval));
 | |
|         if (in.fail() || nval < 1) {
 | |
|             LOG_ERR("%s: failed reading number of values for entry %d\n",__func__,i);
 | |
|             m_stats = {};
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         if (e.values.empty()) {
 | |
|             e.values.resize(nval, 0);
 | |
|             e.counts.resize(nval, 0);
 | |
|         }
 | |
| 
 | |
|         std::vector<float> tmp(nval);
 | |
|         in.read((char*)tmp.data(), nval*sizeof(float));
 | |
|         if (in.fail()) {
 | |
|             LOG_ERR("%s: failed reading data for entry %d\n",__func__,i);
 | |
|             m_stats = {};
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         // Recreate the state as expected by save_imatrix(), and corerct for weighted sum.
 | |
|         for (int i = 0; i < nval; i++) {
 | |
|             e.values[i] += tmp[i];
 | |
|             e.counts[i] += ncall;
 | |
|         }
 | |
|         e.ncall += ncall;
 | |
| 
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static IMatrixCollector g_collector;
 | |
| 
 | |
| static bool ik_collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) {
 | |
|     return g_collector.collect_imatrix(t, ask, user_data);
 | |
| }
 | |
| 
 | |
| 
 | |
| struct results_log_softmax {
 | |
|     double log_softmax;
 | |
|     float  logit;
 | |
|     float  prob;
 | |
| };
 | |
| 
 | |
| static std::vector<float> softmax(const std::vector<float> & logits) {
 | |
|     std::vector<float> probs(logits.size());
 | |
|     float max_logit = logits[0];
 | |
|     for (float v : logits) {
 | |
|         max_logit = std::max(max_logit, v);
 | |
|     }
 | |
|     double sum_exp = 0.0;
 | |
|     for (size_t i = 0; i < logits.size(); i++) {
 | |
|         // Subtract the maximum logit value from the current logit value for numerical stability
 | |
|         const float logit = logits[i] - max_logit;
 | |
|         const float exp_logit = expf(logit);
 | |
|         sum_exp += exp_logit;
 | |
|         probs[i] = exp_logit;
 | |
|     }
 | |
|     for (size_t i = 0; i < probs.size(); i++) {
 | |
|         probs[i] /= sum_exp;
 | |
|     }
 | |
|     return probs;
 | |
| }
 | |
| 
 | |
| static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) {
 | |
|     float max_logit = logits[0];
 | |
|     for (int i = 1; i < n_vocab; ++i) {
 | |
|         max_logit = std::max(max_logit, logits[i]);
 | |
|     }
 | |
|     double sum_exp = 0.0;
 | |
|     for (int i = 0; i < n_vocab; ++i) {
 | |
|         sum_exp += expf(logits[i] - max_logit);
 | |
|     }
 | |
|     return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp};
 | |
| }
 | |
| 
 | |
| static void process_logits(
 | |
|     int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
 | |
|     double & nll, double & nll2, float * logit_history, float * prob_history) {
 | |
|     std::mutex mutex;
 | |
|     int counter = 0;
 | |
|     auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () {
 | |
|         double local_nll  = 0;
 | |
|         double local_nll2 = 0;
 | |
|         while (true) {
 | |
|             std::unique_lock<std::mutex> lock(mutex);
 | |
|             int i = counter++;
 | |
|             if (i >= n_token) {
 | |
|                 nll += local_nll; nll2 += local_nll2;
 | |
|                 break;
 | |
|             }
 | |
|             lock.unlock();
 | |
|             const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]);
 | |
|             const double v = -results.log_softmax;
 | |
|             local_nll += v;
 | |
|             local_nll2 += v*v;
 | |
| 
 | |
|             logit_history[i] = results.logit;
 | |
|             prob_history[i]  = results.prob;
 | |
|         }
 | |
|     };
 | |
|     for (auto & w : workers) {
 | |
|         w = std::thread(compute);
 | |
|     }
 | |
|     compute();
 | |
|     for (auto & w : workers) {
 | |
|         w.join();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static bool compute_imatrix(llama_context * ctx, const common_params & params) {
 | |
|     const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
 | |
|     GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
 | |
|     const int n_ctx = llama_n_ctx(ctx);
 | |
| 
 | |
|     auto tim1 = std::chrono::high_resolution_clock::now();
 | |
|     LOG_INF("%s: tokenizing the input ..\n", __func__);
 | |
| 
 | |
|     std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, true);
 | |
| 
 | |
|     auto tim2 = std::chrono::high_resolution_clock::now();
 | |
|     LOG_INF("%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
 | |
| 
 | |
|     if (params.i_chunk > 0) {
 | |
|         if (size_t((params.i_chunk + 2)*n_ctx) >= tokens.size()) {
 | |
|             LOG_ERR("%s: there will be not enough tokens left after removing %d chunks\n", __func__, params.i_chunk);
 | |
|             return false;
 | |
|         }
 | |
|         LOG_INF("%s: removing initial %d chunks (%d tokens)\n", __func__, params.i_chunk, params.i_chunk*n_ctx);
 | |
|         tokens.erase(tokens.begin(), tokens.begin() + params.i_chunk*n_ctx);
 | |
|     }
 | |
| 
 | |
|     if (int(tokens.size()) < 2*n_ctx) {
 | |
|         LOG_ERR("%s: you need at least %d tokens for a context of %d tokens\n", __func__, 2*n_ctx, n_ctx);
 | |
|         LOG_ERR("%s: the data file you provided tokenizes to only %zu tokens\n", __func__, tokens.size());
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     std::vector<float> logit_history;
 | |
|     std::vector<float> prob_history;
 | |
| 
 | |
|     if (params.compute_ppl) {
 | |
|         logit_history.resize(tokens.size());
 | |
|         prob_history.resize(tokens.size());
 | |
|     }
 | |
| 
 | |
|     const int n_chunk_max = tokens.size() / n_ctx;
 | |
| 
 | |
|     const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
 | |
|     const int n_vocab = llama_n_vocab(llama_get_model(ctx));
 | |
|     const int n_batch = params.n_batch;
 | |
| 
 | |
|     int count = 0;
 | |
|     double nll = 0.0;
 | |
|     double nll2 = 0.0;
 | |
| 
 | |
|     LOG_INF("%s: computing over %d chunks with batch_size %d\n", __func__, n_chunk, n_batch);
 | |
| 
 | |
|     std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
 | |
| 
 | |
|     const int num_batches = (n_ctx + n_batch - 1) / n_batch;
 | |
| 
 | |
|     std::vector<float> logits;
 | |
|     if (params.compute_ppl && num_batches > 1) {
 | |
|         logits.reserve((size_t)n_ctx * n_vocab);
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < n_chunk; ++i) {
 | |
|         const int start =     i * n_ctx;
 | |
|         const int end   = start + n_ctx;
 | |
| 
 | |
|         std::vector<float> logits;
 | |
| 
 | |
|         const auto t_start = std::chrono::high_resolution_clock::now();
 | |
| 
 | |
|         // clear the KV cache
 | |
|         llama_kv_cache_clear(ctx);
 | |
| 
 | |
|         llama_batch batch = llama_batch_init(n_batch, 0, 1);
 | |
| 
 | |
|         for (int j = 0; j < num_batches; ++j) {
 | |
|             const int batch_start = start + j * n_batch;
 | |
|             const int batch_size  = std::min(end - batch_start, n_batch);
 | |
| 
 | |
|             // save original token and restore it after eval
 | |
|             const auto token_org = tokens[batch_start];
 | |
| 
 | |
|             // add BOS token for the first batch of each chunk
 | |
|             if (add_bos && j == 0) {
 | |
|                 tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
 | |
|             }
 | |
| 
 | |
|             common_batch_clear(batch);
 | |
|             for (int i = 0; i < batch_size; i++) {
 | |
|                 common_batch_add(batch, tokens[batch_start + i], j*n_batch + i, {0}, true);
 | |
|             }
 | |
| 
 | |
|             if (llama_decode(ctx, batch)) {
 | |
|                 LOG_ERR("%s : failed to eval\n", __func__);
 | |
|                 llama_batch_free(batch);
 | |
|                 return false;
 | |
|             }
 | |
| 
 | |
|             // restore the original token in case it was set to BOS
 | |
|             tokens[batch_start] = token_org;
 | |
| 
 | |
|             if (params.compute_ppl && num_batches > 1) {
 | |
|                 const auto * batch_logits = llama_get_logits(ctx);
 | |
|                 logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         llama_batch_free(batch);
 | |
| 
 | |
|         const auto t_end = std::chrono::high_resolution_clock::now();
 | |
| 
 | |
|         if (i == 0) {
 | |
|             const float t_total = std::chrono::duration<float>(t_end - t_start).count();
 | |
|             LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
 | |
|             int total_seconds = (int)(t_total * n_chunk);
 | |
|             if (total_seconds >= 60*60) {
 | |
|                 LOG("%d hours ", total_seconds / (60*60));
 | |
|                 total_seconds = total_seconds % (60*60);
 | |
|             }
 | |
|             LOG("%.2f minutes\n", total_seconds / 60.0);
 | |
|         }
 | |
| 
 | |
|         if (params.compute_ppl) {
 | |
|             const int first = n_ctx/2;
 | |
|             const auto * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx);
 | |
|             process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
 | |
|                     workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
 | |
|             count += n_ctx - first - 1;
 | |
| 
 | |
|             LOG("[%d]%.4lf,", i + 1, std::exp(nll / count));
 | |
|             fflush(stdout);
 | |
| 
 | |
|             logits.clear();
 | |
|         }
 | |
|     }
 | |
|     LOG("\n");
 | |
| 
 | |
|     if (params.compute_ppl) {
 | |
|         nll2 /= count;
 | |
|         nll /= count;
 | |
|         const double ppl = exp(nll);
 | |
|         nll2 -= nll * nll;
 | |
|         if (nll2 > 0) {
 | |
|             nll2 = sqrt(nll2/(count-1));
 | |
|             LOG("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
 | |
|         } else {
 | |
|             LOG("Unexpected negative standard deviation of log(prob)\n");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     common_params params;
 | |
| 
 | |
|     params.n_ctx = 512;
 | |
|     params.logits_all = true;
 | |
|     params.escape = false;
 | |
| 
 | |
|     if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_IMATRIX, print_usage)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     common_init();
 | |
| 
 | |
|     params.n_batch = std::min(params.n_batch, params.n_ctx);
 | |
| 
 | |
|     g_collector.set_params(params);
 | |
| 
 | |
|     for (const auto & in_file : params.in_files) {
 | |
|         LOG_INF("%s : loading imatrix from '%s'\n", __func__, in_file.c_str());
 | |
|         if (!g_collector.load_imatrix(in_file.c_str())) {
 | |
|             LOG_ERR("%s : failed to load %s\n", __func__, in_file.c_str());
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (params.in_files.size() > 1) {
 | |
|         LOG_INF("%s : saving combined imatrix to '%s'\n", __func__, params.out_file.c_str());
 | |
|         g_collector.save_imatrix();
 | |
|     }
 | |
| 
 | |
|     llama_backend_init();
 | |
|     llama_numa_init(params.numa);
 | |
| 
 | |
|     // pass the callback to the backend scheduler
 | |
|     // it will be executed for each node during the graph computation
 | |
|     params.cb_eval = ik_collect_imatrix;
 | |
|     params.cb_eval_user_data = NULL;
 | |
|     params.warmup = false;
 | |
| 
 | |
|     // init
 | |
|     common_init_result llama_init = common_init_from_params(params);
 | |
| 
 | |
|     llama_model * model = llama_init.model;
 | |
|     llama_context * ctx = llama_init.context;
 | |
|     if (model == nullptr || ctx == nullptr) {
 | |
|         LOG_ERR("%s : failed to init\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     const int n_ctx_train = llama_n_ctx_train(model);
 | |
|     if (params.n_ctx > n_ctx_train) {
 | |
|         LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n",
 | |
|                 __func__, n_ctx_train, params.n_ctx);
 | |
|     }
 | |
| 
 | |
|     // print system information
 | |
|     {
 | |
|         LOG_INF("\n");
 | |
|         LOG_INF("%s\n", common_params_get_system_info(params).c_str());
 | |
|     }
 | |
| 
 | |
|     if (!compute_imatrix(ctx, params)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     g_collector.save_imatrix();
 | |
| 
 | |
|     LOG("\n");
 | |
|     llama_perf_context_print(ctx);
 | |
| 
 | |
|     llama_free(ctx);
 | |
|     llama_free_model(model);
 | |
| 
 | |
|     llama_backend_free();
 | |
| 
 | |
|     return 0;
 | |
| }
 |