mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* feat: first things to do * feat: create tensors for Jina architecture * fix: use other tensors * feat: embedding gets results * fix: fix usage of ALIBI * fix: clean prints * fix: do some cleanup unused vars * fix: revert changes to Makefile and CMakeLists * fix: revert some changes * fix: fix small detail * fix: fix convert formatting * fix: fix linting and editor * feat: set proper vocab settings * fix: JinaBertForMaskedLM registration * feat: support q_normalization and k_normalization in Jina arch * feat: handle gpt2 tokenizer with Jina architecture * feat: example comments in embedding * feat: rename Jina Bert to Jina Bert V2 * fix: add some changes as per review * feat: proper KQ_pos for Jina embeddings * feat: add capacity to load models ES and DE for Spanish * llama : fix pre-tokenizers * ggml : full ALiBi support * ggml : update ggml_soft_max_ext() CUDA, SYCL * ggml : ggml_flash_attn_ext() support ALiBi (CPU) * ggml : ggml_flash_attn_ext() support ALiBi (Metal) * ggml : fix warning * ggml : ggml_flash_attn_ext() support ALiBi (CUDA) ggml-ci * minor : clean-up * embedding : add warning about missing SEP --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			220 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			220 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "common.h"
 | 
						|
#include "llama.h"
 | 
						|
 | 
						|
#include <ctime>
 | 
						|
 | 
						|
#if defined(_MSC_VER)
 | 
						|
#pragma warning(disable: 4244 4267) // possible loss of data
 | 
						|
#endif
 | 
						|
 | 
						|
static std::vector<std::string> split_lines(const std::string & s) {
 | 
						|
    std::string line;
 | 
						|
    std::vector<std::string> lines;
 | 
						|
    std::stringstream ss(s);
 | 
						|
    while (std::getline(ss, line)) {
 | 
						|
        lines.push_back(line);
 | 
						|
    }
 | 
						|
    return lines;
 | 
						|
}
 | 
						|
 | 
						|
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, int seq_id) {
 | 
						|
    for (size_t i = 0; i < tokens.size(); i++) {
 | 
						|
        llama_batch_add(batch, tokens[i], i, { seq_id }, i == tokens.size() - 1);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
 | 
						|
    // clear previous kv_cache values (irrelevant for embeddings)
 | 
						|
    llama_kv_cache_clear(ctx);
 | 
						|
 | 
						|
    // run model
 | 
						|
    fprintf(stderr, "%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
 | 
						|
    if (llama_decode(ctx, batch) < 0) {
 | 
						|
        fprintf(stderr, "%s : failed to decode\n", __func__);
 | 
						|
    }
 | 
						|
 | 
						|
    for (int i = 0; i < batch.n_tokens; i++) {
 | 
						|
        if (!batch.logits[i]) {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // try to get sequence embeddings - supported only when pooling_type is not NONE
 | 
						|
        const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
 | 
						|
        if (embd == NULL) {
 | 
						|
            embd = llama_get_embeddings_ith(ctx, i);
 | 
						|
            if (embd == NULL) {
 | 
						|
                fprintf(stderr, "%s: failed to get embeddings for token %d\n", __func__, i);
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        float * out = output + batch.seq_id[i][0] * n_embd;
 | 
						|
        //TODO: I would also add a parameter here to enable normalization or not.
 | 
						|
        /*fprintf(stdout, "unnormalized_embedding:");
 | 
						|
        for (int hh = 0; hh < n_embd; hh++) {
 | 
						|
            fprintf(stdout, "%9.6f ", embd[hh]);
 | 
						|
        }
 | 
						|
        fprintf(stdout, "\n");*/
 | 
						|
        llama_embd_normalize(embd, out, n_embd);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
int main(int argc, char ** argv) {
 | 
						|
    gpt_params params;
 | 
						|
 | 
						|
    if (!gpt_params_parse(argc, argv, params)) {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    params.embedding = true;
 | 
						|
    // For non-causal models, batch size must be equal to ubatch size
 | 
						|
    params.n_ubatch = params.n_batch;
 | 
						|
 | 
						|
    print_build_info();
 | 
						|
 | 
						|
    if (params.seed == LLAMA_DEFAULT_SEED) {
 | 
						|
        params.seed = time(NULL);
 | 
						|
    }
 | 
						|
 | 
						|
    fprintf(stderr, "%s: seed  = %u\n", __func__, params.seed);
 | 
						|
 | 
						|
    std::mt19937 rng(params.seed);
 | 
						|
    if (params.random_prompt) {
 | 
						|
        params.prompt = gpt_random_prompt(rng);
 | 
						|
    }
 | 
						|
 | 
						|
    llama_backend_init();
 | 
						|
    llama_numa_init(params.numa);
 | 
						|
 | 
						|
    llama_model * model;
 | 
						|
    llama_context * ctx;
 | 
						|
 | 
						|
    // load the model
 | 
						|
    std::tie(model, ctx) = llama_init_from_gpt_params(params);
 | 
						|
    if (model == NULL) {
 | 
						|
        fprintf(stderr, "%s: error: unable to load model\n", __func__);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    const int n_ctx_train = llama_n_ctx_train(model);
 | 
						|
    const int n_ctx = llama_n_ctx(ctx);
 | 
						|
 | 
						|
    if (n_ctx > n_ctx_train) {
 | 
						|
        fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
 | 
						|
                __func__, n_ctx_train, n_ctx);
 | 
						|
    }
 | 
						|
 | 
						|
    // print system information
 | 
						|
    {
 | 
						|
        fprintf(stderr, "\n");
 | 
						|
        fprintf(stderr, "%s\n", get_system_info(params).c_str());
 | 
						|
    }
 | 
						|
 | 
						|
    // split the prompt into lines
 | 
						|
    std::vector<std::string> prompts = split_lines(params.prompt);
 | 
						|
 | 
						|
    // max batch size
 | 
						|
    const uint64_t n_batch = params.n_batch;
 | 
						|
    GGML_ASSERT(params.n_batch >= params.n_ctx);
 | 
						|
 | 
						|
    // tokenize the prompts and trim
 | 
						|
    std::vector<std::vector<int32_t>> inputs;
 | 
						|
    for (const auto & prompt : prompts) {
 | 
						|
        auto inp = ::llama_tokenize(ctx, prompt, true, false);
 | 
						|
        if (inp.size() > n_batch) {
 | 
						|
            fprintf(stderr, "%s: error: number of tokens in input line (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
 | 
						|
                    __func__, (long long int) inp.size(), (long long int) n_batch);
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
        inputs.push_back(inp);
 | 
						|
    }
 | 
						|
 | 
						|
    // check if the last token is SEP
 | 
						|
    // it should be automatically added by the tokenizer when 'tokenizer.ggml.add_eos_token' is set to 'true'
 | 
						|
    for (auto & inp : inputs) {
 | 
						|
        if (inp.empty() || inp.back() != llama_token_sep(model)) {
 | 
						|
            fprintf(stderr, "%s: warning: last token in the prompt is not SEP\n", __func__);
 | 
						|
            fprintf(stderr, "%s:          'tokenizer.ggml.add_eos_token' should be set to 'true' in the GGUF header\n", __func__);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // tokenization stats
 | 
						|
    if (params.verbose_prompt) {
 | 
						|
        for (int i = 0; i < (int) inputs.size(); i++) {
 | 
						|
            fprintf(stderr, "%s: prompt %d: '%s'\n", __func__, i, prompts[i].c_str());
 | 
						|
            fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, inputs[i].size());
 | 
						|
            for (int j = 0; j < (int) inputs[i].size(); j++) {
 | 
						|
                fprintf(stderr, "%6d -> '%s'\n", inputs[i][j], llama_token_to_piece(ctx, inputs[i][j]).c_str());
 | 
						|
            }
 | 
						|
            fprintf(stderr, "\n\n");
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // initialize batch
 | 
						|
    const int n_prompts = prompts.size();
 | 
						|
    struct llama_batch batch = llama_batch_init(n_batch, 0, 1);
 | 
						|
 | 
						|
    // allocate output
 | 
						|
    const int n_embd = llama_n_embd(model);
 | 
						|
    std::vector<float> embeddings(n_prompts * n_embd, 0);
 | 
						|
    float * emb = embeddings.data();
 | 
						|
 | 
						|
    // break into batches
 | 
						|
    int p = 0; // number of prompts processed already
 | 
						|
    int s = 0; // number of prompts in current batch
 | 
						|
    for (int k = 0; k < n_prompts; k++) {
 | 
						|
        // clamp to n_batch tokens
 | 
						|
        auto & inp = inputs[k];
 | 
						|
 | 
						|
        const uint64_t n_toks = inp.size();
 | 
						|
 | 
						|
        // encode if at capacity
 | 
						|
        if (batch.n_tokens + n_toks > n_batch) {
 | 
						|
            float * out = emb + p * n_embd;
 | 
						|
            batch_decode(ctx, batch, out, s, n_embd);
 | 
						|
            llama_batch_clear(batch);
 | 
						|
            p += s;
 | 
						|
            s = 0;
 | 
						|
        }
 | 
						|
 | 
						|
        // add to batch
 | 
						|
        batch_add_seq(batch, inp, s);
 | 
						|
        s += 1;
 | 
						|
    }
 | 
						|
 | 
						|
    // final batch
 | 
						|
    float * out = emb + p * n_embd;
 | 
						|
    batch_decode(ctx, batch, out, s, n_embd);
 | 
						|
 | 
						|
    // print the first part of the embeddings or for a single prompt, the full embedding
 | 
						|
    fprintf(stdout, "\n");
 | 
						|
    for (int j = 0; j < n_prompts; j++) {
 | 
						|
        fprintf(stdout, "embedding %d: ", j);
 | 
						|
        for (int i = 0; i < (n_prompts > 1 ? std::min(16, n_embd) : n_embd); i++) {
 | 
						|
            fprintf(stdout, "%9.6f ", emb[j * n_embd + i]);
 | 
						|
        }
 | 
						|
        fprintf(stdout, "\n");
 | 
						|
    }
 | 
						|
 | 
						|
    // print cosine similarity matrix
 | 
						|
    if (n_prompts > 1) {
 | 
						|
        fprintf(stdout, "\n");
 | 
						|
        printf("cosine similarity matrix:\n\n");
 | 
						|
        for (int i = 0; i < n_prompts; i++) {
 | 
						|
            for (int j = 0; j < n_prompts; j++) {
 | 
						|
                float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
 | 
						|
                fprintf(stdout, "%6.2f ", sim);
 | 
						|
            }
 | 
						|
            fprintf(stdout, "\n");
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // clean up
 | 
						|
    llama_print_timings(ctx);
 | 
						|
    llama_free(ctx);
 | 
						|
    llama_free_model(model);
 | 
						|
    llama_backend_free();
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 |