mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-28 08:31:25 +00:00 
			
		
		
		
	 a55876955b
			
		
	
	a55876955b
	
	
	
		
			
			* fix old jetson compile error * Update Makefile * update jetson detect and cuda version detect * update cuda marco define * update makefile and cuda,fix some issue * Update README.md Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update Makefile * Update README.md --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			10005 lines
		
	
	
		
			365 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			10005 lines
		
	
	
		
			365 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| #include <algorithm>
 | |
| #include <assert.h>
 | |
| #include <atomic>
 | |
| #include <cinttypes>
 | |
| #include <cstddef>
 | |
| #include <cstdint>
 | |
| #include <float.h>
 | |
| #include <limits>
 | |
| #include <stdint.h>
 | |
| #include <stdio.h>
 | |
| #include <vector>
 | |
| 
 | |
| 
 | |
| #if defined(GGML_USE_HIPBLAS)
 | |
| #include <hip/hip_runtime.h>
 | |
| #include <hipblas/hipblas.h>
 | |
| #include <hip/hip_fp16.h>
 | |
| #ifdef __HIP_PLATFORM_AMD__
 | |
| // for rocblas_initialize()
 | |
| #include "rocblas/rocblas.h"
 | |
| #endif // __HIP_PLATFORM_AMD__
 | |
| #define CUBLAS_COMPUTE_16F HIPBLAS_R_16F
 | |
| #define CUBLAS_COMPUTE_32F HIPBLAS_R_32F
 | |
| #define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_R_32F
 | |
| #define CUBLAS_GEMM_DEFAULT HIPBLAS_GEMM_DEFAULT
 | |
| #define CUBLAS_GEMM_DEFAULT_TENSOR_OP HIPBLAS_GEMM_DEFAULT
 | |
| #define CUBLAS_OP_N HIPBLAS_OP_N
 | |
| #define CUBLAS_OP_T HIPBLAS_OP_T
 | |
| #define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
 | |
| #define CUBLAS_TF32_TENSOR_OP_MATH 0
 | |
| #define CUDA_R_16F  HIPBLAS_R_16F
 | |
| #define CUDA_R_32F  HIPBLAS_R_32F
 | |
| #define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width)
 | |
| #define cublasComputeType_t hipblasDatatype_t //deprecated, new hipblasComputeType_t not in 5.6
 | |
| #define cublasCreate hipblasCreate
 | |
| #define cublasGemmEx hipblasGemmEx
 | |
| #define cublasGemmBatchedEx hipblasGemmBatchedEx
 | |
| #define cublasGemmStridedBatchedEx hipblasGemmStridedBatchedEx
 | |
| #define cublasHandle_t hipblasHandle_t
 | |
| #define cublasSetMathMode(handle, mode) CUBLAS_STATUS_SUCCESS
 | |
| #define cublasSetStream hipblasSetStream
 | |
| #define cublasSgemm hipblasSgemm
 | |
| #define cublasStatus_t hipblasStatus_t
 | |
| #define cudaDataType_t hipblasDatatype_t //deprecated, new hipblasDatatype not in 5.6
 | |
| #define cudaDeviceCanAccessPeer hipDeviceCanAccessPeer
 | |
| #define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess
 | |
| #define cudaDeviceEnablePeerAccess hipDeviceEnablePeerAccess
 | |
| #define cudaDeviceProp hipDeviceProp_t
 | |
| #define cudaDeviceSynchronize hipDeviceSynchronize
 | |
| #define cudaError_t hipError_t
 | |
| #define cudaEventCreateWithFlags hipEventCreateWithFlags
 | |
| #define cudaEventDisableTiming hipEventDisableTiming
 | |
| #define cudaEventRecord hipEventRecord
 | |
| #define cudaEvent_t hipEvent_t
 | |
| #define cudaEventDestroy hipEventDestroy
 | |
| #define cudaFree hipFree
 | |
| #define cudaFreeHost hipHostFree
 | |
| #define cudaGetDevice hipGetDevice
 | |
| #define cudaGetDeviceCount hipGetDeviceCount
 | |
| #define cudaGetDeviceProperties hipGetDeviceProperties
 | |
| #define cudaGetErrorString hipGetErrorString
 | |
| #define cudaGetLastError hipGetLastError
 | |
| #ifdef GGML_HIP_UMA
 | |
| #define cudaMalloc hipMallocManaged
 | |
| #define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size)
 | |
| #else
 | |
| #define cudaMalloc hipMalloc
 | |
| #define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault)
 | |
| #endif
 | |
| #define cudaMemcpy hipMemcpy
 | |
| #define cudaMemcpy2DAsync hipMemcpy2DAsync
 | |
| #define cudaMemcpyAsync hipMemcpyAsync
 | |
| #define cudaMemcpyDeviceToDevice hipMemcpyDeviceToDevice
 | |
| #define cudaMemcpyDeviceToHost hipMemcpyDeviceToHost
 | |
| #define cudaMemcpyHostToDevice hipMemcpyHostToDevice
 | |
| #define cudaMemcpyKind hipMemcpyKind
 | |
| #define cudaMemset hipMemset
 | |
| #define cudaMemsetAsync hipMemsetAsync
 | |
| #define cudaOccupancyMaxPotentialBlockSize hipOccupancyMaxPotentialBlockSize
 | |
| #define cudaSetDevice hipSetDevice
 | |
| #define cudaStreamCreateWithFlags hipStreamCreateWithFlags
 | |
| #define cudaStreamFireAndForget hipStreamFireAndForget
 | |
| #define cudaStreamNonBlocking hipStreamNonBlocking
 | |
| #define cudaStreamSynchronize hipStreamSynchronize
 | |
| #define cudaStreamWaitEvent(stream, event, flags) hipStreamWaitEvent(stream, event, flags)
 | |
| #define cudaStream_t hipStream_t
 | |
| #define cudaSuccess hipSuccess
 | |
| #define __trap abort
 | |
| #else
 | |
| #include <cuda_runtime.h>
 | |
| #include <cublas_v2.h>
 | |
| #include <cuda_fp16.h>
 | |
| // CUDA 10.2 does not have these macro definitions.
 | |
| #ifndef CUBLAS_TF32_TENSOR_OP_MATH
 | |
| #define CUBLAS_TF32_TENSOR_OP_MATH CUBLAS_TENSOR_OP_MATH
 | |
| #define CUBLAS_COMPUTE_16F CUDA_R_16F
 | |
| #define CUBLAS_COMPUTE_32F CUDA_R_32F
 | |
| #define cublasComputeType_t cudaDataType_t
 | |
| #endif
 | |
| #endif // defined(GGML_USE_HIPBLAS)
 | |
| 
 | |
| #include "ggml-cuda.h"
 | |
| #include "ggml.h"
 | |
| #include "ggml-backend-impl.h"
 | |
| 
 | |
| #define MIN_CC_DP4A   610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
 | |
| #define CC_VOLTA      700
 | |
| #define CC_OFFSET_AMD 1000000
 | |
| #define CC_RDNA2      (CC_OFFSET_AMD + 1030)
 | |
| 
 | |
| #define GGML_CUDA_MAX_NODES 8192
 | |
| 
 | |
| // define this if you want to always fallback to MMQ kernels and not use cuBLAS for matrix multiplication
 | |
| // on modern hardware, using cuBLAS is recommended as it utilizes F16 tensor cores which are very performant
 | |
| // for large computational tasks. the drawback is that this requires some extra amount of VRAM:
 | |
| // -  7B quantum model: +100-200 MB
 | |
| // - 13B quantum model: +200-400 MB
 | |
| //
 | |
| //#define GGML_CUDA_FORCE_MMQ
 | |
| 
 | |
| // TODO: improve this to be correct for more hardware
 | |
| //       for example, currently fails for GeForce GTX 1660 which is TURING arch (> VOLTA) but does not have tensor cores
 | |
| //       probably other such cases, and not sure what happens on AMD hardware
 | |
| #if !defined(GGML_CUDA_FORCE_MMQ)
 | |
| #define CUDA_USE_TENSOR_CORES
 | |
| #endif
 | |
| 
 | |
| // max batch size to use MMQ kernels when tensor cores are available
 | |
| #define MMQ_MAX_BATCH_SIZE 32
 | |
| 
 | |
| #if defined(GGML_USE_HIPBLAS)
 | |
| #define __CUDA_ARCH__ 1300
 | |
| 
 | |
| #if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
 | |
|     defined(__gfx1150__) || defined(__gfx1151__)
 | |
| #define RDNA3
 | |
| #endif
 | |
| 
 | |
| #if defined(__gfx1030__) || defined(__gfx1031__) || defined(__gfx1032__) || defined(__gfx1033__) || \
 | |
|     defined(__gfx1034__) || defined(__gfx1035__) || defined(__gfx1036__) || defined(__gfx1037__)
 | |
| #define RDNA2
 | |
| #endif
 | |
| 
 | |
| #ifndef __has_builtin
 | |
|     #define __has_builtin(x) 0
 | |
| #endif
 | |
| 
 | |
| typedef int8_t int8x4_t __attribute__((ext_vector_type(4)));
 | |
| static __device__ __forceinline__ int __vsubss4(const int a, const int b) {
 | |
|     const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
 | |
|     const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
 | |
| #if __has_builtin(__builtin_elementwise_sub_sat)
 | |
|     const int8x4_t c = __builtin_elementwise_sub_sat(va, vb);
 | |
|     return reinterpret_cast<const int&>(c);
 | |
| #else
 | |
|     int8x4_t c;
 | |
|     int16_t tmp;
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         tmp = va[i] - vb[i];
 | |
|         if(tmp > std::numeric_limits<int8_t>::max()) tmp = std::numeric_limits<int8_t>::max();
 | |
|         if(tmp < std::numeric_limits<int8_t>::min()) tmp = std::numeric_limits<int8_t>::min();
 | |
|         c[i] = tmp;
 | |
|     }
 | |
|     return reinterpret_cast<int&>(c);
 | |
| #endif // __has_builtin(__builtin_elementwise_sub_sat)
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) {
 | |
| #if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx1030__)
 | |
|     c = __builtin_amdgcn_sdot4(a, b, c, false);
 | |
| #elif defined(__gfx1100__)
 | |
|     c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
 | |
| #elif defined(__gfx1010__) || defined(__gfx900__)
 | |
|     int tmp1;
 | |
|     int tmp2;
 | |
|     asm("\n \
 | |
|         v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_0 src1_sel:BYTE_0 \n \
 | |
|         v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_1 src1_sel:BYTE_1 \n \
 | |
|         v_add3_u32 %0, %1, %2, %0 \n \
 | |
|         v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_2 src1_sel:BYTE_2 \n \
 | |
|         v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_3 src1_sel:BYTE_3 \n \
 | |
|         v_add3_u32 %0, %1, %2, %0 \n \
 | |
|         "
 | |
|         : "+v"(c), "=&v"(tmp1), "=&v"(tmp2)
 | |
|         : "v"(a), "v"(b)
 | |
|     );
 | |
| #else
 | |
|     const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
 | |
|     const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
 | |
|     c += va[0] * vb[0] + va[1] * vb[1] + va[2] * vb[2] + va[3] * vb[3];
 | |
| #endif
 | |
|     return c;
 | |
| }
 | |
| #endif // defined(GGML_USE_HIPBLAS)
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #pragma warning(disable: 4244 4267) // possible loss of data
 | |
| #endif
 | |
| 
 | |
| static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
 | |
| 
 | |
| #define CUDA_CHECK(err)                                                                 \
 | |
|     do {                                                                                \
 | |
|         cudaError_t err_ = (err);                                                       \
 | |
|         if (err_ != cudaSuccess) {                                                      \
 | |
|             int id;                                                                     \
 | |
|             cudaGetDevice(&id);                                                         \
 | |
|             fprintf(stderr, "\nCUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
 | |
|                 cudaGetErrorString(err_));                                              \
 | |
|             fprintf(stderr, "current device: %d\n", id);                                \
 | |
|             GGML_ASSERT(!"CUDA error");                                                 \
 | |
|         }                                                                               \
 | |
|     } while (0)
 | |
| 
 | |
| #if CUDART_VERSION >= 12000
 | |
| #define CUBLAS_CHECK(err)                                                               \
 | |
|     do {                                                                                \
 | |
|         cublasStatus_t err_ = (err);                                                    \
 | |
|         if (err_ != CUBLAS_STATUS_SUCCESS) {                                            \
 | |
|             int id;                                                                     \
 | |
|             cudaGetDevice(&id);                                                         \
 | |
|             fprintf(stderr, "\ncuBLAS error %d at %s:%d: %s\n",                         \
 | |
|                     err_, __FILE__, __LINE__, cublasGetStatusString(err_));             \
 | |
|             fprintf(stderr, "current device: %d\n", id);                                \
 | |
|             GGML_ASSERT(!"cuBLAS error");                                               \
 | |
|         }                                                                               \
 | |
|     } while (0)
 | |
| #else
 | |
| #define CUBLAS_CHECK(err)                                                               \
 | |
|     do {                                                                                \
 | |
|         cublasStatus_t err_ = (err);                                                    \
 | |
|         if (err_ != CUBLAS_STATUS_SUCCESS) {                                            \
 | |
|             int id;                                                                     \
 | |
|             cudaGetDevice(&id);                                                         \
 | |
|             fprintf(stderr, "\ncuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__);  \
 | |
|             fprintf(stderr, "current device: %d\n", id);                                \
 | |
|             GGML_ASSERT(!"cuBLAS error");                                               \
 | |
|         }                                                                               \
 | |
|     } while (0)
 | |
| #endif // CUDART_VERSION >= 11
 | |
| 
 | |
| #if CUDART_VERSION >= 11100
 | |
| #define GGML_CUDA_ASSUME(x) __builtin_assume(x)
 | |
| #else
 | |
| #define GGML_CUDA_ASSUME(x)
 | |
| #endif // CUDART_VERSION >= 11100
 | |
| 
 | |
| #ifdef GGML_CUDA_F16
 | |
| typedef half dfloat; // dequantize float
 | |
| typedef half2 dfloat2;
 | |
| #else
 | |
| typedef float dfloat; // dequantize float
 | |
| typedef float2 dfloat2;
 | |
| #endif //GGML_CUDA_F16
 | |
| 
 | |
| static __device__ __forceinline__ int get_int_from_int8(const int8_t * x8, const int & i32) {
 | |
|     const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
 | |
| 
 | |
|     int x32 = 0;
 | |
|     x32 |= x16[0] <<  0;
 | |
|     x32 |= x16[1] << 16;
 | |
| 
 | |
|     return x32;
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ int get_int_from_uint8(const uint8_t * x8, const int & i32) {
 | |
|     const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
 | |
| 
 | |
|     int x32 = 0;
 | |
|     x32 |= x16[0] <<  0;
 | |
|     x32 |= x16[1] << 16;
 | |
| 
 | |
|     return x32;
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ int get_int_from_int8_aligned(const int8_t * x8, const int & i32) {
 | |
|     return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ int get_int_from_uint8_aligned(const uint8_t * x8, const int & i32) {
 | |
|     return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| using to_t_cuda_t = void (*)(const void * __restrict__ x, T * __restrict__ y, int k, cudaStream_t stream);
 | |
| typedef to_t_cuda_t<float> to_fp32_cuda_t;
 | |
| typedef to_t_cuda_t<half> to_fp16_cuda_t;
 | |
| 
 | |
| typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v);
 | |
| typedef void (*dot_kernel_k_t)(const void * __restrict__ vx, const int ib, const int iqs, const float * __restrict__ y, float & v);
 | |
| typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
 | |
| typedef void (*ggml_cuda_func_t)(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
 | |
| typedef void (*ggml_cuda_op_mul_mat_t)(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
 | |
|     const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
 | |
|     const int64_t src1_padded_row_size, const cudaStream_t & stream);
 | |
| typedef void (*ggml_cuda_op_flatten_t)(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
 | |
|     const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream);
 | |
| 
 | |
| // QK = number of values after dequantization
 | |
| // QR = QK / number of values before dequantization
 | |
| // QI = number of 32 bit integers before dequantization
 | |
| 
 | |
| #define QK4_0 32
 | |
| #define QR4_0 2
 | |
| #define QI4_0 (QK4_0 / (4 * QR4_0))
 | |
| typedef struct {
 | |
|     half    d;              // delta
 | |
|     uint8_t qs[QK4_0 / 2];  // nibbles / quants
 | |
| } block_q4_0;
 | |
| static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
 | |
| 
 | |
| #define QK4_1 32
 | |
| #define QR4_1 2
 | |
| #define QI4_1 (QK4_1 / (4 * QR4_1))
 | |
| typedef struct {
 | |
|     half2   dm;             // dm.x = delta, dm.y = min
 | |
|     uint8_t qs[QK4_1 / 2];  // nibbles / quants
 | |
| } block_q4_1;
 | |
| static_assert(sizeof(block_q4_1) == sizeof(ggml_fp16_t) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
 | |
| 
 | |
| #define QK5_0 32
 | |
| #define QR5_0 2
 | |
| #define QI5_0 (QK5_0 / (4 * QR5_0))
 | |
| typedef struct {
 | |
|     half d;                 // delta
 | |
|     uint8_t qh[4];          // 5-th bit of quants
 | |
|     uint8_t qs[QK5_0 / 2];  // nibbles / quants
 | |
| } block_q5_0;
 | |
| static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
 | |
| 
 | |
| #define QK5_1 32
 | |
| #define QR5_1 2
 | |
| #define QI5_1 (QK5_1 / (4 * QR5_1))
 | |
| typedef struct {
 | |
|     half2 dm;               // dm.x = delta, dm.y = min
 | |
|     uint8_t qh[4];          // 5-th bit of quants
 | |
|     uint8_t qs[QK5_1 / 2];  // nibbles / quants
 | |
| } block_q5_1;
 | |
| static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
 | |
| 
 | |
| #define QK8_0 32
 | |
| #define QR8_0 1
 | |
| #define QI8_0 (QK8_0 / (4 * QR8_0))
 | |
| typedef struct {
 | |
|     half    d;              // delta
 | |
|     int8_t  qs[QK8_0];      // quants
 | |
| } block_q8_0;
 | |
| static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
 | |
| 
 | |
| #define QK8_1 32
 | |
| #define QR8_1 1
 | |
| #define QI8_1 (QK8_1 / (4 * QR8_1))
 | |
| typedef struct {
 | |
|     half2   ds;             // ds.x = delta, ds.y = sum
 | |
|     int8_t  qs[QK8_0];      // quants
 | |
| } block_q8_1;
 | |
| static_assert(sizeof(block_q8_1) == 2*sizeof(ggml_fp16_t) + QK8_0, "wrong q8_1 block size/padding");
 | |
| 
 | |
| typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs);
 | |
| typedef void (*allocate_tiles_cuda_t)(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc);
 | |
| typedef void (*load_tiles_cuda_t)(
 | |
|     const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
 | |
|     int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row);
 | |
| typedef float (*vec_dot_q_mul_mat_cuda_t)(
 | |
|     const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
 | |
|     const int * __restrict__ y_qs, const half2 * __restrict__ y_ms, const int & i, const int & j, const int & k);
 | |
| 
 | |
| //================================= k-quants
 | |
| 
 | |
| #ifdef GGML_QKK_64
 | |
| #define QK_K 64
 | |
| #define K_SCALE_SIZE 4
 | |
| #else
 | |
| #define QK_K 256
 | |
| #define K_SCALE_SIZE 12
 | |
| #endif
 | |
| 
 | |
| #define QR2_K 4
 | |
| #define QI2_K (QK_K / (4*QR2_K))
 | |
| typedef struct {
 | |
|     uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
 | |
|     uint8_t qs[QK_K/4];      // quants
 | |
|     half2 dm;                // super-block scale for quantized scales/mins
 | |
| } block_q2_K;
 | |
| static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");
 | |
| 
 | |
| #define QR3_K 4
 | |
| #define QI3_K (QK_K / (4*QR3_K))
 | |
| typedef struct {
 | |
|     uint8_t hmask[QK_K/8];     // quants - high bit
 | |
|     uint8_t qs[QK_K/4];        // quants - low 2 bits
 | |
| #ifdef GGML_QKK_64
 | |
|     uint8_t scales[2]; // scales, quantized with 8 bits
 | |
| #else
 | |
|     uint8_t scales[K_SCALE_SIZE]; // scales, quantized with 6 bits
 | |
| #endif
 | |
|     half d;             // super-block scale
 | |
| } block_q3_K;
 | |
| //static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + K_SCALE_SIZE, "wrong q3_K block size/padding");
 | |
| 
 | |
| #define QR4_K 2
 | |
| #define QI4_K (QK_K / (4*QR4_K))
 | |
| #ifdef GGML_QKK_64
 | |
| typedef struct {
 | |
|     half    dm[2];             // super-block scales/mins
 | |
|     uint8_t scales[2];         // 4-bit block scales/mins
 | |
|     uint8_t qs[QK_K/2];        // 4--bit quants
 | |
| } block_q4_K;
 | |
| static_assert(sizeof(block_q4_K) == sizeof(half2) + QK_K/2 + 2, "wrong q4_K block size/padding");
 | |
| #else
 | |
| typedef struct {
 | |
|     half2 dm;                  // super-block scale for quantized scales/mins
 | |
|     uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits
 | |
|     uint8_t qs[QK_K/2];        // 4--bit quants
 | |
| } block_q4_K;
 | |
| static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2, "wrong q4_K block size/padding");
 | |
| #endif
 | |
| 
 | |
| #define QR5_K 2
 | |
| #define QI5_K (QK_K / (4*QR5_K))
 | |
| #ifdef GGML_QKK_64
 | |
| typedef struct {
 | |
|     half d;                  // super-block scale
 | |
|     int8_t scales[QK_K/16];  // block scales
 | |
|     uint8_t qh[QK_K/8];      // quants, high bit
 | |
|     uint8_t qs[QK_K/2];      // quants, low 4 bits
 | |
| } block_q5_K;
 | |
| static_assert(sizeof(block_q5_K) == sizeof(ggml_fp16_t) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding");
 | |
| #else
 | |
| typedef struct {
 | |
|     half2 dm;                     // super-block scale for quantized scales/mins
 | |
|     uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
 | |
|     uint8_t qh[QK_K/8];           // quants, high bit
 | |
|     uint8_t qs[QK_K/2];           // quants, low 4 bits
 | |
| } block_q5_K;
 | |
| static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
 | |
| #endif
 | |
| 
 | |
| #define QR6_K 2
 | |
| #define QI6_K (QK_K / (4*QR6_K))
 | |
| typedef struct {
 | |
|     uint8_t ql[QK_K/2];   // quants, lower 4 bits
 | |
|     uint8_t qh[QK_K/4];   // quants, upper 2 bits
 | |
|     int8_t  scales[QK_K/16]; // scales
 | |
|     half    d;         // delta
 | |
| } block_q6_K;
 | |
| static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_K block size/padding");
 | |
| 
 | |
| #define WARP_SIZE 32
 | |
| #define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
 | |
| 
 | |
| #define CUDA_GELU_BLOCK_SIZE 256
 | |
| #define CUDA_SILU_BLOCK_SIZE 256
 | |
| #define CUDA_TANH_BLOCK_SIZE 256
 | |
| #define CUDA_RELU_BLOCK_SIZE 256
 | |
| #define CUDA_SQR_BLOCK_SIZE 256
 | |
| #define CUDA_CPY_BLOCK_SIZE 32
 | |
| #define CUDA_SCALE_BLOCK_SIZE 256
 | |
| #define CUDA_CLAMP_BLOCK_SIZE 256
 | |
| #define CUDA_ROPE_BLOCK_SIZE 256
 | |
| #define CUDA_SOFT_MAX_BLOCK_SIZE 1024
 | |
| #define CUDA_ALIBI_BLOCK_SIZE 32
 | |
| #define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32
 | |
| #define CUDA_QUANTIZE_BLOCK_SIZE 256
 | |
| #define CUDA_DEQUANTIZE_BLOCK_SIZE 256
 | |
| #define CUDA_GET_ROWS_BLOCK_SIZE 256
 | |
| #define CUDA_UPSCALE_BLOCK_SIZE 256
 | |
| #define CUDA_CONCAT_BLOCK_SIZE 256
 | |
| #define CUDA_PAD_BLOCK_SIZE 256
 | |
| #define CUDA_ACC_BLOCK_SIZE 256
 | |
| #define CUDA_IM2COL_BLOCK_SIZE 256
 | |
| 
 | |
| // dmmv = dequantize_mul_mat_vec
 | |
| #ifndef GGML_CUDA_DMMV_X
 | |
| #define GGML_CUDA_DMMV_X 32
 | |
| #endif
 | |
| #ifndef GGML_CUDA_MMV_Y
 | |
| #define GGML_CUDA_MMV_Y 1
 | |
| #endif
 | |
| 
 | |
| #ifndef K_QUANTS_PER_ITERATION
 | |
| #define K_QUANTS_PER_ITERATION 2
 | |
| #else
 | |
| static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
 | |
| #endif
 | |
| 
 | |
| #ifndef GGML_CUDA_PEER_MAX_BATCH_SIZE
 | |
| #define GGML_CUDA_PEER_MAX_BATCH_SIZE 128
 | |
| #endif // GGML_CUDA_PEER_MAX_BATCH_SIZE
 | |
| 
 | |
| #define MUL_MAT_SRC1_COL_STRIDE 128
 | |
| 
 | |
| #define MAX_STREAMS 8
 | |
| static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_DEVICES][MAX_STREAMS] = { { nullptr } };
 | |
| 
 | |
| struct ggml_tensor_extra_gpu {
 | |
|     void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
 | |
|     cudaEvent_t events[GGML_CUDA_MAX_DEVICES][MAX_STREAMS]; // events for synchronizing multiple GPUs
 | |
| };
 | |
| 
 | |
| // this is faster on Windows
 | |
| // probably because the Windows CUDA libraries forget to make this check before invoking the drivers
 | |
| inline cudaError_t ggml_cuda_set_device(const int device) {
 | |
|     int current_device;
 | |
|     CUDA_CHECK(cudaGetDevice(¤t_device));
 | |
| 
 | |
|     if (device == current_device) {
 | |
|         return cudaSuccess;
 | |
|     }
 | |
| 
 | |
|     return cudaSetDevice(device);
 | |
| }
 | |
| 
 | |
| static int g_device_count = -1;
 | |
| static int g_main_device = 0;
 | |
| static int g_compute_capabilities[GGML_CUDA_MAX_DEVICES];
 | |
| static float g_tensor_split[GGML_CUDA_MAX_DEVICES] = {0};
 | |
| 
 | |
| static void * g_scratch_buffer = nullptr;
 | |
| static size_t g_scratch_size = 0; // disabled by default
 | |
| static size_t g_scratch_offset = 0;
 | |
| 
 | |
| static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
 | |
| 
 | |
| [[noreturn]]
 | |
| static __device__ void bad_arch() {
 | |
|     printf("ERROR: ggml-cuda was compiled without support for the current GPU architecture.\n");
 | |
|     __trap();
 | |
| 
 | |
|     (void) bad_arch; // suppress unused function warning
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ float warp_reduce_sum(float x) {
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         x += __shfl_xor_sync(0xffffffff, x, mask, 32);
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         a.x += __shfl_xor_sync(0xffffffff, a.x, mask, 32);
 | |
|         a.y += __shfl_xor_sync(0xffffffff, a.y, mask, 32);
 | |
|     }
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ float warp_reduce_max(float x) {
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ float op_repeat(const float a, const float b) {
 | |
|     return b;
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ float op_add(const float a, const float b) {
 | |
|     return a + b;
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ float op_mul(const float a, const float b) {
 | |
|     return a * b;
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ float op_div(const float a, const float b) {
 | |
|     return a / b;
 | |
| }
 | |
| 
 | |
| template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
 | |
| static __global__ void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
 | |
|         int ne0, int ne1, int ne2, int ne3,
 | |
|         int ne10, int ne11, int ne12, int ne13,
 | |
|         /*int s0, */ int s1,  int s2,  int s3,
 | |
|         /*int s10,*/ int s11, int s12, int s13) {
 | |
|     const int i0s = blockDim.x*blockIdx.x + threadIdx.x;
 | |
|     const int i1 = (blockDim.y*blockIdx.y + threadIdx.y);
 | |
|     const int i2 = (blockDim.z*blockIdx.z + threadIdx.z) / ne3;
 | |
|     const int i3 = (blockDim.z*blockIdx.z + threadIdx.z) % ne3;
 | |
| 
 | |
|     if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int i11 = i1 % ne11;
 | |
|     const int i12 = i2 % ne12;
 | |
|     const int i13 = i3 % ne13;
 | |
| 
 | |
|     const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
 | |
|     const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
 | |
|     const size_t i_dst  = i_src0;
 | |
| 
 | |
|     const src0_t * src0_row = src0 + i_src0;
 | |
|     const src1_t * src1_row = src1 + i_src1;
 | |
|     dst_t * dst_row = dst + i_dst;
 | |
| 
 | |
|     for (int i0 = i0s; i0 < ne0; i0 += blockDim.x*gridDim.x) {
 | |
|         const int i10 = i0 % ne10;
 | |
|         dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
 | |
| static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
 | |
|         int ne0, int ne1, int ne2, int ne3,
 | |
|         int ne10, int ne11, int ne12, int ne13,
 | |
|         /*int s0, */ int s1,  int s2,  int s3,
 | |
|         /*int s10,*/ int s11, int s12, int s13) {
 | |
| 
 | |
|     const int i = blockDim.x*blockIdx.x + threadIdx.x;
 | |
| 
 | |
|     const int i3 = i/(ne2*ne1*ne0);
 | |
|     const int i2 = (i/(ne1*ne0)) % ne2;
 | |
|     const int i1 = (i/ne0) % ne1;
 | |
|     const int i0 = i % ne0;
 | |
| 
 | |
|     if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int i11 = i1 % ne11;
 | |
|     const int i12 = i2 % ne12;
 | |
|     const int i13 = i3 % ne13;
 | |
| 
 | |
|     const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
 | |
|     const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
 | |
|     const size_t i_dst  = i_src0;
 | |
| 
 | |
|     const src0_t * src0_row = src0 + i_src0;
 | |
|     const src1_t * src1_row = src1 + i_src1;
 | |
|     dst_t * dst_row = dst + i_dst;
 | |
| 
 | |
|     const int i10 = i0 % ne10;
 | |
|     dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
 | |
| }
 | |
| 
 | |
| static __global__ void acc_f32(const float * x, const float * y, float * dst, const int ne,
 | |
|     const int ne10, const int ne11, const int ne12,
 | |
|     const int nb1, const int nb2, int offset) {
 | |
|     const int i = blockDim.x * blockIdx.x + threadIdx.x;
 | |
|     if (i >= ne) {
 | |
|         return;
 | |
|     }
 | |
|     int src1_idx = i - offset;
 | |
|     int oz = src1_idx / nb2;
 | |
|     int oy = (src1_idx - (oz * nb2)) / nb1;
 | |
|     int ox = src1_idx % nb1;
 | |
|     if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) {
 | |
|         dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11];
 | |
|     } else {
 | |
|         dst[i] = x[i];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __global__ void gelu_f32(const float * x, float * dst, const int k) {
 | |
|     const float GELU_COEF_A    = 0.044715f;
 | |
|     const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
 | |
|     const int i = blockDim.x*blockIdx.x + threadIdx.x;
 | |
| 
 | |
|     if (i >= k) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     float xi = x[i];
 | |
|     dst[i] = 0.5f*xi*(1.0f + tanhf(SQRT_2_OVER_PI*xi*(1.0f + GELU_COEF_A*xi*xi)));
 | |
| }
 | |
| 
 | |
| static __global__ void silu_f32(const float * x, float * dst, const int k) {
 | |
|     const int i = blockDim.x*blockIdx.x + threadIdx.x;
 | |
| 
 | |
|     if (i >= k) {
 | |
|         return;
 | |
|     }
 | |
|     dst[i] = x[i] / (1.0f + expf(-x[i]));
 | |
| }
 | |
| 
 | |
| static __global__ void gelu_quick_f32(const float *x, float *dst, int k) {
 | |
|     const float GELU_QUICK_COEF = -1.702f;
 | |
|     const int i  = blockDim.x*blockIdx.x + threadIdx.x;
 | |
|     if (i >= k) {
 | |
|         return;
 | |
|     }
 | |
|     dst[i] = x[i] * (1.0f / (1.0f + expf(GELU_QUICK_COEF * x[i])));
 | |
| }
 | |
| 
 | |
| static __global__ void tanh_f32(const float *x, float *dst, int k) {
 | |
|     const int i  = blockDim.x*blockIdx.x + threadIdx.x;
 | |
|     if (i >= k) {
 | |
|         return;
 | |
|     }
 | |
|     dst[i] = tanhf(x[i]);
 | |
| }
 | |
| 
 | |
| static __global__ void relu_f32(const float * x, float * dst, const int k) {
 | |
|     const int i = blockDim.x*blockIdx.x + threadIdx.x;
 | |
| 
 | |
|     if (i >= k) {
 | |
|         return;
 | |
|     }
 | |
|     dst[i] = fmaxf(x[i], 0);
 | |
| }
 | |
| 
 | |
| static __global__ void leaky_relu_f32(const float *x, float *dst, const int k, const float negative_slope) {
 | |
|     const int i  = blockDim.x*blockIdx.x + threadIdx.x;
 | |
|     if (i >= k) {
 | |
|         return;
 | |
|     }
 | |
|     dst[i] = fmaxf(x[i], 0) + fminf(x[i], 0.0f) * negative_slope;
 | |
| }
 | |
| 
 | |
| static __global__ void sqr_f32(const float * x, float * dst, const int k) {
 | |
|     const int i = blockDim.x*blockIdx.x + threadIdx.x;
 | |
| 
 | |
|     if (i >= k) {
 | |
|         return;
 | |
|     }
 | |
|     dst[i] = x[i] * x[i];
 | |
| }
 | |
| 
 | |
| template <int block_size>
 | |
| static __global__ void norm_f32(const float * x, float * dst, const int ncols, const float eps) {
 | |
|     const int row = blockIdx.x*blockDim.y + threadIdx.y;
 | |
|     const int tid = threadIdx.x;
 | |
| 
 | |
|     float2 mean_var = make_float2(0.f, 0.f);
 | |
| 
 | |
|     for (int col = tid; col < ncols; col += block_size) {
 | |
|         const float xi = x[row*ncols + col];
 | |
|         mean_var.x += xi;
 | |
|         mean_var.y += xi * xi;
 | |
|     }
 | |
| 
 | |
|     // sum up partial sums
 | |
|     mean_var = warp_reduce_sum(mean_var);
 | |
|     if (block_size > WARP_SIZE) {
 | |
|         __shared__ float2 s_sum[32];
 | |
|         int warp_id = threadIdx.x / WARP_SIZE;
 | |
|         int lane_id = threadIdx.x % WARP_SIZE;
 | |
|         if (lane_id == 0) {
 | |
|             s_sum[warp_id] = mean_var;
 | |
|         }
 | |
|         __syncthreads();
 | |
|         mean_var = s_sum[lane_id];
 | |
|         mean_var = warp_reduce_sum(mean_var);
 | |
|     }
 | |
| 
 | |
|     const float mean = mean_var.x / ncols;
 | |
|     const float var = mean_var.y / ncols - mean * mean;
 | |
|     const float inv_std = rsqrtf(var + eps);
 | |
| 
 | |
|     for (int col = tid; col < ncols; col += block_size) {
 | |
|         dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __global__ void concat_f32(const float  *x,const float  *y, float *dst, const int ne0, const int ne02) {
 | |
|     int nidx = threadIdx.x + blockIdx.x * blockDim.x;
 | |
|     if (nidx >= ne0) {
 | |
|         return;
 | |
|     }
 | |
|     // operation
 | |
|     int offset_dst =
 | |
|         nidx +
 | |
|         blockIdx.y * ne0 +
 | |
|         blockIdx.z * ne0 * gridDim.y;
 | |
|     if (blockIdx.z < ne02) { // src0
 | |
|         int offset_src =
 | |
|             nidx +
 | |
|             blockIdx.y * ne0 +
 | |
|             blockIdx.z * ne0 * gridDim.y;
 | |
|             dst[offset_dst] = x[offset_src];
 | |
|     } else {
 | |
|         int offset_src =
 | |
|             nidx +
 | |
|             blockIdx.y * ne0 +
 | |
|             (blockIdx.z - ne02) * ne0 *  gridDim.y;
 | |
|             dst[offset_dst] = y[offset_src];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __global__ void upscale_f32(const float  *x, float *dst, const int ne00, const int nb02, const int scale_factor) {
 | |
|     int ne0 = ne00 * scale_factor;
 | |
|     int nidx = threadIdx.x + blockIdx.x * blockDim.x;
 | |
|     if (nidx >= ne0) {
 | |
|         return;
 | |
|     }
 | |
|     // operation
 | |
|     int i00 = nidx / scale_factor;
 | |
|     int i01 = blockIdx.y / scale_factor;
 | |
|     int offset_src =
 | |
|         i00 +
 | |
|         i01 * ne00 +
 | |
|         blockIdx.z * nb02;
 | |
|     int offset_dst =
 | |
|         nidx +
 | |
|         blockIdx.y * ne0 +
 | |
|         blockIdx.z * ne0 * gridDim.y;
 | |
|     dst[offset_dst] = x[offset_src];
 | |
| }
 | |
| 
 | |
| static __global__ void pad_f32(const float  *x, float *dst, const int ne0, const int ne00, const int ne01, const int ne02) {
 | |
|     int nidx = threadIdx.x + blockIdx.x * blockDim.x;
 | |
|     if (nidx >= ne0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // operation
 | |
|     int offset_dst =
 | |
|         nidx +
 | |
|         blockIdx.y * ne0 +
 | |
|         blockIdx.z * ne0 * gridDim.y;
 | |
|     if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02) {
 | |
|         int offset_src =
 | |
|             nidx +
 | |
|             blockIdx.y * ne00 +
 | |
|             blockIdx.z * ne00 * ne01;
 | |
|             dst[offset_dst] = x[offset_src];
 | |
|     } else {
 | |
|         dst[offset_dst] = 0.0f;
 | |
|     }
 | |
| }
 | |
| 
 | |
| template <int block_size>
 | |
| static __global__ void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps) {
 | |
|     int start = blockIdx.x * group_size;
 | |
|     int end = start + group_size;
 | |
| 
 | |
|     start += threadIdx.x;
 | |
| 
 | |
|     if (end >= ne_elements) {
 | |
|         end = ne_elements;
 | |
|     }
 | |
| 
 | |
|     float tmp = 0.0f; // partial sum for thread in warp
 | |
| 
 | |
|     for (int j = start; j < end; j += block_size) {
 | |
|         tmp += x[j];
 | |
|     }
 | |
| 
 | |
|     tmp = warp_reduce_sum(tmp);
 | |
|     if (block_size > WARP_SIZE) {
 | |
|         __shared__ float s_sum[32];
 | |
|         int warp_id = threadIdx.x / WARP_SIZE;
 | |
|         int lane_id = threadIdx.x % WARP_SIZE;
 | |
|         if (lane_id == 0) {
 | |
|             s_sum[warp_id] = tmp;
 | |
|         }
 | |
|         __syncthreads();
 | |
|         tmp = s_sum[lane_id];
 | |
|         tmp = warp_reduce_sum(tmp);
 | |
|     }
 | |
| 
 | |
|     float mean = tmp / group_size;
 | |
|     tmp = 0.0f;
 | |
| 
 | |
|     for (int j = start; j < end; j += block_size) {
 | |
|         float xi = x[j] - mean;
 | |
|         dst[j] = xi;
 | |
|         tmp += xi * xi;
 | |
|     }
 | |
| 
 | |
|     tmp = warp_reduce_sum(tmp);
 | |
|     if (block_size > WARP_SIZE) {
 | |
|         __shared__ float s_sum[32];
 | |
|         int warp_id = threadIdx.x / WARP_SIZE;
 | |
|         int lane_id = threadIdx.x % WARP_SIZE;
 | |
|         if (lane_id == 0) {
 | |
|             s_sum[warp_id] = tmp;
 | |
|         }
 | |
|         __syncthreads();
 | |
|         tmp = s_sum[lane_id];
 | |
|         tmp = warp_reduce_sum(tmp);
 | |
|     }
 | |
| 
 | |
|     float variance = tmp / group_size;
 | |
|     float scale = rsqrtf(variance + eps);
 | |
|     for (int j = start; j < end; j += block_size) {
 | |
|         dst[j] *= scale;
 | |
|     }
 | |
| }
 | |
| 
 | |
| template <int block_size>
 | |
| static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
 | |
|     const int row = blockIdx.x*blockDim.y + threadIdx.y;
 | |
|     const int tid = threadIdx.x;
 | |
| 
 | |
|     float tmp = 0.0f; // partial sum for thread in warp
 | |
| 
 | |
|     for (int col = tid; col < ncols; col += block_size) {
 | |
|         const float xi = x[row*ncols + col];
 | |
|         tmp += xi * xi;
 | |
|     }
 | |
| 
 | |
|     // sum up partial sums
 | |
|     tmp = warp_reduce_sum(tmp);
 | |
|     if (block_size > WARP_SIZE) {
 | |
|         __shared__ float s_sum[32];
 | |
|         int warp_id = threadIdx.x / WARP_SIZE;
 | |
|         int lane_id = threadIdx.x % WARP_SIZE;
 | |
|         if (lane_id == 0) {
 | |
|             s_sum[warp_id] = tmp;
 | |
|         }
 | |
|         __syncthreads();
 | |
|         tmp = s_sum[lane_id];
 | |
|         tmp = warp_reduce_sum(tmp);
 | |
|     }
 | |
| 
 | |
|     const float mean = tmp / ncols;
 | |
|     const float scale = rsqrtf(mean + eps);
 | |
| 
 | |
|     for (int col = tid; col < ncols; col += block_size) {
 | |
|         dst[row*ncols + col] = scale * x[row*ncols + col];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
 | |
|     const block_q4_0 * x = (const block_q4_0 *) vx;
 | |
| 
 | |
|     const dfloat d = x[ib].d;
 | |
| 
 | |
|     const int vui = x[ib].qs[iqs];
 | |
| 
 | |
|     v.x = vui & 0xF;
 | |
|     v.y = vui >> 4;
 | |
| 
 | |
| #ifdef GGML_CUDA_F16
 | |
|     v = __hsub2(v, {8.0f, 8.0f});
 | |
|     v = __hmul2(v, {d, d});
 | |
| #else
 | |
|     v.x = (v.x - 8.0f) * d;
 | |
|     v.y = (v.y - 8.0f) * d;
 | |
| #endif // GGML_CUDA_F16
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
 | |
|     const block_q4_1 * x = (const block_q4_1 *) vx;
 | |
| 
 | |
|     const dfloat d = __low2half(x[ib].dm);
 | |
|     const dfloat m = __high2half(x[ib].dm);
 | |
| 
 | |
|     const int vui = x[ib].qs[iqs];
 | |
| 
 | |
|     v.x = vui & 0xF;
 | |
|     v.y = vui >> 4;
 | |
| 
 | |
| #ifdef GGML_CUDA_F16
 | |
|     v = __hmul2(v, {d, d});
 | |
|     v = __hadd2(v, {m, m});
 | |
| #else
 | |
|     v.x = (v.x * d) + m;
 | |
|     v.y = (v.y * d) + m;
 | |
| #endif // GGML_CUDA_F16
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
 | |
|     const block_q5_0 * x = (const block_q5_0 *) vx;
 | |
| 
 | |
|     const dfloat d = x[ib].d;
 | |
| 
 | |
|     uint32_t qh;
 | |
|     memcpy(&qh, x[ib].qh, sizeof(qh));
 | |
| 
 | |
|     const int xh_0 = ((qh >> (iqs +  0)) << 4) & 0x10;
 | |
|     const int xh_1 = ((qh >> (iqs + 12))     ) & 0x10;
 | |
| 
 | |
|     v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
 | |
|     v.y = ((x[ib].qs[iqs] >>  4) | xh_1);
 | |
| 
 | |
| #ifdef GGML_CUDA_F16
 | |
|     v = __hsub2(v, {16.0f, 16.0f});
 | |
|     v = __hmul2(v, {d, d});
 | |
| #else
 | |
|     v.x = (v.x - 16.0f) * d;
 | |
|     v.y = (v.y - 16.0f) * d;
 | |
| #endif // GGML_CUDA_F16
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
 | |
|     const block_q5_1 * x = (const block_q5_1 *) vx;
 | |
| 
 | |
|     const dfloat d = __low2half(x[ib].dm);
 | |
|     const dfloat m = __high2half(x[ib].dm);
 | |
| 
 | |
|     uint32_t qh;
 | |
|     memcpy(&qh, x[ib].qh, sizeof(qh));
 | |
| 
 | |
|     const int xh_0 = ((qh >> (iqs +  0)) << 4) & 0x10;
 | |
|     const int xh_1 = ((qh >> (iqs + 12))     ) & 0x10;
 | |
| 
 | |
|     v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
 | |
|     v.y = ((x[ib].qs[iqs] >>  4) | xh_1);
 | |
| 
 | |
| #ifdef GGML_CUDA_F16
 | |
|     v = __hmul2(v, {d, d});
 | |
|     v = __hadd2(v, {m, m});
 | |
| #else
 | |
|     v.x = (v.x * d) + m;
 | |
|     v.y = (v.y * d) + m;
 | |
| #endif // GGML_CUDA_F16
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
 | |
|     const block_q8_0 * x = (const block_q8_0 *) vx;
 | |
| 
 | |
|     const dfloat d = x[ib].d;
 | |
| 
 | |
|     v.x = x[ib].qs[iqs + 0];
 | |
|     v.y = x[ib].qs[iqs + 1];
 | |
| 
 | |
| #ifdef GGML_CUDA_F16
 | |
|     v = __hmul2(v, {d, d});
 | |
| #else
 | |
|     v.x *= d;
 | |
|     v.y *= d;
 | |
| #endif // GGML_CUDA_F16
 | |
| }
 | |
| 
 | |
| //================================== k-quants
 | |
| 
 | |
| template<typename dst_t>
 | |
| static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
 | |
| 
 | |
|     const int i   = blockIdx.x;
 | |
|     const block_q2_K * x = (const block_q2_K *) vx;
 | |
| 
 | |
|     const int tid = threadIdx.x;
 | |
| #if QK_K == 256
 | |
|     const int n   = tid/32;
 | |
|     const int l   = tid - 32*n;
 | |
|     const int is  = 8*n + l/16;
 | |
| 
 | |
|     const uint8_t q = x[i].qs[32*n + l];
 | |
|     dst_t * y = yy + i*QK_K + 128*n;
 | |
| 
 | |
|     float dall = __low2half(x[i].dm);
 | |
|     float dmin = __high2half(x[i].dm);
 | |
|     y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
 | |
|     y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
 | |
|     y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
 | |
|     y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
 | |
| #else
 | |
|     const int is = tid/16;  // 0 or 1
 | |
|     const int il = tid%16;  // 0...15
 | |
|     const uint8_t q = x[i].qs[il] >> (2*is);
 | |
|     dst_t * y = yy + i*QK_K + 16*is + il;
 | |
|     float dall = __low2half(x[i].dm);
 | |
|     float dmin = __high2half(x[i].dm);
 | |
|     y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
 | |
|     y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
 | |
| #endif
 | |
| 
 | |
| }
 | |
| 
 | |
| template<typename dst_t>
 | |
| static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
 | |
| 
 | |
|     const int i = blockIdx.x;
 | |
|     const block_q3_K * x = (const block_q3_K *) vx;
 | |
| 
 | |
| #if QK_K == 256
 | |
|     const int r = threadIdx.x/4;
 | |
|     const int tid = r/2;
 | |
|     const int is0 = r%2;
 | |
|     const int l0 = 16*is0 + 4*(threadIdx.x%4);
 | |
|     const int n = tid / 4;
 | |
|     const int j = tid - 4*n;
 | |
| 
 | |
|     uint8_t m = 1 << (4*n + j);
 | |
|     int is = 8*n + 2*j + is0;
 | |
|     int shift = 2*j;
 | |
| 
 | |
|     int8_t us = is <  4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
 | |
|                 is <  8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
 | |
|                 is < 12 ? (x[i].scales[is-8] >>  4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
 | |
|                           (x[i].scales[is-8] >>  4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
 | |
|     float d_all = x[i].d;
 | |
|     float dl = d_all * (us - 32);
 | |
| 
 | |
|     dst_t * y = yy + i*QK_K + 128*n + 32*j;
 | |
|     const uint8_t * q = x[i].qs + 32*n;
 | |
|     const uint8_t * hm = x[i].hmask;
 | |
| 
 | |
|     for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
 | |
| #else
 | |
|     const int tid = threadIdx.x;
 | |
|     const int is  = tid/16;  // 0 or 1
 | |
|     const int il  = tid%16;  // 0...15
 | |
|     const int im  = il/8;    // 0...1
 | |
|     const int in  = il%8;    // 0...7
 | |
| 
 | |
|     dst_t * y = yy + i*QK_K + 16*is + il;
 | |
| 
 | |
|     const uint8_t q = x[i].qs[il] >> (2*is);
 | |
|     const uint8_t h = x[i].hmask[in] >> (2*is + im);
 | |
|     const float   d = (float)x[i].d;
 | |
| 
 | |
|     if (is == 0) {
 | |
|         y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
 | |
|         y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
 | |
|     } else {
 | |
|         y[ 0] = d * ((x[i].scales[0] >>  4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
 | |
|         y[32] = d * ((x[i].scales[1] >>  4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| }
 | |
| 
 | |
| #if QK_K == 256
 | |
| static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
 | |
|     if (j < 4) {
 | |
|         d = q[j] & 63; m = q[j + 4] & 63;
 | |
|     } else {
 | |
|         d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
 | |
|         m = (q[j+4] >>  4) | ((q[j-0] >> 6) << 4);
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| template<typename dst_t>
 | |
| static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
 | |
|     const block_q4_K * x = (const block_q4_K *) vx;
 | |
| 
 | |
|     const int i = blockIdx.x;
 | |
| 
 | |
| #if QK_K == 256
 | |
|     // assume 32 threads
 | |
|     const int tid = threadIdx.x;
 | |
|     const int il  = tid/8;
 | |
|     const int ir  = tid%8;
 | |
|     const int is  = 2*il;
 | |
|     const int n   = 4;
 | |
| 
 | |
|     dst_t * y = yy + i*QK_K + 64*il + n*ir;
 | |
| 
 | |
|     const float dall = __low2half(x[i].dm);
 | |
|     const float dmin = __high2half(x[i].dm);
 | |
| 
 | |
|     const uint8_t * q = x[i].qs + 32*il + n*ir;
 | |
| 
 | |
|     uint8_t sc, m;
 | |
|     get_scale_min_k4(is + 0, x[i].scales, sc, m);
 | |
|     const float d1 = dall * sc; const float m1 = dmin * m;
 | |
|     get_scale_min_k4(is + 1, x[i].scales, sc, m);
 | |
|     const float d2 = dall * sc; const float m2 = dmin * m;
 | |
|     for (int l = 0; l < n; ++l) {
 | |
|         y[l + 0] = d1 * (q[l] & 0xF) - m1;
 | |
|         y[l +32] = d2 * (q[l] >>  4) - m2;
 | |
|     }
 | |
| #else
 | |
|     const int tid = threadIdx.x;
 | |
|     const uint8_t * q = x[i].qs;
 | |
|     dst_t * y = yy + i*QK_K;
 | |
|     const float d = (float)x[i].dm[0];
 | |
|     const float m = (float)x[i].dm[1];
 | |
|     y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
 | |
|     y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >>  4) - m * (x[i].scales[1] >> 4);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| template<typename dst_t>
 | |
| static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
 | |
|     const block_q5_K * x = (const block_q5_K *) vx;
 | |
| 
 | |
|     const int i = blockIdx.x;
 | |
| 
 | |
| #if QK_K == 256
 | |
|     // assume 64 threads - this is very slightly better than the one below
 | |
|     const int tid = threadIdx.x;
 | |
|     const int il  = tid/16;   // il is in 0...3
 | |
|     const int ir  = tid%16;   // ir is in 0...15
 | |
|     const int is  = 2*il;     // is is in 0...6
 | |
| 
 | |
|     dst_t * y = yy + i*QK_K + 64*il + 2*ir;
 | |
| 
 | |
|     const float dall = __low2half(x[i].dm);
 | |
|     const float dmin = __high2half(x[i].dm);
 | |
| 
 | |
|     const uint8_t * ql = x[i].qs + 32*il + 2*ir;
 | |
|     const uint8_t * qh = x[i].qh + 2*ir;
 | |
| 
 | |
|     uint8_t sc, m;
 | |
|     get_scale_min_k4(is + 0, x[i].scales, sc, m);
 | |
|     const float d1 = dall * sc; const float m1 = dmin * m;
 | |
|     get_scale_min_k4(is + 1, x[i].scales, sc, m);
 | |
|     const float d2 = dall * sc; const float m2 = dmin * m;
 | |
| 
 | |
|     uint8_t   hm  = 1 << (2*il);
 | |
|     y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
 | |
|     y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
 | |
|     hm <<= 1;
 | |
|     y[32] = d2 * ((ql[ 0] >>  4) + (qh[ 0] & hm ? 16 : 0)) - m2;
 | |
|     y[33] = d2 * ((ql[ 1] >>  4) + (qh[ 1] & hm ? 16 : 0)) - m2;
 | |
| #else
 | |
|     const int tid = threadIdx.x;
 | |
|     const uint8_t q = x[i].qs[tid];
 | |
|     const int im = tid/8;  // 0...3
 | |
|     const int in = tid%8;  // 0...7
 | |
|     const int is = tid/16; // 0 or 1
 | |
|     const uint8_t h = x[i].qh[in] >> im;
 | |
|     const float d = x[i].d;
 | |
|     dst_t * y = yy + i*QK_K + tid;
 | |
|     y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16));
 | |
|     y[32] = d * x[i].scales[is+2] * ((q >>  4) - ((h >> 4) & 1 ? 0 : 16));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| template<typename dst_t>
 | |
| static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
 | |
|     const block_q6_K * x = (const block_q6_K *) vx;
 | |
| 
 | |
|     const int i = blockIdx.x;
 | |
| #if QK_K == 256
 | |
| 
 | |
|     // assume 64 threads - this is very slightly better than the one below
 | |
|     const int tid = threadIdx.x;
 | |
|     const int ip  = tid/32;   // ip is 0 or 1
 | |
|     const int il  = tid - 32*ip; // 0...32
 | |
|     const int is  = 8*ip + il/16;
 | |
| 
 | |
|     dst_t * y = yy + i*QK_K + 128*ip + il;
 | |
| 
 | |
|     const float d = x[i].d;
 | |
| 
 | |
|     const uint8_t * ql = x[i].ql + 64*ip + il;
 | |
|     const uint8_t   qh = x[i].qh[32*ip + il];
 | |
|     const int8_t  * sc = x[i].scales + is;
 | |
| 
 | |
|     y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
 | |
|     y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
 | |
|     y[64] = d * sc[4] * ((int8_t)((ql[ 0]  >> 4) | (((qh >> 4) & 3) << 4)) - 32);
 | |
|     y[96] = d * sc[6] * ((int8_t)((ql[32]  >> 4) | (((qh >> 6) & 3) << 4)) - 32);
 | |
| #else
 | |
| 
 | |
|     // assume 32 threads
 | |
|     const int tid = threadIdx.x;
 | |
|     const int ip  = tid/16;         // 0 or 1
 | |
|     const int il  = tid - 16*ip;    // 0...15
 | |
| 
 | |
|     dst_t * y = yy + i*QK_K + 16*ip + il;
 | |
| 
 | |
|     const float d = x[i].d;
 | |
| 
 | |
|     const uint8_t   ql = x[i].ql[16*ip + il];
 | |
|     const uint8_t   qh = x[i].qh[il] >> (2*ip);
 | |
|     const int8_t  * sc = x[i].scales;
 | |
| 
 | |
|     y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
 | |
|     y[32] = d * sc[ip+2] * ((int8_t)((ql  >> 4) | (((qh >> 4) & 3) << 4)) - 32);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
 | |
| 
 | |
|     static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
 | |
| 
 | |
|     const int row = blockIdx.x*blockDim.y + threadIdx.y;
 | |
|     if (row > nrows) return;
 | |
| 
 | |
|     const int num_blocks_per_row = ncols / QK_K;
 | |
|     const int ib0 = row*num_blocks_per_row;
 | |
| 
 | |
|     const block_q2_K * x = (const block_q2_K *)vx + ib0;
 | |
| 
 | |
|     float tmp = 0; // partial sum for thread in warp
 | |
| 
 | |
| #if QK_K == 256
 | |
|     const int tid = threadIdx.x/K_QUANTS_PER_ITERATION;  // 0...31 or 0...15
 | |
|     const int ix  = threadIdx.x%K_QUANTS_PER_ITERATION;  // 0 or 0,1
 | |
| 
 | |
|     const int step = 16/K_QUANTS_PER_ITERATION;
 | |
| 
 | |
|     const int im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
 | |
|     const int in = tid - step*im;                        // 0...15 or 0...7
 | |
| 
 | |
|     const int l0 = K_QUANTS_PER_ITERATION*in;            // 0...15 or 0...14 in steps of 2
 | |
|     const int q_offset = 32*im + l0;
 | |
|     const int s_offset = 8*im;
 | |
|     const int y_offset = 128*im + l0;
 | |
| 
 | |
|     uint32_t aux[4];
 | |
|     const uint8_t * d = (const uint8_t *)aux;
 | |
|     const uint8_t * m = (const uint8_t *)(aux + 2);
 | |
| 
 | |
|     for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
 | |
| 
 | |
|         const float   * y = yy + i * QK_K + y_offset;
 | |
|         const uint8_t * q = x[i].qs + q_offset;
 | |
| 
 | |
|         const float dall = __low2half(x[i].dm);
 | |
|         const float dmin = __high2half(x[i].dm);
 | |
| 
 | |
|         const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
 | |
|         aux[0] = a[0] & 0x0f0f0f0f;
 | |
|         aux[1] = a[1] & 0x0f0f0f0f;
 | |
|         aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
 | |
|         aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
 | |
| 
 | |
|         float sum1 = 0, sum2 = 0;
 | |
|         for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
 | |
|             sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
 | |
|                   + y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
 | |
|                   + y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
 | |
|                   + y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
 | |
|                   + y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
 | |
|                   + y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
 | |
|                   + y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
 | |
|                   +y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
 | |
|             sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
 | |
|                   + y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
 | |
| 
 | |
|         }
 | |
|         tmp += dall * sum1 - dmin * sum2;
 | |
| 
 | |
|     }
 | |
| #else
 | |
|     const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...15 or 0...7
 | |
|     const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);  // 0....1 or 0...3
 | |
|     const int offset = tid * K_QUANTS_PER_ITERATION;
 | |
| 
 | |
|     uint32_t uaux[2];
 | |
|     const uint8_t * d = (const uint8_t *)uaux;
 | |
| 
 | |
|     for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
 | |
| 
 | |
|         const float   * y = yy + i * QK_K + offset;
 | |
|         const uint8_t * q = x[i].qs + offset;
 | |
|         const uint32_t * s = (const uint32_t *)x[i].scales;
 | |
| 
 | |
|         uaux[0] = s[0] & 0x0f0f0f0f;
 | |
|         uaux[1] = (s[0] >> 4) & 0x0f0f0f0f;
 | |
| 
 | |
|         const float2 dall = __half22float2(x[i].dm);
 | |
| 
 | |
|         float sum1 = 0, sum2 = 0;
 | |
|         for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
 | |
|             const uint8_t ql = q[l];
 | |
|             sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3)
 | |
|                   + y[l+16] * d[1] * ((ql >> 2) & 3)
 | |
|                   + y[l+32] * d[2] * ((ql >> 4) & 3)
 | |
|                   + y[l+48] * d[3] * ((ql >> 6) & 3);
 | |
|             sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7];
 | |
|         }
 | |
|         tmp += dall.x * sum1 - dall.y * sum2;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     // sum up partial sums and write back result
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
 | |
|     }
 | |
| 
 | |
|     if (threadIdx.x == 0) {
 | |
|         dst[row] = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
 | |
| 
 | |
|     const int row = blockIdx.x*blockDim.y + threadIdx.y;
 | |
|     if (row > nrows) return;
 | |
| 
 | |
|     const int num_blocks_per_row = ncols / QK_K;
 | |
|     const int ib0 = row*num_blocks_per_row;
 | |
| 
 | |
|     const block_q3_K * x = (const block_q3_K *)vx + ib0;
 | |
| 
 | |
|     float tmp = 0; // partial sum for thread in warp
 | |
| 
 | |
| #if QK_K == 256
 | |
| 
 | |
|     const uint16_t kmask1 = 0x0303;
 | |
|     const uint16_t kmask2 = 0x0f0f;
 | |
| 
 | |
|     const int tid = threadIdx.x/K_QUANTS_PER_ITERATION;  // 0...31 or 0...16
 | |
|     const int ix  = threadIdx.x%K_QUANTS_PER_ITERATION;  // 0 or 0,1
 | |
| 
 | |
|     const int n  = K_QUANTS_PER_ITERATION;               // iterations in the inner loop
 | |
|     const int step = 16/K_QUANTS_PER_ITERATION;
 | |
|     const int im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
 | |
|     const int in = tid - step*im;                        // 0....15 or 0...7
 | |
| 
 | |
|     const uint8_t m = 1 << (4*im);
 | |
| 
 | |
|     const int l0 = n*in;                                 // 0...15 or 0...14 in steps of 2
 | |
|     const int q_offset =  32*im + l0;
 | |
|     const int y_offset = 128*im + l0;
 | |
| 
 | |
|     uint16_t utmp[4];
 | |
|     const int8_t * s = (const int8_t *)utmp;
 | |
| 
 | |
|     const uint16_t s_shift = 4*im;
 | |
| 
 | |
|     for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
 | |
| 
 | |
|         const float   * y  = yy + i * QK_K + y_offset;
 | |
|         const uint8_t * q = x[i].qs + q_offset;
 | |
|         const uint8_t * h = x[i].hmask + l0;
 | |
| 
 | |
|         const uint16_t * a = (const uint16_t *)x[i].scales;
 | |
|         utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
 | |
|         utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
 | |
|         utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
 | |
|         utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
 | |
| 
 | |
|         const float d = x[i].d;
 | |
| 
 | |
|         float sum = 0;
 | |
|         for (int l = 0; l < n; ++l) {
 | |
|             sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
 | |
|                  + y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
 | |
|                  + y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
 | |
|                  + y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
 | |
|             sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
 | |
|                  + y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
 | |
|                  + y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
 | |
|                 + y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
 | |
|         }
 | |
|         tmp += d * sum;
 | |
| 
 | |
|     }
 | |
| #else
 | |
| 
 | |
|     const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...15 or 0...7
 | |
|     const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);  // 0....1 or 0...3
 | |
|     const int offset = tid * K_QUANTS_PER_ITERATION;         // 0...15 or 0...14
 | |
|     const int in = offset/8;                                 // 0 or 1
 | |
|     const int im = offset%8;                                 // 0...7
 | |
| 
 | |
|     for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
 | |
| 
 | |
|         const float   * y = yy + i * QK_K + offset;
 | |
|         const uint8_t * q = x[i].qs + offset;
 | |
|         const uint8_t * s = x[i].scales;
 | |
| 
 | |
|         const float dall = (float)x[i].d;
 | |
| 
 | |
|         float sum = 0;
 | |
|         for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
 | |
|             const uint8_t hl = x[i].hmask[im+l] >> in;
 | |
|             const uint8_t ql = q[l];
 | |
|             sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4))
 | |
|                  + y[l+16] * dall * ((s[0] >>  4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4))
 | |
|                  + y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4))
 | |
|                  + y[l+48] * dall * ((s[1] >>  4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4));
 | |
|         }
 | |
|         tmp += sum;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     // sum up partial sums and write back result
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
 | |
|     }
 | |
| 
 | |
|     if (threadIdx.x == 0) {
 | |
|         dst[row] = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
 | |
| 
 | |
|     const int row = blockIdx.x*blockDim.y + threadIdx.y;
 | |
|     if (row > nrows) return;
 | |
|     const int num_blocks_per_row = ncols / QK_K;
 | |
|     const int ib0 = row*num_blocks_per_row;
 | |
| 
 | |
|     const block_q4_K * x = (const block_q4_K *)vx + ib0;
 | |
| 
 | |
| #if QK_K == 256
 | |
|     const uint16_t kmask1 = 0x3f3f;
 | |
|     const uint16_t kmask2 = 0x0f0f;
 | |
|     const uint16_t kmask3 = 0xc0c0;
 | |
| 
 | |
|     const int tid = threadIdx.x/K_QUANTS_PER_ITERATION;  // 0...31 or 0...16
 | |
|     const int ix  = threadIdx.x%K_QUANTS_PER_ITERATION;  // 0 or 0,1
 | |
| 
 | |
|     const int step = 8/K_QUANTS_PER_ITERATION;           // 8 or 4
 | |
| 
 | |
|     const int il  = tid/step;                            // 0...3
 | |
|     const int ir  = tid - step*il;                       // 0...7 or 0...3
 | |
|     const int n   = 2 * K_QUANTS_PER_ITERATION;          // 2 or 4
 | |
| 
 | |
|     const int im = il/2;  // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
 | |
|     const int in = il%2;
 | |
| 
 | |
|     const int l0 = n*(2*ir + in);
 | |
|     const int q_offset = 32*im + l0;
 | |
|     const int y_offset = 64*im + l0;
 | |
| 
 | |
|     uint16_t aux[4];
 | |
|     const uint8_t * sc = (const uint8_t *)aux;
 | |
| 
 | |
| #if K_QUANTS_PER_ITERATION == 2
 | |
|     uint32_t q32[4];
 | |
|     const uint8_t * q4 = (const uint8_t *)q32;
 | |
| #else
 | |
|     uint16_t q16[4];
 | |
|     const uint8_t * q4 = (const uint8_t *)q16;
 | |
| #endif
 | |
| 
 | |
|     float tmp = 0; // partial sum for thread in warp
 | |
| 
 | |
|     for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
 | |
| 
 | |
|         const float   * y1 = yy + i*QK_K + y_offset;
 | |
|         const float   * y2 = y1 + 128;
 | |
| 
 | |
|         const float dall = __low2half(x[i].dm);
 | |
|         const float dmin = __high2half(x[i].dm);
 | |
| 
 | |
|         const uint16_t * a = (const uint16_t *)x[i].scales;
 | |
|         aux[0] = a[im+0] & kmask1;
 | |
|         aux[1] = a[im+2] & kmask1;
 | |
|         aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
 | |
|         aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
 | |
| 
 | |
| #if K_QUANTS_PER_ITERATION == 2
 | |
|         const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
 | |
|         const uint32_t * q2 = q1 + 16;
 | |
| 
 | |
|         q32[0] = q1[0] & 0x0f0f0f0f;
 | |
|         q32[1] = q1[0] & 0xf0f0f0f0;
 | |
|         q32[2] = q2[0] & 0x0f0f0f0f;
 | |
|         q32[3] = q2[0] & 0xf0f0f0f0;
 | |
| 
 | |
|         float4 s = {0.f, 0.f, 0.f, 0.f};
 | |
|         float smin = 0;
 | |
|         for (int l = 0; l < 4; ++l) {
 | |
|             s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+ 4];
 | |
|             s.z += y2[l] * q4[l+8]; s.w += y2[l+32] * q4[l+12];
 | |
|             smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
 | |
|         }
 | |
|         tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
 | |
| #else
 | |
|         const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
 | |
|         const uint16_t * q2 = q1 + 32;
 | |
| 
 | |
|         q16[0] = q1[0] & 0x0f0f;
 | |
|         q16[1] = q1[0] & 0xf0f0;
 | |
|         q16[2] = q2[0] & 0x0f0f;
 | |
|         q16[3] = q2[0] & 0xf0f0;
 | |
| 
 | |
|         float4 s = {0.f, 0.f, 0.f, 0.f};
 | |
|         float smin = 0;
 | |
|         for (int l = 0; l < 2; ++l) {
 | |
|             s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
 | |
|             s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
 | |
|             smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
 | |
|         }
 | |
|         tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
 | |
| #endif
 | |
| 
 | |
|     }
 | |
| #else
 | |
|     const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...15
 | |
|     const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
 | |
| 
 | |
|     const int step = tid * K_QUANTS_PER_ITERATION;
 | |
| 
 | |
|     uint16_t aux16[2];
 | |
|     const uint8_t * s = (const uint8_t *)aux16;
 | |
| 
 | |
|     float tmp = 0;
 | |
| 
 | |
|     for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
 | |
|         const uint8_t * q = x[i].qs + step;
 | |
|         const float   * y = yy + i*QK_K + step;
 | |
|         const uint16_t * a = (const uint16_t *)x[i].scales;
 | |
|         aux16[0] = a[0] & 0x0f0f;
 | |
|         aux16[1] = (a[0] >> 4) & 0x0f0f;
 | |
|         const float d = (float)x[i].dm[0];
 | |
|         const float m = (float)x[i].dm[1];
 | |
|         float sum = 0.f;
 | |
|         for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
 | |
|             sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2])
 | |
|                  + y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2])
 | |
|                  + y[j+32] * (d * s[1] * (q[j+ 0] >>  4) - m * s[3])
 | |
|                  + y[j+48] * (d * s[1] * (q[j+16] >>  4) - m * s[3]);
 | |
|         }
 | |
|         tmp += sum;
 | |
|     }
 | |
| 
 | |
| #endif
 | |
| 
 | |
|     // sum up partial sums and write back result
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
 | |
|     }
 | |
| 
 | |
|     if (tid == 0) {
 | |
|         dst[row] = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols) {
 | |
| 
 | |
|     const int row = blockIdx.x;
 | |
|     const int num_blocks_per_row = ncols / QK_K;
 | |
|     const int ib0 = row*num_blocks_per_row;
 | |
| 
 | |
|     const block_q5_K * x = (const block_q5_K *)vx + ib0;
 | |
| 
 | |
|     float tmp = 0; // partial sum for thread in warp
 | |
| 
 | |
| #if QK_K == 256
 | |
|     const uint16_t kmask1 = 0x3f3f;
 | |
|     const uint16_t kmask2 = 0x0f0f;
 | |
|     const uint16_t kmask3 = 0xc0c0;
 | |
| 
 | |
|     const int tid = threadIdx.x/2;  // 0...15
 | |
|     const int ix  = threadIdx.x%2;
 | |
| 
 | |
|     const int il  = tid/4;     // 0...3
 | |
|     const int ir  = tid - 4*il;// 0...3
 | |
|     const int n   = 2;
 | |
| 
 | |
|     const int im = il/2;  // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
 | |
|     const int in = il%2;
 | |
| 
 | |
|     const int l0 = n*(2*ir + in);
 | |
|     const int q_offset = 32*im + l0;
 | |
|     const int y_offset = 64*im + l0;
 | |
| 
 | |
|     const uint8_t hm1  = 1 << (2*im);
 | |
|     const uint8_t hm2  = hm1 << 4;
 | |
| 
 | |
|     uint16_t aux[4];
 | |
|     const uint8_t * sc = (const uint8_t *)aux;
 | |
| 
 | |
|     uint16_t q16[8];
 | |
|     const uint8_t * q4 = (const uint8_t *)q16;
 | |
| 
 | |
|     for (int i = ix; i < num_blocks_per_row; i += 2) {
 | |
| 
 | |
|         const uint8_t * ql1 = x[i].qs + q_offset;
 | |
|         const uint8_t * qh  = x[i].qh + l0;
 | |
|         const float   * y1  = yy + i*QK_K + y_offset;
 | |
|         const float   * y2  = y1 + 128;
 | |
| 
 | |
|         const float dall = __low2half(x[i].dm);
 | |
|         const float dmin = __high2half(x[i].dm);
 | |
| 
 | |
|         const uint16_t * a = (const uint16_t *)x[i].scales;
 | |
|         aux[0] = a[im+0] & kmask1;
 | |
|         aux[1] = a[im+2] & kmask1;
 | |
|         aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
 | |
|         aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
 | |
| 
 | |
|         float4 sum = {0.f, 0.f, 0.f, 0.f};
 | |
|         float smin = 0;
 | |
|         const uint16_t * q1 = (const uint16_t *)ql1;
 | |
|         const uint16_t * q2 = q1 + 32;
 | |
|         q16[0] = q1[0] & 0x0f0f;
 | |
|         q16[1] = q1[8] & 0x0f0f;
 | |
|         q16[2] = (q1[0] >> 4) & 0x0f0f;
 | |
|         q16[3] = (q1[8] >> 4) & 0x0f0f;
 | |
|         q16[4] = q2[0] & 0x0f0f;
 | |
|         q16[5] = q2[8] & 0x0f0f;
 | |
|         q16[6] = (q2[0] >> 4) & 0x0f0f;
 | |
|         q16[7] = (q2[8] >> 4) & 0x0f0f;
 | |
|         for (int l = 0; l < n; ++l) {
 | |
|             sum.x += y1[l+ 0] * (q4[l +0] + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
 | |
|                    + y1[l+16] * (q4[l +2] + (qh[l+16] & (hm1 << 0) ? 16 : 0));
 | |
|             sum.y += y1[l+32] * (q4[l +4] + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
 | |
|                    + y1[l+48] * (q4[l +6] + (qh[l+16] & (hm1 << 1) ? 16 : 0));
 | |
|             sum.z += y2[l+ 0] * (q4[l +8] + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
 | |
|                    + y2[l+16] * (q4[l+10] + (qh[l+16] & (hm2 << 0) ? 16 : 0));
 | |
|             sum.w += y2[l+32] * (q4[l+12] + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
 | |
|                    + y2[l+48] * (q4[l+14] + (qh[l+16] & (hm2 << 1) ? 16 : 0));
 | |
|             smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
 | |
|                   + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
 | |
|         }
 | |
|         tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
 | |
|     }
 | |
| 
 | |
| #else
 | |
|     const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...15
 | |
|     const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
 | |
|     const int step = tid * K_QUANTS_PER_ITERATION;
 | |
|     const int im = step/8;
 | |
|     const int in = step%8;
 | |
| 
 | |
|     for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
 | |
|         const uint8_t * q = x[i].qs + step;
 | |
|         const int8_t  * s = x[i].scales;
 | |
|         const float   * y = yy + i*QK_K + step;
 | |
|         const float     d = x[i].d;
 | |
|         float sum = 0.f;
 | |
|         for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
 | |
|             const uint8_t h = x[i].qh[in+j] >> im;
 | |
|             sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16))
 | |
|                  + y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16))
 | |
|                  + y[j+32] * d * s[2] * ((q[j+ 0] >>  4) - ((h >> 4) & 1 ? 0 : 16))
 | |
|                  + y[j+48] * d * s[3] * ((q[j+16] >>  4) - ((h >> 6) & 1 ? 0 : 16));
 | |
|         }
 | |
|         tmp += sum;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     // sum up partial sums and write back result
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
 | |
|     }
 | |
| 
 | |
|     if (threadIdx.x == 0) {
 | |
|         dst[row] = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
 | |
| 
 | |
|     static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
 | |
| 
 | |
|     const int row = blockIdx.x*blockDim.y + threadIdx.y;
 | |
|     if (row > nrows) return;
 | |
| 
 | |
|     const int num_blocks_per_row = ncols / QK_K;
 | |
|     const int ib0 = row*num_blocks_per_row;
 | |
| 
 | |
|     const block_q6_K * x = (const block_q6_K *)vx + ib0;
 | |
| 
 | |
| #if QK_K == 256
 | |
| 
 | |
|     const int tid = threadIdx.x/K_QUANTS_PER_ITERATION;  // 0...31 or 0...16
 | |
|     const int ix  = threadIdx.x%K_QUANTS_PER_ITERATION;  // 0 or 0, 1
 | |
| 
 | |
|     const int step = 16/K_QUANTS_PER_ITERATION;          // 16 or 8
 | |
| 
 | |
|     const int im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
 | |
|     const int in = tid - step*im;                        // 0...15 or 0...7
 | |
| 
 | |
| #if K_QUANTS_PER_ITERATION == 1
 | |
|     const int l0 = K_QUANTS_PER_ITERATION*in;            // 0...15
 | |
|     const int is = 0;
 | |
| #else
 | |
|     const int l0 = 4 * in;                               // 0, 4, 8, ..., 28
 | |
|     const int is = in / 4;
 | |
| #endif
 | |
|     const int ql_offset = 64*im + l0;
 | |
|     const int qh_offset = 32*im + l0;
 | |
|     const int s_offset  =  8*im + is;
 | |
|     const int y_offset = 128*im + l0;
 | |
| 
 | |
|     float tmp = 0; // partial sum for thread in warp
 | |
| 
 | |
|     for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
 | |
| 
 | |
|         const float   * y  = yy + i * QK_K + y_offset;
 | |
|         const uint8_t * ql = x[i].ql + ql_offset;
 | |
|         const uint8_t * qh = x[i].qh + qh_offset;
 | |
|         const int8_t  * s  = x[i].scales + s_offset;
 | |
| 
 | |
|         const float d = x[i].d;
 | |
| 
 | |
| #if K_QUANTS_PER_ITERATION == 1
 | |
|         float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
 | |
|                   + y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
 | |
|                   + y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
 | |
|                   + y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
 | |
|                   + y[64] * s[4] * d * ((int8_t)((ql[ 0]  >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
 | |
|                   + y[80] * s[5] * d * ((int8_t)((ql[16]  >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
 | |
|                   + y[96] * s[6] * d * ((int8_t)((ql[32]  >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
 | |
|                   +y[112] * s[7] * d * ((int8_t)((ql[48]  >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
 | |
|         tmp += sum;
 | |
| #else
 | |
|         float sum = 0;
 | |
|         for (int l = 0; l < 4; ++l) {
 | |
|             sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
 | |
|                  + y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
 | |
|                  + y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0]  >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
 | |
|                  + y[l+96] * s[6] * d * ((int8_t)((ql[l+32]  >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
 | |
|         }
 | |
|         tmp += sum;
 | |
| #endif
 | |
| 
 | |
|     }
 | |
| 
 | |
| #else
 | |
| 
 | |
|     const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...7
 | |
|     const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);  // 0...3
 | |
| 
 | |
|     const int step = tid * K_QUANTS_PER_ITERATION;
 | |
| 
 | |
|     float tmp = 0; // partial sum for thread in warp
 | |
| 
 | |
|     for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
 | |
| 
 | |
|         const float   * y  = yy + i * QK_K + step;
 | |
|         const uint8_t * ql = x[i].ql + step;
 | |
|         const uint8_t * qh = x[i].qh + step;
 | |
|         const int8_t  * s  = x[i].scales;
 | |
| 
 | |
|         const float d = x[i+0].d;
 | |
| 
 | |
|         float sum = 0;
 | |
|         for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
 | |
|             sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32)
 | |
|                  + y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32)
 | |
|                  + y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >>  4) | ((qh[j] & 0x30) >> 0)) - 32)
 | |
|                  + y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >>  4) | ((qh[j] & 0xc0) >> 2)) - 32);
 | |
|         }
 | |
|         tmp += sum;
 | |
| 
 | |
|     }
 | |
| 
 | |
| #endif
 | |
| 
 | |
|     // sum up partial sums and write back result
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
 | |
|     }
 | |
| 
 | |
|     if (tid == 0) {
 | |
|         dst[row] = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __device__ void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 & v){
 | |
|     const half * x = (const half *) vx;
 | |
| 
 | |
|     // automatic half -> float type cast if dfloat == float
 | |
|     v.x = x[ib + iqs + 0];
 | |
|     v.y = x[ib + iqs + 1];
 | |
| }
 | |
| 
 | |
| static __device__ void convert_f32(const void * vx, const int ib, const int iqs, dfloat2 & v){
 | |
|     const float * x = (const float *) vx;
 | |
| 
 | |
|     // automatic half -> float type cast if dfloat == float
 | |
|     v.x = x[ib + iqs + 0];
 | |
|     v.y = x[ib + iqs + 1];
 | |
| }
 | |
| 
 | |
| static __global__ void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded) {
 | |
|     const int ix = blockDim.x*blockIdx.x + threadIdx.x;
 | |
| 
 | |
|     if (ix >= kx_padded) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int iy = blockDim.y*blockIdx.y + threadIdx.y;
 | |
| 
 | |
|     const int i_padded = iy*kx_padded + ix;
 | |
| 
 | |
|     block_q8_1 * y = (block_q8_1 *) vy;
 | |
| 
 | |
|     const int ib = i_padded / QK8_1; // block index
 | |
|     const int iqs = i_padded % QK8_1; // quant index
 | |
| 
 | |
|     const float xi = ix < kx ? x[iy*kx + ix] : 0.0f;
 | |
|     float amax = fabsf(xi);
 | |
|     float sum = xi;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         amax = fmaxf(amax, __shfl_xor_sync(0xffffffff, amax, mask, 32));
 | |
|         sum += __shfl_xor_sync(0xffffffff, sum, mask, 32);
 | |
|     }
 | |
| 
 | |
|     const float d = amax / 127;
 | |
|     const int8_t q = amax == 0.0f ? 0 : roundf(xi / d);
 | |
| 
 | |
|     y[ib].qs[iqs] = q;
 | |
| 
 | |
|     if (iqs > 0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     reinterpret_cast<half&>(y[ib].ds.x) = d;
 | |
|     reinterpret_cast<half&>(y[ib].ds.y) = sum;
 | |
| }
 | |
| 
 | |
| template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
 | |
| static __global__ void k_get_rows(
 | |
|             const void * src0, const int32_t * src1, dst_t * dst,
 | |
|             int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
 | |
|             /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
 | |
|             /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
 | |
|             /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
 | |
|             size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
 | |
| 
 | |
|     const int i00 = (blockIdx.x*blockDim.x + threadIdx.x)*2;
 | |
|     const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
 | |
|     const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
 | |
|     const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
 | |
| 
 | |
|     if (i00 >= ne00) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
 | |
| 
 | |
|     dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
 | |
|     const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
 | |
| 
 | |
|     const int ib = i00/qk; // block index
 | |
|     const int iqs = (i00%qk)/qr; // quant index
 | |
|     const int iybs = i00 - i00%qk; // dst block start index
 | |
|     const int y_offset = qr == 1 ? 1 : qk/2;
 | |
| 
 | |
|     // dequantize
 | |
|     dfloat2 v;
 | |
|     dequantize_kernel(src0_row, ib, iqs, v);
 | |
| 
 | |
|     dst_row[iybs + iqs + 0]        = v.x;
 | |
|     dst_row[iybs + iqs + y_offset] = v.y;
 | |
| }
 | |
| 
 | |
| template<typename src0_t, typename dst_t>
 | |
| static __global__ void k_get_rows_float(
 | |
|             const src0_t * src0, const int32_t * src1, dst_t * dst,
 | |
|             int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
 | |
|             /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
 | |
|             /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
 | |
|             /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
 | |
|             size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
 | |
| 
 | |
|     const int i00 = blockIdx.x*blockDim.x + threadIdx.x;
 | |
|     const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
 | |
|     const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
 | |
|     const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
 | |
| 
 | |
|     if (i00 >= ne00) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
 | |
| 
 | |
|     dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
 | |
|     const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
 | |
| 
 | |
|     dst_row[i00] = src0_row[i00];
 | |
| }
 | |
| 
 | |
| template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
 | |
| static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int k) {
 | |
|     const int i = blockDim.x*blockIdx.x + 2*threadIdx.x;
 | |
| 
 | |
|     if (i >= k) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int ib = i/qk; // block index
 | |
|     const int iqs = (i%qk)/qr; // quant index
 | |
|     const int iybs = i - i%qk; // y block start index
 | |
|     const int y_offset = qr == 1 ? 1 : qk/2;
 | |
| 
 | |
|     // dequantize
 | |
|     dfloat2 v;
 | |
|     dequantize_kernel(vx, ib, iqs, v);
 | |
| 
 | |
|     y[iybs + iqs + 0]        = v.x;
 | |
|     y[iybs + iqs + y_offset] = v.y;
 | |
| }
 | |
| 
 | |
| // VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called
 | |
| // MMVQ = mul_mat_vec_q, MMQ = mul_mat_q
 | |
| 
 | |
| #define VDR_Q4_0_Q8_1_MMVQ 2
 | |
| #define VDR_Q4_0_Q8_1_MMQ  4
 | |
| 
 | |
| template <int vdr> static __device__ __forceinline__ float vec_dot_q4_0_q8_1_impl(
 | |
|     const int * v, const int * u, const float & d4, const half2 & ds8) {
 | |
| 
 | |
| #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
 | |
|     int sumi = 0;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < vdr; ++i) {
 | |
|         const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
 | |
|         const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
 | |
| 
 | |
|         // SIMD dot product of quantized values
 | |
|         sumi = __dp4a(vi0, u[2*i+0], sumi);
 | |
|         sumi = __dp4a(vi1, u[2*i+1], sumi);
 | |
|     }
 | |
| 
 | |
|     const float2 ds8f = __half22float2(ds8);
 | |
| 
 | |
|     // second part effectively subtracts 8 from each quant value
 | |
|     return d4 * (sumi * ds8f.x - (8*vdr/QI4_0) * ds8f.y);
 | |
| #else
 | |
|     bad_arch();
 | |
| #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
 | |
| }
 | |
| 
 | |
| #define VDR_Q4_1_Q8_1_MMVQ 2
 | |
| #define VDR_Q4_1_Q8_1_MMQ  4
 | |
| 
 | |
| template <int vdr> static __device__ __forceinline__ float vec_dot_q4_1_q8_1_impl(
 | |
|     const int * v, const int * u, const half2 & dm4, const half2 & ds8) {
 | |
| 
 | |
| #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
 | |
|     int sumi = 0;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < vdr; ++i) {
 | |
|         const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
 | |
|         const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
 | |
| 
 | |
|         // SIMD dot product of quantized values
 | |
|         sumi = __dp4a(vi0, u[2*i+0], sumi);
 | |
|         sumi = __dp4a(vi1, u[2*i+1], sumi);
 | |
|     }
 | |
| 
 | |
| #ifdef GGML_CUDA_F16
 | |
|     const float2 tmp = __half22float2(__hmul2(dm4, ds8));
 | |
|     const float d4d8 = tmp.x;
 | |
|     const float m4s8 = tmp.y;
 | |
| #else
 | |
|     const float2 dm4f = __half22float2(dm4);
 | |
|     const float2 ds8f = __half22float2(ds8);
 | |
|     const float d4d8 = dm4f.x * ds8f.x;
 | |
|     const float m4s8 = dm4f.y * ds8f.y;
 | |
| #endif // GGML_CUDA_F16
 | |
| 
 | |
|     // scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it
 | |
|     return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1));
 | |
| #else
 | |
|     bad_arch();
 | |
| #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
 | |
| }
 | |
| 
 | |
| #define VDR_Q5_0_Q8_1_MMVQ 2
 | |
| #define VDR_Q5_0_Q8_1_MMQ  4
 | |
| 
 | |
| template <int vdr> static __device__ __forceinline__ float vec_dot_q5_0_q8_1_impl(
 | |
|     const int * vl, const int * vh, const int * u, const float & d5, const half2 & ds8) {
 | |
| 
 | |
| #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
 | |
|     int sumi = 0;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < vdr; ++i) {
 | |
|         int vi0 = (vl[i] >>  0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
 | |
|         vi0    |= (vh[i] <<  4) & 0x00000010; // 0 ->  4
 | |
|         vi0    |= (vh[i] << 11) & 0x00001000; // 1 -> 12
 | |
|         vi0    |= (vh[i] << 18) & 0x00100000; // 2 -> 20
 | |
|         vi0    |= (vh[i] << 25) & 0x10000000; // 3 -> 28
 | |
|         sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
 | |
| 
 | |
|         int vi1 = (vl[i] >>  4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
 | |
|         vi1    |= (vh[i] >> 12) & 0x00000010; // 16 ->  4
 | |
|         vi1    |= (vh[i] >>  5) & 0x00001000; // 17 -> 12
 | |
|         vi1    |= (vh[i] <<  2) & 0x00100000; // 18 -> 20
 | |
|         vi1    |= (vh[i] <<  9) & 0x10000000; // 19 -> 28
 | |
|         sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
 | |
|     }
 | |
| 
 | |
|     const float2 ds8f = __half22float2(ds8);
 | |
| 
 | |
|     // second part effectively subtracts 16 from each quant value
 | |
|     return d5 * (sumi * ds8f.x - (16*vdr/QI5_0) * ds8f.y);
 | |
| #else
 | |
|     bad_arch();
 | |
| #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
 | |
| }
 | |
| 
 | |
| #define VDR_Q5_1_Q8_1_MMVQ 2
 | |
| #define VDR_Q5_1_Q8_1_MMQ  4
 | |
| 
 | |
| template <int vdr> static __device__ __forceinline__ float vec_dot_q5_1_q8_1_impl(
 | |
|     const int * vl, const int * vh, const int * u, const half2 & dm5, const half2 & ds8) {
 | |
| 
 | |
| #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
 | |
|     int sumi = 0;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < vdr; ++i) {
 | |
|         int vi0 = (vl[i] >>  0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
 | |
|         vi0    |= (vh[i] <<  4) & 0x00000010; // 0 ->  4
 | |
|         vi0    |= (vh[i] << 11) & 0x00001000; // 1 -> 12
 | |
|         vi0    |= (vh[i] << 18) & 0x00100000; // 2 -> 20
 | |
|         vi0    |= (vh[i] << 25) & 0x10000000; // 3 -> 28
 | |
|         sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
 | |
| 
 | |
|         int vi1 = (vl[i] >>  4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
 | |
|         vi1    |= (vh[i] >> 12) & 0x00000010; // 16 ->  4
 | |
|         vi1    |= (vh[i] >>  5) & 0x00001000; // 17 -> 12
 | |
|         vi1    |= (vh[i] <<  2) & 0x00100000; // 18 -> 20
 | |
|         vi1    |= (vh[i] <<  9) & 0x10000000; // 19 -> 28
 | |
|         sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
 | |
|     }
 | |
| 
 | |
| #ifdef GGML_CUDA_F16
 | |
|     const float2 tmp = __half22float2(__hmul2(dm5, ds8));
 | |
|     const float d5d8 = tmp.x;
 | |
|     const float m5s8 = tmp.y;
 | |
| #else
 | |
|     const float2 dm5f = __half22float2(dm5);
 | |
|     const float2 ds8f = __half22float2(ds8);
 | |
|     const float d5d8 = dm5f.x * ds8f.x;
 | |
|     const float m5s8 = dm5f.y * ds8f.y;
 | |
| #endif // GGML_CUDA_F16
 | |
| 
 | |
|     // scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it
 | |
|     return sumi*d5d8 + m5s8 / (QI5_1 / vdr);
 | |
| 
 | |
| #else
 | |
|     bad_arch();
 | |
| #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
 | |
| }
 | |
| 
 | |
| #define VDR_Q8_0_Q8_1_MMVQ 2
 | |
| #define VDR_Q8_0_Q8_1_MMQ 8
 | |
| 
 | |
| template <int vdr> static __device__ __forceinline__ float vec_dot_q8_0_q8_1_impl(
 | |
|     const int * v, const int * u, const float & d8_0, const float & d8_1) {
 | |
| 
 | |
| #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
 | |
|     int sumi = 0;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < vdr; ++i) {
 | |
|         // SIMD dot product of quantized values
 | |
|         sumi = __dp4a(v[i], u[i], sumi);
 | |
|     }
 | |
| 
 | |
|     return d8_0*d8_1 * sumi;
 | |
| #else
 | |
|     bad_arch();
 | |
| #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
 | |
| }
 | |
| 
 | |
| template <int vdr> static __device__ __forceinline__ float vec_dot_q8_1_q8_1_impl(
 | |
|     const int * v, const int * u, const half2 & dm8, const half2 & ds8) {
 | |
| 
 | |
| #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
 | |
|     int sumi = 0;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < vdr; ++i) {
 | |
|         // SIMD dot product of quantized values
 | |
|         sumi = __dp4a(v[i], u[i], sumi);
 | |
|     }
 | |
| 
 | |
| #ifdef GGML_CUDA_F16
 | |
|     const float2 tmp = __half22float2(__hmul2(dm8, ds8));
 | |
|     const float d8d8 = tmp.x;
 | |
|     const float m8s8 = tmp.y;
 | |
| #else
 | |
|     const float2 dm8f = __half22float2(dm8);
 | |
|     const float2 ds8f = __half22float2(ds8);
 | |
|     const float d8d8 = dm8f.x * ds8f.x;
 | |
|     const float m8s8 = dm8f.y * ds8f.y;
 | |
| #endif // GGML_CUDA_F16
 | |
| 
 | |
|     // scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it
 | |
|     return sumi*d8d8 + m8s8 / (QI8_1 / vdr);
 | |
| #else
 | |
|     bad_arch();
 | |
| #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
 | |
| }
 | |
| 
 | |
| #define VDR_Q2_K_Q8_1_MMVQ 1
 | |
| #define VDR_Q2_K_Q8_1_MMQ  2
 | |
| 
 | |
| // contiguous v/x values
 | |
| static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmvq(
 | |
|     const int & v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
 | |
|     const half2 & dm2, const float * __restrict__ d8) {
 | |
| 
 | |
| #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
 | |
|     float sumf_d = 0.0f;
 | |
|     float sumf_m = 0.0f;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < QR2_K; ++i) {
 | |
|         const int sc = scales[2*i];
 | |
| 
 | |
|         const int vi = (v >> (2*i)) & 0x03030303;
 | |
| 
 | |
|         sumf_d += d8[i] * (__dp4a(vi, u[i], 0) * (sc & 0xF)); // SIMD dot product
 | |
| 
 | |
|         // fill int with 4x m
 | |
|         int m = sc >> 4;
 | |
|         m |= m <<  8;
 | |
|         m |= m << 16;
 | |
|         sumf_m += d8[i] * __dp4a(m, u[i], 0); // multiply constant q2_K part with sum of q8_1 values
 | |
|     }
 | |
| 
 | |
|     const float2 dm2f = __half22float2(dm2);
 | |
| 
 | |
|     return dm2f.x*sumf_d - dm2f.y*sumf_m;
 | |
| #else
 | |
|     bad_arch();
 | |
| #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
 | |
| }
 | |
| 
 | |
| // contiguous u/y values
 | |
| static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmq(
 | |
|     const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
 | |
|     const half2 & dm2, const float & d8) {
 | |
| 
 | |
| #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
 | |
|     int sumi_d = 0;
 | |
|     int sumi_m = 0;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < QI8_1; i0 += QI8_1/2) {
 | |
|         int sumi_d_sc = 0;
 | |
| 
 | |
|         const int sc = scales[i0 / (QI8_1/2)];
 | |
| 
 | |
|         // fill int with 4x m
 | |
|         int m = sc >> 4;
 | |
|         m |= m <<  8;
 | |
|         m |= m << 16;
 | |
| 
 | |
| #pragma unroll
 | |
|         for (int i = i0; i < i0 + QI8_1/2; ++i) {
 | |
|             sumi_d_sc = __dp4a(v[i], u[i], sumi_d_sc); // SIMD dot product
 | |
|             sumi_m    = __dp4a(m,    u[i], sumi_m); // multiply sum of q8_1 values with m
 | |
|         }
 | |
| 
 | |
|         sumi_d += sumi_d_sc * (sc & 0xF);
 | |
|     }
 | |
| 
 | |
|     const float2 dm2f = __half22float2(dm2);
 | |
| 
 | |
|     return d8 * (dm2f.x*sumi_d - dm2f.y*sumi_m);
 | |
| #else
 | |
|     bad_arch();
 | |
| #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
 | |
| }
 | |
| 
 | |
| #define VDR_Q3_K_Q8_1_MMVQ 1
 | |
| #define VDR_Q3_K_Q8_1_MMQ  2
 | |
| 
 | |
| // contiguous v/x values
 | |
| static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmvq(
 | |
|     const int & vl, const int & vh, const int * __restrict__ u, const uint8_t * __restrict__ scales,
 | |
|     const int & scale_offset, const float & d3, const float * __restrict__ d8) {
 | |
| 
 | |
| #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
 | |
|     float sumf = 0.0f;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < QR3_K; ++i) {
 | |
|         const int isc = scale_offset + 2*i;
 | |
| 
 | |
|         const int isc_low = isc % (QK_K/32);
 | |
|         const int sc_shift_low = 4 * (isc / (QK_K/32));
 | |
|         const int sc_low  = (scales[isc_low] >> sc_shift_low) & 0xF;
 | |
| 
 | |
|         const int isc_high = isc % (QK_K/64);
 | |
|         const int sc_shift_high = 2 * (isc / (QK_K/64));
 | |
|         const int sc_high = ((scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4;
 | |
| 
 | |
|         const int sc = (sc_low | sc_high) - 32;
 | |
| 
 | |
|         const int vil = (vl >> (2*i)) & 0x03030303;
 | |
| 
 | |
|         const int vih = ((vh >> i) << 2) & 0x04040404;
 | |
| 
 | |
|         const int vi = __vsubss4(vil, vih);
 | |
| 
 | |
|         sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
 | |
|     }
 | |
| 
 | |
|     return d3 * sumf;
 | |
| #else
 | |
|     bad_arch();
 | |
| #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
 | |
| }
 | |
| 
 | |
| // contiguous u/y values
 | |
| static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmq(
 | |
|     const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ scales,
 | |
|     const float & d3, const float & d8) {
 | |
| 
 | |
| #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
 | |
|     int sumi = 0;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) {
 | |
|         int sumi_sc = 0;
 | |
| 
 | |
|         for (int i = i0; i < i0 + QI8_1/2; ++i) {
 | |
|             sumi_sc = __dp4a(v[i], u[i], sumi_sc); // SIMD dot product
 | |
|         }
 | |
| 
 | |
|         sumi += sumi_sc * scales[i0 / (QI8_1/2)];
 | |
|     }
 | |
| 
 | |
|     return d3*d8 * sumi;
 | |
| #else
 | |
|     bad_arch();
 | |
| #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
 | |
| }
 | |
| 
 | |
| #define VDR_Q4_K_Q8_1_MMVQ 2
 | |
| #define VDR_Q4_K_Q8_1_MMQ  8
 | |
| 
 | |
| // contiguous v/x values
 | |
| static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq(
 | |
|     const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
 | |
|     const uint8_t * __restrict__ m, const half2 & dm4, const float * __restrict__ d8) {
 | |
| 
 | |
| #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
 | |
|     float sumf_d = 0.0f;
 | |
|     float sumf_m = 0.0f;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < QR4_K; ++i) {
 | |
|         const int v0i = (v[0] >> (4*i)) & 0x0F0F0F0F;
 | |
|         const int v1i = (v[1] >> (4*i)) & 0x0F0F0F0F;
 | |
| 
 | |
|         const int dot1 = __dp4a(v1i, u[2*i+1], __dp4a(v0i, u[2*i+0], 0)); // SIMD dot product
 | |
|         const int dot2 = __dp4a(0x01010101, u[2*i+1], __dp4a(0x01010101, u[2*i+0], 0)); // sum of u
 | |
| 
 | |
|         sumf_d += d8[i] * (dot1 * sc[i]);
 | |
|         sumf_m += d8[i] * (dot2 * m[i]);  // multiply constant part of q4_K with sum of q8_1 values
 | |
|     }
 | |
| 
 | |
|     const float2 dm4f = __half22float2(dm4);
 | |
| 
 | |
|     return dm4f.x*sumf_d - dm4f.y*sumf_m;
 | |
| 
 | |
| #else
 | |
|     bad_arch();
 | |
| #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
 | |
| }
 | |
| 
 | |
| // contiguous u/y values
 | |
| static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq(
 | |
|     const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
 | |
|     const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
 | |
| 
 | |
| #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
 | |
|     float sumf_d = 0.0f;
 | |
|     float sumf_m = 0.0f;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) {
 | |
|         int sumi_d = 0;
 | |
| 
 | |
| #pragma unroll
 | |
|         for (int j = 0; j < QI8_1; ++j) {
 | |
|             sumi_d = __dp4a((v[j] >> (4*i)) & 0x0F0F0F0F, u[i*QI8_1 + j], sumi_d); // SIMD dot product
 | |
|         }
 | |
| 
 | |
|         const float2 ds8f = __half22float2(ds8[i]);
 | |
| 
 | |
|         sumf_d += ds8f.x * (sc[i] * sumi_d);
 | |
|         sumf_m += ds8f.y *   m[i]; // sum of q8_1 block * q4_K min val
 | |
|     }
 | |
| 
 | |
|     const float2 dm4f = __half22float2(dm4);
 | |
| 
 | |
|     return dm4f.x*sumf_d - dm4f.y*sumf_m;
 | |
| 
 | |
| #else
 | |
|     bad_arch();
 | |
| #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
 | |
| }
 | |
| 
 | |
| #define VDR_Q5_K_Q8_1_MMVQ 2
 | |
| #define VDR_Q5_K_Q8_1_MMQ  8
 | |
| 
 | |
| // contiguous v/x values
 | |
| static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_vmmq(
 | |
|     const int * __restrict__ vl, const int * __restrict__ vh, const int * __restrict__ u, const uint8_t * __restrict__ sc,
 | |
|     const uint8_t * __restrict__ m, const half2 & dm5, const float * __restrict__ d8) {
 | |
| 
 | |
| #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
 | |
|     float sumf_d = 0.0f;
 | |
|     float sumf_m = 0.0f;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < QR5_K; ++i) {
 | |
|         const int vl0i = (vl[0] >> (4*i)) & 0x0F0F0F0F;
 | |
|         const int vl1i = (vl[1] >> (4*i)) & 0x0F0F0F0F;
 | |
| 
 | |
|         const int vh0i = ((vh[0] >> i) << 4) & 0x10101010;
 | |
|         const int vh1i = ((vh[1] >> i) << 4) & 0x10101010;
 | |
| 
 | |
|         const int v0i = vl0i | vh0i;
 | |
|         const int v1i = vl1i | vh1i;
 | |
| 
 | |
|         const int dot1 = __dp4a(v0i, u[2*i+0], __dp4a(v1i, u[2*i+1], 0)); // SIMD dot product
 | |
|         const int dot2 = __dp4a(0x01010101, u[2*i+0], __dp4a(0x01010101, u[2*i+1], 0)); // sum of u
 | |
| 
 | |
|         sumf_d += d8[i] * (dot1 * sc[i]);
 | |
|         sumf_m += d8[i] * (dot2 * m[i]);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     const float2 dm5f = __half22float2(dm5);
 | |
| 
 | |
|     return dm5f.x*sumf_d - dm5f.y*sumf_m;
 | |
| 
 | |
| #else
 | |
|     bad_arch();
 | |
| #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
 | |
| }
 | |
| 
 | |
| // contiguous u/y values
 | |
| static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_mmq(
 | |
|     const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
 | |
|     const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
 | |
| 
 | |
| #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
 | |
|     float sumf_d = 0.0f;
 | |
|     float sumf_m = 0.0f;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) {
 | |
|         int sumi_d = 0;
 | |
| 
 | |
| #pragma unroll
 | |
|         for (int j = 0; j < QI8_1; ++j) {
 | |
|             sumi_d = __dp4a(v[i*QI8_1 + j], u[i*QI8_1 + j], sumi_d); // SIMD dot product
 | |
|         }
 | |
| 
 | |
|         const float2 ds8f = __half22float2(ds8[i]);
 | |
| 
 | |
|         sumf_d += ds8f.x * (sc[i] * sumi_d);
 | |
|         sumf_m += ds8f.y *   m[i]; // sum of q8_1 block * q4_K min val
 | |
|     }
 | |
| 
 | |
|     const float2 dm4f = __half22float2(dm4);
 | |
| 
 | |
|     return dm4f.x*sumf_d - dm4f.y*sumf_m;
 | |
| 
 | |
| #else
 | |
|     bad_arch();
 | |
| #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
 | |
| }
 | |
| 
 | |
| #define VDR_Q6_K_Q8_1_MMVQ 1
 | |
| #define VDR_Q6_K_Q8_1_MMQ  8
 | |
| 
 | |
| // contiguous v/x values
 | |
| static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmvq(
 | |
|     const int & vl, const int & vh, const int * __restrict__ u, const int8_t * __restrict__ scales,
 | |
|     const float & d, const float * __restrict__ d8) {
 | |
| 
 | |
| #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
 | |
|     float sumf = 0.0f;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < QR6_K; ++i) {
 | |
|         const int sc = scales[4*i];
 | |
| 
 | |
|         const int vil = (vl >> (4*i)) & 0x0F0F0F0F;
 | |
| 
 | |
|         const int vih = ((vh >> (4*i)) << 4) & 0x30303030;
 | |
| 
 | |
|         const int vi = __vsubss4((vil | vih), 0x20202020); // vi = (vil | vih) - 32
 | |
| 
 | |
|         sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
 | |
|     }
 | |
| 
 | |
|     return d*sumf;
 | |
| #else
 | |
|     bad_arch();
 | |
| #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
 | |
| }
 | |
| 
 | |
| // contiguous u/y values
 | |
| static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmq(
 | |
|     const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ sc,
 | |
|     const float & d6, const float * __restrict__ d8) {
 | |
| 
 | |
| #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
 | |
|     float sumf_d = 0.0f;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) {
 | |
|         int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale
 | |
| 
 | |
| #pragma unroll
 | |
|         for (int i = i0; i < i0 + 2; ++i) {
 | |
|             sumi_d.x = __dp4a(v[2*i+0], u[2*i+0], sumi_d.x); // SIMD dot product
 | |
|             sumi_d.x = __dp4a(v[2*i+1], u[2*i+1], sumi_d.x); // SIMD dot product
 | |
| 
 | |
|             sumi_d.y = __dp4a(v[2*i+4], u[2*i+4], sumi_d.y); // SIMD dot product
 | |
|             sumi_d.y = __dp4a(v[2*i+5], u[2*i+5], sumi_d.y); // SIMD dot product
 | |
|         }
 | |
| 
 | |
|         sumf_d += d8[i0/4] * (sc[i0/2+0]*sumi_d.x + sc[i0/2+1]*sumi_d.y);
 | |
|     }
 | |
| 
 | |
|     return d6 * sumf_d;
 | |
| 
 | |
| #else
 | |
|     bad_arch();
 | |
| #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ float vec_dot_q4_0_q8_1(
 | |
|     const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
 | |
| 
 | |
|     const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq;
 | |
| 
 | |
|     int v[VDR_Q4_0_Q8_1_MMVQ];
 | |
|     int u[2*VDR_Q4_0_Q8_1_MMVQ];
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) {
 | |
|         v[i]     = get_int_from_uint8(bq4_0->qs, iqs + i);
 | |
|         u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
 | |
|         u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_0);
 | |
|     }
 | |
| 
 | |
|     return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMVQ>(v, u, bq4_0->d, bq8_1->ds);
 | |
| }
 | |
| 
 | |
| template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
 | |
|     (void)x_qh; (void)x_sc;
 | |
| 
 | |
|     __shared__ int  tile_x_qs[mmq_y * (WARP_SIZE)       + mmq_y];
 | |
|     __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI4_0) + mmq_y/QI4_0];
 | |
| 
 | |
|     *x_ql = tile_x_qs;
 | |
|     *x_dm = (half2 *) tile_x_d;
 | |
| }
 | |
| 
 | |
| template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_0(
 | |
|     const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
 | |
|     int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
 | |
|     (void)x_qh; (void)x_sc;
 | |
|     GGML_CUDA_ASSUME(i_offset >= 0);
 | |
|     GGML_CUDA_ASSUME(i_offset <  nwarps);
 | |
|     GGML_CUDA_ASSUME(k >= 0);
 | |
|     GGML_CUDA_ASSUME(k <  WARP_SIZE);
 | |
| 
 | |
|     const int kbx  = k / QI4_0;
 | |
|     const int kqsx = k % QI4_0;
 | |
| 
 | |
|     const block_q4_0 * bx0 = (const block_q4_0 *) vx;
 | |
| 
 | |
|     float * x_dmf = (float *) x_dm;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
 | |
|         int i = i0 + i_offset;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbx;
 | |
| 
 | |
|         x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
 | |
|         // x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbx] = bxi->d;
 | |
|     }
 | |
| 
 | |
|     const int blocks_per_tile_x_row = WARP_SIZE / QI4_0;
 | |
|     const int kbxd = k % blocks_per_tile_x_row;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) {
 | |
|         int i = i0 + i_offset * QI4_0 + k / blocks_per_tile_x_row;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbxd;
 | |
| 
 | |
|         x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbxd] = bxi->d;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ float vec_dot_q4_0_q8_1_mul_mat(
 | |
|     const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
 | |
|     const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
 | |
|     (void)x_qh; (void)x_sc;
 | |
| 
 | |
|     const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
 | |
|     const float * x_dmf = (const float *) x_dm;
 | |
| 
 | |
|     int u[2*VDR_Q4_0_Q8_1_MMQ];
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) {
 | |
|         u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l)         % WARP_SIZE];
 | |
|         u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_0) % WARP_SIZE];
 | |
|     }
 | |
| 
 | |
|     return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMQ>
 | |
|         (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dmf[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k/QI4_0],
 | |
|          y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ float vec_dot_q4_1_q8_1(
 | |
|     const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
 | |
| 
 | |
|     const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq;
 | |
| 
 | |
|     int v[VDR_Q4_1_Q8_1_MMVQ];
 | |
|     int u[2*VDR_Q4_1_Q8_1_MMVQ];
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) {
 | |
|         v[i]    = get_int_from_uint8_aligned(bq4_1->qs, iqs + i);
 | |
|         u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
 | |
|         u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_1);
 | |
|     }
 | |
| 
 | |
|     return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMVQ>(v, u, bq4_1->dm, bq8_1->ds);
 | |
| }
 | |
| 
 | |
| template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
 | |
|     (void)x_qh; (void)x_sc;
 | |
| 
 | |
|     __shared__ int   tile_x_qs[mmq_y * (WARP_SIZE) +     + mmq_y];
 | |
|     __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_1) + mmq_y/QI4_1];
 | |
| 
 | |
|     *x_ql = tile_x_qs;
 | |
|     *x_dm = tile_x_dm;
 | |
| }
 | |
| 
 | |
| template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_1(
 | |
|     const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
 | |
|     int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
 | |
|     (void)x_qh; (void)x_sc;
 | |
| 
 | |
|     GGML_CUDA_ASSUME(i_offset >= 0);
 | |
|     GGML_CUDA_ASSUME(i_offset <  nwarps);
 | |
|     GGML_CUDA_ASSUME(k >= 0);
 | |
|     GGML_CUDA_ASSUME(k <  WARP_SIZE);
 | |
| 
 | |
|     const int kbx  = k / QI4_1;
 | |
|     const int kqsx = k % QI4_1;
 | |
| 
 | |
|     const block_q4_1 * bx0 = (const block_q4_1 *) vx;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
 | |
|         int i = i0 + i_offset;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbx;
 | |
| 
 | |
|         x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
 | |
|     }
 | |
| 
 | |
|     const int blocks_per_tile_x_row = WARP_SIZE / QI4_1;
 | |
|     const int kbxd = k % blocks_per_tile_x_row;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) {
 | |
|         int i = i0 + i_offset * QI4_1 + k / blocks_per_tile_x_row;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbxd;
 | |
| 
 | |
|         x_dm[i * (WARP_SIZE/QI4_1) + i / QI4_1 + kbxd] = bxi->dm;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ float vec_dot_q4_1_q8_1_mul_mat(
 | |
|     const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
 | |
|     const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
 | |
|     (void)x_qh; (void)x_sc;
 | |
| 
 | |
|     const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
 | |
| 
 | |
|     int u[2*VDR_Q4_1_Q8_1_MMQ];
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) {
 | |
|         u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l)         % WARP_SIZE];
 | |
|         u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_1) % WARP_SIZE];
 | |
|     }
 | |
| 
 | |
|     return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMQ>
 | |
|         (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k/QI4_1],
 | |
|          y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ float vec_dot_q5_0_q8_1(
 | |
|     const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
 | |
| 
 | |
|     const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq;
 | |
| 
 | |
|     int vl[VDR_Q5_0_Q8_1_MMVQ];
 | |
|     int vh[VDR_Q5_0_Q8_1_MMVQ];
 | |
|     int  u[2*VDR_Q5_0_Q8_1_MMVQ];
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) {
 | |
|         vl[i]    = get_int_from_uint8(bq5_0->qs, iqs + i);
 | |
|         vh[i]    = get_int_from_uint8(bq5_0->qh, 0) >> (4 * (iqs + i));
 | |
|         u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
 | |
|         u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_0);
 | |
|     }
 | |
| 
 | |
|     return vec_dot_q5_0_q8_1_impl<VDR_Q5_0_Q8_1_MMVQ>(vl, vh, u, bq5_0->d, bq8_1->ds);
 | |
| }
 | |
| 
 | |
| template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
 | |
|     (void)x_qh; (void)x_sc;
 | |
| 
 | |
|     __shared__ int  tile_x_ql[mmq_y * (2*WARP_SIZE)     + mmq_y];
 | |
|     __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI5_0) + mmq_y/QI5_0];
 | |
| 
 | |
|     *x_ql = tile_x_ql;
 | |
|     *x_dm = (half2 *) tile_x_d;
 | |
| }
 | |
| 
 | |
| template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_0(
 | |
|     const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
 | |
|     int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
 | |
|     (void)x_qh; (void)x_sc;
 | |
| 
 | |
|     GGML_CUDA_ASSUME(i_offset >= 0);
 | |
|     GGML_CUDA_ASSUME(i_offset <  nwarps);
 | |
|     GGML_CUDA_ASSUME(k >= 0);
 | |
|     GGML_CUDA_ASSUME(k <  WARP_SIZE);
 | |
| 
 | |
|     const int kbx  = k / QI5_0;
 | |
|     const int kqsx = k % QI5_0;
 | |
| 
 | |
|     const block_q5_0 * bx0 = (const block_q5_0 *) vx;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
 | |
|         int i = i0 + i_offset;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbx;
 | |
| 
 | |
|         const int ql = get_int_from_uint8(bxi->qs, kqsx);
 | |
|         const int qh = get_int_from_uint8(bxi->qh, 0) >> (4 * (k % QI5_0));
 | |
| 
 | |
|         int qs0 = (ql >>  0)   & 0x0F0F0F0F;
 | |
|         qs0    |= (qh <<  4)   & 0x00000010;  // 0 ->  4
 | |
|         qs0    |= (qh << 11)   & 0x00001000;  // 1 -> 12
 | |
|         qs0    |= (qh << 18)   & 0x00100000;  // 2 -> 20
 | |
|         qs0    |= (qh << 25)   & 0x10000000;  // 3 -> 28
 | |
|         qs0     = __vsubss4(qs0, 0x10101010); // subtract 16
 | |
| 
 | |
|         x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
 | |
| 
 | |
|         int qs1 = (ql >>  4)   & 0x0F0F0F0F;
 | |
|         qs1    |= (qh >> 12)   & 0x00000010;  // 16 ->  4
 | |
|         qs1    |= (qh >>  5)   & 0x00001000;  // 17 -> 12
 | |
|         qs1    |= (qh <<  2)   & 0x00100000;  // 18 -> 20
 | |
|         qs1    |= (qh <<  9)   & 0x10000000;  // 19 -> 28
 | |
|         qs1     = __vsubss4(qs1, 0x10101010); // subtract 16
 | |
| 
 | |
|         x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
 | |
|     }
 | |
| 
 | |
|     const int blocks_per_tile_x_row = WARP_SIZE / QI5_0;
 | |
|     const int kbxd = k % blocks_per_tile_x_row;
 | |
|     float * x_dmf = (float *) x_dm;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) {
 | |
|         int i = i0 + i_offset * QI5_0 + k / blocks_per_tile_x_row;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbxd;
 | |
| 
 | |
|         x_dmf[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = bxi->d;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ float vec_dot_q5_0_q8_1_mul_mat(
 | |
|     const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
 | |
|     const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
 | |
|     (void)x_qh; (void)x_sc;
 | |
| 
 | |
|     const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
 | |
|     const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0;
 | |
|     const float * x_dmf = (const float *) x_dm;
 | |
|     const float * y_df  = (const float *) y_ds;
 | |
| 
 | |
|     int u[2*VDR_Q5_0_Q8_1_MMQ];
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int l = 0; l < VDR_Q5_0_Q8_1_MMQ; ++l) {
 | |
|         u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l)         % WARP_SIZE];
 | |
|         u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE];
 | |
|     }
 | |
| 
 | |
|     return vec_dot_q8_0_q8_1_impl<QR5_0*VDR_Q5_0_Q8_1_MMQ>
 | |
|         (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ float vec_dot_q5_1_q8_1(
 | |
|     const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
 | |
| 
 | |
|     const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq;
 | |
| 
 | |
|     int vl[VDR_Q5_1_Q8_1_MMVQ];
 | |
|     int vh[VDR_Q5_1_Q8_1_MMVQ];
 | |
|     int  u[2*VDR_Q5_1_Q8_1_MMVQ];
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) {
 | |
|         vl[i]   = get_int_from_uint8_aligned(bq5_1->qs, iqs + i);
 | |
|         vh[i]   = get_int_from_uint8_aligned(bq5_1->qh, 0) >> (4 * (iqs + i));
 | |
|         u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
 | |
|         u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_1);
 | |
|     }
 | |
| 
 | |
|     return vec_dot_q5_1_q8_1_impl<VDR_Q5_1_Q8_1_MMVQ>(vl, vh, u, bq5_1->dm, bq8_1->ds);
 | |
| }
 | |
| 
 | |
| template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
 | |
|     (void)x_qh; (void)x_sc;
 | |
| 
 | |
|     __shared__ int   tile_x_ql[mmq_y * (2*WARP_SIZE)     + mmq_y];
 | |
|     __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_1) + mmq_y/QI5_1];
 | |
| 
 | |
|     *x_ql = tile_x_ql;
 | |
|     *x_dm = tile_x_dm;
 | |
| }
 | |
| 
 | |
| template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_1(
 | |
|     const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
 | |
|     int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
 | |
|     (void)x_qh; (void)x_sc;
 | |
| 
 | |
|     GGML_CUDA_ASSUME(i_offset >= 0);
 | |
|     GGML_CUDA_ASSUME(i_offset < nwarps);
 | |
|     GGML_CUDA_ASSUME(k >= 0);
 | |
|     GGML_CUDA_ASSUME(k <  WARP_SIZE);
 | |
| 
 | |
|     const int kbx  = k / QI5_1;
 | |
|     const int kqsx = k % QI5_1;
 | |
| 
 | |
|     const block_q5_1 * bx0 = (const block_q5_1 *) vx;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
 | |
|         int i = i0 + i_offset;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbx;
 | |
| 
 | |
|         const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
 | |
|         const int qh = get_int_from_uint8_aligned(bxi->qh, 0) >> (4 * (k % QI5_1));
 | |
| 
 | |
|         int qs0 = (ql >>  0) & 0x0F0F0F0F;
 | |
|         qs0    |= (qh <<  4) & 0x00000010; // 0 ->  4
 | |
|         qs0    |= (qh << 11) & 0x00001000; // 1 -> 12
 | |
|         qs0    |= (qh << 18) & 0x00100000; // 2 -> 20
 | |
|         qs0    |= (qh << 25) & 0x10000000; // 3 -> 28
 | |
| 
 | |
|         x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
 | |
| 
 | |
|         int qs1 = (ql >>  4) & 0x0F0F0F0F;
 | |
|         qs1    |= (qh >> 12) & 0x00000010; // 16 ->  4
 | |
|         qs1    |= (qh >>  5) & 0x00001000; // 17 -> 12
 | |
|         qs1    |= (qh <<  2) & 0x00100000; // 18 -> 20
 | |
|         qs1    |= (qh <<  9) & 0x10000000; // 19 -> 28
 | |
| 
 | |
|         x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
 | |
|     }
 | |
| 
 | |
|     const int blocks_per_tile_x_row = WARP_SIZE / QI5_1;
 | |
|     const int kbxd = k % blocks_per_tile_x_row;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) {
 | |
|         int i = i0 + i_offset * QI5_1 + k / blocks_per_tile_x_row;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbxd;
 | |
| 
 | |
|         x_dm[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = bxi->dm;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ float vec_dot_q5_1_q8_1_mul_mat(
 | |
|     const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
 | |
|     const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
 | |
|     (void)x_qh; (void)x_sc;
 | |
| 
 | |
|     const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
 | |
|     const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1;
 | |
| 
 | |
|     int u[2*VDR_Q5_1_Q8_1_MMQ];
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int l = 0; l < VDR_Q5_1_Q8_1_MMQ; ++l) {
 | |
|         u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l)         % WARP_SIZE];
 | |
|         u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_1) % WARP_SIZE];
 | |
|     }
 | |
| 
 | |
|     return vec_dot_q8_1_q8_1_impl<QR5_1*VDR_Q5_1_Q8_1_MMQ>
 | |
|         (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dm[index_bx], y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ float vec_dot_q8_0_q8_1(
 | |
|     const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
 | |
| 
 | |
|     const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq;
 | |
| 
 | |
|     int v[VDR_Q8_0_Q8_1_MMVQ];
 | |
|     int u[VDR_Q8_0_Q8_1_MMVQ];
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) {
 | |
|         v[i] = get_int_from_int8(bq8_0->qs, iqs + i);
 | |
|         u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
 | |
|     }
 | |
| 
 | |
|     return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d, __low2half(bq8_1->ds));
 | |
| }
 | |
| 
 | |
| template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q8_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
 | |
|     (void)x_qh; (void)x_sc;
 | |
| 
 | |
|     __shared__ int  tile_x_qs[mmq_y * (WARP_SIZE)       + mmq_y];
 | |
|     __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI8_0) + mmq_y/QI8_0];
 | |
| 
 | |
|     *x_ql = tile_x_qs;
 | |
|     *x_dm = (half2 *) tile_x_d;
 | |
| }
 | |
| 
 | |
| template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q8_0(
 | |
|     const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
 | |
|     int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
 | |
|     (void)x_qh; (void)x_sc;
 | |
| 
 | |
|     GGML_CUDA_ASSUME(i_offset >= 0);
 | |
|     GGML_CUDA_ASSUME(i_offset <  nwarps);
 | |
|     GGML_CUDA_ASSUME(k >= 0);
 | |
|     GGML_CUDA_ASSUME(k <  WARP_SIZE);
 | |
| 
 | |
|     const int kbx  = k / QI8_0;
 | |
|     const int kqsx = k % QI8_0;
 | |
|     float * x_dmf = (float *) x_dm;
 | |
| 
 | |
|     const block_q8_0 * bx0 = (const block_q8_0 *) vx;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
 | |
|         int i = i0 + i_offset;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbx;
 | |
| 
 | |
|         x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_int8(bxi->qs, kqsx);
 | |
|     }
 | |
| 
 | |
|     const int blocks_per_tile_x_row = WARP_SIZE / QI8_0;
 | |
|     const int kbxd = k % blocks_per_tile_x_row;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0) {
 | |
|         int i = i0 + i_offset * QI8_0 + k / blocks_per_tile_x_row;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbxd;
 | |
| 
 | |
|         x_dmf[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbxd] = bxi->d;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ float vec_dot_q8_0_q8_1_mul_mat(
 | |
|     const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
 | |
|     const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
 | |
|     (void)x_qh; (void)x_sc;
 | |
| 
 | |
|     const float * x_dmf = (const float *) x_dm;
 | |
|     const float * y_df  = (const float *) y_ds;
 | |
| 
 | |
|     return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMQ>
 | |
|         (&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0],
 | |
|          y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]);
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ float vec_dot_q2_K_q8_1(
 | |
|     const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
 | |
| 
 | |
|     const block_q2_K * bq2_K = (const block_q2_K *) vbq;
 | |
| 
 | |
|     const int bq8_offset = QR2_K * (iqs / QI8_1);
 | |
|     const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
 | |
| 
 | |
|     const uint8_t * scales = bq2_K->scales + scale_offset;
 | |
| 
 | |
|     const int v = get_int_from_uint8_aligned(bq2_K->qs, iqs);
 | |
|     int    u[QR2_K];
 | |
|     float d8[QR2_K];
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < QR2_K; ++ i) {
 | |
|         u[i]  = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
 | |
|         d8[i] = __low2half(bq8_1[bq8_offset + i].ds);
 | |
|     }
 | |
| 
 | |
|     return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8);
 | |
| }
 | |
| 
 | |
| template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q2_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
 | |
|     (void)x_qh;
 | |
| 
 | |
|     __shared__ int   tile_x_ql[mmq_y * (WARP_SIZE)       + mmq_y];
 | |
|     __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI2_K) + mmq_y/QI2_K];
 | |
|     __shared__ int   tile_x_sc[mmq_y * (WARP_SIZE/4)     + mmq_y/4];
 | |
| 
 | |
|     *x_ql = tile_x_ql;
 | |
|     *x_dm = tile_x_dm;
 | |
|     *x_sc = tile_x_sc;
 | |
| }
 | |
| 
 | |
| template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q2_K(
 | |
|     const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
 | |
|     int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
 | |
|     (void)x_qh;
 | |
| 
 | |
|     GGML_CUDA_ASSUME(i_offset >= 0);
 | |
|     GGML_CUDA_ASSUME(i_offset <  nwarps);
 | |
|     GGML_CUDA_ASSUME(k >= 0);
 | |
|     GGML_CUDA_ASSUME(k <  WARP_SIZE);
 | |
| 
 | |
|     const int kbx  = k / QI2_K;
 | |
|     const int kqsx = k % QI2_K;
 | |
| 
 | |
|     const block_q2_K * bx0 = (const block_q2_K *) vx;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
 | |
|         int i = i0 + i_offset;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q2_K * bxi = bx0 + i*blocks_per_row + kbx;
 | |
| 
 | |
|         x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
 | |
|     }
 | |
| 
 | |
|     const int blocks_per_tile_x_row = WARP_SIZE / QI2_K;
 | |
|     const int kbxd = k % blocks_per_tile_x_row;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI2_K) {
 | |
|         int i = (i0 + i_offset * QI2_K + k / blocks_per_tile_x_row) % mmq_y;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q2_K * bxi = bx0 + i*blocks_per_row + kbxd;
 | |
| 
 | |
|         x_dm[i * (WARP_SIZE/QI2_K) + i / QI2_K + kbxd] = bxi->dm;
 | |
|     }
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
 | |
|         int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q2_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI2_K/4);
 | |
| 
 | |
|         x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = get_int_from_uint8_aligned(bxi->scales, k % (QI2_K/4));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ float vec_dot_q2_K_q8_1_mul_mat(
 | |
|     const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
 | |
|     const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
 | |
|     (void)x_qh;
 | |
| 
 | |
|     const int kbx = k / QI2_K;
 | |
|     const int ky  = (k % QI2_K) * QR2_K;
 | |
|     const float * y_df = (const float *) y_ds;
 | |
| 
 | |
|     int v[QR2_K*VDR_Q2_K_Q8_1_MMQ];
 | |
| 
 | |
|     const int kqsx = i * (WARP_SIZE + 1) + kbx*QI2_K + (QI2_K/2) * (ky/(2*QI2_K)) + ky % (QI2_K/2);
 | |
|     const int shift = 2 * ((ky % (2*QI2_K)) / (QI2_K/2));
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int l = 0; l < QR2_K*VDR_Q2_K_Q8_1_MMQ; ++l) {
 | |
|         v[l] = (x_ql[kqsx + l] >> shift) & 0x03030303;
 | |
|     }
 | |
| 
 | |
|     const uint8_t * scales = ((const uint8_t *) &x_sc[i * (WARP_SIZE/4) + i/4 + kbx*4]) + ky/4;
 | |
| 
 | |
|     const int index_y = j * WARP_SIZE + (QR2_K*k) % WARP_SIZE;
 | |
|     return vec_dot_q2_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dm[i * (WARP_SIZE/QI2_K) + i/QI2_K + kbx], y_df[index_y/QI8_1]);
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ float vec_dot_q3_K_q8_1(
 | |
|     const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
 | |
| 
 | |
|     const block_q3_K * bq3_K = (const block_q3_K *) vbq;
 | |
| 
 | |
|     const int bq8_offset = QR3_K * (iqs / (QI3_K/2));
 | |
|     const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
 | |
| 
 | |
|     const float d = bq3_K->d;
 | |
| 
 | |
|     const int vl = get_int_from_uint8(bq3_K->qs, iqs);
 | |
| 
 | |
|     // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
 | |
|     const int vh = ~get_int_from_uint8(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset;
 | |
| 
 | |
|     int    u[QR3_K];
 | |
|     float d8[QR3_K];
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < QR3_K; ++i) {
 | |
|         u[i]  = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
 | |
|         d8[i] = __low2half(bq8_1[bq8_offset + i].ds);
 | |
|     }
 | |
| 
 | |
|     return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8);
 | |
| }
 | |
| 
 | |
| template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q3_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
 | |
| 
 | |
|     __shared__ int   tile_x_ql[mmq_y * (WARP_SIZE)       + mmq_y];
 | |
|     __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI3_K) + mmq_y/QI3_K];
 | |
|     __shared__ int   tile_x_qh[mmq_y * (WARP_SIZE/2)     + mmq_y/2];
 | |
|     __shared__ int   tile_x_sc[mmq_y * (WARP_SIZE/4)     + mmq_y/4];
 | |
| 
 | |
|     *x_ql = tile_x_ql;
 | |
|     *x_dm = tile_x_dm;
 | |
|     *x_qh = tile_x_qh;
 | |
|     *x_sc = tile_x_sc;
 | |
| }
 | |
| 
 | |
| template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q3_K(
 | |
|     const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
 | |
|     int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
 | |
| 
 | |
|     GGML_CUDA_ASSUME(i_offset >= 0);
 | |
|     GGML_CUDA_ASSUME(i_offset <  nwarps);
 | |
|     GGML_CUDA_ASSUME(k >= 0);
 | |
|     GGML_CUDA_ASSUME(k <  WARP_SIZE);
 | |
| 
 | |
|     const int kbx  = k / QI3_K;
 | |
|     const int kqsx = k % QI3_K;
 | |
| 
 | |
|     const block_q3_K * bx0 = (const block_q3_K *) vx;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
 | |
|         int i = i0 + i_offset;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q3_K * bxi = bx0 + i*blocks_per_row + kbx;
 | |
| 
 | |
|         x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
 | |
|     }
 | |
| 
 | |
|     const int blocks_per_tile_x_row = WARP_SIZE / QI3_K;
 | |
|     const int kbxd = k % blocks_per_tile_x_row;
 | |
|     float * x_dmf = (float *) x_dm;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI3_K) {
 | |
|         int i = (i0 + i_offset * QI3_K + k / blocks_per_tile_x_row) % mmq_y;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q3_K * bxi = bx0 + i*blocks_per_row + kbxd;
 | |
| 
 | |
|         x_dmf[i * (WARP_SIZE/QI3_K) + i / QI3_K + kbxd] = bxi->d;
 | |
|     }
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 2) {
 | |
|         int i = i0 + i_offset * 2 + k / (WARP_SIZE/2);
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/2)) / (QI3_K/2);
 | |
| 
 | |
|         // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
 | |
|         x_qh[i * (WARP_SIZE/2) + i / 2 + k % (WARP_SIZE/2)] = ~get_int_from_uint8(bxi->hmask, k % (QI3_K/2));
 | |
|     }
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
 | |
|         int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI3_K/4);
 | |
| 
 | |
|         const int ksc = k % (QI3_K/4);
 | |
| 
 | |
|         const int ksc_low = ksc % (QI3_K/8);
 | |
|         const int shift_low = 4 * (ksc / (QI3_K/8));
 | |
|         const int sc_low = (get_int_from_uint8(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F;
 | |
| 
 | |
|         const int ksc_high = QI3_K/8;
 | |
|         const int shift_high = 2 * ksc;
 | |
|         const int sc_high = ((get_int_from_uint8(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030;
 | |
| 
 | |
|         const int sc = __vsubss4(sc_low | sc_high, 0x20202020);
 | |
| 
 | |
|         x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = sc;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ float vec_dot_q3_K_q8_1_mul_mat(
 | |
|     const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
 | |
|     const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
 | |
| 
 | |
|     const int kbx  = k / QI3_K;
 | |
|     const int ky  = (k % QI3_K) * QR3_K;
 | |
|     const float * x_dmf = (const float *) x_dm;
 | |
|     const float * y_df  = (const float *) y_ds;
 | |
| 
 | |
|     const int8_t * scales = ((const int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4;
 | |
| 
 | |
|     int v[QR3_K*VDR_Q3_K_Q8_1_MMQ];
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int l = 0; l < QR3_K*VDR_Q3_K_Q8_1_MMQ; ++l) {
 | |
|         const int kqsx = i * (WARP_SIZE + 1) + kbx*QI3_K + (QI3_K/2) * (ky/(2*QI3_K)) + ky % (QI3_K/2);
 | |
|         const int shift = 2 * ((ky % 32) / 8);
 | |
|         const int vll = (x_ql[kqsx + l] >> shift) & 0x03030303;
 | |
| 
 | |
|         const int vh = x_qh[i * (WARP_SIZE/2) + i/2 + kbx * (QI3_K/2) + (ky+l)%8] >> ((ky+l) / 8);
 | |
|         const int vlh = (vh << 2) & 0x04040404;
 | |
| 
 | |
|         v[l] = __vsubss4(vll, vlh);
 | |
|     }
 | |
| 
 | |
|     const int index_y = j * WARP_SIZE + (k*QR3_K) % WARP_SIZE;
 | |
|     return vec_dot_q3_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dmf[i * (WARP_SIZE/QI3_K) + i/QI3_K + kbx], y_df[index_y/QI8_1]);
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
 | |
|     const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
 | |
| 
 | |
| #ifndef GGML_QKK_64
 | |
|     const block_q4_K * bq4_K = (const block_q4_K *) vbq;
 | |
| 
 | |
|     int    v[2];
 | |
|     int    u[2*QR4_K];
 | |
|     float d8[QR4_K];
 | |
| 
 | |
|     // iqs is in 0,2..30. bq8_offset = iqs/4 -> bq8_offset = 0, 2, 4, 6
 | |
|     const int bq8_offset = QR4_K * ((iqs/2) / (QI8_1/2));
 | |
| 
 | |
|     // iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12
 | |
|     // iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44
 | |
|     // iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76
 | |
|     // iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108
 | |
| 
 | |
|     const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
 | |
|     v[0] = q4[0];
 | |
|     v[1] = q4[4];
 | |
| 
 | |
|     const uint16_t * scales = (const uint16_t *)bq4_K->scales;
 | |
|     uint16_t aux[2];
 | |
|     const int j = bq8_offset/2;
 | |
|     if (j < 2) {
 | |
|         aux[0] = scales[j+0] & 0x3f3f;
 | |
|         aux[1] = scales[j+2] & 0x3f3f;
 | |
|     } else {
 | |
|         aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
 | |
|         aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
 | |
|     }
 | |
|     const uint8_t * sc = (const uint8_t *)aux;
 | |
|     const uint8_t * m  = sc + 2;
 | |
| 
 | |
|     for (int i = 0; i < QR4_K; ++i) {
 | |
|         const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
 | |
|         d8[i] = __low2half(bq8i->ds);
 | |
| 
 | |
|         const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
 | |
|         u[2*i+0] = q8[0];
 | |
|         u[2*i+1] = q8[4];
 | |
|     }
 | |
| 
 | |
|     return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
 | |
| 
 | |
| #else
 | |
| 
 | |
| #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
 | |
|     const block_q4_K * bq4_K = (const block_q4_K *) vbq;
 | |
| 
 | |
|     float sumf_d = 0.0f;
 | |
|     float sumf_m = 0.0f;
 | |
| 
 | |
|     uint16_t aux16[2];
 | |
|     const uint8_t * s = (const uint8_t *)aux16;
 | |
| 
 | |
|     const uint16_t * a = (const uint16_t *)bq4_K->scales;
 | |
|     aux16[0] = a[0] & 0x0f0f;
 | |
|     aux16[1] = (a[0] >> 4) & 0x0f0f;
 | |
| 
 | |
|     const float dall = bq4_K->dm[0];
 | |
|     const float dmin = bq4_K->dm[1];
 | |
| 
 | |
|     const float d8_1 = __low2float(bq8_1[0].ds);
 | |
|     const float d8_2 = __low2float(bq8_1[1].ds);
 | |
| 
 | |
|     const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
 | |
|     const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
 | |
|     const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
 | |
|     const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
 | |
| 
 | |
|     const int * q4 = (const int *)bq4_K->qs + (iqs/2);
 | |
|     const int v1 = q4[0];
 | |
|     const int v2 = q4[4];
 | |
| 
 | |
|     const int dot1 = __dp4a(ui2, v2 & 0x0f0f0f0f, __dp4a(ui1, v1 & 0x0f0f0f0f, 0));
 | |
|     const int dot2 = __dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, __dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0));
 | |
|     const int dot3 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0));
 | |
|     const int dot4 = __dp4a(0x01010101, ui4, __dp4a(0x01010101, ui3, 0));
 | |
| 
 | |
|     sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]);
 | |
|     sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]);
 | |
| 
 | |
|     return dall * sumf_d - dmin * sumf_m;
 | |
| 
 | |
| #else
 | |
|     bad_arch();
 | |
| #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
 | |
| 
 | |
| #endif
 | |
| }
 | |
| 
 | |
| template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
 | |
|     (void)x_qh;
 | |
| 
 | |
|     __shared__ int   tile_x_ql[mmq_y * (WARP_SIZE)       + mmq_y];
 | |
|     __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_K) + mmq_y/QI4_K];
 | |
|     __shared__ int   tile_x_sc[mmq_y * (WARP_SIZE/8)     + mmq_y/8];
 | |
| 
 | |
|     *x_ql = tile_x_ql;
 | |
|     *x_dm = tile_x_dm;
 | |
|     *x_sc = tile_x_sc;
 | |
| }
 | |
| 
 | |
| template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_K(
 | |
|     const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
 | |
|     int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
 | |
|     (void)x_qh;
 | |
| 
 | |
|     GGML_CUDA_ASSUME(i_offset >= 0);
 | |
|     GGML_CUDA_ASSUME(i_offset <  nwarps);
 | |
|     GGML_CUDA_ASSUME(k >= 0);
 | |
|     GGML_CUDA_ASSUME(k <  WARP_SIZE);
 | |
| 
 | |
|     const int kbx  = k / QI4_K; // == 0 if QK_K == 256
 | |
|     const int kqsx = k % QI4_K; // == k if QK_K == 256
 | |
| 
 | |
|     const block_q4_K * bx0 = (const block_q4_K *) vx;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
 | |
|         int i = i0 + i_offset;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q4_K * bxi = bx0 + i*blocks_per_row + kbx;
 | |
| 
 | |
|         x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
 | |
|     }
 | |
| 
 | |
|     const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256
 | |
|     const int kbxd = k % blocks_per_tile_x_row;          // == 0 if QK_K == 256
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_K) {
 | |
|         int i = (i0 + i_offset * QI4_K + k / blocks_per_tile_x_row) % mmq_y;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;
 | |
| 
 | |
| #if QK_K == 256
 | |
|         x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
 | |
| #else
 | |
|         x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = {bxi->dm[0], bxi->dm[1]};
 | |
| #endif
 | |
|     }
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
 | |
|         int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8);
 | |
| 
 | |
|         const int * scales = (const int *) bxi->scales;
 | |
| 
 | |
|         const int ksc = k % (WARP_SIZE/8);
 | |
| 
 | |
|         // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
 | |
|         int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
 | |
|         scales8    |= (scales[ksc/2]              >> (2 * (ksc % 2)))       & 0x30303030; // upper 2 bits
 | |
| 
 | |
|         x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ float vec_dot_q4_K_q8_1_mul_mat(
 | |
|     const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
 | |
|     const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
 | |
|     (void)x_qh;
 | |
| 
 | |
|     const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8);
 | |
| 
 | |
|     const int index_y = j * WARP_SIZE + (QR4_K*k) % WARP_SIZE;
 | |
|     return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[index_y], sc, sc+8,
 | |
|                                       x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]);
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
 | |
|     const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
 | |
| 
 | |
| #ifndef GGML_QKK_64
 | |
|     const block_q5_K * bq5_K = (const block_q5_K *) vbq;
 | |
| 
 | |
|     int   vl[2];
 | |
|     int   vh[2];
 | |
|     int    u[2*QR5_K];
 | |
|     float d8[QR5_K];
 | |
| 
 | |
|     const int bq8_offset = QR5_K * ((iqs/2) / (QI8_1/2));
 | |
|     const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
 | |
|     const int * qh = (const int *)(bq5_K->qh + 4 * ((iqs/2)%4));
 | |
| 
 | |
|     vl[0] = ql[0];
 | |
|     vl[1] = ql[4];
 | |
| 
 | |
|     vh[0] = qh[0] >> bq8_offset;
 | |
|     vh[1] = qh[4] >> bq8_offset;
 | |
| 
 | |
|     const uint16_t * scales = (const uint16_t *)bq5_K->scales;
 | |
|     uint16_t aux[2];
 | |
|     const int j = bq8_offset/2;
 | |
|     if (j < 2) {
 | |
|         aux[0] = scales[j+0] & 0x3f3f;
 | |
|         aux[1] = scales[j+2] & 0x3f3f;
 | |
|     } else {
 | |
|         aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
 | |
|         aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
 | |
|     }
 | |
|     const uint8_t * sc = (const uint8_t *)aux;
 | |
|     const uint8_t * m  = sc + 2;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < QR5_K; ++i) {
 | |
|         const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
 | |
|         d8[i] = __low2float(bq8i->ds);
 | |
| 
 | |
|         const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
 | |
|         u[2*i+0] = q8[0];
 | |
|         u[2*i+1] = q8[4];
 | |
|     }
 | |
| 
 | |
|     return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
 | |
| 
 | |
| #else
 | |
| 
 | |
| #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
 | |
|     const block_q5_K * bq5_K = (const block_q5_K *) vbq;
 | |
| 
 | |
|     const int8_t * s = bq5_K->scales;
 | |
| 
 | |
|     const float d = bq5_K->d;
 | |
| 
 | |
|     const float d8_1 = __low2half(bq8_1[0].ds);
 | |
|     const float d8_2 = __low2half(bq8_1[1].ds);
 | |
| 
 | |
|     const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
 | |
|     const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
 | |
|     const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
 | |
|     const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
 | |
| 
 | |
|     const int * ql = (const int *)bq5_K->qs + (iqs/2);
 | |
|     const int vl1 = ql[0];
 | |
|     const int vl2 = ql[4];
 | |
| 
 | |
|     const int step = 4 * (iqs/2); // 0, 4, 8, 12
 | |
|     const int im = step/8; // = 0 for iqs = 0, 2, = 1 for iqs = 4, 6
 | |
|     const int in = step%8; // 0, 4, 0, 4
 | |
|     const int vh = (*((const int *)(bq5_K->qh + in))) >> im;
 | |
| 
 | |
|     const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f);
 | |
|     const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f);
 | |
|     const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f);
 | |
|     const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f);
 | |
| 
 | |
|     const float sumf_d = d8_1 * (__dp4a(ui1, v1, 0) * s[0] + __dp4a(ui2, v2, 0) * s[1])
 | |
|                        + d8_2 * (__dp4a(ui3, v3, 0) * s[2] + __dp4a(ui4, v4, 0) * s[3]);
 | |
| 
 | |
|     return d * sumf_d;
 | |
| 
 | |
| #else
 | |
|     bad_arch();
 | |
| #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
 | |
| 
 | |
| #endif
 | |
| }
 | |
| 
 | |
| template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
 | |
|     (void)x_qh;
 | |
| 
 | |
|     __shared__ int   tile_x_ql[mmq_y * (2*WARP_SIZE)     + mmq_y];
 | |
|     __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_K) + mmq_y/QI5_K];
 | |
|     __shared__ int   tile_x_sc[mmq_y * (WARP_SIZE/8)     + mmq_y/8];
 | |
| 
 | |
|     *x_ql = tile_x_ql;
 | |
|     *x_dm = tile_x_dm;
 | |
|     *x_sc = tile_x_sc;
 | |
| }
 | |
| 
 | |
| template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_K(
 | |
|     const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
 | |
|     int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
 | |
|     (void)x_qh;
 | |
| 
 | |
|     GGML_CUDA_ASSUME(i_offset >= 0);
 | |
|     GGML_CUDA_ASSUME(i_offset <  nwarps);
 | |
|     GGML_CUDA_ASSUME(k >= 0);
 | |
|     GGML_CUDA_ASSUME(k <  WARP_SIZE);
 | |
| 
 | |
|     const int kbx  = k / QI5_K; // == 0 if QK_K == 256
 | |
|     const int kqsx = k % QI5_K; // == k if QK_K == 256
 | |
| 
 | |
|     const block_q5_K * bx0 = (const block_q5_K *) vx;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
 | |
|         int i = i0 + i_offset;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q5_K * bxi = bx0 + i*blocks_per_row + kbx;
 | |
|         const int ky = QR5_K*kqsx;
 | |
| 
 | |
|         const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
 | |
|         const int ql0 = (ql >> 0) & 0x0F0F0F0F;
 | |
|         const int ql1 = (ql >> 4) & 0x0F0F0F0F;
 | |
| 
 | |
|         const int qh = get_int_from_uint8_aligned(bxi->qh, kqsx % (QI5_K/4));
 | |
|         const int qh0 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 0)) << 4) & 0x10101010;
 | |
|         const int qh1 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 1)) << 4) & 0x10101010;
 | |
| 
 | |
|         const int kq0 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + 0;
 | |
|         const int kq1 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + (QI5_K/4);
 | |
| 
 | |
|         x_ql[i * (2*WARP_SIZE + 1) + kq0] = ql0 | qh0;
 | |
|         x_ql[i * (2*WARP_SIZE + 1) + kq1] = ql1 | qh1;
 | |
|     }
 | |
| 
 | |
|     const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256
 | |
|     const int kbxd = k % blocks_per_tile_x_row;          // == 0 if QK_K == 256
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_K) {
 | |
|         int i = (i0 + i_offset * QI5_K + k / blocks_per_tile_x_row) % mmq_y;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;
 | |
| 
 | |
| #if QK_K == 256
 | |
|         x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
 | |
| #endif
 | |
|     }
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
 | |
|         int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8);
 | |
| 
 | |
|         const int * scales = (const int *) bxi->scales;
 | |
| 
 | |
|         const int ksc = k % (WARP_SIZE/8);
 | |
| 
 | |
|         // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
 | |
|         int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
 | |
|         scales8    |= (scales[ksc/2]              >> (2 * (ksc % 2)))       & 0x30303030; // upper 2 bits
 | |
| 
 | |
|         x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ float vec_dot_q5_K_q8_1_mul_mat(
 | |
|     const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
 | |
|     const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
 | |
|     (void)x_qh;
 | |
| 
 | |
|     const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2 * ((k % 16) / 8);
 | |
| 
 | |
|     const int index_x = i * (QR5_K*WARP_SIZE + 1) +  QR5_K*k;
 | |
|     const int index_y = j * WARP_SIZE             + (QR5_K*k) % WARP_SIZE;
 | |
|     return vec_dot_q5_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8,
 | |
|                                       x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]);
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
 | |
|     const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
 | |
| 
 | |
|     const block_q6_K * bq6_K = (const block_q6_K *) vbq;
 | |
| 
 | |
|     const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4);
 | |
|     const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8);
 | |
|     const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4));
 | |
| 
 | |
|     const int vl = get_int_from_uint8(bq6_K->ql, iqs);
 | |
|     const int vh = get_int_from_uint8(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift;
 | |
| 
 | |
|     const int8_t * scales = bq6_K->scales + scale_offset;
 | |
| 
 | |
|     int    u[QR6_K];
 | |
|     float d8[QR6_K];
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < QR6_K; ++i) {
 | |
|         u[i]  = get_int_from_int8_aligned(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1);
 | |
|         d8[i] = __low2half(bq8_1[bq8_offset + 2*i].ds);
 | |
|     }
 | |
| 
 | |
|     return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8);
 | |
| }
 | |
| 
 | |
| template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q6_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
 | |
|     (void)x_qh;
 | |
| 
 | |
|     __shared__ int   tile_x_ql[mmq_y * (2*WARP_SIZE)     + mmq_y];
 | |
|     __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI6_K) + mmq_y/QI6_K];
 | |
|     __shared__ int   tile_x_sc[mmq_y * (WARP_SIZE/8)     + mmq_y/8];
 | |
| 
 | |
|     *x_ql = tile_x_ql;
 | |
|     *x_dm = tile_x_dm;
 | |
|     *x_sc = tile_x_sc;
 | |
| }
 | |
| 
 | |
| template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q6_K(
 | |
|     const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
 | |
|     int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
 | |
|     (void)x_qh;
 | |
| 
 | |
|     GGML_CUDA_ASSUME(i_offset >= 0);
 | |
|     GGML_CUDA_ASSUME(i_offset <  nwarps);
 | |
|     GGML_CUDA_ASSUME(k >= 0);
 | |
|     GGML_CUDA_ASSUME(k <  WARP_SIZE);
 | |
| 
 | |
|     const int kbx  = k / QI6_K; // == 0 if QK_K == 256
 | |
|     const int kqsx = k % QI6_K; // == k if QK_K == 256
 | |
| 
 | |
|     const block_q6_K * bx0 = (const block_q6_K *) vx;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
 | |
|         int i = i0 + i_offset;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q6_K * bxi = bx0 + i*blocks_per_row + kbx;
 | |
|         const int ky = QR6_K*kqsx;
 | |
| 
 | |
|         const int ql = get_int_from_uint8(bxi->ql, kqsx);
 | |
|         const int ql0 = (ql >> 0) & 0x0F0F0F0F;
 | |
|         const int ql1 = (ql >> 4) & 0x0F0F0F0F;
 | |
| 
 | |
|         const int qh = get_int_from_uint8(bxi->qh, (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4));
 | |
|         const int qh0 = ((qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) << 4) & 0x30303030;
 | |
|         const int qh1 =  (qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4))))       & 0x30303030;
 | |
| 
 | |
|         const int kq0 = ky - ky % QI6_K + k % (QI6_K/2) + 0;
 | |
|         const int kq1 = ky - ky % QI6_K + k % (QI6_K/2) + (QI6_K/2);
 | |
| 
 | |
|         x_ql[i * (2*WARP_SIZE + 1) + kq0] = __vsubss4(ql0 | qh0, 0x20202020);
 | |
|         x_ql[i * (2*WARP_SIZE + 1) + kq1] = __vsubss4(ql1 | qh1, 0x20202020);
 | |
|     }
 | |
| 
 | |
|     const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256
 | |
|     const int kbxd = k % blocks_per_tile_x_row;          // == 0 if QK_K == 256
 | |
|     float * x_dmf = (float *) x_dm;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) {
 | |
|         int i = (i0 + i_offset * QI6_K + k / blocks_per_tile_x_row) % mmq_y;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q6_K * bxi = bx0 + i*blocks_per_row + kbxd;
 | |
| 
 | |
|         x_dmf[i * (WARP_SIZE/QI6_K) + i / QI6_K + kbxd] = bxi->d;
 | |
|     }
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
 | |
|         int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q6_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / 4;
 | |
| 
 | |
|         x_sc[i * (WARP_SIZE/8) + i / 8 + k % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, k % (QI6_K/8));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __device__ __forceinline__ float vec_dot_q6_K_q8_1_mul_mat(
 | |
|     const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
 | |
|     const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
 | |
|     (void)x_qh;
 | |
| 
 | |
|     const float * x_dmf = (const float *) x_dm;
 | |
|     const float * y_df  = (const float *) y_ds;
 | |
| 
 | |
|     const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/8]);
 | |
| 
 | |
|     const int index_x = i * (QR6_K*WARP_SIZE + 1) +  QR6_K*k;
 | |
|     const int index_y = j * WARP_SIZE             + (QR6_K*k) % WARP_SIZE;
 | |
|     return vec_dot_q6_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, x_dmf[i * (WARP_SIZE/QI6_K) + i/QI6_K], &y_df[index_y/QI8_1]);
 | |
| }
 | |
| 
 | |
| template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x, int mmq_y, int nwarps,
 | |
|               allocate_tiles_cuda_t allocate_tiles, load_tiles_cuda_t load_tiles, int vdr, vec_dot_q_mul_mat_cuda_t vec_dot>
 | |
| static __device__ __forceinline__ void mul_mat_q(
 | |
|     const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
 | |
|     const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
 | |
| 
 | |
|     const block_q_t  * x = (const block_q_t  *) vx;
 | |
|     const block_q8_1 * y = (const block_q8_1 *) vy;
 | |
| 
 | |
|     const int blocks_per_row_x = ncols_x / qk;
 | |
|     const int blocks_per_col_y = nrows_y / QK8_1;
 | |
|     const int blocks_per_warp = WARP_SIZE / qi;
 | |
| 
 | |
|     const int & ncols_dst = ncols_y;
 | |
| 
 | |
|     const int row_dst_0 = blockIdx.x*mmq_y;
 | |
|     const int & row_x_0 = row_dst_0;
 | |
| 
 | |
|     const int col_dst_0 = blockIdx.y*mmq_x;
 | |
|     const int & col_y_0 = col_dst_0;
 | |
| 
 | |
|     int   * tile_x_ql = nullptr;
 | |
|     half2 * tile_x_dm = nullptr;
 | |
|     int   * tile_x_qh = nullptr;
 | |
|     int   * tile_x_sc = nullptr;
 | |
| 
 | |
|     allocate_tiles(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc);
 | |
| 
 | |
|     __shared__ int    tile_y_qs[mmq_x * WARP_SIZE];
 | |
|     __shared__ half2  tile_y_ds[mmq_x * WARP_SIZE/QI8_1];
 | |
| 
 | |
|     float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {{0.0f}};
 | |
| 
 | |
|     for (int ib0 = 0; ib0 < blocks_per_row_x; ib0 += blocks_per_warp) {
 | |
| 
 | |
|         load_tiles(x + row_x_0*blocks_per_row_x + ib0, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc,
 | |
|                    threadIdx.y, nrows_x-row_x_0-1, threadIdx.x, blocks_per_row_x);
 | |
| 
 | |
| #pragma unroll
 | |
|         for (int ir = 0; ir < qr; ++ir) {
 | |
|             const int kqs = ir*WARP_SIZE + threadIdx.x;
 | |
|             const int kbxd = kqs / QI8_1;
 | |
| 
 | |
| #pragma unroll
 | |
|             for (int i = 0; i < mmq_x; i += nwarps) {
 | |
|                 const int col_y_eff = min(col_y_0 + threadIdx.y + i, ncols_y-1); // to prevent out-of-bounds memory accesses
 | |
| 
 | |
|                 const block_q8_1 * by0 = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + kbxd];
 | |
| 
 | |
|                 const int index_y = (threadIdx.y + i) * WARP_SIZE + kqs % WARP_SIZE;
 | |
|                 tile_y_qs[index_y] = get_int_from_int8_aligned(by0->qs, threadIdx.x % QI8_1);
 | |
|             }
 | |
| 
 | |
| #pragma unroll
 | |
|             for (int ids0 = 0; ids0 < mmq_x; ids0 += nwarps * QI8_1) {
 | |
|                 const int ids = (ids0 + threadIdx.y * QI8_1 + threadIdx.x / (WARP_SIZE/QI8_1)) % mmq_x;
 | |
|                 const int kby = threadIdx.x % (WARP_SIZE/QI8_1);
 | |
|                 const int col_y_eff = min(col_y_0 + ids, ncols_y-1);
 | |
| 
 | |
|                 // if the sum is not needed it's faster to transform the scale to f32 ahead of time
 | |
|                 const half2 * dsi_src = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + ir*(WARP_SIZE/QI8_1) + kby].ds;
 | |
|                 half2       * dsi_dst = &tile_y_ds[ids * (WARP_SIZE/QI8_1) + kby];
 | |
|                 if (need_sum) {
 | |
|                     *dsi_dst = *dsi_src;
 | |
|                 } else {
 | |
|                     float * dfi_dst = (float *) dsi_dst;
 | |
|                     *dfi_dst = __low2half(*dsi_src);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             __syncthreads();
 | |
| 
 | |
| // #pragma unroll // unrolling this loop causes too much register pressure
 | |
|             for (int k = ir*WARP_SIZE/qr; k < (ir+1)*WARP_SIZE/qr; k += vdr) {
 | |
| #pragma unroll
 | |
|                 for (int j = 0; j < mmq_x; j += nwarps) {
 | |
| #pragma unroll
 | |
|                     for (int i = 0; i < mmq_y; i += WARP_SIZE) {
 | |
|                         sum[i/WARP_SIZE][j/nwarps] += vec_dot(
 | |
|                             tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, tile_y_qs, tile_y_ds,
 | |
|                             threadIdx.x + i, threadIdx.y + j, k);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             __syncthreads();
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int j = 0; j < mmq_x; j += nwarps) {
 | |
|         const int col_dst = col_dst_0 + j + threadIdx.y;
 | |
| 
 | |
|         if (col_dst >= ncols_dst) {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
| #pragma unroll
 | |
|         for (int i = 0; i < mmq_y; i += WARP_SIZE) {
 | |
|             const int row_dst = row_dst_0 + threadIdx.x + i;
 | |
| 
 | |
|             if (row_dst >= nrows_dst) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             dst[col_dst*nrows_dst + row_dst] = sum[i/WARP_SIZE][j/nwarps];
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define  MMQ_X_Q4_0_RDNA2  64
 | |
| #define  MMQ_Y_Q4_0_RDNA2  128
 | |
| #define NWARPS_Q4_0_RDNA2  8
 | |
| #define  MMQ_X_Q4_0_RDNA1  64
 | |
| #define  MMQ_Y_Q4_0_RDNA1  64
 | |
| #define NWARPS_Q4_0_RDNA1  8
 | |
| #if defined(CUDA_USE_TENSOR_CORES)
 | |
| #define  MMQ_X_Q4_0_AMPERE 4
 | |
| #define  MMQ_Y_Q4_0_AMPERE 32
 | |
| #define NWARPS_Q4_0_AMPERE 4
 | |
| #else
 | |
| #define  MMQ_X_Q4_0_AMPERE 64
 | |
| #define  MMQ_Y_Q4_0_AMPERE 128
 | |
| #define NWARPS_Q4_0_AMPERE 4
 | |
| #endif
 | |
| #define  MMQ_X_Q4_0_PASCAL 64
 | |
| #define  MMQ_Y_Q4_0_PASCAL 64
 | |
| #define NWARPS_Q4_0_PASCAL 8
 | |
| 
 | |
| template <bool need_check> static __global__ void
 | |
| #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
| #if defined(RDNA3) || defined(RDNA2)
 | |
|     __launch_bounds__(WARP_SIZE*NWARPS_Q4_0_RDNA2, 2)
 | |
| #endif // defined(RDNA3) || defined(RDNA2)
 | |
| #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
|     mul_mat_q4_0(
 | |
|     const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
 | |
|     const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
 | |
| 
 | |
| #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
| #if defined(RDNA3) || defined(RDNA2)
 | |
|     const int mmq_x  =  MMQ_X_Q4_0_RDNA2;
 | |
|     const int mmq_y  =  MMQ_Y_Q4_0_RDNA2;
 | |
|     const int nwarps = NWARPS_Q4_0_RDNA2;
 | |
| #else
 | |
|     const int mmq_x  =  MMQ_X_Q4_0_RDNA1;
 | |
|     const int mmq_y  =  MMQ_Y_Q4_0_RDNA1;
 | |
|     const int nwarps = NWARPS_Q4_0_RDNA1;
 | |
| #endif // defined(RDNA3) || defined(RDNA2)
 | |
| 
 | |
|     mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
 | |
|         load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
 | |
|         (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
| 
 | |
| #elif __CUDA_ARCH__ >= CC_VOLTA
 | |
|     const int mmq_x  =  MMQ_X_Q4_0_AMPERE;
 | |
|     const int mmq_y  =  MMQ_Y_Q4_0_AMPERE;
 | |
|     const int nwarps = NWARPS_Q4_0_AMPERE;
 | |
| 
 | |
|     mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
 | |
|         load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
 | |
|         (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
| 
 | |
| #elif __CUDA_ARCH__ >= MIN_CC_DP4A
 | |
|     const int mmq_x  =  MMQ_X_Q4_0_PASCAL;
 | |
|     const int mmq_y  =  MMQ_Y_Q4_0_PASCAL;
 | |
|     const int nwarps = NWARPS_Q4_0_PASCAL;
 | |
| 
 | |
|     mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
 | |
|         load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
 | |
|         (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
| #else
 | |
|     (void) vec_dot_q4_0_q8_1_mul_mat;
 | |
|     bad_arch();
 | |
| #endif // __CUDA_ARCH__ >= CC_VOLTA
 | |
| }
 | |
| 
 | |
| #define  MMQ_X_Q4_1_RDNA2  64
 | |
| #define  MMQ_Y_Q4_1_RDNA2  128
 | |
| #define NWARPS_Q4_1_RDNA2  8
 | |
| #define  MMQ_X_Q4_1_RDNA1  64
 | |
| #define  MMQ_Y_Q4_1_RDNA1  64
 | |
| #define NWARPS_Q4_1_RDNA1  8
 | |
| #if defined(CUDA_USE_TENSOR_CORES)
 | |
| #define  MMQ_X_Q4_1_AMPERE 4
 | |
| #define  MMQ_Y_Q4_1_AMPERE 32
 | |
| #define NWARPS_Q4_1_AMPERE 4
 | |
| #else
 | |
| #define  MMQ_X_Q4_1_AMPERE 64
 | |
| #define  MMQ_Y_Q4_1_AMPERE 128
 | |
| #define NWARPS_Q4_1_AMPERE 4
 | |
| #endif
 | |
| #define  MMQ_X_Q4_1_PASCAL 64
 | |
| #define  MMQ_Y_Q4_1_PASCAL 64
 | |
| #define NWARPS_Q4_1_PASCAL 8
 | |
| 
 | |
| template <bool need_check> static __global__ void
 | |
| #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
| #if defined(RDNA3) || defined(RDNA2)
 | |
|     __launch_bounds__(WARP_SIZE*NWARPS_Q4_1_RDNA2, 2)
 | |
| #endif // defined(RDNA3) || defined(RDNA2)
 | |
| #elif __CUDA_ARCH__ < CC_VOLTA
 | |
|     __launch_bounds__(WARP_SIZE*NWARPS_Q4_1_PASCAL, 2)
 | |
| #endif // __CUDA_ARCH__ < CC_VOLTA
 | |
|     mul_mat_q4_1(
 | |
|     const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
 | |
|     const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
 | |
| 
 | |
| #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
| #if defined(RDNA3) || defined(RDNA2)
 | |
|     const int mmq_x  =  MMQ_X_Q4_1_RDNA2;
 | |
|     const int mmq_y  =  MMQ_Y_Q4_1_RDNA2;
 | |
|     const int nwarps = NWARPS_Q4_1_RDNA2;
 | |
| #else
 | |
|     const int mmq_x  =  MMQ_X_Q4_1_RDNA1;
 | |
|     const int mmq_y  =  MMQ_Y_Q4_1_RDNA1;
 | |
|     const int nwarps = NWARPS_Q4_1_RDNA1;
 | |
| #endif // defined(RDNA3) || defined(RDNA2)
 | |
| 
 | |
|     mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
 | |
|         load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
 | |
|         (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
| 
 | |
| #elif __CUDA_ARCH__ >= CC_VOLTA
 | |
|     const int mmq_x  =  MMQ_X_Q4_1_AMPERE;
 | |
|     const int mmq_y  =  MMQ_Y_Q4_1_AMPERE;
 | |
|     const int nwarps = NWARPS_Q4_1_AMPERE;
 | |
| 
 | |
|     mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
 | |
|         load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
 | |
|         (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
| 
 | |
| #elif __CUDA_ARCH__ >= MIN_CC_DP4A
 | |
|     const int mmq_x  =  MMQ_X_Q4_1_PASCAL;
 | |
|     const int mmq_y  =  MMQ_Y_Q4_1_PASCAL;
 | |
|     const int nwarps = NWARPS_Q4_1_PASCAL;
 | |
| 
 | |
|     mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
 | |
|         load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
 | |
|         (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
| #else
 | |
|     (void) vec_dot_q4_1_q8_1_mul_mat;
 | |
|     bad_arch();
 | |
| #endif // __CUDA_ARCH__ >= CC_VOLTA
 | |
| }
 | |
| 
 | |
| #define  MMQ_X_Q5_0_RDNA2  64
 | |
| #define  MMQ_Y_Q5_0_RDNA2  128
 | |
| #define NWARPS_Q5_0_RDNA2  8
 | |
| #define  MMQ_X_Q5_0_RDNA1  64
 | |
| #define  MMQ_Y_Q5_0_RDNA1  64
 | |
| #define NWARPS_Q5_0_RDNA1  8
 | |
| #if defined(CUDA_USE_TENSOR_CORES)
 | |
| #define  MMQ_X_Q5_0_AMPERE 4
 | |
| #define  MMQ_Y_Q5_0_AMPERE 32
 | |
| #define NWARPS_Q5_0_AMPERE 4
 | |
| #else
 | |
| #define  MMQ_X_Q5_0_AMPERE 128
 | |
| #define  MMQ_Y_Q5_0_AMPERE 64
 | |
| #define NWARPS_Q5_0_AMPERE 4
 | |
| #endif
 | |
| #define  MMQ_X_Q5_0_PASCAL 64
 | |
| #define  MMQ_Y_Q5_0_PASCAL 64
 | |
| #define NWARPS_Q5_0_PASCAL 8
 | |
| 
 | |
| template <bool need_check> static __global__ void
 | |
| #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
| #if defined(RDNA3) || defined(RDNA2)
 | |
|     __launch_bounds__(WARP_SIZE*NWARPS_Q5_0_RDNA2, 2)
 | |
| #endif // defined(RDNA3) || defined(RDNA2)
 | |
| #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
|     mul_mat_q5_0(
 | |
|     const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
 | |
|     const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
 | |
| 
 | |
| #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
| #if defined(RDNA3) || defined(RDNA2)
 | |
|     const int mmq_x  =  MMQ_X_Q5_0_RDNA2;
 | |
|     const int mmq_y  =  MMQ_Y_Q5_0_RDNA2;
 | |
|     const int nwarps = NWARPS_Q5_0_RDNA2;
 | |
| #else
 | |
|     const int mmq_x  =  MMQ_X_Q5_0_RDNA1;
 | |
|     const int mmq_y  =  MMQ_Y_Q5_0_RDNA1;
 | |
|     const int nwarps = NWARPS_Q5_0_RDNA1;
 | |
| #endif // defined(RDNA3) || defined(RDNA2)
 | |
| 
 | |
|     mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
 | |
|         load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
 | |
|         (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
| 
 | |
| #elif __CUDA_ARCH__ >= CC_VOLTA
 | |
|     const int mmq_x  =  MMQ_X_Q5_0_AMPERE;
 | |
|     const int mmq_y  =  MMQ_Y_Q5_0_AMPERE;
 | |
|     const int nwarps = NWARPS_Q5_0_AMPERE;
 | |
| 
 | |
|     mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
 | |
|         load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
 | |
|         (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
| 
 | |
| #elif __CUDA_ARCH__ >= MIN_CC_DP4A
 | |
|     const int mmq_x  =  MMQ_X_Q5_0_PASCAL;
 | |
|     const int mmq_y  =  MMQ_Y_Q5_0_PASCAL;
 | |
|     const int nwarps = NWARPS_Q5_0_PASCAL;
 | |
| 
 | |
|     mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
 | |
|         load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
 | |
|         (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
| #else
 | |
|     (void) vec_dot_q5_0_q8_1_mul_mat;
 | |
|     bad_arch();
 | |
| #endif // __CUDA_ARCH__ >= CC_VOLTA
 | |
| }
 | |
| 
 | |
| #define  MMQ_X_Q5_1_RDNA2  64
 | |
| #define  MMQ_Y_Q5_1_RDNA2  128
 | |
| #define NWARPS_Q5_1_RDNA2  8
 | |
| #define  MMQ_X_Q5_1_RDNA1  64
 | |
| #define  MMQ_Y_Q5_1_RDNA1  64
 | |
| #define NWARPS_Q5_1_RDNA1  8
 | |
| #if defined(CUDA_USE_TENSOR_CORES)
 | |
| #define  MMQ_X_Q5_1_AMPERE 4
 | |
| #define  MMQ_Y_Q5_1_AMPERE 32
 | |
| #define NWARPS_Q5_1_AMPERE 4
 | |
| #else
 | |
| #define  MMQ_X_Q5_1_AMPERE 128
 | |
| #define  MMQ_Y_Q5_1_AMPERE 64
 | |
| #define NWARPS_Q5_1_AMPERE 4
 | |
| #endif
 | |
| #define  MMQ_X_Q5_1_PASCAL 64
 | |
| #define  MMQ_Y_Q5_1_PASCAL 64
 | |
| #define NWARPS_Q5_1_PASCAL 8
 | |
| 
 | |
| template <bool need_check> static __global__ void
 | |
| #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
| #if defined(RDNA3) || defined(RDNA2)
 | |
|     __launch_bounds__(WARP_SIZE*NWARPS_Q5_1_RDNA2, 2)
 | |
| #endif // defined(RDNA3) || defined(RDNA2)
 | |
| #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
| mul_mat_q5_1(
 | |
|     const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
 | |
|     const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
 | |
| 
 | |
| #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
| #if defined(RDNA3) || defined(RDNA2)
 | |
|     const int mmq_x  =  MMQ_X_Q5_1_RDNA2;
 | |
|     const int mmq_y  =  MMQ_Y_Q5_1_RDNA2;
 | |
|     const int nwarps = NWARPS_Q5_1_RDNA2;
 | |
| #else
 | |
|     const int mmq_x  =  MMQ_X_Q5_1_RDNA1;
 | |
|     const int mmq_y  =  MMQ_Y_Q5_1_RDNA1;
 | |
|     const int nwarps = NWARPS_Q5_1_RDNA1;
 | |
| #endif // defined(RDNA3) || defined(RDNA2)
 | |
| 
 | |
|     mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
 | |
|         load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
 | |
|         (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
| 
 | |
| #elif __CUDA_ARCH__ >= CC_VOLTA
 | |
|     const int mmq_x  =  MMQ_X_Q5_1_AMPERE;
 | |
|     const int mmq_y  =  MMQ_Y_Q5_1_AMPERE;
 | |
|     const int nwarps = NWARPS_Q5_1_AMPERE;
 | |
| 
 | |
|     mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
 | |
|         load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
 | |
|         (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
| 
 | |
| #elif __CUDA_ARCH__ >= MIN_CC_DP4A
 | |
|     const int mmq_x  =  MMQ_X_Q5_1_PASCAL;
 | |
|     const int mmq_y  =  MMQ_Y_Q5_1_PASCAL;
 | |
|     const int nwarps = NWARPS_Q5_1_PASCAL;
 | |
| 
 | |
|     mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
 | |
|         load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
 | |
|         (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
| #else
 | |
|     (void) vec_dot_q5_1_q8_1_mul_mat;
 | |
|     bad_arch();
 | |
| #endif // __CUDA_ARCH__ >= CC_VOLTA
 | |
| }
 | |
| 
 | |
| #define  MMQ_X_Q8_0_RDNA2  64
 | |
| #define  MMQ_Y_Q8_0_RDNA2  128
 | |
| #define NWARPS_Q8_0_RDNA2  8
 | |
| #define  MMQ_X_Q8_0_RDNA1  64
 | |
| #define  MMQ_Y_Q8_0_RDNA1  64
 | |
| #define NWARPS_Q8_0_RDNA1  8
 | |
| #if defined(CUDA_USE_TENSOR_CORES)
 | |
| #define  MMQ_X_Q8_0_AMPERE 4
 | |
| #define  MMQ_Y_Q8_0_AMPERE 32
 | |
| #define NWARPS_Q8_0_AMPERE 4
 | |
| #else
 | |
| #define  MMQ_X_Q8_0_AMPERE 128
 | |
| #define  MMQ_Y_Q8_0_AMPERE 64
 | |
| #define NWARPS_Q8_0_AMPERE 4
 | |
| #endif
 | |
| #define  MMQ_X_Q8_0_PASCAL 64
 | |
| #define  MMQ_Y_Q8_0_PASCAL 64
 | |
| #define NWARPS_Q8_0_PASCAL 8
 | |
| 
 | |
| template <bool need_check> static __global__ void
 | |
| #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
| #if defined(RDNA3) || defined(RDNA2)
 | |
|     __launch_bounds__(WARP_SIZE*NWARPS_Q8_0_RDNA2, 2)
 | |
| #endif // defined(RDNA3) || defined(RDNA2)
 | |
| #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
|     mul_mat_q8_0(
 | |
|     const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
 | |
|     const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
 | |
| 
 | |
| #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
| #if defined(RDNA3) || defined(RDNA2)
 | |
|     const int mmq_x  =  MMQ_X_Q8_0_RDNA2;
 | |
|     const int mmq_y  =  MMQ_Y_Q8_0_RDNA2;
 | |
|     const int nwarps = NWARPS_Q8_0_RDNA2;
 | |
| #else
 | |
|     const int mmq_x  =  MMQ_X_Q8_0_RDNA1;
 | |
|     const int mmq_y  =  MMQ_Y_Q8_0_RDNA1;
 | |
|     const int nwarps = NWARPS_Q8_0_RDNA1;
 | |
| #endif // defined(RDNA3) || defined(RDNA2)
 | |
| 
 | |
|     mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
 | |
|         load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
 | |
|         (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
| 
 | |
| #elif __CUDA_ARCH__ >= CC_VOLTA
 | |
|     const int mmq_x  =  MMQ_X_Q8_0_AMPERE;
 | |
|     const int mmq_y  =  MMQ_Y_Q8_0_AMPERE;
 | |
|     const int nwarps = NWARPS_Q8_0_AMPERE;
 | |
| 
 | |
|     mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
 | |
|         load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
 | |
|         (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
| 
 | |
| #elif __CUDA_ARCH__ >= MIN_CC_DP4A
 | |
|     const int mmq_x  =  MMQ_X_Q8_0_PASCAL;
 | |
|     const int mmq_y  =  MMQ_Y_Q8_0_PASCAL;
 | |
|     const int nwarps = NWARPS_Q8_0_PASCAL;
 | |
| 
 | |
|     mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
 | |
|         load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
 | |
|         (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
| #else
 | |
|     (void) vec_dot_q8_0_q8_1_mul_mat;
 | |
|     bad_arch();
 | |
| #endif // __CUDA_ARCH__ >= CC_VOLTA
 | |
| }
 | |
| 
 | |
| #define  MMQ_X_Q2_K_RDNA2  64
 | |
| #define  MMQ_Y_Q2_K_RDNA2  128
 | |
| #define NWARPS_Q2_K_RDNA2  8
 | |
| #define  MMQ_X_Q2_K_RDNA1  128
 | |
| #define  MMQ_Y_Q2_K_RDNA1  32
 | |
| #define NWARPS_Q2_K_RDNA1  8
 | |
| #if defined(CUDA_USE_TENSOR_CORES)
 | |
| #define  MMQ_X_Q2_K_AMPERE 4
 | |
| #define  MMQ_Y_Q2_K_AMPERE 32
 | |
| #define NWARPS_Q2_K_AMPERE 4
 | |
| #else
 | |
| #define  MMQ_X_Q2_K_AMPERE 64
 | |
| #define  MMQ_Y_Q2_K_AMPERE 128
 | |
| #define NWARPS_Q2_K_AMPERE 4
 | |
| #endif
 | |
| #define  MMQ_X_Q2_K_PASCAL 64
 | |
| #define  MMQ_Y_Q2_K_PASCAL 64
 | |
| #define NWARPS_Q2_K_PASCAL 8
 | |
| 
 | |
| template <bool need_check> static __global__ void
 | |
| #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
| #if defined(RDNA3) || defined(RDNA2)
 | |
|     __launch_bounds__(WARP_SIZE*NWARPS_Q2_K_RDNA2, 2)
 | |
| #endif // defined(RDNA3) || defined(RDNA2)
 | |
| #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
| mul_mat_q2_K(
 | |
|     const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
 | |
|     const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
 | |
| 
 | |
| #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
| #if defined(RDNA3) || defined(RDNA2)
 | |
|     const int mmq_x  =  MMQ_X_Q2_K_RDNA2;
 | |
|     const int mmq_y  =  MMQ_Y_Q2_K_RDNA2;
 | |
|     const int nwarps = NWARPS_Q2_K_RDNA2;
 | |
| #else
 | |
|     const int mmq_x  =  MMQ_X_Q2_K_RDNA1;
 | |
|     const int mmq_y  =  MMQ_Y_Q2_K_RDNA1;
 | |
|     const int nwarps = NWARPS_Q2_K_RDNA1;
 | |
| #endif // defined(RDNA3) || defined(RDNA2)
 | |
| 
 | |
|     mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
 | |
|         load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
 | |
|         (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
| 
 | |
| #elif __CUDA_ARCH__ >= CC_VOLTA
 | |
|     const int mmq_x  =  MMQ_X_Q2_K_AMPERE;
 | |
|     const int mmq_y  =  MMQ_Y_Q2_K_AMPERE;
 | |
|     const int nwarps = NWARPS_Q2_K_AMPERE;
 | |
| 
 | |
|     mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
 | |
|         load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
 | |
|         (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
| 
 | |
| #elif __CUDA_ARCH__ >= MIN_CC_DP4A
 | |
|     const int mmq_x  =  MMQ_X_Q2_K_PASCAL;
 | |
|     const int mmq_y  =  MMQ_Y_Q2_K_PASCAL;
 | |
|     const int nwarps = NWARPS_Q2_K_PASCAL;
 | |
| 
 | |
|     mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
 | |
|         load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
 | |
|         (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
| #else
 | |
|     (void) vec_dot_q2_K_q8_1_mul_mat;
 | |
|     bad_arch();
 | |
| #endif // __CUDA_ARCH__ >= CC_VOLTA
 | |
| }
 | |
| 
 | |
| #define  MMQ_X_Q3_K_RDNA2  128
 | |
| #define  MMQ_Y_Q3_K_RDNA2  64
 | |
| #define NWARPS_Q3_K_RDNA2  8
 | |
| #define  MMQ_X_Q3_K_RDNA1  32
 | |
| #define  MMQ_Y_Q3_K_RDNA1  128
 | |
| #define NWARPS_Q3_K_RDNA1  8
 | |
| #if defined(CUDA_USE_TENSOR_CORES)
 | |
| #define  MMQ_X_Q3_K_AMPERE 4
 | |
| #define  MMQ_Y_Q3_K_AMPERE 32
 | |
| #define NWARPS_Q3_K_AMPERE 4
 | |
| #else
 | |
| #define  MMQ_X_Q3_K_AMPERE 128
 | |
| #define  MMQ_Y_Q3_K_AMPERE 128
 | |
| #define NWARPS_Q3_K_AMPERE 4
 | |
| #endif
 | |
| #define  MMQ_X_Q3_K_PASCAL 64
 | |
| #define  MMQ_Y_Q3_K_PASCAL 64
 | |
| #define NWARPS_Q3_K_PASCAL 8
 | |
| 
 | |
| template <bool need_check> static __global__ void
 | |
| #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
| #if defined(RDNA3) || defined(RDNA2)
 | |
|     __launch_bounds__(WARP_SIZE*NWARPS_Q3_K_RDNA2, 2)
 | |
| #endif // defined(RDNA3) || defined(RDNA2)
 | |
| #elif __CUDA_ARCH__ < CC_VOLTA
 | |
|     __launch_bounds__(WARP_SIZE*NWARPS_Q3_K_PASCAL, 2)
 | |
| #endif // __CUDA_ARCH__ < CC_VOLTA
 | |
|     mul_mat_q3_K(
 | |
|     const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
 | |
|     const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
 | |
| 
 | |
| #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
| #if defined(RDNA3) || defined(RDNA2)
 | |
|     const int mmq_x  =  MMQ_X_Q3_K_RDNA2;
 | |
|     const int mmq_y  =  MMQ_Y_Q3_K_RDNA2;
 | |
|     const int nwarps = NWARPS_Q3_K_RDNA2;
 | |
| #else
 | |
|     const int mmq_x  =  MMQ_X_Q3_K_RDNA1;
 | |
|     const int mmq_y  =  MMQ_Y_Q3_K_RDNA1;
 | |
|     const int nwarps = NWARPS_Q3_K_RDNA1;
 | |
| #endif // defined(RDNA3) || defined(RDNA2)
 | |
| 
 | |
|     mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
 | |
|         load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
 | |
|         (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
| 
 | |
| #elif __CUDA_ARCH__ >= CC_VOLTA
 | |
|     const int mmq_x  =  MMQ_X_Q3_K_AMPERE;
 | |
|     const int mmq_y  =  MMQ_Y_Q3_K_AMPERE;
 | |
|     const int nwarps = NWARPS_Q3_K_AMPERE;
 | |
| 
 | |
|     mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
 | |
|         load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
 | |
|         (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
| 
 | |
| #elif __CUDA_ARCH__ >= MIN_CC_DP4A
 | |
|     const int mmq_x  =  MMQ_X_Q3_K_PASCAL;
 | |
|     const int mmq_y  =  MMQ_Y_Q3_K_PASCAL;
 | |
|     const int nwarps = NWARPS_Q3_K_PASCAL;
 | |
| 
 | |
|     mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
 | |
|         load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
 | |
|         (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
| #else
 | |
|     (void) vec_dot_q3_K_q8_1_mul_mat;
 | |
|     bad_arch();
 | |
| #endif // __CUDA_ARCH__ >= CC_VOLTA
 | |
| }
 | |
| 
 | |
| #define  MMQ_X_Q4_K_RDNA2  64
 | |
| #define  MMQ_Y_Q4_K_RDNA2  128
 | |
| #define NWARPS_Q4_K_RDNA2  8
 | |
| #define  MMQ_X_Q4_K_RDNA1  32
 | |
| #define  MMQ_Y_Q4_K_RDNA1  64
 | |
| #define NWARPS_Q4_K_RDNA1  8
 | |
| #if defined(CUDA_USE_TENSOR_CORES)
 | |
| #define  MMQ_X_Q4_K_AMPERE 4
 | |
| #define  MMQ_Y_Q4_K_AMPERE 32
 | |
| #define NWARPS_Q4_K_AMPERE 4
 | |
| #else
 | |
| #define  MMQ_X_Q4_K_AMPERE 64
 | |
| #define  MMQ_Y_Q4_K_AMPERE 128
 | |
| #define NWARPS_Q4_K_AMPERE 4
 | |
| #endif
 | |
| #define  MMQ_X_Q4_K_PASCAL 64
 | |
| #define  MMQ_Y_Q4_K_PASCAL 64
 | |
| #define NWARPS_Q4_K_PASCAL 8
 | |
| 
 | |
| template <bool need_check> static __global__ void
 | |
| #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
| #if defined(RDNA3) || defined(RDNA2)
 | |
|     __launch_bounds__(WARP_SIZE*NWARPS_Q4_K_RDNA2, 2)
 | |
| #endif // defined(RDNA3) || defined(RDNA2)
 | |
| #elif __CUDA_ARCH__ < CC_VOLTA
 | |
|     __launch_bounds__(WARP_SIZE*NWARPS_Q4_K_PASCAL, 2)
 | |
| #endif // __CUDA_ARCH__ < CC_VOLTA
 | |
|     mul_mat_q4_K(
 | |
|     const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
 | |
|     const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
 | |
| 
 | |
| #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
| #if defined(RDNA3) || defined(RDNA2)
 | |
|     const int mmq_x  =  MMQ_X_Q4_K_RDNA2;
 | |
|     const int mmq_y  =  MMQ_Y_Q4_K_RDNA2;
 | |
|     const int nwarps = NWARPS_Q4_K_RDNA2;
 | |
| #else
 | |
|     const int mmq_x  =  MMQ_X_Q4_K_RDNA1;
 | |
|     const int mmq_y  =  MMQ_Y_Q4_K_RDNA1;
 | |
|     const int nwarps = NWARPS_Q4_K_RDNA1;
 | |
| #endif // defined(RDNA3) || defined(RDNA2)
 | |
| 
 | |
|     mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
 | |
|         load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
 | |
|         (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
| 
 | |
| #elif __CUDA_ARCH__ >= CC_VOLTA
 | |
|     const int mmq_x  =  MMQ_X_Q4_K_AMPERE;
 | |
|     const int mmq_y  =  MMQ_Y_Q4_K_AMPERE;
 | |
|     const int nwarps = NWARPS_Q4_K_AMPERE;
 | |
| 
 | |
|     mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
 | |
|         load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
 | |
|         (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
| 
 | |
| #elif __CUDA_ARCH__ >= MIN_CC_DP4A
 | |
|     const int mmq_x  =  MMQ_X_Q4_K_PASCAL;
 | |
|     const int mmq_y  =  MMQ_Y_Q4_K_PASCAL;
 | |
|     const int nwarps = NWARPS_Q4_K_PASCAL;
 | |
| 
 | |
|     mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
 | |
|         load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
 | |
|         (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
| #else
 | |
|     (void) vec_dot_q4_K_q8_1_mul_mat;
 | |
|     bad_arch();
 | |
| #endif // __CUDA_ARCH__ >= CC_VOLTA
 | |
| }
 | |
| 
 | |
| #define  MMQ_X_Q5_K_RDNA2  64
 | |
| #define  MMQ_Y_Q5_K_RDNA2  128
 | |
| #define NWARPS_Q5_K_RDNA2  8
 | |
| #define  MMQ_X_Q5_K_RDNA1  32
 | |
| #define  MMQ_Y_Q5_K_RDNA1  64
 | |
| #define NWARPS_Q5_K_RDNA1  8
 | |
| #if defined(CUDA_USE_TENSOR_CORES)
 | |
| #define  MMQ_X_Q5_K_AMPERE 4
 | |
| #define  MMQ_Y_Q5_K_AMPERE 32
 | |
| #define NWARPS_Q5_K_AMPERE 4
 | |
| #else
 | |
| #define  MMQ_X_Q5_K_AMPERE 64
 | |
| #define  MMQ_Y_Q5_K_AMPERE 128
 | |
| #define NWARPS_Q5_K_AMPERE 4
 | |
| #endif
 | |
| #define  MMQ_X_Q5_K_PASCAL 64
 | |
| #define  MMQ_Y_Q5_K_PASCAL 64
 | |
| #define NWARPS_Q5_K_PASCAL 8
 | |
| 
 | |
| template <bool need_check> static __global__ void
 | |
| #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
| #if defined(RDNA3) || defined(RDNA2)
 | |
|     __launch_bounds__(WARP_SIZE*NWARPS_Q5_K_RDNA2, 2)
 | |
| #endif // defined(RDNA3) || defined(RDNA2)
 | |
| #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
| mul_mat_q5_K(
 | |
|     const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
 | |
|     const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
 | |
| 
 | |
| #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
| #if defined(RDNA3) || defined(RDNA2)
 | |
|     const int mmq_x  =  MMQ_X_Q5_K_RDNA2;
 | |
|     const int mmq_y  =  MMQ_Y_Q5_K_RDNA2;
 | |
|     const int nwarps = NWARPS_Q5_K_RDNA2;
 | |
| #else
 | |
|     const int mmq_x  =  MMQ_X_Q5_K_RDNA1;
 | |
|     const int mmq_y  =  MMQ_Y_Q5_K_RDNA1;
 | |
|     const int nwarps = NWARPS_Q5_K_RDNA1;
 | |
| #endif // defined(RDNA3) || defined(RDNA2)
 | |
| 
 | |
|     mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
 | |
|         load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
 | |
|         (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
| 
 | |
| #elif __CUDA_ARCH__ >= CC_VOLTA
 | |
|     const int mmq_x  =  MMQ_X_Q5_K_AMPERE;
 | |
|     const int mmq_y  =  MMQ_Y_Q5_K_AMPERE;
 | |
|     const int nwarps = NWARPS_Q5_K_AMPERE;
 | |
| 
 | |
|     mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
 | |
|         load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
 | |
|         (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
| 
 | |
| #elif __CUDA_ARCH__ >= MIN_CC_DP4A
 | |
|     const int mmq_x  =  MMQ_X_Q5_K_PASCAL;
 | |
|     const int mmq_y  =  MMQ_Y_Q5_K_PASCAL;
 | |
|     const int nwarps = NWARPS_Q5_K_PASCAL;
 | |
| 
 | |
|     mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
 | |
|         load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
 | |
|         (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
| #else
 | |
|     (void) vec_dot_q5_K_q8_1_mul_mat;
 | |
|     bad_arch();
 | |
| #endif // __CUDA_ARCH__ >= CC_VOLTA
 | |
| }
 | |
| 
 | |
| #define  MMQ_X_Q6_K_RDNA2  64
 | |
| #define  MMQ_Y_Q6_K_RDNA2  128
 | |
| #define NWARPS_Q6_K_RDNA2  8
 | |
| #define  MMQ_X_Q6_K_RDNA1  32
 | |
| #define  MMQ_Y_Q6_K_RDNA1  64
 | |
| #define NWARPS_Q6_K_RDNA1  8
 | |
| #if defined(CUDA_USE_TENSOR_CORES)
 | |
| #define  MMQ_X_Q6_K_AMPERE 4
 | |
| #define  MMQ_Y_Q6_K_AMPERE 32
 | |
| #define NWARPS_Q6_K_AMPERE 4
 | |
| #else
 | |
| #define  MMQ_X_Q6_K_AMPERE 64
 | |
| #define  MMQ_Y_Q6_K_AMPERE 64
 | |
| #define NWARPS_Q6_K_AMPERE 4
 | |
| #endif
 | |
| #define  MMQ_X_Q6_K_PASCAL 64
 | |
| #define  MMQ_Y_Q6_K_PASCAL 64
 | |
| #define NWARPS_Q6_K_PASCAL 8
 | |
| 
 | |
| template <bool need_check> static __global__ void
 | |
| #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
| #if defined(RDNA3) || defined(RDNA2)
 | |
|     __launch_bounds__(WARP_SIZE*NWARPS_Q6_K_RDNA2, 2)
 | |
| #endif // defined(RDNA3) || defined(RDNA2)
 | |
| #elif __CUDA_ARCH__ < CC_VOLTA
 | |
|     __launch_bounds__(WARP_SIZE*NWARPS_Q6_K_PASCAL, 2)
 | |
| #endif // __CUDA_ARCH__ < CC_VOLTA
 | |
|     mul_mat_q6_K(
 | |
|     const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
 | |
|     const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
 | |
| 
 | |
| #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
| #if defined(RDNA3) || defined(RDNA2)
 | |
|     const int mmq_x  =  MMQ_X_Q6_K_RDNA2;
 | |
|     const int mmq_y  =  MMQ_Y_Q6_K_RDNA2;
 | |
|     const int nwarps = NWARPS_Q6_K_RDNA2;
 | |
| #else
 | |
|     const int mmq_x  =  MMQ_X_Q6_K_RDNA1;
 | |
|     const int mmq_y  =  MMQ_Y_Q6_K_RDNA1;
 | |
|     const int nwarps = NWARPS_Q6_K_RDNA1;
 | |
| #endif // defined(RDNA3) || defined(RDNA2)
 | |
| 
 | |
|     mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
 | |
|         load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
 | |
|         (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
| 
 | |
| #elif __CUDA_ARCH__ >= CC_VOLTA
 | |
|     const int mmq_x  =  MMQ_X_Q6_K_AMPERE;
 | |
|     const int mmq_y  =  MMQ_Y_Q6_K_AMPERE;
 | |
|     const int nwarps = NWARPS_Q6_K_AMPERE;
 | |
| 
 | |
|     mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
 | |
|         load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
 | |
|         (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
| 
 | |
| #elif __CUDA_ARCH__ >= MIN_CC_DP4A
 | |
|     const int mmq_x  =  MMQ_X_Q6_K_PASCAL;
 | |
|     const int mmq_y  =  MMQ_Y_Q6_K_PASCAL;
 | |
|     const int nwarps = NWARPS_Q6_K_PASCAL;
 | |
| 
 | |
|     mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
 | |
|         load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
 | |
|         (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
| #else
 | |
|     (void) vec_dot_q6_K_q8_1_mul_mat;
 | |
|     bad_arch();
 | |
| #endif // __CUDA_ARCH__ >= CC_VOLTA
 | |
| }
 | |
| 
 | |
| template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot_q_cuda>
 | |
| static __global__ void mul_mat_vec_q(const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols, const int nrows) {
 | |
|     const int row = blockIdx.x*blockDim.y + threadIdx.y;
 | |
| 
 | |
|     if (row >= nrows) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int blocks_per_row = ncols / qk;
 | |
|     const int blocks_per_warp = vdr * WARP_SIZE / qi;
 | |
| 
 | |
| // partial sum for each thread
 | |
|     float tmp = 0.0f;
 | |
| 
 | |
|     const block_q_t  * x = (const block_q_t  *) vx;
 | |
|     const block_q8_1 * y = (const block_q8_1 *) vy;
 | |
| 
 | |
|     for (int i = 0; i < blocks_per_row; i += blocks_per_warp) {
 | |
|         const int ibx = row*blocks_per_row + i + threadIdx.x / (qi/vdr); // x block index
 | |
| 
 | |
|         const int iby = (i + threadIdx.x / (qi/vdr)) * (qk/QK8_1); // y block index that aligns with ibx
 | |
| 
 | |
|         const int iqs  = vdr * (threadIdx.x % (qi/vdr)); // x block quant index when casting the quants to int
 | |
| 
 | |
|         tmp += vec_dot_q_cuda(&x[ibx], &y[iby], iqs);
 | |
|     }
 | |
| 
 | |
|     // sum up partial sums and write back result
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
 | |
|     }
 | |
| 
 | |
|     if (threadIdx.x == 0) {
 | |
|         dst[row] = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
 | |
| static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) {
 | |
|     // qk = quantized weights per x block
 | |
|     // qr = number of quantized weights per data value in x block
 | |
|     const int row = blockIdx.x*blockDim.y + threadIdx.y;
 | |
| 
 | |
|     if (row >= nrows) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int tid = threadIdx.x;
 | |
| 
 | |
|     const int iter_stride = 2*GGML_CUDA_DMMV_X;
 | |
|     const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
 | |
|     const int y_offset = qr == 1 ? 1 : qk/2;
 | |
| 
 | |
| // partial sum for each thread
 | |
| #ifdef GGML_CUDA_F16
 | |
|     half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
 | |
| #else
 | |
|     float tmp = 0.0f;
 | |
| #endif // GGML_CUDA_F16
 | |
| 
 | |
|     for (int i = 0; i < ncols; i += iter_stride) {
 | |
|         const int col = i + vals_per_iter*tid;
 | |
|         const int ib = (row*ncols + col)/qk; // x block index
 | |
|         const int iqs = (col%qk)/qr; // x quant index
 | |
|         const int iybs = col - col%qk; // y block start index
 | |
| 
 | |
| // processing >2 values per i iter is faster for fast GPUs
 | |
| #pragma unroll
 | |
|         for (int j = 0; j < vals_per_iter; j += 2) {
 | |
|             // process 2 vals per j iter
 | |
| 
 | |
|             // dequantize
 | |
|             // for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
 | |
|             dfloat2 v;
 | |
|             dequantize_kernel(vx, ib, iqs + j/qr, v);
 | |
| 
 | |
|             // matrix multiplication
 | |
|             // for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
 | |
| #ifdef GGML_CUDA_F16
 | |
|             tmp += __hmul2(v, {
 | |
|                 y[iybs + iqs + j/qr + 0],
 | |
|                 y[iybs + iqs + j/qr + y_offset]
 | |
|             });
 | |
| #else
 | |
|             tmp += v.x * y[iybs + iqs + j/qr + 0];
 | |
|             tmp += v.y * y[iybs + iqs + j/qr + y_offset];
 | |
| #endif // GGML_CUDA_F16
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // sum up partial sums and write back result
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
 | |
|     }
 | |
| 
 | |
|     if (tid == 0) {
 | |
| #ifdef GGML_CUDA_F16
 | |
|         dst[row] = tmp.x + tmp.y;
 | |
| #else
 | |
|         dst[row] = tmp;
 | |
| #endif // GGML_CUDA_F16
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __global__ void mul_mat_p021_f16_f32(
 | |
|     const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
 | |
|     const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y) {
 | |
| 
 | |
|     const half * x = (const half *) vx;
 | |
| 
 | |
|     const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
 | |
|     const int channel = blockDim.z*blockIdx.z + threadIdx.z;
 | |
|     const int channel_x = channel / (nchannels_y / nchannels_x);
 | |
| 
 | |
|     const int nrows_y = ncols_x;
 | |
|     const int nrows_dst = nrows_x;
 | |
|     const int row_dst = row_x;
 | |
| 
 | |
|     float tmp = 0.0f;
 | |
| 
 | |
|     for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
 | |
|         const int col_x = col_x0 + threadIdx.x;
 | |
| 
 | |
|         if (col_x >= ncols_x) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         // x is transposed and permuted
 | |
|         const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
 | |
|         const float xi = __half2float(x[ix]);
 | |
| 
 | |
|         const int row_y = col_x;
 | |
| 
 | |
| 
 | |
|         // y is not transposed but permuted
 | |
|         const int iy = channel*nrows_y + row_y;
 | |
| 
 | |
|         tmp += xi * y[iy];
 | |
|     }
 | |
| 
 | |
|     // dst is not transposed and not permuted
 | |
|     const int idst = channel*nrows_dst + row_dst;
 | |
| 
 | |
|     // sum up partial sums and write back result
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
 | |
|     }
 | |
| 
 | |
|     if (threadIdx.x == 0) {
 | |
|         dst[idst] = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
 | |
|     const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
 | |
|     const int row_stride_x, const int channel_stride_x, const int channel_x_divisor) {
 | |
| 
 | |
|     const half * x = (const half *) vx;
 | |
| 
 | |
|     const int row_x     = blockDim.y*blockIdx.y + threadIdx.y;
 | |
|     const int channel   = blockDim.z*blockIdx.z + threadIdx.z;
 | |
|     const int channel_x = channel / channel_x_divisor;
 | |
| 
 | |
|     const int nrows_y   = ncols_x;
 | |
|     const int nrows_dst = nrows_x;
 | |
|     const int row_dst   = row_x;
 | |
| 
 | |
|     const int idst = channel*nrows_dst + row_dst;
 | |
| 
 | |
|     float tmp = 0.0f;
 | |
| 
 | |
|     for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
 | |
|         const int col_x = col_x0 + threadIdx.x;
 | |
| 
 | |
|         if (col_x >= ncols_x) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         const int row_y = col_x;
 | |
| 
 | |
|         const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
 | |
|         const int iy = channel*nrows_y + row_y;
 | |
| 
 | |
|         const float xi = __half2float(x[ix]);
 | |
| 
 | |
|         tmp += xi * y[iy];
 | |
|     }
 | |
| 
 | |
|     // sum up partial sums and write back result
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
 | |
|     }
 | |
| 
 | |
|     if (threadIdx.x == 0) {
 | |
|         dst[idst] = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __device__ void cpy_1_f32_f32(const char * cxi, char * cdsti) {
 | |
|     const float * xi = (const float *) cxi;
 | |
|     float * dsti = (float *) cdsti;
 | |
| 
 | |
|     *dsti = *xi;
 | |
| }
 | |
| 
 | |
| static __device__ void cpy_1_f32_f16(const char * cxi, char * cdsti) {
 | |
|     const float * xi = (const float *) cxi;
 | |
|     half * dsti = (half *) cdsti;
 | |
| 
 | |
|     *dsti = __float2half(*xi);
 | |
| }
 | |
| 
 | |
| static __device__ void cpy_1_f16_f16(const char * cxi, char * cdsti) {
 | |
|     const half * xi = (const half *) cxi;
 | |
|     half * dsti = (half *) cdsti;
 | |
| 
 | |
|     *dsti = *xi;
 | |
| }
 | |
| 
 | |
| template <cpy_kernel_t cpy_1>
 | |
| static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
 | |
|                                    const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
 | |
|                                    const int ne10, const int ne11, const int nb10, const int nb11, const int nb12) {
 | |
|     const int i = blockDim.x*blockIdx.x + threadIdx.x;
 | |
| 
 | |
|     if (i >= ne) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // determine indices i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
 | |
|     // then combine those indices with the corresponding byte offsets to get the total offsets
 | |
|     const int i02 = i / (ne00*ne01);
 | |
|     const int i01 = (i - i02*ne01*ne00) / ne00;
 | |
|     const int i00 = i - i02*ne01*ne00 - i01*ne00;
 | |
|     const int x_offset = i00*nb00 + i01*nb01 + i02*nb02;
 | |
| 
 | |
|     const int i12 = i / (ne10*ne11);
 | |
|     const int i11 = (i - i12*ne10*ne11) / ne10;
 | |
|     const int i10 = i - i12*ne10*ne11 - i11*ne10;
 | |
|     const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12;
 | |
| 
 | |
|     cpy_1(cx + x_offset, cdst + dst_offset);
 | |
| }
 | |
| 
 | |
| static __device__ void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
 | |
|     const float * xi = (const float *) cxi;
 | |
|     block_q8_0 * dsti = (block_q8_0 *) cdsti;
 | |
| 
 | |
|     float amax = 0.0f; // absolute max
 | |
| 
 | |
|     for (int j = 0; j < QK8_0; j++) {
 | |
|         const float v = xi[j];
 | |
|         amax = fmaxf(amax, fabsf(v));
 | |
|     }
 | |
| 
 | |
|     const float d = amax / ((1 << 7) - 1);
 | |
|     const float id = d ? 1.0f/d : 0.0f;
 | |
| 
 | |
|     dsti->d = d;
 | |
| 
 | |
|     for (int j = 0; j < QK8_0; ++j) {
 | |
|         const float x0 = xi[j]*id;
 | |
| 
 | |
|         dsti->qs[j] = roundf(x0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __device__ void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
 | |
|     const float * xi = (const float *) cxi;
 | |
|     block_q4_0 * dsti = (block_q4_0 *) cdsti;
 | |
| 
 | |
|     float amax = 0.0f;
 | |
|     float vmax = 0.0f;
 | |
| 
 | |
|     for (int j = 0; j < QK4_0; ++j) {
 | |
|         const float v = xi[j];
 | |
|         if (amax < fabsf(v)) {
 | |
|             amax = fabsf(v);
 | |
|             vmax = v;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     const float d  = vmax / -8;
 | |
|     const float id = d ? 1.0f/d : 0.0f;
 | |
| 
 | |
|     dsti->d = d;
 | |
| 
 | |
|     for (int j = 0; j < QK4_0/2; ++j) {
 | |
|         const float x0 = xi[0       + j]*id;
 | |
|         const float x1 = xi[QK4_0/2 + j]*id;
 | |
| 
 | |
|         const uint8_t xi0 = min(15, (int8_t)(x0 + 8.5f));
 | |
|         const uint8_t xi1 = min(15, (int8_t)(x1 + 8.5f));
 | |
| 
 | |
|         dsti->qs[j]  = xi0;
 | |
|         dsti->qs[j] |= xi1 << 4;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __device__ void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
 | |
|     const float * xi = (const float *) cxi;
 | |
|     block_q4_1 * dsti = (block_q4_1 *) cdsti;
 | |
| 
 | |
|     float vmin = FLT_MAX;
 | |
|     float vmax = -FLT_MAX;
 | |
| 
 | |
|     for (int j = 0; j < QK4_1; ++j) {
 | |
|         const float v = xi[j];
 | |
| 
 | |
|         if (v < vmin) vmin = v;
 | |
|         if (v > vmax) vmax = v;
 | |
|     }
 | |
| 
 | |
|     const float d  = (vmax - vmin) / ((1 << 4) - 1);
 | |
|     const float id = d ? 1.0f/d : 0.0f;
 | |
| 
 | |
|     dsti->dm.x = d;
 | |
|     dsti->dm.y = vmin;
 | |
| 
 | |
|     for (int j = 0; j < QK4_1/2; ++j) {
 | |
|         const float x0 = (xi[0       + j] - vmin)*id;
 | |
|         const float x1 = (xi[QK4_1/2 + j] - vmin)*id;
 | |
| 
 | |
|         const uint8_t xi0 = min(15, (int8_t)(x0 + 0.5f));
 | |
|         const uint8_t xi1 = min(15, (int8_t)(x1 + 0.5f));
 | |
| 
 | |
|         dsti->qs[j]  = xi0;
 | |
|         dsti->qs[j] |= xi1 << 4;
 | |
|     }
 | |
| }
 | |
| 
 | |
| template <cpy_kernel_t cpy_blck, int qk>
 | |
| static __global__ void cpy_f32_q(const char * cx, char * cdst, const int ne,
 | |
|                                  const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
 | |
|                                  const int ne10, const int ne11, const int nb10, const int nb11, const int nb12) {
 | |
|     const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk;
 | |
| 
 | |
|     if (i >= ne) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int i02 = i / (ne00*ne01);
 | |
|     const int i01 = (i - i02*ne01*ne00) / ne00;
 | |
|     const int i00 = (i - i02*ne01*ne00 - i01*ne00);
 | |
|     const int x_offset = i00*nb00 + i01*nb01 + i02*nb02;
 | |
| 
 | |
|     const int i12 = i / (ne10*ne11);
 | |
|     const int i11 = (i - i12*ne10*ne11) / ne10;
 | |
|     const int i10 = (i - i12*ne10*ne11 - i11*ne10)/qk;
 | |
|     const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12;
 | |
| 
 | |
|     cpy_blck(cx + x_offset, cdst + dst_offset);
 | |
| }
 | |
| 
 | |
| static __device__ float rope_yarn_ramp(const float low, const float high, const int i0) {
 | |
|     const float y = (i0 / 2 - low) / max(0.001f, high - low);
 | |
|     return 1.0f - min(1.0f, max(0.0f, y));
 | |
| }
 | |
| 
 | |
| struct rope_corr_dims {
 | |
|     float v[4];
 | |
| };
 | |
| 
 | |
| // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
 | |
| // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
 | |
| static __device__ void rope_yarn(
 | |
|     float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
 | |
|     float * cos_theta, float * sin_theta
 | |
| ) {
 | |
|     // Get n-d rotational scaling corrected for extrapolation
 | |
|     float theta_interp = freq_scale * theta_extrap;
 | |
|     float theta = theta_interp;
 | |
|     if (ext_factor != 0.0f) {
 | |
|         float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
 | |
|         theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
 | |
| 
 | |
|         // Get n-d magnitude scaling corrected for interpolation
 | |
|         mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
 | |
|     }
 | |
|     *cos_theta = cosf(theta) * mscale;
 | |
|     *sin_theta = sinf(theta) * mscale;
 | |
| }
 | |
| 
 | |
| // rope == RoPE == rotary positional embedding
 | |
| template<typename T, bool has_pos>
 | |
| static __global__ void rope(
 | |
|     const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
 | |
|     float ext_factor, float attn_factor, rope_corr_dims corr_dims
 | |
| ) {
 | |
|     const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
 | |
| 
 | |
|     if (col >= ncols) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int row = blockDim.x*blockIdx.x + threadIdx.x;
 | |
|     const int i = row*ncols + col;
 | |
|     const int i2 = row/p_delta_rows;
 | |
| 
 | |
|     const int p = has_pos ? pos[i2] : 0;
 | |
|     const float theta_base = p*powf(freq_base, -float(col)/ncols);
 | |
| 
 | |
|     float cos_theta, sin_theta;
 | |
|     rope_yarn(theta_base, freq_scale, corr_dims, col, ext_factor, attn_factor, &cos_theta, &sin_theta);
 | |
| 
 | |
|     const float x0 = x[i + 0];
 | |
|     const float x1 = x[i + 1];
 | |
| 
 | |
|     dst[i + 0] = x0*cos_theta - x1*sin_theta;
 | |
|     dst[i + 1] = x0*sin_theta + x1*cos_theta;
 | |
| }
 | |
| 
 | |
| template<typename T, bool has_pos>
 | |
| static __global__ void rope_neox(
 | |
|     const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
 | |
|     float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims
 | |
| ) {
 | |
|     const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
 | |
| 
 | |
|     if (col >= ncols) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int row = blockDim.x*blockIdx.x + threadIdx.x;
 | |
|     const int ib = col / n_dims;
 | |
|     const int ic = col % n_dims;
 | |
| 
 | |
|     if (ib > 0) {
 | |
|         const int i = row*ncols + ib*n_dims + ic;
 | |
| 
 | |
|         dst[i + 0] = x[i + 0];
 | |
|         dst[i + 1] = x[i + 1];
 | |
| 
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int i  = row*ncols + ib*n_dims + ic/2;
 | |
|     const int i2 = row/p_delta_rows;
 | |
| 
 | |
|     float cur_rot = inv_ndims * ic - ib;
 | |
| 
 | |
|     const int p = has_pos ? pos[i2] : 0;
 | |
|     const float theta_base = p*freq_scale*powf(theta_scale, col/2.0f);
 | |
| 
 | |
|     float cos_theta, sin_theta;
 | |
|     rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
 | |
| 
 | |
|     const float x0 = x[i + 0];
 | |
|     const float x1 = x[i + n_dims/2];
 | |
| 
 | |
|     dst[i + 0]        = x0*cos_theta - x1*sin_theta;
 | |
|     dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
 | |
| }
 | |
| 
 | |
| static __global__ void rope_glm_f32(
 | |
|     const float * x, float * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
 | |
|     int n_ctx
 | |
| ) {
 | |
|     const int col = blockDim.x*blockIdx.x + threadIdx.x;
 | |
|     const int half_n_dims = ncols/4;
 | |
| 
 | |
|     if (col >= half_n_dims) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int row = blockDim.y*blockIdx.y + threadIdx.y;
 | |
|     const int i = row*ncols + col;
 | |
|     const int i2 = row/p_delta_rows;
 | |
| 
 | |
|     const float col_theta_scale = powf(freq_base, -2.0f*col/ncols);
 | |
|      // FIXME: this is likely wrong
 | |
|     const int p = pos != nullptr ? pos[i2] : 0;
 | |
| 
 | |
|     const float theta = min(p, n_ctx - 2)*freq_scale*col_theta_scale;
 | |
|     const float sin_theta = sinf(theta);
 | |
|     const float cos_theta = cosf(theta);
 | |
| 
 | |
|     const float x0 = x[i + 0];
 | |
|     const float x1 = x[i + half_n_dims];
 | |
| 
 | |
|     dst[i + 0]           = x0*cos_theta - x1*sin_theta;
 | |
|     dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta;
 | |
| 
 | |
|     const float block_theta = ((float)max(p - n_ctx - 2, 0))*col_theta_scale;
 | |
|     const float sin_block_theta = sinf(block_theta);
 | |
|     const float cos_block_theta = cosf(block_theta);
 | |
| 
 | |
|     const float x2 = x[i + half_n_dims * 2];
 | |
|     const float x3 = x[i + half_n_dims * 3];
 | |
| 
 | |
|     dst[i + half_n_dims * 2] = x2*cos_block_theta - x3*sin_block_theta;
 | |
|     dst[i + half_n_dims * 3] = x2*sin_block_theta + x3*cos_block_theta;
 | |
| }
 | |
| 
 | |
| static __global__ void alibi_f32(const float * x, float * dst, const int ncols, const int k_rows,
 | |
|                                  const int n_heads_log2_floor, const float m0, const float m1) {
 | |
|     const int col = blockDim.x*blockIdx.x + threadIdx.x;
 | |
| 
 | |
|     if (col >= ncols) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int row = blockDim.y*blockIdx.y + threadIdx.y;
 | |
|     const int i = row*ncols + col;
 | |
| 
 | |
|     const int k = row/k_rows;
 | |
| 
 | |
|     float m_k;
 | |
|     if (k < n_heads_log2_floor) {
 | |
|         m_k = powf(m0, k + 1);
 | |
|     } else {
 | |
|         m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
 | |
|     }
 | |
| 
 | |
|     dst[i] = col * m_k + x[i];
 | |
| }
 | |
| 
 | |
| static __global__ void k_sum_rows_f32(const float * x, float * dst, const int ncols) {
 | |
|     const int row = blockIdx.y;
 | |
|     const int col = threadIdx.x;
 | |
| 
 | |
|     float sum = 0.0f;
 | |
|     for (int i = col; i < ncols; i += blockDim.x) {
 | |
|         sum += x[row * ncols + i];
 | |
|     }
 | |
| 
 | |
|     sum = warp_reduce_sum(sum);
 | |
| 
 | |
|     if (col == 0) {
 | |
|         dst[row] = sum;
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| static inline __device__ void swap(T & a, T & b) {
 | |
|     T tmp = a;
 | |
|     a = b;
 | |
|     b = tmp;
 | |
| }
 | |
| 
 | |
| template<ggml_sort_order order>
 | |
| static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int ncols) {
 | |
|     // bitonic sort
 | |
|     int col = threadIdx.x;
 | |
|     int row = blockIdx.y;
 | |
| 
 | |
|     if (col >= ncols) return;
 | |
| 
 | |
|     const float * x_row = x + row * ncols;
 | |
|     int * dst_row = dst + row * ncols;
 | |
| 
 | |
|     // initialize indices
 | |
|     if (col < ncols) {
 | |
|         dst_row[col] = col;
 | |
|     }
 | |
|     __syncthreads();
 | |
| 
 | |
|     for (int k = 2; k <= ncols; k *= 2) {
 | |
|         for (int j = k / 2; j > 0; j /= 2) {
 | |
|             int ixj = col ^ j;
 | |
|             if (ixj > col) {
 | |
|                 if ((col & k) == 0) {
 | |
|                     if (order == GGML_SORT_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
 | |
|                         swap(dst_row[col], dst_row[ixj]);
 | |
|                     }
 | |
|                 } else {
 | |
|                     if (order == GGML_SORT_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
 | |
|                         swap(dst_row[col], dst_row[ixj]);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             __syncthreads();
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past) {
 | |
|     const int col = blockDim.y*blockIdx.y + threadIdx.y;
 | |
|     const int row = blockDim.x*blockIdx.x + threadIdx.x;
 | |
| 
 | |
|     if (col >= ncols) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int i = row*ncols + col;
 | |
|     //dst[i] = col > (n_past + row % rows_per_channel) ? -INFINITY : x[i];
 | |
|     //dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
 | |
|     dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
 | |
| }
 | |
| 
 | |
| static __global__ void soft_max_f32(const float * x, const float * y, float * dst, const int ncols, const int nrows_y, const float scale) {
 | |
|     const int tid  = threadIdx.x;
 | |
|     const int rowx = blockIdx.x;
 | |
|     const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension
 | |
| 
 | |
|     const int block_size = blockDim.x;
 | |
| 
 | |
|     const int warp_id = threadIdx.x / WARP_SIZE;
 | |
|     const int lane_id = threadIdx.x % WARP_SIZE;
 | |
| 
 | |
|     __shared__ float buf[CUDA_SOFT_MAX_BLOCK_SIZE/WARP_SIZE];
 | |
| 
 | |
|     float max_val = -INFINITY;
 | |
| 
 | |
|     for (int col = tid; col < ncols; col += block_size) {
 | |
|         const int ix = rowx*ncols + col;
 | |
|         const int iy = rowy*ncols + col;
 | |
|         max_val = max(max_val, x[ix]*scale + (y ? y[iy] : 0.0f));
 | |
|     }
 | |
| 
 | |
|     // find the max value in the block
 | |
|     max_val = warp_reduce_max(max_val);
 | |
|     if (block_size > WARP_SIZE) {
 | |
|         if (warp_id == 0) {
 | |
|             buf[lane_id] = -INFINITY;
 | |
|         }
 | |
|         __syncthreads();
 | |
| 
 | |
|         if (lane_id == 0) {
 | |
|             buf[warp_id] = max_val;
 | |
|         }
 | |
|         __syncthreads();
 | |
| 
 | |
|         max_val = buf[lane_id];
 | |
|         max_val = warp_reduce_max(max_val);
 | |
|     }
 | |
| 
 | |
|     float tmp = 0.f;
 | |
| 
 | |
|     for (int col = tid; col < ncols; col += block_size) {
 | |
|         const int ix = rowx*ncols + col;
 | |
|         const int iy = rowy*ncols + col;
 | |
|         const float val = expf((x[ix]*scale + (y ? y[iy] : 0.0f)) - max_val);
 | |
|         tmp += val;
 | |
|         dst[ix] = val;
 | |
|     }
 | |
| 
 | |
|     // find the sum of exps in the block
 | |
|     tmp = warp_reduce_sum(tmp);
 | |
|     if (block_size > WARP_SIZE) {
 | |
|         if (warp_id == 0) {
 | |
|             buf[lane_id] = 0.f;
 | |
|         }
 | |
|         __syncthreads();
 | |
| 
 | |
|         if (lane_id == 0) {
 | |
|             buf[warp_id] = tmp;
 | |
|         }
 | |
|         __syncthreads();
 | |
| 
 | |
|         tmp = buf[lane_id];
 | |
|         tmp = warp_reduce_sum(tmp);
 | |
|     }
 | |
| 
 | |
|     const float inv_tmp = 1.f / tmp;
 | |
| 
 | |
|     for (int col = tid; col < ncols; col += block_size) {
 | |
|         const int i = rowx*ncols + col;
 | |
|         dst[i] *= inv_tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __global__ void scale_f32(const float * x, float * dst, const float scale, const int k) {
 | |
|     const int i = blockDim.x*blockIdx.x + threadIdx.x;
 | |
| 
 | |
|     if (i >= k) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     dst[i] = scale * x[i];
 | |
| }
 | |
| 
 | |
| static __global__ void clamp_f32(const float * x, float * dst, const float min, const float max, const int k) {
 | |
|     const int i = blockDim.x*blockIdx.x + threadIdx.x;
 | |
| 
 | |
|     if (i >= k) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
 | |
| }
 | |
| 
 | |
| static  __global__ void im2col_f32_f16(
 | |
|         const float * x, half * dst,
 | |
|         int offset_delta, int IW, int IH, int OW, int KW, int KH, int pelements, int CHW,
 | |
|         int s0, int s1, int p0, int p1, int d0, int d1) {
 | |
|     const int i = threadIdx.x + blockIdx.x * blockDim.x;
 | |
|     if (i >= pelements) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int ksize = OW * (KH > 1 ? KW : 1);
 | |
|     const int kx = i / ksize;
 | |
|     const int kd = kx * ksize;
 | |
|     const int ky = (i - kd) / OW;
 | |
|     const int ix = i % OW;
 | |
| 
 | |
|     const int iiw = ix * s0 + kx * d0 - p0;
 | |
|     const int iih = blockIdx.y * s1 + ky * d1 - p1;
 | |
| 
 | |
|     const int offset_dst =
 | |
|         (blockIdx.y * OW + ix) * CHW +
 | |
|         (blockIdx.z * (KW * KH) + ky * KW + kx);
 | |
| 
 | |
|     if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
 | |
|         dst[offset_dst] = __float2half(0.0f);
 | |
|     } else {
 | |
|         const int offset_src = blockIdx.z * offset_delta;
 | |
|         dst[offset_dst] = __float2half(x[offset_src + iih * IW + iiw]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<int qk, int qr, dequantize_kernel_t dq>
 | |
| static void get_rows_cuda(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
 | |
|                             const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
 | |
| 
 | |
|     GGML_TENSOR_BINARY_OP_LOCALS
 | |
| 
 | |
|     const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
 | |
|     const int block_num_x = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
 | |
|     const dim3 block_nums(block_num_x, ne10, ne11*ne12);
 | |
| 
 | |
|     // strides in elements
 | |
|     //const size_t s0 = nb0 / ggml_element_size(dst);
 | |
|     const size_t s1 = nb1 / ggml_element_size(dst);
 | |
|     const size_t s2 = nb2 / ggml_element_size(dst);
 | |
|     const size_t s3 = nb3 / ggml_element_size(dst);
 | |
| 
 | |
|     const size_t s10 = nb10 / ggml_element_size(src1);
 | |
|     const size_t s11 = nb11 / ggml_element_size(src1);
 | |
|     const size_t s12 = nb12 / ggml_element_size(src1);
 | |
|     //const size_t s13 = nb13 / ggml_element_size(src1);
 | |
| 
 | |
|     GGML_ASSERT(ne00 % 2 == 0);
 | |
| 
 | |
|     k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(
 | |
|             src0_dd, src1_dd, dst_dd,
 | |
|             ne00, /*ne01, ne02, ne03,*/
 | |
|             /*ne10, ne11,*/ ne12, /*ne13,*/
 | |
|             /* s0,*/ s1, s2, s3,
 | |
|             /* nb00,*/ nb01, nb02, nb03,
 | |
|             s10, s11, s12/*, s13*/);
 | |
| 
 | |
|     (void) dst;
 | |
| }
 | |
| 
 | |
| template<typename src0_t>
 | |
| static void get_rows_cuda_float(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
 | |
|                                 const src0_t * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
 | |
| 
 | |
|     GGML_TENSOR_BINARY_OP_LOCALS
 | |
| 
 | |
|     const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
 | |
|     const int block_num_x = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
 | |
|     const dim3 block_nums(block_num_x, ne10, ne11*ne12);
 | |
| 
 | |
|     // strides in elements
 | |
|     //const size_t s0 = nb0 / ggml_element_size(dst);
 | |
|     const size_t s1 = nb1 / ggml_element_size(dst);
 | |
|     const size_t s2 = nb2 / ggml_element_size(dst);
 | |
|     const size_t s3 = nb3 / ggml_element_size(dst);
 | |
| 
 | |
|     const size_t s10 = nb10 / ggml_element_size(src1);
 | |
|     const size_t s11 = nb11 / ggml_element_size(src1);
 | |
|     const size_t s12 = nb12 / ggml_element_size(src1);
 | |
|     //const size_t s13 = nb13 / ggml_element_size(src1);
 | |
| 
 | |
|     k_get_rows_float<<<block_nums, block_dims, 0, stream>>>(
 | |
|             src0_dd, src1_dd, dst_dd,
 | |
|             ne00, /*ne01, ne02, ne03,*/
 | |
|             /*ne10, ne11,*/ ne12, /*ne13,*/
 | |
|             /* s0,*/ s1, s2, s3,
 | |
|             /* nb00,*/ nb01, nb02, nb03,
 | |
|             s10, s11, s12/*, s13*/);
 | |
| 
 | |
|     (void) dst;
 | |
| }
 | |
| 
 | |
| template<float (*bin_op)(const float, const float)>
 | |
| struct bin_bcast_cuda {
 | |
|     template<typename src0_t, typename src1_t, typename dst_t>
 | |
|     void operator()(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst,
 | |
|             const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd,
 | |
|             cudaStream_t stream) {
 | |
| 
 | |
|         GGML_TENSOR_BINARY_OP_LOCALS
 | |
| 
 | |
|         int nr0 = ne10/ne0;
 | |
|         int nr1 = ne11/ne1;
 | |
|         int nr2 = ne12/ne2;
 | |
|         int nr3 = ne13/ne3;
 | |
| 
 | |
|         int nr[4] = { nr0, nr1, nr2, nr3 };
 | |
| 
 | |
|         // collapse dimensions until first broadcast dimension
 | |
|         int64_t cne0[] = {ne0, ne1, ne2, ne3};
 | |
|         int64_t cne1[] = {ne10, ne11, ne12, ne13};
 | |
|         size_t cnb0[] = {nb0, nb1, nb2, nb3};
 | |
|         size_t cnb1[] = {nb10, nb11, nb12, nb13};
 | |
|         auto collapse = [](int64_t cne[]) {
 | |
|             cne[0] *= cne[1];
 | |
|             cne[1] = cne[2];
 | |
|             cne[2] = cne[3];
 | |
|             cne[3] = 1;
 | |
|         };
 | |
| 
 | |
|         auto collapse_nb = [](size_t cnb[], int64_t cne[]) {
 | |
|             cnb[1] *= cne[1];
 | |
|             cnb[2] *= cne[2];
 | |
|             cnb[3] *= cne[3];
 | |
|         };
 | |
| 
 | |
|         for (int i = 0; i < 4; i++) {
 | |
|             if (nr[i] != 1) {
 | |
|                 break;
 | |
|             }
 | |
|             if (i > 0) {
 | |
|                 collapse_nb(cnb0, cne0);
 | |
|                 collapse_nb(cnb1, cne1);
 | |
|                 collapse(cne0);
 | |
|                 collapse(cne1);
 | |
|             }
 | |
|         }
 | |
|         {
 | |
|             int64_t ne0 = cne0[0];
 | |
|             int64_t ne1 = cne0[1];
 | |
|             int64_t ne2 = cne0[2];
 | |
|             int64_t ne3 = cne0[3];
 | |
| 
 | |
|             int64_t ne10 = cne1[0];
 | |
|             int64_t ne11 = cne1[1];
 | |
|             int64_t ne12 = cne1[2];
 | |
|             int64_t ne13 = cne1[3];
 | |
| 
 | |
|             size_t nb0 = cnb0[0];
 | |
|             size_t nb1 = cnb0[1];
 | |
|             size_t nb2 = cnb0[2];
 | |
|             size_t nb3 = cnb0[3];
 | |
| 
 | |
|             size_t nb10 = cnb1[0];
 | |
|             size_t nb11 = cnb1[1];
 | |
|             size_t nb12 = cnb1[2];
 | |
|             size_t nb13 = cnb1[3];
 | |
| 
 | |
|             size_t s0 = nb0 / sizeof(dst_t);
 | |
|             size_t s1 = nb1 / sizeof(dst_t);
 | |
|             size_t s2 = nb2 / sizeof(dst_t);
 | |
|             size_t s3 = nb3 / sizeof(dst_t);
 | |
| 
 | |
|             size_t s10 = nb10 / sizeof(src1_t);
 | |
|             size_t s11 = nb11 / sizeof(src1_t);
 | |
|             size_t s12 = nb12 / sizeof(src1_t);
 | |
|             size_t s13 = nb13 / sizeof(src1_t);
 | |
| 
 | |
|             GGML_ASSERT(s0 == 1);
 | |
|             GGML_ASSERT(s10 == 1);
 | |
| 
 | |
|             const int block_size = 128;
 | |
| 
 | |
|             int64_t hne0 = std::max(ne0/2LL, 1LL);
 | |
| 
 | |
|             dim3 block_dims;
 | |
|             block_dims.x = std::min<unsigned int>(hne0, block_size);
 | |
|             block_dims.y = std::min<unsigned int>(ne1, block_size / block_dims.x);
 | |
|             block_dims.z = std::min(std::min<unsigned int>(ne2*ne3, block_size / block_dims.x / block_dims.y), 64U);
 | |
| 
 | |
|             dim3 block_nums(
 | |
|                 (hne0 + block_dims.x - 1) / block_dims.x,
 | |
|                 (ne1 + block_dims.y - 1) / block_dims.y,
 | |
|                 (ne2*ne3 + block_dims.z - 1) / block_dims.z
 | |
|             );
 | |
| 
 | |
|             if (block_nums.z > 65535) {
 | |
|                 // this is the maximum number of blocks in z direction, fallback to 1D grid kernel
 | |
|                 int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
 | |
|                 k_bin_bcast_unravel<bin_op><<<block_num, block_size, 0, stream>>>(
 | |
|                     src0_dd, src1_dd, dst_dd,
 | |
|                     ne0, ne1, ne2, ne3,
 | |
|                     ne10, ne11, ne12, ne13,
 | |
|                     /* s0, */ s1, s2, s3,
 | |
|                     /* s10, */ s11, s12, s13);
 | |
|             } else {
 | |
|                 k_bin_bcast<bin_op><<<block_nums, block_dims, 0, stream>>>(
 | |
|                     src0_dd, src1_dd, dst_dd,
 | |
|                     ne0, ne1, ne2, ne3,
 | |
|                     ne10, ne11, ne12, ne13,
 | |
|                     /* s0, */ s1, s2, s3,
 | |
|                     /* s10, */ s11, s12, s13);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| static void acc_f32_cuda(const float * x, const float * y, float * dst, const int n_elements,
 | |
|     const int ne10, const int ne11, const int ne12,
 | |
|     const int nb1, const int nb2, const int offset, cudaStream_t stream) {
 | |
|     int num_blocks = (n_elements + CUDA_ACC_BLOCK_SIZE - 1) / CUDA_ACC_BLOCK_SIZE;
 | |
|     acc_f32<<<num_blocks, CUDA_ACC_BLOCK_SIZE, 0, stream>>>(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset);
 | |
| }
 | |
| 
 | |
| static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
 | |
|     const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
 | |
|     gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | |
| }
 | |
| 
 | |
| static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
 | |
|     const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
 | |
|     silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | |
| }
 | |
| 
 | |
| static void gelu_quick_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
 | |
|     const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
 | |
|     gelu_quick_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | |
| }
 | |
| 
 | |
| static void tanh_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
 | |
|     const int num_blocks = (k + CUDA_TANH_BLOCK_SIZE - 1) / CUDA_TANH_BLOCK_SIZE;
 | |
|     tanh_f32<<<num_blocks, CUDA_TANH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | |
| }
 | |
| 
 | |
| static void relu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
 | |
|     const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
 | |
|     relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | |
| }
 | |
| 
 | |
| static void leaky_relu_f32_cuda(const float * x, float * dst, const int k, const float negative_slope, cudaStream_t stream) {
 | |
|     const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
 | |
|     leaky_relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k, negative_slope);
 | |
| }
 | |
| 
 | |
| static void sqr_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
 | |
|     const int num_blocks = (k + CUDA_SQR_BLOCK_SIZE - 1) / CUDA_SQR_BLOCK_SIZE;
 | |
|     sqr_f32<<<num_blocks, CUDA_SQR_BLOCK_SIZE, 0, stream>>>(x, dst, k);
 | |
| }
 | |
| 
 | |
| static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % WARP_SIZE == 0);
 | |
|     if (ncols < 1024) {
 | |
|         const dim3 block_dims(WARP_SIZE, 1, 1);
 | |
|         norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
 | |
|     } else {
 | |
|         const dim3 block_dims(1024, 1, 1);
 | |
|         norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void group_norm_f32_cuda(const float * x, float * dst, const int num_groups, const int group_size, const int ne_elements, cudaStream_t stream) {
 | |
|     static const float eps = 1e-6f;
 | |
|     if (group_size < 1024) {
 | |
|         const dim3 block_dims(WARP_SIZE, 1, 1);
 | |
|         group_norm_f32<WARP_SIZE><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
 | |
|     } else {
 | |
|         const dim3 block_dims(1024, 1, 1);
 | |
|         group_norm_f32<1024><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void concat_f32_cuda(const float * x, const float * y, float * dst, const int ne0, int ne1, int ne2, int ne02, cudaStream_t stream) {
 | |
|     int num_blocks = (ne0 + CUDA_CONCAT_BLOCK_SIZE - 1) / CUDA_CONCAT_BLOCK_SIZE;
 | |
|     dim3 gridDim(num_blocks, ne1, ne2);
 | |
|     concat_f32<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02);
 | |
| }
 | |
| 
 | |
| static void upscale_f32_cuda(const float * x, float * dst, const int ne00, const int ne01, const int ne02, const int scale_factor, cudaStream_t stream) {
 | |
|     int ne0 = (ne00 * scale_factor);
 | |
|     int num_blocks = (ne0 + CUDA_UPSCALE_BLOCK_SIZE - 1) / CUDA_UPSCALE_BLOCK_SIZE;
 | |
|     dim3 gridDim(num_blocks, (ne01 * scale_factor), ne02);
 | |
|     upscale_f32<<<gridDim, CUDA_UPSCALE_BLOCK_SIZE, 0, stream>>>(x, dst, ne00, ne00 * ne01, scale_factor);
 | |
| }
 | |
| 
 | |
| static void pad_f32_cuda(const float * x, float * dst,
 | |
|     const int ne00, const int ne01, const int ne02,
 | |
|     const int ne0, const int ne1, const int ne2, cudaStream_t stream) {
 | |
|     int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
 | |
|     dim3 gridDim(num_blocks, ne1, ne2);
 | |
|     pad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02);
 | |
| }
 | |
| 
 | |
| static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % WARP_SIZE == 0);
 | |
|     if (ncols < 1024) {
 | |
|         const dim3 block_dims(WARP_SIZE, 1, 1);
 | |
|         rms_norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
 | |
|     } else {
 | |
|         const dim3 block_dims(1024, 1, 1);
 | |
|         rms_norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void quantize_row_q8_1_cuda(const float * x, void * vy, const int kx, const int ky, const int kx_padded, cudaStream_t stream) {
 | |
|     const int block_num_x = (kx_padded + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE;
 | |
|     const dim3 num_blocks(block_num_x, ky, 1);
 | |
|     const dim3 block_size(CUDA_DEQUANTIZE_BLOCK_SIZE, 1, 1);
 | |
|     quantize_q8_1<<<num_blocks, block_size, 0, stream>>>(x, vy, kx, kx_padded);
 | |
| }
 | |
| 
 | |
| template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
 | |
| static void dequantize_block_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int k, cudaStream_t stream) {
 | |
|     const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
 | |
|     dequantize_block<qk, qr, dequantize_kernel><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
 | |
| }
 | |
| 
 | |
| template<typename dst_t>
 | |
| static void dequantize_row_q2_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
 | |
|     const int nb = k / QK_K;
 | |
| #if QK_K == 256
 | |
|     dequantize_block_q2_K<<<nb, 64, 0, stream>>>(vx, y);
 | |
| #else
 | |
|     dequantize_block_q2_K<<<nb, 32, 0, stream>>>(vx, y);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| template<typename dst_t>
 | |
| static void dequantize_row_q3_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
 | |
|     const int nb = k / QK_K;
 | |
| #if QK_K == 256
 | |
|     dequantize_block_q3_K<<<nb, 64, 0, stream>>>(vx, y);
 | |
| #else
 | |
|     dequantize_block_q3_K<<<nb, 32, 0, stream>>>(vx, y);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| template<typename dst_t>
 | |
| static void dequantize_row_q4_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
 | |
|     const int nb = k / QK_K;
 | |
|     dequantize_block_q4_K<<<nb, 32, 0, stream>>>(vx, y);
 | |
| }
 | |
| 
 | |
| template<typename dst_t>
 | |
| static void dequantize_row_q5_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
 | |
|     const int nb = k / QK_K;
 | |
| #if QK_K == 256
 | |
|     dequantize_block_q5_K<<<nb, 64, 0, stream>>>(vx, y);
 | |
| #else
 | |
|     dequantize_block_q5_K<<<nb, 32, 0, stream>>>(vx, y);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| template<typename dst_t>
 | |
| static void dequantize_row_q6_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
 | |
|     const int nb = k / QK_K;
 | |
| #if QK_K == 256
 | |
|     dequantize_block_q6_K<<<nb, 64, 0, stream>>>(vx, y);
 | |
| #else
 | |
|     dequantize_block_q6_K<<<nb, 32, 0, stream>>>(vx, y);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
 | |
|     switch (type) {
 | |
|         case GGML_TYPE_Q4_0:
 | |
|             return dequantize_block_cuda<QK4_0, QR4_0, dequantize_q4_0>;
 | |
|         case GGML_TYPE_Q4_1:
 | |
|             return dequantize_block_cuda<QK4_1, QR4_1, dequantize_q4_1>;
 | |
|         case GGML_TYPE_Q5_0:
 | |
|             return dequantize_block_cuda<QK5_0, QR5_0, dequantize_q5_0>;
 | |
|         case GGML_TYPE_Q5_1:
 | |
|             return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
 | |
|         case GGML_TYPE_Q8_0:
 | |
|             return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
 | |
|         case GGML_TYPE_Q2_K:
 | |
|             return dequantize_row_q2_K_cuda;
 | |
|         case GGML_TYPE_Q3_K:
 | |
|             return dequantize_row_q3_K_cuda;
 | |
|         case GGML_TYPE_Q4_K:
 | |
|             return dequantize_row_q4_K_cuda;
 | |
|         case GGML_TYPE_Q5_K:
 | |
|             return dequantize_row_q5_K_cuda;
 | |
|         case GGML_TYPE_Q6_K:
 | |
|             return dequantize_row_q6_K_cuda;
 | |
|         case GGML_TYPE_F32:
 | |
|             return dequantize_block_cuda<1, 1, convert_f32>;
 | |
|         default:
 | |
|             return nullptr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
 | |
|     switch (type) {
 | |
|         case GGML_TYPE_Q4_0:
 | |
|             return dequantize_block_cuda<QK4_0, QR4_0, dequantize_q4_0>;
 | |
|         case GGML_TYPE_Q4_1:
 | |
|             return dequantize_block_cuda<QK4_1, QR4_1, dequantize_q4_1>;
 | |
|         case GGML_TYPE_Q5_0:
 | |
|             return dequantize_block_cuda<QK5_0, QR5_0, dequantize_q5_0>;
 | |
|         case GGML_TYPE_Q5_1:
 | |
|             return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
 | |
|         case GGML_TYPE_Q8_0:
 | |
|             return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
 | |
|         case GGML_TYPE_Q2_K:
 | |
|             return dequantize_row_q2_K_cuda;
 | |
|         case GGML_TYPE_Q3_K:
 | |
|             return dequantize_row_q3_K_cuda;
 | |
|         case GGML_TYPE_Q4_K:
 | |
|             return dequantize_row_q4_K_cuda;
 | |
|         case GGML_TYPE_Q5_K:
 | |
|             return dequantize_row_q5_K_cuda;
 | |
|         case GGML_TYPE_Q6_K:
 | |
|             return dequantize_row_q6_K_cuda;
 | |
|         case GGML_TYPE_F16:
 | |
|             return dequantize_block_cuda<1, 1, convert_f16>;
 | |
|         default:
 | |
|             return nullptr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
 | |
|     const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
 | |
|     // the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead
 | |
|     const dim3 block_nums(block_num_y, 1, 1);
 | |
|     const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
 | |
|     dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>
 | |
|         <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
 | |
|     const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
 | |
|     const dim3 block_nums(block_num_y, 1, 1);
 | |
|     const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
 | |
|     dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>
 | |
|         <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
 | |
|     const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
 | |
|     const dim3 block_nums(block_num_y, 1, 1);
 | |
|     const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
 | |
|     dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>
 | |
|         <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
 | |
|     const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
 | |
|     const dim3 block_nums(block_num_y, 1, 1);
 | |
|     const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
 | |
|     dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>
 | |
|         <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
 | |
|     const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
 | |
|     const dim3 block_nums(block_num_y, 1, 1);
 | |
|     const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
 | |
|     dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>
 | |
|         <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % QK_K == 0);
 | |
|     const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
 | |
|     const int block_num_y = (nrows + ny - 1) / ny;
 | |
|     const dim3 block_nums(block_num_y, 1, 1);
 | |
|     const dim3 block_dims(32, ny, 1);
 | |
|     dequantize_mul_mat_vec_q2_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % QK_K == 0);
 | |
|     const int ny = 2 / K_QUANTS_PER_ITERATION;
 | |
|     const int block_num_y = (nrows + ny - 1) / ny;
 | |
|     const dim3 block_nums(block_num_y, 1, 1);
 | |
|     const dim3 block_dims(32, ny, 1);
 | |
|     dequantize_mul_mat_vec_q3_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % QK_K == 0);
 | |
|     const int ny = 2 / K_QUANTS_PER_ITERATION;
 | |
|     const int block_num_y = (nrows + ny - 1) / ny;
 | |
|     const dim3 block_nums(block_num_y, 1, 1);
 | |
|     const dim3 block_dims(32, ny, 1);
 | |
|     dequantize_mul_mat_vec_q4_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % QK_K == 0);
 | |
|     const dim3 block_dims(32, 1, 1);
 | |
|     dequantize_mul_mat_vec_q5_k<<<nrows, block_dims, 0, stream>>>(vx, y, dst, ncols);
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % QK_K == 0);
 | |
|     const int ny = 2 / K_QUANTS_PER_ITERATION;
 | |
|     const int block_num_y = (nrows + ny - 1) / ny;
 | |
|     const dim3 block_nums(block_num_y, 1, 1);
 | |
|     const dim3 block_dims(32, ny, 1);
 | |
|     dequantize_mul_mat_vec_q6_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
 | |
| }
 | |
| 
 | |
| static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
 | |
|     const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
 | |
|     const dim3 block_nums(block_num_y, 1, 1);
 | |
|     const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
 | |
|     dequantize_mul_mat_vec<1, 1, convert_f16>
 | |
|         <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
 | |
| }
 | |
| 
 | |
| static void mul_mat_vec_q4_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % QK4_0 == 0);
 | |
|     const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
 | |
|     const dim3 block_nums(block_num_y, 1, 1);
 | |
|     const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
 | |
|     mul_mat_vec_q<QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
 | |
|         <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
 | |
| }
 | |
| 
 | |
| static void mul_mat_vec_q4_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % QK4_1 == 0);
 | |
|     const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
 | |
|     const dim3 block_nums(block_num_y, 1, 1);
 | |
|     const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
 | |
|     mul_mat_vec_q<QK4_0, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
 | |
|         <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
 | |
| }
 | |
| 
 | |
| static void mul_mat_vec_q5_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % QK5_0 == 0);
 | |
|     const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
 | |
|     const dim3 block_nums(block_num_y, 1, 1);
 | |
|     const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
 | |
|     mul_mat_vec_q<QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
 | |
|         <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
 | |
| }
 | |
| 
 | |
| static void mul_mat_vec_q5_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % QK5_1 == 0);
 | |
|     const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
 | |
|     const dim3 block_nums(block_num_y, 1, 1);
 | |
|     const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
 | |
|     mul_mat_vec_q<QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
 | |
|         <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
 | |
| }
 | |
| 
 | |
| static void mul_mat_vec_q8_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % QK8_0 == 0);
 | |
|     const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
 | |
|     const dim3 block_nums(block_num_y, 1, 1);
 | |
|     const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
 | |
|     mul_mat_vec_q<QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
 | |
|         <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
 | |
| }
 | |
| 
 | |
| static void mul_mat_vec_q2_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % QK_K == 0);
 | |
|     const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
 | |
|     const dim3 block_nums(block_num_y, 1, 1);
 | |
|     const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
 | |
|     mul_mat_vec_q<QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
 | |
|         <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
 | |
| }
 | |
| 
 | |
| static void mul_mat_vec_q3_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % QK_K == 0);
 | |
|     const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
 | |
|     const dim3 block_nums(block_num_y, 1, 1);
 | |
|     const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
 | |
|     mul_mat_vec_q<QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
 | |
|         <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
 | |
| }
 | |
| 
 | |
| static void mul_mat_vec_q4_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % QK_K == 0);
 | |
|     const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
 | |
|     const dim3 block_nums(block_num_y, 1, 1);
 | |
|     const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
 | |
|     mul_mat_vec_q<QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
 | |
|         <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
 | |
| }
 | |
| 
 | |
| static void mul_mat_vec_q5_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % QK_K == 0);
 | |
|     const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
 | |
|     const dim3 block_nums(block_num_y, 1, 1);
 | |
|     const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
 | |
|     mul_mat_vec_q<QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
 | |
|         <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
 | |
| }
 | |
| 
 | |
| static void mul_mat_vec_q6_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % QK_K == 0);
 | |
|     const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
 | |
|     const dim3 block_nums(block_num_y, 1, 1);
 | |
|     const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
 | |
|     mul_mat_vec_q<QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
 | |
|         <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
 | |
| }
 | |
| 
 | |
| static void ggml_mul_mat_q4_0_q8_1_cuda(
 | |
|     const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
 | |
|     const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
 | |
| 
 | |
|     int id;
 | |
|     CUDA_CHECK(cudaGetDevice(&id));
 | |
|     const int compute_capability = g_compute_capabilities[id];
 | |
| 
 | |
|     int mmq_x, mmq_y, nwarps;
 | |
|     if (compute_capability >= CC_RDNA2) {
 | |
|         mmq_x  =  MMQ_X_Q4_0_RDNA2;
 | |
|         mmq_y  =  MMQ_Y_Q4_0_RDNA2;
 | |
|         nwarps = NWARPS_Q4_0_RDNA2;
 | |
|     } else if (compute_capability >= CC_OFFSET_AMD) {
 | |
|         mmq_x  =  MMQ_X_Q4_0_RDNA1;
 | |
|         mmq_y  =  MMQ_Y_Q4_0_RDNA1;
 | |
|         nwarps = NWARPS_Q4_0_RDNA1;
 | |
|     } else if (compute_capability >= CC_VOLTA) {
 | |
|         mmq_x  =  MMQ_X_Q4_0_AMPERE;
 | |
|         mmq_y  =  MMQ_Y_Q4_0_AMPERE;
 | |
|         nwarps = NWARPS_Q4_0_AMPERE;
 | |
|     } else if (compute_capability >= MIN_CC_DP4A) {
 | |
|         mmq_x  =  MMQ_X_Q4_0_PASCAL;
 | |
|         mmq_y  =  MMQ_Y_Q4_0_PASCAL;
 | |
|         nwarps = NWARPS_Q4_0_PASCAL;
 | |
|     } else {
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| 
 | |
|     const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
 | |
|     const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
 | |
|     const dim3 block_nums(block_num_x, block_num_y, 1);
 | |
|     const dim3 block_dims(WARP_SIZE, nwarps, 1);
 | |
| 
 | |
|     if (nrows_x % mmq_y == 0) {
 | |
|         const bool need_check = false;
 | |
|         mul_mat_q4_0<need_check><<<block_nums, block_dims, 0, stream>>>
 | |
|             (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
|     } else {
 | |
|         const bool need_check = true;
 | |
|         mul_mat_q4_0<need_check><<<block_nums, block_dims, 0, stream>>>
 | |
|             (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_mul_mat_q4_1_q8_1_cuda(
 | |
|     const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
 | |
|     const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
 | |
| 
 | |
|     int id;
 | |
|     CUDA_CHECK(cudaGetDevice(&id));
 | |
|     const int compute_capability = g_compute_capabilities[id];
 | |
| 
 | |
|     int mmq_x, mmq_y, nwarps;
 | |
|     if (compute_capability >= CC_RDNA2) {
 | |
|         mmq_x  =  MMQ_X_Q4_1_RDNA2;
 | |
|         mmq_y  =  MMQ_Y_Q4_1_RDNA2;
 | |
|         nwarps = NWARPS_Q4_1_RDNA2;
 | |
|     } else if (compute_capability >= CC_OFFSET_AMD) {
 | |
|         mmq_x  =  MMQ_X_Q4_1_RDNA1;
 | |
|         mmq_y  =  MMQ_Y_Q4_1_RDNA1;
 | |
|         nwarps = NWARPS_Q4_1_RDNA1;
 | |
|     } else if (compute_capability >= CC_VOLTA) {
 | |
|         mmq_x  =  MMQ_X_Q4_1_AMPERE;
 | |
|         mmq_y  =  MMQ_Y_Q4_1_AMPERE;
 | |
|         nwarps = NWARPS_Q4_1_AMPERE;
 | |
|     } else if (compute_capability >= MIN_CC_DP4A) {
 | |
|         mmq_x  =  MMQ_X_Q4_1_PASCAL;
 | |
|         mmq_y  =  MMQ_Y_Q4_1_PASCAL;
 | |
|         nwarps = NWARPS_Q4_1_PASCAL;
 | |
|     } else {
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| 
 | |
|     const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
 | |
|     const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
 | |
|     const dim3 block_nums(block_num_x, block_num_y, 1);
 | |
|     const dim3 block_dims(WARP_SIZE, nwarps, 1);
 | |
| 
 | |
|     if (nrows_x % mmq_y == 0) {
 | |
|         const bool need_check = false;
 | |
|         mul_mat_q4_1<need_check><<<block_nums, block_dims, 0, stream>>>
 | |
|             (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
|     } else {
 | |
|         const bool need_check = true;
 | |
|         mul_mat_q4_1<need_check><<<block_nums, block_dims, 0, stream>>>
 | |
|             (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_mul_mat_q5_0_q8_1_cuda(
 | |
|     const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
 | |
|     const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
 | |
| 
 | |
|     int id;
 | |
|     CUDA_CHECK(cudaGetDevice(&id));
 | |
|     const int compute_capability = g_compute_capabilities[id];
 | |
| 
 | |
|     int mmq_x, mmq_y, nwarps;
 | |
|     if (compute_capability >= CC_RDNA2) {
 | |
|         mmq_x  =  MMQ_X_Q5_0_RDNA2;
 | |
|         mmq_y  =  MMQ_Y_Q5_0_RDNA2;
 | |
|         nwarps = NWARPS_Q5_0_RDNA2;
 | |
|     } else if (compute_capability >= CC_OFFSET_AMD) {
 | |
|         mmq_x  =  MMQ_X_Q5_0_RDNA1;
 | |
|         mmq_y  =  MMQ_Y_Q5_0_RDNA1;
 | |
|         nwarps = NWARPS_Q5_0_RDNA1;
 | |
|     } else if (compute_capability >= CC_VOLTA) {
 | |
|         mmq_x  =  MMQ_X_Q5_0_AMPERE;
 | |
|         mmq_y  =  MMQ_Y_Q5_0_AMPERE;
 | |
|         nwarps = NWARPS_Q5_0_AMPERE;
 | |
|     } else if (compute_capability >= MIN_CC_DP4A) {
 | |
|         mmq_x  =  MMQ_X_Q5_0_PASCAL;
 | |
|         mmq_y  =  MMQ_Y_Q5_0_PASCAL;
 | |
|         nwarps = NWARPS_Q5_0_PASCAL;
 | |
|     } else {
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| 
 | |
|     const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
 | |
|     const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
 | |
|     const dim3 block_nums(block_num_x, block_num_y, 1);
 | |
|     const dim3 block_dims(WARP_SIZE, nwarps, 1);
 | |
| 
 | |
|     if (nrows_x % mmq_y == 0) {
 | |
|         const bool need_check = false;
 | |
|         mul_mat_q5_0<need_check><<<block_nums, block_dims, 0, stream>>>
 | |
|             (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
|     } else {
 | |
|         const bool need_check = true;
 | |
|         mul_mat_q5_0<need_check><<<block_nums, block_dims, 0, stream>>>
 | |
|             (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_mul_mat_q5_1_q8_1_cuda(
 | |
|     const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
 | |
|     const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
 | |
| 
 | |
|     int id;
 | |
|     CUDA_CHECK(cudaGetDevice(&id));
 | |
|     const int compute_capability = g_compute_capabilities[id];
 | |
| 
 | |
|     int mmq_x, mmq_y, nwarps;
 | |
|     if (compute_capability >= CC_RDNA2) {
 | |
|         mmq_x  =  MMQ_X_Q5_1_RDNA2;
 | |
|         mmq_y  =  MMQ_Y_Q5_1_RDNA2;
 | |
|         nwarps = NWARPS_Q5_1_RDNA2;
 | |
|     } else if (compute_capability >= CC_OFFSET_AMD) {
 | |
|         mmq_x  =  MMQ_X_Q5_1_RDNA1;
 | |
|         mmq_y  =  MMQ_Y_Q5_1_RDNA1;
 | |
|         nwarps = NWARPS_Q5_1_RDNA1;
 | |
|     } else if (compute_capability >= CC_VOLTA) {
 | |
|         mmq_x  =  MMQ_X_Q5_1_AMPERE;
 | |
|         mmq_y  =  MMQ_Y_Q5_1_AMPERE;
 | |
|         nwarps = NWARPS_Q5_1_AMPERE;
 | |
|     } else if (compute_capability >= MIN_CC_DP4A) {
 | |
|         mmq_x  =  MMQ_X_Q5_1_PASCAL;
 | |
|         mmq_y  =  MMQ_Y_Q5_1_PASCAL;
 | |
|         nwarps = NWARPS_Q5_1_PASCAL;
 | |
|     } else {
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| 
 | |
|     const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
 | |
|     const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
 | |
|     const dim3 block_nums(block_num_x, block_num_y, 1);
 | |
|     const dim3 block_dims(WARP_SIZE, nwarps, 1);
 | |
| 
 | |
|     if (nrows_x % mmq_y == 0) {
 | |
|         const bool need_check = false;
 | |
|         mul_mat_q5_1<need_check><<<block_nums, block_dims, 0, stream>>>
 | |
|             (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
|     } else {
 | |
|         const bool need_check = true;
 | |
|         mul_mat_q5_1<need_check><<<block_nums, block_dims, 0, stream>>>
 | |
|             (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_mul_mat_q8_0_q8_1_cuda(
 | |
|     const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
 | |
|     const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
 | |
| 
 | |
|     int id;
 | |
|     CUDA_CHECK(cudaGetDevice(&id));
 | |
|     const int compute_capability = g_compute_capabilities[id];
 | |
| 
 | |
|     int mmq_x, mmq_y, nwarps;
 | |
|     if (compute_capability >= CC_RDNA2) {
 | |
|         mmq_x  =  MMQ_X_Q8_0_RDNA2;
 | |
|         mmq_y  =  MMQ_Y_Q8_0_RDNA2;
 | |
|         nwarps = NWARPS_Q8_0_RDNA2;
 | |
|     } else if (compute_capability >= CC_OFFSET_AMD) {
 | |
|         mmq_x  =  MMQ_X_Q8_0_RDNA1;
 | |
|         mmq_y  =  MMQ_Y_Q8_0_RDNA1;
 | |
|         nwarps = NWARPS_Q8_0_RDNA1;
 | |
|     } else if (compute_capability >= CC_VOLTA) {
 | |
|         mmq_x  =  MMQ_X_Q8_0_AMPERE;
 | |
|         mmq_y  =  MMQ_Y_Q8_0_AMPERE;
 | |
|         nwarps = NWARPS_Q8_0_AMPERE;
 | |
|     } else if (compute_capability >= MIN_CC_DP4A) {
 | |
|         mmq_x  =  MMQ_X_Q8_0_PASCAL;
 | |
|         mmq_y  =  MMQ_Y_Q8_0_PASCAL;
 | |
|         nwarps = NWARPS_Q8_0_PASCAL;
 | |
|     } else {
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| 
 | |
|     const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
 | |
|     const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
 | |
|     const dim3 block_nums(block_num_x, block_num_y, 1);
 | |
|     const dim3 block_dims(WARP_SIZE, nwarps, 1);
 | |
| 
 | |
|     if (nrows_x % mmq_y == 0) {
 | |
|         const bool need_check = false;
 | |
|         mul_mat_q8_0<need_check><<<block_nums, block_dims, 0, stream>>>
 | |
|             (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
|     } else {
 | |
|         const bool need_check = true;
 | |
|         mul_mat_q8_0<need_check><<<block_nums, block_dims, 0, stream>>>
 | |
|             (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_mul_mat_q2_K_q8_1_cuda(
 | |
|     const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
 | |
|     const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
 | |
| 
 | |
|     int id;
 | |
|     CUDA_CHECK(cudaGetDevice(&id));
 | |
|     const int compute_capability = g_compute_capabilities[id];
 | |
| 
 | |
|     int mmq_x, mmq_y, nwarps;
 | |
|     if (compute_capability >= CC_RDNA2) {
 | |
|         mmq_x  =  MMQ_X_Q2_K_RDNA2;
 | |
|         mmq_y  =  MMQ_Y_Q2_K_RDNA2;
 | |
|         nwarps = NWARPS_Q2_K_RDNA2;
 | |
|     } else if (compute_capability >= CC_OFFSET_AMD) {
 | |
|         mmq_x  =  MMQ_X_Q2_K_RDNA1;
 | |
|         mmq_y  =  MMQ_Y_Q2_K_RDNA1;
 | |
|         nwarps = NWARPS_Q2_K_RDNA1;
 | |
|     } else if (compute_capability >= CC_VOLTA) {
 | |
|         mmq_x  =  MMQ_X_Q2_K_AMPERE;
 | |
|         mmq_y  =  MMQ_Y_Q2_K_AMPERE;
 | |
|         nwarps = NWARPS_Q2_K_AMPERE;
 | |
|     } else if (compute_capability >= MIN_CC_DP4A) {
 | |
|         mmq_x  =  MMQ_X_Q2_K_PASCAL;
 | |
|         mmq_y  =  MMQ_Y_Q2_K_PASCAL;
 | |
|         nwarps = NWARPS_Q2_K_PASCAL;
 | |
|     } else {
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| 
 | |
|     const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
 | |
|     const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
 | |
|     const dim3 block_nums(block_num_x, block_num_y, 1);
 | |
|     const dim3 block_dims(WARP_SIZE, nwarps, 1);
 | |
| 
 | |
|     if (nrows_x % mmq_y == 0) {
 | |
|         const bool need_check = false;
 | |
|         mul_mat_q2_K<need_check><<<block_nums, block_dims, 0, stream>>>
 | |
|             (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
|     } else {
 | |
|         const bool need_check = true;
 | |
|         mul_mat_q2_K<need_check><<<block_nums, block_dims, 0, stream>>>
 | |
|             (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_mul_mat_q3_K_q8_1_cuda(
 | |
|     const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
 | |
|     const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
 | |
| 
 | |
| #if QK_K == 256
 | |
| 
 | |
|     int id;
 | |
|     CUDA_CHECK(cudaGetDevice(&id));
 | |
|     const int compute_capability = g_compute_capabilities[id];
 | |
| 
 | |
|     int mmq_x, mmq_y, nwarps;
 | |
|     if (compute_capability >= CC_RDNA2) {
 | |
|         mmq_x  =  MMQ_X_Q3_K_RDNA2;
 | |
|         mmq_y  =  MMQ_Y_Q3_K_RDNA2;
 | |
|         nwarps = NWARPS_Q3_K_RDNA2;
 | |
|     } else if (compute_capability >= CC_OFFSET_AMD) {
 | |
|         mmq_x  =  MMQ_X_Q3_K_RDNA1;
 | |
|         mmq_y  =  MMQ_Y_Q3_K_RDNA1;
 | |
|         nwarps = NWARPS_Q3_K_RDNA1;
 | |
|     } else if (compute_capability >= CC_VOLTA) {
 | |
|         mmq_x  =  MMQ_X_Q3_K_AMPERE;
 | |
|         mmq_y  =  MMQ_Y_Q3_K_AMPERE;
 | |
|         nwarps = NWARPS_Q3_K_AMPERE;
 | |
|     } else if (compute_capability >= MIN_CC_DP4A) {
 | |
|         mmq_x  =  MMQ_X_Q3_K_PASCAL;
 | |
|         mmq_y  =  MMQ_Y_Q3_K_PASCAL;
 | |
|         nwarps = NWARPS_Q3_K_PASCAL;
 | |
|     } else {
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| 
 | |
|     const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
 | |
|     const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
 | |
|     const dim3 block_nums(block_num_x, block_num_y, 1);
 | |
|     const dim3 block_dims(WARP_SIZE, nwarps, 1);
 | |
| 
 | |
|     if (nrows_x % mmq_y == 0) {
 | |
|         const bool need_check = false;
 | |
|         mul_mat_q3_K<need_check><<<block_nums, block_dims, 0, stream>>>
 | |
|             (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
|     } else {
 | |
|         const bool need_check = true;
 | |
|         mul_mat_q3_K<need_check><<<block_nums, block_dims, 0, stream>>>
 | |
|             (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void ggml_mul_mat_q4_K_q8_1_cuda(
 | |
|     const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
 | |
|     const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
 | |
| 
 | |
|     int id;
 | |
|     CUDA_CHECK(cudaGetDevice(&id));
 | |
|     const int compute_capability = g_compute_capabilities[id];
 | |
| 
 | |
|     int mmq_x, mmq_y, nwarps;
 | |
|     if (compute_capability >= CC_RDNA2) {
 | |
|         mmq_x  =  MMQ_X_Q4_K_RDNA2;
 | |
|         mmq_y  =  MMQ_Y_Q4_K_RDNA2;
 | |
|         nwarps = NWARPS_Q4_K_RDNA2;
 | |
|     } else if (compute_capability >= CC_OFFSET_AMD) {
 | |
|         mmq_x  =  MMQ_X_Q4_K_RDNA1;
 | |
|         mmq_y  =  MMQ_Y_Q4_K_RDNA1;
 | |
|         nwarps = NWARPS_Q4_K_RDNA1;
 | |
|     } else if (compute_capability >= CC_VOLTA) {
 | |
|         mmq_x  =  MMQ_X_Q4_K_AMPERE;
 | |
|         mmq_y  =  MMQ_Y_Q4_K_AMPERE;
 | |
|         nwarps = NWARPS_Q4_K_AMPERE;
 | |
|     } else if (compute_capability >= MIN_CC_DP4A) {
 | |
|         mmq_x  =  MMQ_X_Q4_K_PASCAL;
 | |
|         mmq_y  =  MMQ_Y_Q4_K_PASCAL;
 | |
|         nwarps = NWARPS_Q4_K_PASCAL;
 | |
|     } else {
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| 
 | |
|     const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
 | |
|     const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
 | |
|     const dim3 block_nums(block_num_x, block_num_y, 1);
 | |
|     const dim3 block_dims(WARP_SIZE, nwarps, 1);
 | |
| 
 | |
|     if (nrows_x % mmq_y == 0) {
 | |
|         const bool need_check = false;
 | |
|         mul_mat_q4_K<need_check><<<block_nums, block_dims, 0, stream>>>
 | |
|             (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
|     } else {
 | |
|         const bool need_check = true;
 | |
|         mul_mat_q4_K<need_check><<<block_nums, block_dims, 0, stream>>>
 | |
|             (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_mul_mat_q5_K_q8_1_cuda(
 | |
|     const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
 | |
|     const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
 | |
| 
 | |
|     int id;
 | |
|     CUDA_CHECK(cudaGetDevice(&id));
 | |
|     const int compute_capability = g_compute_capabilities[id];
 | |
| 
 | |
|     int mmq_x, mmq_y, nwarps;
 | |
|     if (compute_capability >= CC_RDNA2) {
 | |
|         mmq_x  =  MMQ_X_Q5_K_RDNA2;
 | |
|         mmq_y  =  MMQ_Y_Q5_K_RDNA2;
 | |
|         nwarps = NWARPS_Q5_K_RDNA2;
 | |
|     } else if (compute_capability >= CC_OFFSET_AMD) {
 | |
|         mmq_x  =  MMQ_X_Q5_K_RDNA1;
 | |
|         mmq_y  =  MMQ_Y_Q5_K_RDNA1;
 | |
|         nwarps = NWARPS_Q5_K_RDNA1;
 | |
|     } else if (compute_capability >= CC_VOLTA) {
 | |
|         mmq_x  =  MMQ_X_Q5_K_AMPERE;
 | |
|         mmq_y  =  MMQ_Y_Q5_K_AMPERE;
 | |
|         nwarps = NWARPS_Q5_K_AMPERE;
 | |
|     } else if (compute_capability >= MIN_CC_DP4A) {
 | |
|         mmq_x  =  MMQ_X_Q5_K_PASCAL;
 | |
|         mmq_y  =  MMQ_Y_Q5_K_PASCAL;
 | |
|         nwarps = NWARPS_Q5_K_PASCAL;
 | |
|     } else {
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| 
 | |
|     const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
 | |
|     const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
 | |
|     const dim3 block_nums(block_num_x, block_num_y, 1);
 | |
|     const dim3 block_dims(WARP_SIZE, nwarps, 1);
 | |
| 
 | |
|     if (nrows_x % mmq_y == 0) {
 | |
|         const bool need_check = false;
 | |
|         mul_mat_q5_K<need_check><<<block_nums, block_dims, 0, stream>>>
 | |
|             (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
|     } else {
 | |
|         const bool need_check = true;
 | |
|         mul_mat_q5_K<need_check><<<block_nums, block_dims, 0, stream>>>
 | |
|             (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_mul_mat_q6_K_q8_1_cuda(
 | |
|     const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
 | |
|     const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
 | |
| 
 | |
|     int id;
 | |
|     CUDA_CHECK(cudaGetDevice(&id));
 | |
|     const int compute_capability = g_compute_capabilities[id];
 | |
| 
 | |
|     int mmq_x, mmq_y, nwarps;
 | |
|     if (compute_capability >= CC_RDNA2) {
 | |
|         mmq_x  =  MMQ_X_Q6_K_RDNA2;
 | |
|         mmq_y  =  MMQ_Y_Q6_K_RDNA2;
 | |
|         nwarps = NWARPS_Q6_K_RDNA2;
 | |
|     } else if (compute_capability >= CC_OFFSET_AMD) {
 | |
|         mmq_x  =  MMQ_X_Q6_K_RDNA1;
 | |
|         mmq_y  =  MMQ_Y_Q6_K_RDNA1;
 | |
|         nwarps = NWARPS_Q6_K_RDNA1;
 | |
|     } else if (compute_capability >= CC_VOLTA) {
 | |
|         mmq_x  =  MMQ_X_Q6_K_AMPERE;
 | |
|         mmq_y  =  MMQ_Y_Q6_K_AMPERE;
 | |
|         nwarps = NWARPS_Q6_K_AMPERE;
 | |
|     } else if (compute_capability >= MIN_CC_DP4A) {
 | |
|         mmq_x  =  MMQ_X_Q6_K_PASCAL;
 | |
|         mmq_y  =  MMQ_Y_Q6_K_PASCAL;
 | |
|         nwarps = NWARPS_Q6_K_PASCAL;
 | |
|     } else {
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| 
 | |
|     const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
 | |
|     const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
 | |
|     const dim3 block_nums(block_num_x, block_num_y, 1);
 | |
|     const dim3 block_dims(WARP_SIZE, nwarps, 1);
 | |
| 
 | |
|     if (nrows_x % mmq_y == 0) {
 | |
|         const bool need_check = false;
 | |
|         mul_mat_q6_K<need_check><<<block_nums, block_dims, 0, stream>>>
 | |
|             (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
|     } else {
 | |
|         const bool need_check = true;
 | |
|         mul_mat_q6_K<need_check><<<block_nums, block_dims, 0, stream>>>
 | |
|             (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_mul_mat_p021_f16_f32_cuda(
 | |
|     const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x,
 | |
|     const int nchannels_x, const int nchannels_y, cudaStream_t stream) {
 | |
| 
 | |
|     const dim3 block_nums(1, nrows_x, nchannels_y);
 | |
|     const dim3 block_dims(WARP_SIZE, 1, 1);
 | |
|     mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x, nchannels_y);
 | |
| }
 | |
| 
 | |
| static void ggml_mul_mat_vec_nc_f16_f32_cuda(
 | |
|     const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
 | |
|     const int nchannels_x, const int nchannels_y, const int channel_stride_x, cudaStream_t stream) {
 | |
| 
 | |
|     const dim3 block_nums(1, nrows_x, nchannels_y);
 | |
|     const dim3 block_dims(WARP_SIZE, 1, 1);
 | |
|     mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
 | |
|         (vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y/nchannels_x);
 | |
| }
 | |
| 
 | |
| static void ggml_cpy_f32_f32_cuda(
 | |
|     const char * cx, char * cdst, const int ne,
 | |
|     const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
 | |
|     const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
 | |
| 
 | |
|     const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
 | |
|     cpy_f32_f16<cpy_1_f32_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
 | |
|         (cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
 | |
| }
 | |
| 
 | |
| static void ggml_cpy_f32_f16_cuda(
 | |
|     const char * cx, char * cdst, const int ne,
 | |
|     const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
 | |
|     const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
 | |
| 
 | |
|     const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
 | |
|     cpy_f32_f16<cpy_1_f32_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
 | |
|         (cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
 | |
| }
 | |
| 
 | |
| static void ggml_cpy_f32_q8_0_cuda(
 | |
|     const char * cx, char * cdst, const int ne,
 | |
|     const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
 | |
|     const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
 | |
| 
 | |
|     GGML_ASSERT(ne % QK8_0 == 0);
 | |
|     const int num_blocks = ne / QK8_0;
 | |
|     cpy_f32_q<cpy_blck_f32_q8_0, QK8_0><<<num_blocks, 1, 0, stream>>>
 | |
|         (cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
 | |
| }
 | |
| 
 | |
| static void ggml_cpy_f32_q4_0_cuda(
 | |
|     const char * cx, char * cdst, const int ne,
 | |
|     const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
 | |
|     const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
 | |
| 
 | |
|     GGML_ASSERT(ne % QK4_0 == 0);
 | |
|     const int num_blocks = ne / QK4_0;
 | |
|     cpy_f32_q<cpy_blck_f32_q4_0, QK4_0><<<num_blocks, 1, 0, stream>>>
 | |
|         (cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
 | |
| }
 | |
| 
 | |
| static void ggml_cpy_f32_q4_1_cuda(
 | |
|     const char * cx, char * cdst, const int ne,
 | |
|     const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
 | |
|     const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
 | |
| 
 | |
|     GGML_ASSERT(ne % QK4_1 == 0);
 | |
|     const int num_blocks = ne / QK4_1;
 | |
|     cpy_f32_q<cpy_blck_f32_q4_1, QK4_1><<<num_blocks, 1, 0, stream>>>
 | |
|         (cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
 | |
| }
 | |
| 
 | |
| static void ggml_cpy_f16_f16_cuda(
 | |
|     const char * cx, char * cdst, const int ne,
 | |
|     const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
 | |
|     const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
 | |
| 
 | |
|     const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
 | |
|     cpy_f32_f16<cpy_1_f16_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
 | |
|         (cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
 | |
| }
 | |
| 
 | |
| static void scale_f32_cuda(const float * x, float * dst, const float scale, const int k, cudaStream_t stream) {
 | |
|     const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
 | |
|     scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
 | |
| }
 | |
| 
 | |
| static void clamp_f32_cuda(const float * x, float * dst, const float min, const float max, const int k, cudaStream_t stream) {
 | |
|     const int num_blocks = (k + CUDA_CLAMP_BLOCK_SIZE - 1) / CUDA_CLAMP_BLOCK_SIZE;
 | |
|     clamp_f32<<<num_blocks, CUDA_CLAMP_BLOCK_SIZE, 0, stream>>>(x, dst, min, max, k);
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| static void rope_cuda(
 | |
|     const T * x, T * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
 | |
|     float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
 | |
| ) {
 | |
|     GGML_ASSERT(ncols % 2 == 0);
 | |
|     const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
 | |
|     const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
 | |
|     const dim3 block_nums(nrows, num_blocks_x, 1);
 | |
|     if (pos == nullptr) {
 | |
|         rope<T, false><<<block_nums, block_dims, 0, stream>>>(
 | |
|             x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
 | |
|         );
 | |
|     } else {
 | |
|         rope<T, true><<<block_nums, block_dims, 0, stream>>>(
 | |
|             x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
 | |
|         );
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| static void rope_neox_cuda(
 | |
|     const T * x, T * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
 | |
|     float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
 | |
| ) {
 | |
|     GGML_ASSERT(ncols % 2 == 0);
 | |
|     const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
 | |
|     const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
 | |
|     const dim3 block_nums(nrows, num_blocks_x, 1);
 | |
| 
 | |
|     const float theta_scale = powf(freq_base, -2.0f/n_dims);
 | |
|     const float inv_ndims = -1.0f / n_dims;
 | |
| 
 | |
|     if (pos == nullptr) {
 | |
|         rope_neox<T, false><<<block_nums, block_dims, 0, stream>>>(
 | |
|             x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
 | |
|             theta_scale, inv_ndims
 | |
|         );
 | |
|     } else {
 | |
|         rope_neox<T, true><<<block_nums, block_dims, 0, stream>>>(
 | |
|             x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
 | |
|             theta_scale, inv_ndims
 | |
|         );
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void rope_glm_f32_cuda(
 | |
|     const float * x, float * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
 | |
|     float freq_base, int n_ctx, cudaStream_t stream
 | |
| ) {
 | |
|     GGML_ASSERT(ncols % 4 == 0);
 | |
|     const dim3 block_dims(CUDA_ROPE_BLOCK_SIZE/4, 1, 1);
 | |
|     const int num_blocks_x = (ncols + CUDA_ROPE_BLOCK_SIZE - 1) / CUDA_ROPE_BLOCK_SIZE;
 | |
|     const dim3 block_nums(num_blocks_x, nrows, 1);
 | |
|     rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, n_ctx);
 | |
| }
 | |
| 
 | |
| static void alibi_f32_cuda(const float * x, float * dst, const int ncols, const int nrows,
 | |
|                            const int k_rows, const int n_heads_log2_floor, const float m0,
 | |
|                            const float m1, cudaStream_t stream) {
 | |
|     const dim3 block_dims(CUDA_ALIBI_BLOCK_SIZE, 1, 1);
 | |
|     const int num_blocks_x = (ncols + CUDA_ALIBI_BLOCK_SIZE - 1) / (CUDA_ALIBI_BLOCK_SIZE);
 | |
|     const dim3 block_nums(num_blocks_x, nrows, 1);
 | |
|     alibi_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, k_rows, n_heads_log2_floor, m0, m1);
 | |
| }
 | |
| 
 | |
| static void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     const dim3 block_dims(WARP_SIZE, 1, 1);
 | |
|     const dim3 block_nums(1, nrows, 1);
 | |
|     k_sum_rows_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
 | |
| }
 | |
| 
 | |
| static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) {
 | |
|     // bitonic sort requires ncols to be power of 2
 | |
|     GGML_ASSERT((ncols & (ncols - 1)) == 0);
 | |
| 
 | |
|     const dim3 block_dims(ncols, 1, 1);
 | |
|     const dim3 block_nums(1, nrows, 1);
 | |
|     if (order == GGML_SORT_ASC) {
 | |
|         k_argsort_f32_i32<GGML_SORT_ASC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
 | |
|     } else if (order == GGML_SORT_DESC) {
 | |
|         k_argsort_f32_i32<GGML_SORT_DESC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
 | |
|     } else {
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, const int rows_per_channel, const int n_past, cudaStream_t stream) {
 | |
|     const dim3 block_dims(1, CUDA_DIAG_MASK_INF_BLOCK_SIZE, 1);
 | |
|     const int block_num_x = (ncols_x + CUDA_DIAG_MASK_INF_BLOCK_SIZE - 1) / CUDA_DIAG_MASK_INF_BLOCK_SIZE;
 | |
|     const dim3 block_nums(nrows_x, block_num_x, 1);
 | |
|     diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past);
 | |
| }
 | |
| 
 | |
| static void soft_max_f32_cuda(const float * x, const float * y, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, cudaStream_t stream) {
 | |
|     int nth = WARP_SIZE;
 | |
|     while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
 | |
|     const dim3 block_dims(nth,     1, 1);
 | |
|     const dim3 block_nums(nrows_x, 1, 1);
 | |
|     soft_max_f32<<<block_nums, block_dims, 0, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
 | |
| }
 | |
| 
 | |
| static void im2col_f32_f16_cuda(const float* x, half* dst,
 | |
|     int IW, int IH, int OW, int OH, int KW, int KH, int IC,
 | |
|     int offset_delta,
 | |
|     int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
 | |
|     const int parallel_elements = OW * KW * KH;
 | |
|     const int num_blocks = (parallel_elements + CUDA_IM2COL_BLOCK_SIZE - 1) / CUDA_IM2COL_BLOCK_SIZE;
 | |
|     dim3 block_nums(num_blocks, OH, IC);
 | |
|     im2col_f32_f16<<<block_nums, CUDA_IM2COL_BLOCK_SIZE, 0, stream>>>(x, dst, offset_delta, IW, IH, OW, KW, KH, parallel_elements, (IC * KH * KW), s0, s1, p0, p1, d0, d1);
 | |
| }
 | |
| 
 | |
| // buffer pool for cuda
 | |
| #define MAX_CUDA_BUFFERS 256
 | |
| 
 | |
| struct scoped_spin_lock {
 | |
|     std::atomic_flag& lock;
 | |
|     scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
 | |
|         while (lock.test_and_set(std::memory_order_acquire)) {
 | |
|             ; // spin
 | |
|         }
 | |
|     }
 | |
|     ~scoped_spin_lock() {
 | |
|         lock.clear(std::memory_order_release);
 | |
|     }
 | |
|     scoped_spin_lock(const scoped_spin_lock&) = delete;
 | |
|     scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
 | |
| };
 | |
| 
 | |
| struct cuda_buffer {
 | |
|     void * ptr = nullptr;
 | |
|     size_t size = 0;
 | |
| };
 | |
| 
 | |
| static cuda_buffer g_cuda_buffer_pool[GGML_CUDA_MAX_DEVICES][MAX_CUDA_BUFFERS];
 | |
| static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT;
 | |
| 
 | |
| static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
 | |
|     scoped_spin_lock lock(g_cuda_pool_lock);
 | |
|     int id;
 | |
|     CUDA_CHECK(cudaGetDevice(&id));
 | |
| #ifdef DEBUG_CUDA_MALLOC
 | |
|     int nnz = 0;
 | |
|     size_t max_size = 0, tot_size = 0;
 | |
| #endif
 | |
|     size_t best_diff = 1ull << 36;
 | |
|     int ibest = -1;
 | |
|     for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
 | |
|         cuda_buffer& b = g_cuda_buffer_pool[id][i];
 | |
|         if (b.ptr != nullptr) {
 | |
| #ifdef DEBUG_CUDA_MALLOC
 | |
|             ++nnz;
 | |
|             tot_size += b.size;
 | |
|             if (b.size > max_size) max_size = b.size;
 | |
| #endif
 | |
|             if (b.size >= size) {
 | |
|                 size_t diff = b.size - size;
 | |
|                 if (diff < best_diff) {
 | |
|                     best_diff = diff;
 | |
|                     ibest = i;
 | |
|                     if (!best_diff) {
 | |
|                         void * ptr = b.ptr;
 | |
|                         *actual_size = b.size;
 | |
|                         b.ptr = nullptr;
 | |
|                         b.size = 0;
 | |
|                         return ptr;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (ibest >= 0) {
 | |
|         cuda_buffer& b = g_cuda_buffer_pool[id][ibest];
 | |
|         void * ptr = b.ptr;
 | |
|         *actual_size = b.size;
 | |
|         b.ptr = nullptr;
 | |
|         b.size = 0;
 | |
|         return ptr;
 | |
|     }
 | |
| #ifdef DEBUG_CUDA_MALLOC
 | |
|     fprintf(stderr, "%s: %d buffers, max_size = %u MB, tot_size = %u MB, requested %u MB\n", __func__, nnz,
 | |
|             (uint32_t)(max_size/1024/1024), (uint32_t)(tot_size/1024/1024), (uint32_t)(size/1024/1024));
 | |
| #endif
 | |
|     void * ptr;
 | |
|     size_t look_ahead_size = (size_t) (1.05 * size);
 | |
|     look_ahead_size = 256 * ((look_ahead_size + 255)/256);
 | |
|     CUDA_CHECK(cudaMalloc((void **) &ptr, look_ahead_size));
 | |
|     *actual_size = look_ahead_size;
 | |
|     return ptr;
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_pool_free(void * ptr, size_t size) {
 | |
|     scoped_spin_lock lock(g_cuda_pool_lock);
 | |
|     int id;
 | |
|     CUDA_CHECK(cudaGetDevice(&id));
 | |
| 
 | |
|     for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
 | |
|         cuda_buffer& b = g_cuda_buffer_pool[id][i];
 | |
|         if (b.ptr == nullptr) {
 | |
|             b.ptr = ptr;
 | |
|             b.size = size;
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
 | |
|     CUDA_CHECK(cudaFree(ptr));
 | |
| }
 | |
| 
 | |
| static bool g_cublas_loaded = false;
 | |
| 
 | |
| bool ggml_cublas_loaded(void) {
 | |
|     return g_cublas_loaded;
 | |
| }
 | |
| 
 | |
| void ggml_init_cublas() {
 | |
|     static bool initialized = false;
 | |
| 
 | |
|     if (!initialized) {
 | |
| 
 | |
| #ifdef __HIP_PLATFORM_AMD__
 | |
|         // Workaround for a rocBLAS bug when using multiple graphics cards:
 | |
|         // https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1346
 | |
|         rocblas_initialize();
 | |
|         CUDA_CHECK(cudaDeviceSynchronize());
 | |
| #endif
 | |
| 
 | |
|         if (cudaGetDeviceCount(&g_device_count) != cudaSuccess) {
 | |
|             initialized = true;
 | |
|             g_cublas_loaded = false;
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         GGML_ASSERT(g_device_count <= GGML_CUDA_MAX_DEVICES);
 | |
|         int64_t total_vram = 0;
 | |
| #if defined(GGML_CUDA_FORCE_MMQ)
 | |
|         fprintf(stderr, "%s: GGML_CUDA_FORCE_MMQ:   yes\n", __func__);
 | |
| #else
 | |
|         fprintf(stderr, "%s: GGML_CUDA_FORCE_MMQ:   no\n", __func__);
 | |
| #endif
 | |
| #if defined(CUDA_USE_TENSOR_CORES)
 | |
|         fprintf(stderr, "%s: CUDA_USE_TENSOR_CORES: yes\n", __func__);
 | |
| #else
 | |
|         fprintf(stderr, "%s: CUDA_USE_TENSOR_CORES: no\n", __func__);
 | |
| #endif
 | |
|         fprintf(stderr, "%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, g_device_count);
 | |
|         for (int id = 0; id < g_device_count; ++id) {
 | |
|             cudaDeviceProp prop;
 | |
|             CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
 | |
|             fprintf(stderr, "  Device %d: %s, compute capability %d.%d\n", id, prop.name, prop.major, prop.minor);
 | |
| 
 | |
|             g_tensor_split[id] = total_vram;
 | |
|             total_vram += prop.totalGlobalMem;
 | |
| #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
|             g_compute_capabilities[id] = 100*prop.major + 10*prop.minor + CC_OFFSET_AMD;
 | |
| #else
 | |
|             g_compute_capabilities[id] = 100*prop.major + 10*prop.minor;
 | |
| #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
|         }
 | |
|         for (int id = 0; id < g_device_count; ++id) {
 | |
|             g_tensor_split[id] /= total_vram;
 | |
|         }
 | |
| 
 | |
|         for (int id = 0; id < g_device_count; ++id) {
 | |
|             CUDA_CHECK(ggml_cuda_set_device(id));
 | |
| 
 | |
|             // create cuda streams
 | |
|             for (int is = 0; is < MAX_STREAMS; ++is) {
 | |
|                 CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams[id][is], cudaStreamNonBlocking));
 | |
|             }
 | |
| 
 | |
|             // create cublas handle
 | |
|             CUBLAS_CHECK(cublasCreate(&g_cublas_handles[id]));
 | |
|             CUBLAS_CHECK(cublasSetMathMode(g_cublas_handles[id], CUBLAS_TF32_TENSOR_OP_MATH));
 | |
|         }
 | |
| 
 | |
|         // configure logging to stdout
 | |
|         // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
 | |
| 
 | |
|         initialized = true;
 | |
|         g_cublas_loaded = true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void ggml_cuda_set_tensor_split(const float * tensor_split) {
 | |
|     if (tensor_split == nullptr) {
 | |
|         return;
 | |
|     }
 | |
|     bool all_zero = true;
 | |
|     for (int i = 0; i < g_device_count; ++i) {
 | |
|         if (tensor_split[i] != 0.0f) {
 | |
|             all_zero = false;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     if (all_zero) {
 | |
|         return;
 | |
|     }
 | |
|     float split_sum = 0.0f;
 | |
|     for (int i = 0; i < g_device_count; ++i) {
 | |
|         g_tensor_split[i] = split_sum;
 | |
|         split_sum += tensor_split[i];
 | |
|     }
 | |
|     for (int i = 0; i < g_device_count; ++i) {
 | |
|         g_tensor_split[i] /= split_sum;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void * ggml_cuda_host_malloc(size_t size) {
 | |
|     if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     void * ptr = nullptr;
 | |
|     cudaError_t err = cudaMallocHost((void **) &ptr, size);
 | |
|     if (err != cudaSuccess) {
 | |
|         // The allocation error can be bypassed. A null ptr will assigned out of this function.
 | |
|         // This can fixed the OOM error in WSL.
 | |
|         cudaGetLastError();
 | |
|         fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
 | |
|             size/1024.0/1024.0, cudaGetErrorString(err));
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     return ptr;
 | |
| }
 | |
| 
 | |
| void ggml_cuda_host_free(void * ptr) {
 | |
|     CUDA_CHECK(cudaFreeHost(ptr));
 | |
| }
 | |
| 
 | |
| static cudaError_t ggml_cuda_cpy_tensor_2d(
 | |
|     void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {
 | |
| 
 | |
|     cudaMemcpyKind kind;
 | |
|     char * src_ptr;
 | |
|     if (src->backend == GGML_BACKEND_CPU) {
 | |
|         kind = cudaMemcpyHostToDevice;
 | |
|         src_ptr = (char *) src->data;
 | |
|     } else if (src->backend == GGML_BACKEND_GPU || src->backend == GGML_BACKEND_GPU_SPLIT) {
 | |
|         GGML_ASSERT(src->backend != GGML_BACKEND_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1]));
 | |
|         kind = cudaMemcpyDeviceToDevice;
 | |
|         ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
 | |
|         int id;
 | |
|         CUDA_CHECK(cudaGetDevice(&id));
 | |
|         src_ptr = (char *) extra->data_device[id];
 | |
|     } else {
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
|     char * dst_ptr = (char *) dst;
 | |
| 
 | |
|     const int64_t ne0 = src->ne[0];
 | |
|     const int64_t nb0 = src->nb[0];
 | |
|     const int64_t nb1 = src->nb[1];
 | |
|     const int64_t nb2 = src->nb[2];
 | |
|     const int64_t nb3 = src->nb[3];
 | |
|     const enum ggml_type type = src->type;
 | |
|     const int64_t ts = ggml_type_size(type);
 | |
|     const int64_t bs = ggml_blck_size(type);
 | |
|     int64_t i1_diff = i1_high - i1_low;
 | |
| 
 | |
|     const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
 | |
|     if (nb0 == ts && nb1 == ts*ne0/bs) {
 | |
|         return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, kind, stream);
 | |
|     } else if (nb0 == ts) {
 | |
|         return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, kind, stream);
 | |
|     } else {
 | |
|         for (int64_t i1 = 0; i1 < i1_diff; i1++) {
 | |
|             const void * rx = (const void *) ((const char *) x + i1*nb1);
 | |
|             void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
 | |
|             // pretend the row is a matrix with cols=1
 | |
|             cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, kind, stream);
 | |
|             if (r != cudaSuccess) return r;
 | |
|         }
 | |
|         return cudaSuccess;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_op_get_rows(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
 | |
|     const float * src0_d, const float * src1_d, float * dst_d, const cudaStream_t & stream) {
 | |
| 
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_I32);
 | |
|     GGML_ASSERT(dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
 | |
|     GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
 | |
|     GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
 | |
| 
 | |
|     const int32_t * src1_i32 = (const int32_t *) src1_d;
 | |
| 
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F16:
 | |
|             get_rows_cuda_float(src0, src1, dst, (const half *)src0_d, src1_i32, dst_d, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_F32:
 | |
|             get_rows_cuda_float(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q4_0:
 | |
|             get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q4_1:
 | |
|             get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q5_0:
 | |
|             get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q5_1:
 | |
|             get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q8_0:
 | |
|             get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
 | |
|             break;
 | |
|         default:
 | |
|             // TODO: k-quants
 | |
|             fprintf(stderr, "%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
 | |
|             GGML_ASSERT(false);
 | |
|             break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<class op>
 | |
| inline void ggml_cuda_op_bin_bcast(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
 | |
|     const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | |
| 
 | |
|     if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
 | |
|         op()(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
 | |
|     } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
 | |
|         op()(src0, src1, dst, (const half *) src0_dd, src1_dd, (half *) dst_dd, main_stream);
 | |
|     } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
 | |
|         op()(src0, src1, dst, (const half *) src0_dd, src1_dd, dst_dd, main_stream);
 | |
|     } else {
 | |
|         fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
 | |
|             ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_op_repeat(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
 | |
|     const float * src0_d, const float * src1_d, float * dst_d, const cudaStream_t & main_stream) {
 | |
| 
 | |
|     ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_repeat>>(dst, src0, dst, nullptr, src0_d, dst_d, main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) src1_d;
 | |
| }
 | |
| 
 | |
| inline void ggml_cuda_op_add(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
 | |
|     const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
 | |
| 
 | |
|     ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_add>>(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
 | |
| }
 | |
| 
 | |
| inline void ggml_cuda_op_acc(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
 | |
|     const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported
 | |
| 
 | |
|     int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
 | |
|     int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
 | |
|     // int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
 | |
|     int offset = dst->op_params[3] / 4; // offset in bytes
 | |
| 
 | |
|     acc_f32_cuda(src0_dd, src1_dd, dst_dd, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], nb1, nb2, offset, main_stream);
 | |
| 
 | |
|     (void) dst;
 | |
| }
 | |
| 
 | |
| inline void ggml_cuda_op_mul(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
 | |
|     const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
 | |
| 
 | |
|     ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_mul>>(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
 | |
| }
 | |
| 
 | |
| inline void ggml_cuda_op_div(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
 | |
|     const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
 | |
| 
 | |
|     ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_div>>(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
 | |
| }
 | |
| 
 | |
| inline void ggml_cuda_op_gelu(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
 | |
|     const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     gelu_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_cuda_op_silu(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
 | |
|     const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     silu_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_cuda_op_gelu_quick(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
 | |
|     const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     gelu_quick_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_cuda_op_tanh(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
 | |
|     const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     tanh_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_cuda_op_relu(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
 | |
|     const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     relu_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_cuda_op_leaky_relu(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
 | |
|     const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     float negative_slope;
 | |
|     memcpy(&negative_slope, dst->op_params, sizeof(float));
 | |
| 
 | |
|     leaky_relu_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), negative_slope, main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_cuda_op_sqr(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
 | |
|     const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     sqr_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_cuda_op_norm(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
 | |
|     const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t nrows = ggml_nrows(src0);
 | |
| 
 | |
|     float eps;
 | |
|     memcpy(&eps, dst->op_params, sizeof(float));
 | |
| 
 | |
|     norm_f32_cuda(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline void ggml_cuda_op_group_norm(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
 | |
|     const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     int num_groups = dst->op_params[0];
 | |
|     int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
 | |
|     group_norm_f32_cuda(src0_dd, dst_dd, num_groups, group_size, src0->ne[0] * src0->ne[1] * src0->ne[2], main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_cuda_op_concat(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
 | |
|     const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT(dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     for (int i3 = 0; i3 < dst->ne[3]; i3++) {
 | |
|         concat_f32_cuda(src0_dd + i3 * (src0->nb[3] / 4), src1_dd + i3 * (src1->nb[3] / 4), dst_dd + i3 * (dst->nb[3] / 4), dst->ne[0], dst->ne[1], dst->ne[2], src0->ne[2], main_stream);
 | |
|     }
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
| }
 | |
| 
 | |
| inline void ggml_cuda_op_upscale(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
 | |
|     const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT(dst->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
 | |
| 
 | |
|     const int scale_factor = dst->op_params[0];
 | |
| 
 | |
|     upscale_f32_cuda(src0_dd, dst_dd, src0->ne[0], src0->ne[1], src0->ne[2], scale_factor, main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_cuda_op_pad(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
 | |
|     const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT(dst->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
 | |
| 
 | |
|     pad_f32_cuda(src0_dd, dst_dd,
 | |
|         src0->ne[0], src0->ne[1], src0->ne[2],
 | |
|         dst->ne[0], dst->ne[1], dst->ne[2], main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_cuda_op_rms_norm(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
 | |
|     const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t nrows = ggml_nrows(src0);
 | |
| 
 | |
|     float eps;
 | |
|     memcpy(&eps, dst->op_params, sizeof(float));
 | |
| 
 | |
|     rms_norm_f32_cuda(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_cuda_op_mul_mat_q(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
 | |
|     const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
 | |
|     const int64_t src1_padded_row_size, const cudaStream_t & stream) {
 | |
| 
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
| 
 | |
|     const int64_t ne10 = src1->ne[0];
 | |
|     GGML_ASSERT(ne10 % QK8_1 == 0);
 | |
| 
 | |
|     const int64_t ne0 = dst->ne[0];
 | |
| 
 | |
|     const int64_t row_diff = row_high - row_low;
 | |
| 
 | |
|     int id;
 | |
|     CUDA_CHECK(cudaGetDevice(&id));
 | |
| 
 | |
|     // the main device has a larger memory buffer to hold the results from all GPUs
 | |
|     // nrows_dst == nrows of the matrix that the dequantize_mul_mat kernel writes into
 | |
|     const int64_t nrows_dst = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : row_diff;
 | |
| 
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_Q4_0:
 | |
|             ggml_mul_mat_q4_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q4_1:
 | |
|             ggml_mul_mat_q4_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q5_0:
 | |
|             ggml_mul_mat_q5_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q5_1:
 | |
|             ggml_mul_mat_q5_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q8_0:
 | |
|             ggml_mul_mat_q8_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q2_K:
 | |
|             ggml_mul_mat_q2_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q3_K:
 | |
|             ggml_mul_mat_q3_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q4_K:
 | |
|             ggml_mul_mat_q4_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q5_K:
 | |
|             ggml_mul_mat_q5_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q6_K:
 | |
|             ggml_mul_mat_q6_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
 | |
|             break;
 | |
|         default:
 | |
|             GGML_ASSERT(false);
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_ddf_i;
 | |
| }
 | |
| 
 | |
| static int64_t get_row_rounding(ggml_type type) {
 | |
|     int64_t min_compute_capability = INT_MAX;
 | |
|     int64_t max_compute_capability = INT_MIN;
 | |
|     for (int64_t id = 0; id < g_device_count; ++id) {
 | |
|         if (g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) {
 | |
|             if (min_compute_capability > g_compute_capabilities[id]) {
 | |
|                 min_compute_capability = g_compute_capabilities[id];
 | |
|             }
 | |
|             if (max_compute_capability < g_compute_capabilities[id]) {
 | |
|                 max_compute_capability = g_compute_capabilities[id];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
|     switch(type) {
 | |
|         case GGML_TYPE_Q4_0:
 | |
|         case GGML_TYPE_Q4_1:
 | |
|         case GGML_TYPE_Q5_0:
 | |
|         case GGML_TYPE_Q5_1:
 | |
|         case GGML_TYPE_Q8_0:
 | |
|             return max_compute_capability >= CC_RDNA2 ? 128 : 64;
 | |
|         case GGML_TYPE_F16:
 | |
|         case GGML_TYPE_F32:
 | |
|             return 1;
 | |
|         case GGML_TYPE_Q2_K:
 | |
|             return max_compute_capability >= CC_RDNA2 ? 128 : 32;
 | |
|         case GGML_TYPE_Q3_K:
 | |
|             return min_compute_capability < CC_RDNA2 ? 128 : 64;
 | |
|         case GGML_TYPE_Q4_K:
 | |
|         case GGML_TYPE_Q5_K:
 | |
|         case GGML_TYPE_Q6_K:
 | |
|             return max_compute_capability >= CC_RDNA2 ? 128 : 64;
 | |
|         default:
 | |
|             GGML_ASSERT(false);
 | |
|     }
 | |
| #else
 | |
|     switch(type) {
 | |
|         case GGML_TYPE_Q4_0:
 | |
|         case GGML_TYPE_Q4_1:
 | |
|             return max_compute_capability >= CC_VOLTA ? 128 : 64;
 | |
|         case GGML_TYPE_Q5_0:
 | |
|         case GGML_TYPE_Q5_1:
 | |
|         case GGML_TYPE_Q8_0:
 | |
|             return 64;
 | |
|         case GGML_TYPE_F16:
 | |
|         case GGML_TYPE_F32:
 | |
|             return 1;
 | |
|         case GGML_TYPE_Q2_K:
 | |
|         case GGML_TYPE_Q3_K:
 | |
|         case GGML_TYPE_Q4_K:
 | |
|         case GGML_TYPE_Q5_K:
 | |
|             return max_compute_capability >= CC_VOLTA ? 128 : 64;
 | |
|         case GGML_TYPE_Q6_K:
 | |
|             return 64;
 | |
|         default:
 | |
|             GGML_ASSERT(false);
 | |
|     }
 | |
| #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
| }
 | |
| 
 | |
| inline void ggml_cuda_op_mul_mat_vec_q(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
 | |
|     const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
 | |
|     const int64_t src1_padded_row_size, const cudaStream_t & stream) {
 | |
| 
 | |
|     GGML_ASSERT(ggml_nrows(src1) == 1);
 | |
| 
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t row_diff = row_high - row_low;
 | |
| 
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_Q4_0:
 | |
|             mul_mat_vec_q4_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q4_1:
 | |
|             mul_mat_vec_q4_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q5_0:
 | |
|             mul_mat_vec_q5_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q5_1:
 | |
|             mul_mat_vec_q5_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q8_0:
 | |
|             mul_mat_vec_q8_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q2_K:
 | |
|             mul_mat_vec_q2_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q3_K:
 | |
|             mul_mat_vec_q3_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q4_K:
 | |
|             mul_mat_vec_q4_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q5_K:
 | |
|             mul_mat_vec_q5_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q6_K:
 | |
|             mul_mat_vec_q6_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         default:
 | |
|             GGML_ASSERT(false);
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_ddf_i;
 | |
|     (void) src1_ncols;
 | |
|     (void) src1_padded_row_size;
 | |
| }
 | |
| 
 | |
| inline void ggml_cuda_op_dequantize_mul_mat_vec(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
 | |
|     const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
 | |
|     const int64_t src1_padded_row_size, const cudaStream_t & stream) {
 | |
| 
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t row_diff = row_high - row_low;
 | |
| 
 | |
|     // on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
 | |
| #ifdef GGML_CUDA_F16
 | |
|     size_t ash;
 | |
|     dfloat * src1_dfloat = nullptr; // dfloat == half
 | |
| 
 | |
|     bool src1_convert_f16 =
 | |
|         src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
 | |
|         src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
 | |
|         src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
 | |
| 
 | |
|     if (src1_convert_f16) {
 | |
|         src1_dfloat = (half *) ggml_cuda_pool_malloc(ne00*sizeof(half), &ash);
 | |
|         ggml_cpy_f32_f16_cuda((const char *) src1_ddf_i, (char *) src1_dfloat, ne00,
 | |
|                                 ne00, 1, sizeof(float), 0, 0,
 | |
|                                 ne00, 1, sizeof(half),  0, 0, stream);
 | |
|     }
 | |
| #else
 | |
|     const dfloat * src1_dfloat = (const dfloat *) src1_ddf_i; // dfloat == float, no conversion
 | |
| #endif // GGML_CUDA_F16
 | |
| 
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_Q4_0:
 | |
|             dequantize_mul_mat_vec_q4_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q4_1:
 | |
|             dequantize_mul_mat_vec_q4_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q5_0:
 | |
|             dequantize_mul_mat_vec_q5_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q5_1:
 | |
|             dequantize_mul_mat_vec_q5_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q8_0:
 | |
|             dequantize_mul_mat_vec_q8_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q2_K:
 | |
|             dequantize_mul_mat_vec_q2_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q3_K:
 | |
|             dequantize_mul_mat_vec_q3_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q4_K:
 | |
|             dequantize_mul_mat_vec_q4_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q5_K:
 | |
|             dequantize_mul_mat_vec_q5_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q6_K:
 | |
|             dequantize_mul_mat_vec_q6_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_F16:
 | |
|             convert_mul_mat_vec_f16_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         default:
 | |
|             GGML_ASSERT(false);
 | |
|             break;
 | |
|     }
 | |
| 
 | |
| #ifdef GGML_CUDA_F16
 | |
|     if (src1_convert_f16) {
 | |
|         ggml_cuda_pool_free(src1_dfloat, ash);
 | |
|     }
 | |
| #endif // GGML_CUDA_F16
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_ddq_i;
 | |
|     (void) src1_ncols;
 | |
|     (void) src1_padded_row_size;
 | |
| }
 | |
| 
 | |
| inline void ggml_cuda_op_mul_mat_cublas(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
 | |
|     const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
 | |
|     const int64_t src1_padded_row_size, const cudaStream_t & stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0_dd_i  != nullptr);
 | |
|     GGML_ASSERT(src1_ddf_i != nullptr);
 | |
|     GGML_ASSERT(dst_dd_i   != nullptr);
 | |
| 
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t ne10 = src1->ne[0];
 | |
| 
 | |
|     const int64_t ne0 = dst->ne[0];
 | |
| 
 | |
|     const int64_t row_diff = row_high - row_low;
 | |
| 
 | |
|     int id;
 | |
|     CUDA_CHECK(cudaGetDevice(&id));
 | |
| 
 | |
|     // the main device has a larger memory buffer to hold the results from all GPUs
 | |
|     // ldc == nrows of the matrix that cuBLAS writes into
 | |
|     int ldc = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : row_diff;
 | |
| 
 | |
|     const int compute_capability = g_compute_capabilities[id];
 | |
| 
 | |
|     if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
 | |
|         // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
 | |
|         half * src0_as_f16 = nullptr;
 | |
|         size_t src0_as = 0;
 | |
|         if (src0->type != GGML_TYPE_F16) {
 | |
|             const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type);
 | |
|             GGML_ASSERT(to_fp16_cuda != nullptr);
 | |
|             size_t ne = row_diff*ne00;
 | |
|             src0_as_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &src0_as);
 | |
|             to_fp16_cuda(src0_dd_i, src0_as_f16, ne, stream);
 | |
|         }
 | |
|         const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16;
 | |
| 
 | |
|         half * src1_as_f16 = nullptr;
 | |
|         size_t src1_as = 0;
 | |
|         if (src1->type != GGML_TYPE_F16) {
 | |
|             const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
 | |
|             GGML_ASSERT(to_fp16_cuda != nullptr);
 | |
|             size_t ne = src1_ncols*ne10;
 | |
|             src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &src1_as);
 | |
|             to_fp16_cuda(src1_ddf_i, src1_as_f16, ne, stream);
 | |
|         }
 | |
|         const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16;
 | |
|         size_t dst_as = 0;
 | |
|         half * dst_f16 = (half *) ggml_cuda_pool_malloc(row_diff*src1_ncols * sizeof(half), &dst_as);
 | |
| 
 | |
|         const half alpha_f16 = 1.0f;
 | |
|         const half beta_f16 = 0.0f;
 | |
| 
 | |
|         CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], stream));
 | |
|         CUBLAS_CHECK(
 | |
|             cublasGemmEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
 | |
|                     row_diff, src1_ncols, ne10,
 | |
|                     &alpha_f16, src0_ptr, CUDA_R_16F, ne00,
 | |
|                                 src1_ptr, CUDA_R_16F, ne10,
 | |
|                     &beta_f16,   dst_f16, CUDA_R_16F, ldc,
 | |
|                     CUBLAS_COMPUTE_16F,
 | |
|                     CUBLAS_GEMM_DEFAULT_TENSOR_OP));
 | |
| 
 | |
|         const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
 | |
|         to_fp32_cuda(dst_f16, dst_dd_i, row_diff*src1_ncols, stream);
 | |
| 
 | |
|         ggml_cuda_pool_free(dst_f16, dst_as);
 | |
| 
 | |
|         if (src0_as != 0) {
 | |
|             ggml_cuda_pool_free(src0_as_f16, src0_as);
 | |
|         }
 | |
| 
 | |
|         if (src1_as != 0) {
 | |
|             ggml_cuda_pool_free(src1_as_f16, src1_as);
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         float * src0_ddq_as_f32 = nullptr;
 | |
|         size_t src0_as = 0;
 | |
| 
 | |
|         if (src0->type != GGML_TYPE_F32) {
 | |
|             const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
 | |
|             GGML_ASSERT(to_fp32_cuda != nullptr);
 | |
|             src0_ddq_as_f32 = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_as); // NOLINT
 | |
|             to_fp32_cuda(src0_dd_i, src0_ddq_as_f32, row_diff*ne00, stream);
 | |
|         }
 | |
|         const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32;
 | |
| 
 | |
|         const float alpha = 1.0f;
 | |
|         const float beta = 0.0f;
 | |
| 
 | |
|         CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], stream));
 | |
|         CUBLAS_CHECK(
 | |
|             cublasSgemm(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
 | |
|                     row_diff, src1_ncols, ne10,
 | |
|                     &alpha, src0_ddf_i, ne00,
 | |
|                             src1_ddf_i, ne10,
 | |
|                     &beta,  dst_dd_i,   ldc));
 | |
| 
 | |
|         if (src0_as != 0) {
 | |
|             ggml_cuda_pool_free(src0_ddq_as_f32, src0_as);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     (void) dst;
 | |
|     (void) src1_ddq_i;
 | |
|     (void) src1_padded_row_size;
 | |
| }
 | |
| 
 | |
| inline void ggml_cuda_op_rope(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
 | |
|     const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32 ||  dst->type == GGML_TYPE_F16);
 | |
|     GGML_ASSERT(src0->type == dst->type);
 | |
| 
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t ne01 = src0->ne[1];
 | |
|     const int64_t ne2 = dst->ne[2];
 | |
|     const int64_t nrows = ggml_nrows(src0);
 | |
| 
 | |
|     //const int n_past      = ((int32_t *) dst->op_params)[0];
 | |
|     const int n_dims      = ((int32_t *) dst->op_params)[1];
 | |
|     const int mode        = ((int32_t *) dst->op_params)[2];
 | |
|     const int n_ctx       = ((int32_t *) dst->op_params)[3];
 | |
|     const int n_orig_ctx  = ((int32_t *) dst->op_params)[4];
 | |
| 
 | |
|     // RoPE alteration for extended context
 | |
|     float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
 | |
|     memcpy(&freq_base,   (int32_t *) dst->op_params +  5, sizeof(float));
 | |
|     memcpy(&freq_scale,  (int32_t *) dst->op_params +  6, sizeof(float));
 | |
|     memcpy(&ext_factor,  (int32_t *) dst->op_params +  7, sizeof(float));
 | |
|     memcpy(&attn_factor, (int32_t *) dst->op_params +  8, sizeof(float));
 | |
|     memcpy(&beta_fast,   (int32_t *) dst->op_params +  9, sizeof(float));
 | |
|     memcpy(&beta_slow,   (int32_t *) dst->op_params + 10, sizeof(float));
 | |
| 
 | |
|     const int32_t * pos = nullptr;
 | |
|     if ((mode & 1) == 0) {
 | |
|         GGML_ASSERT(src1->type == GGML_TYPE_I32);
 | |
|         GGML_ASSERT(src1->ne[0] == ne2);
 | |
|         pos = (const int32_t *) src1_dd;
 | |
|     }
 | |
| 
 | |
|     const bool is_neox = mode & 2;
 | |
|     const bool is_glm  = mode & 4;
 | |
| 
 | |
|     rope_corr_dims corr_dims;
 | |
|     ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims.v);
 | |
| 
 | |
|     // compute
 | |
|     if (is_glm) {
 | |
|         GGML_ASSERT(false);
 | |
|         rope_glm_f32_cuda(src0_dd, dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, n_ctx, main_stream);
 | |
|     } else if (is_neox) {
 | |
|         if (src0->type == GGML_TYPE_F32) {
 | |
|             rope_neox_cuda(
 | |
|                 (const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
 | |
|                 attn_factor, corr_dims, main_stream
 | |
|             );
 | |
|         } else if (src0->type == GGML_TYPE_F16) {
 | |
|             rope_neox_cuda(
 | |
|                 (const half *)src0_dd, (half *)dst_dd, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
 | |
|                 attn_factor, corr_dims, main_stream
 | |
|             );
 | |
|         } else {
 | |
|             GGML_ASSERT(false);
 | |
|         }
 | |
|     } else {
 | |
|         if (src0->type == GGML_TYPE_F32) {
 | |
|             rope_cuda(
 | |
|                 (const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
 | |
|                 attn_factor, corr_dims, main_stream
 | |
|             );
 | |
|         } else if (src0->type == GGML_TYPE_F16) {
 | |
|             rope_cuda(
 | |
|                 (const half *)src0_dd, (half *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
 | |
|                 attn_factor, corr_dims, main_stream
 | |
|             );
 | |
|         } else {
 | |
|             GGML_ASSERT(false);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_cuda_op_alibi(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
 | |
|     const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t ne01 = src0->ne[1];
 | |
|     const int64_t ne02 = src0->ne[2];
 | |
|     const int64_t nrows = ggml_nrows(src0);
 | |
| 
 | |
|     //const int n_past = ((int32_t *) dst->op_params)[0];
 | |
|     const int n_head = ((int32_t *) dst->op_params)[1];
 | |
|     float max_bias;
 | |
|     memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
 | |
| 
 | |
|     //GGML_ASSERT(ne01 + n_past == ne00);
 | |
|     GGML_ASSERT(n_head == ne02);
 | |
| 
 | |
|     const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
 | |
| 
 | |
|     const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
 | |
|     const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
 | |
| 
 | |
|     alibi_f32_cuda(src0_dd, dst_dd, ne00, nrows, ne01, n_heads_log2_floor, m0, m1, main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_cuda_op_im2col(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
 | |
|     const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F16);
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F16);
 | |
| 
 | |
|     const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
 | |
|     const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
 | |
|     const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
 | |
|     const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
 | |
|     const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
 | |
|     const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
 | |
| 
 | |
|     const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
 | |
| 
 | |
|     const int64_t IC = src1->ne[is_2D ? 2 : 1];
 | |
|     const int64_t IH = is_2D ? src1->ne[1] : 1;
 | |
|     const int64_t IW =         src1->ne[0];
 | |
| 
 | |
|     const int64_t KH = is_2D ? src0->ne[1] : 1;
 | |
|     const int64_t KW =         src0->ne[0];
 | |
| 
 | |
|     const int64_t OH = is_2D ? dst->ne[2] : 1;
 | |
|     const int64_t OW =         dst->ne[1];
 | |
| 
 | |
|     const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
 | |
| 
 | |
|     im2col_f32_f16_cuda(src1_dd, (half*) dst_dd, IW, IH, OW, OH, KW, KH, IC, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
 | |
| 
 | |
|     (void) src0;
 | |
|     (void) src0_dd;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline void ggml_cuda_op_sum_rows(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
 | |
|     const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     const int64_t ncols = src0->ne[0];
 | |
|     const int64_t nrows = ggml_nrows(src0);
 | |
| 
 | |
|     sum_rows_f32_cuda(src0_dd, dst_dd, ncols, nrows, main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_cuda_op_argsort(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
 | |
|     const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_I32);
 | |
| 
 | |
|     const int64_t ncols = src0->ne[0];
 | |
|     const int64_t nrows = ggml_nrows(src0);
 | |
| 
 | |
|     enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
 | |
| 
 | |
|     argsort_f32_i32_cuda(src0_dd, (int *)dst_dd, ncols, nrows, order, main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_cuda_op_diag_mask_inf(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
 | |
|     const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t ne01 = src0->ne[1];
 | |
|     const int nrows0 = ggml_nrows(src0);
 | |
| 
 | |
|     const int n_past = ((int32_t *) dst->op_params)[0];
 | |
| 
 | |
|     diag_mask_inf_f32_cuda(src0_dd, dst_dd, ne00, nrows0, ne01, n_past, main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_cuda_op_soft_max(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
 | |
|     const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
 | |
| 
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t nrows_x = ggml_nrows(src0);
 | |
|     const int64_t nrows_y = src1 ? ggml_nrows(src1) : 1;
 | |
| 
 | |
|     float scale = 1.0f;
 | |
|     memcpy(&scale, dst->op_params, sizeof(float));
 | |
| 
 | |
|     soft_max_f32_cuda(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00, nrows_x, nrows_y, scale, main_stream);
 | |
| 
 | |
|     (void) dst;
 | |
| }
 | |
| 
 | |
| inline void ggml_cuda_op_scale(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
 | |
|     const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     float scale;
 | |
|     memcpy(&scale, dst->op_params, sizeof(float));
 | |
| 
 | |
|     scale_f32_cuda(src0_dd, dst_dd, scale, ggml_nelements(src0), main_stream);
 | |
|     CUDA_CHECK(cudaGetLastError());
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_cuda_op_clamp(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
 | |
|     const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     float min;
 | |
|     float max;
 | |
|     memcpy(&min, dst->op_params, sizeof(float));
 | |
|     memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
 | |
| 
 | |
|     clamp_f32_cuda(src0_dd, dst_dd, min, max, ggml_nelements(src0), main_stream);
 | |
|     CUDA_CHECK(cudaGetLastError());
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const ggml_cuda_op_flatten_t op) {
 | |
|     const int64_t nrows0 = ggml_nrows(src0);
 | |
| 
 | |
|     const bool use_src1 = src1 != nullptr;
 | |
|     const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
 | |
| 
 | |
|     GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT);
 | |
|     GGML_ASSERT(              dst->backend != GGML_BACKEND_GPU_SPLIT);
 | |
| 
 | |
|     ggml_tensor_extra_gpu * src0_extra =            (ggml_tensor_extra_gpu *) src0->extra;
 | |
|     ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
 | |
|     ggml_tensor_extra_gpu * dst_extra  =            (ggml_tensor_extra_gpu *)  dst->extra;
 | |
| 
 | |
|     const bool src0_on_device =             src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT;
 | |
|     const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_GPU;
 | |
|     const bool  dst_on_device =              dst->backend == GGML_BACKEND_GPU;
 | |
| 
 | |
|     // dd = data device
 | |
|     float * src0_ddf = nullptr;
 | |
|     float * src1_ddf = nullptr;
 | |
|     float *  dst_ddf = nullptr;
 | |
| 
 | |
|     // as = actual size
 | |
|     size_t src0_asf = 0;
 | |
|     size_t src1_asf = 0;
 | |
|     size_t  dst_asf = 0;
 | |
| 
 | |
|     ggml_cuda_set_device(g_main_device);
 | |
|     const cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
 | |
| 
 | |
|     if (src0_on_device) {
 | |
|         src0_ddf = (float *) src0_extra->data_device[g_main_device];
 | |
|     } else {
 | |
|         src0_ddf = (float *) ggml_cuda_pool_malloc(ggml_nbytes(src0), &src0_asf);
 | |
|         CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddf, src0, 0, 0, 0, nrows0, main_stream));
 | |
|     }
 | |
| 
 | |
|     if (use_src1) {
 | |
|         if (src1_on_device) {
 | |
|             src1_ddf = (float *) src1_extra->data_device[g_main_device];
 | |
|         } else {
 | |
|             src1_ddf = (float *) ggml_cuda_pool_malloc(ggml_nbytes(src1), &src1_asf);
 | |
|             CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf, src1, 0, 0, 0, nrows1, main_stream));
 | |
|         }
 | |
|     }
 | |
|     if (dst_on_device) {
 | |
|         dst_ddf = (float *) dst_extra->data_device[g_main_device];
 | |
|     } else {
 | |
|         dst_ddf = (float *) ggml_cuda_pool_malloc(ggml_nbytes(dst), &dst_asf);
 | |
|     }
 | |
| 
 | |
|     // do the computation
 | |
|     op(src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
 | |
|     CUDA_CHECK(cudaGetLastError());
 | |
| 
 | |
|     // copy dst to host if necessary
 | |
|     if (!dst_on_device) {
 | |
|         CUDA_CHECK(cudaMemcpyAsync(dst->data, dst_ddf, ggml_nbytes(dst), cudaMemcpyDeviceToHost, main_stream));
 | |
|     }
 | |
| 
 | |
|     if (src0_asf > 0) {
 | |
|         ggml_cuda_pool_free(src0_ddf, src0_asf);
 | |
|     }
 | |
|     if (src1_asf > 0) {
 | |
|         ggml_cuda_pool_free(src1_ddf, src1_asf);
 | |
|     }
 | |
|     if (dst_asf > 0) {
 | |
|         ggml_cuda_pool_free(dst_ddf, dst_asf);
 | |
|     }
 | |
| 
 | |
|     if (dst->backend == GGML_BACKEND_CPU) {
 | |
|         CUDA_CHECK(cudaDeviceSynchronize());
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_set_peer_access(const int n_tokens) {
 | |
|     static bool peer_access_enabled = false;
 | |
| 
 | |
|     const bool enable_peer_access = n_tokens <= GGML_CUDA_PEER_MAX_BATCH_SIZE;
 | |
| 
 | |
|     if (peer_access_enabled == enable_peer_access) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
| #ifdef NDEBUG
 | |
|     for (int id = 0; id < g_device_count; ++id) {
 | |
|         CUDA_CHECK(ggml_cuda_set_device(id));
 | |
|         CUDA_CHECK(cudaDeviceSynchronize());
 | |
|     }
 | |
| 
 | |
|     for (int id = 0; id < g_device_count; ++id) {
 | |
|         CUDA_CHECK(ggml_cuda_set_device(id));
 | |
| 
 | |
|         for (int id_other = 0; id_other < g_device_count; ++id_other) {
 | |
|             if (id == id_other) {
 | |
|                 continue;
 | |
|             }
 | |
|             if (id != g_main_device && id_other != g_main_device) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             int can_access_peer;
 | |
|             CUDA_CHECK(cudaDeviceCanAccessPeer(&can_access_peer, id, id_other));
 | |
|             if (can_access_peer) {
 | |
|                 if (enable_peer_access) {
 | |
|                     CUDA_CHECK(cudaDeviceEnablePeerAccess(id_other, 0));
 | |
|                 } else {
 | |
|                     CUDA_CHECK(cudaDeviceDisablePeerAccess(id_other));
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| #endif // NDEBUG
 | |
| 
 | |
|     peer_access_enabled = enable_peer_access;
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_op_mul_mat(
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_cuda_op_mul_mat_t op,
 | |
|     const bool convert_src1_to_q8_1) {
 | |
| 
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t ne01 = src0->ne[1];
 | |
|     const int64_t ne02 = src0->ne[2];
 | |
|     const int64_t ne03 = src0->ne[3];
 | |
|     const int64_t nrows0 = ggml_nrows(src0);
 | |
| 
 | |
|     const int64_t ne10 = src1->ne[0];
 | |
|     const int64_t ne11 = src1->ne[1];
 | |
|     const int64_t ne12 = src1->ne[2];
 | |
|     const int64_t ne13 = src1->ne[3];
 | |
|     const int64_t nrows1 = ggml_nrows(src1);
 | |
| 
 | |
|     GGML_ASSERT(ne03 == ne13);
 | |
| 
 | |
|     const int64_t ne0 = dst->ne[0];
 | |
|     const int64_t ne1 = dst->ne[1];
 | |
| 
 | |
|     const int nb2 = dst->nb[2];
 | |
|     const int nb3 = dst->nb[3];
 | |
| 
 | |
|     GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT);
 | |
|     GGML_ASSERT(src1->backend != GGML_BACKEND_GPU_SPLIT);
 | |
| 
 | |
|     GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
 | |
| 
 | |
|     const int64_t i02_divisor = ne12 / ne02;
 | |
| 
 | |
|     const size_t src0_ts = ggml_type_size(src0->type);
 | |
|     const size_t src0_bs = ggml_blck_size(src0->type);
 | |
|     const size_t q8_1_ts = sizeof(block_q8_1);
 | |
|     const size_t q8_1_bs = QK8_1;
 | |
| 
 | |
|     ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
 | |
|     ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
 | |
|     ggml_tensor_extra_gpu *  dst_extra = (ggml_tensor_extra_gpu *)  dst->extra;
 | |
| 
 | |
|     const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT;
 | |
|     const bool src0_is_contiguous = ggml_is_contiguous(src0);
 | |
|     const bool src1_is_contiguous = ggml_is_contiguous(src1);
 | |
| 
 | |
|     const int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
 | |
| 
 | |
|     const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
 | |
|     GGML_ASSERT(!(split && ne02 > 1));
 | |
|     GGML_ASSERT(!(split && ne03 > 1));
 | |
|     GGML_ASSERT(!(split && ne02 < ne12));
 | |
| 
 | |
|     // dd = data device
 | |
|     char  *  src0_dd[GGML_CUDA_MAX_DEVICES] = {nullptr};
 | |
|     float * src1_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr}; // float
 | |
|     char  * src1_ddq[GGML_CUDA_MAX_DEVICES] = {nullptr}; // q8_1
 | |
|     float *   dst_dd[GGML_CUDA_MAX_DEVICES] = {nullptr};
 | |
| 
 | |
|     // as = actual size
 | |
|     size_t  src0_as[GGML_CUDA_MAX_DEVICES] = {0};
 | |
|     size_t src1_asf[GGML_CUDA_MAX_DEVICES] = {0};
 | |
|     size_t src1_asq[GGML_CUDA_MAX_DEVICES] = {0};
 | |
|     size_t   dst_as[GGML_CUDA_MAX_DEVICES] = {0};
 | |
| 
 | |
|     int64_t  row_low[GGML_CUDA_MAX_DEVICES];
 | |
|     int64_t row_high[GGML_CUDA_MAX_DEVICES];
 | |
| 
 | |
|     int used_devices = 0;
 | |
| 
 | |
|     for (int64_t id = 0; id < g_device_count; ++id) {
 | |
|         // by default, use all rows
 | |
|         row_low[id]  = 0;
 | |
|         row_high[id] = ne01;
 | |
| 
 | |
|         // for multi GPU, get the row boundaries from tensor split
 | |
|         // and round to mul_mat_q tile sizes
 | |
|         if (split) {
 | |
|             const int64_t rounding = get_row_rounding(src0->type);
 | |
| 
 | |
|             if (id != 0) {
 | |
|                 row_low[id]  = ne01*g_tensor_split[id];
 | |
|                 row_low[id] -= row_low[id] % rounding;
 | |
|             }
 | |
| 
 | |
|             if (id != g_device_count - 1) {
 | |
|                 row_high[id]  = ne01*g_tensor_split[id + 1];
 | |
|                 row_high[id] -= row_high[id] % rounding;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (int64_t id = 0; id < g_device_count; ++id) {
 | |
|         if ((!split && id != g_main_device) || row_low[id] == row_high[id]) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         used_devices++;
 | |
| 
 | |
|         const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device;
 | |
|         const bool  dst_on_device =  dst->backend == GGML_BACKEND_GPU && id == g_main_device;
 | |
| 
 | |
|         ggml_cuda_set_device(id);
 | |
|         const cudaStream_t stream = g_cudaStreams[id][0];
 | |
| 
 | |
|         if (src0_on_device && src0_is_contiguous) {
 | |
|             src0_dd[id] = (char *) src0_extra->data_device[id];
 | |
|         } else {
 | |
|             // const size_t size_src0_ddq = split ? (row_high[id]-row_low[id])*ne00 * src0_ts/src0_bs : ggml_nbytes(src0);
 | |
|             src0_dd[id] = (char *) ggml_cuda_pool_malloc(ggml_nbytes(src0), &src0_as[id]);
 | |
|         }
 | |
| 
 | |
|         if (src1_on_device && src1_is_contiguous) {
 | |
|             src1_ddf[id] = (float *) src1_extra->data_device[id];
 | |
|         } else {
 | |
|             src1_ddf[id] = (float *) ggml_cuda_pool_malloc(ggml_nbytes(src1), &src1_asf[id]);
 | |
|         }
 | |
| 
 | |
|         if (convert_src1_to_q8_1) {
 | |
|             src1_ddq[id] = (char *) ggml_cuda_pool_malloc(nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs, &src1_asq[id]);
 | |
| 
 | |
|             if (src1_on_device && src1_is_contiguous) {
 | |
|                 quantize_row_q8_1_cuda(src1_ddf[id], src1_ddq[id], ne10, nrows1, src1_padded_col_size, stream);
 | |
|                 CUDA_CHECK(cudaGetLastError());
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (dst_on_device) {
 | |
|             dst_dd[id] = (float *) dst_extra->data_device[id];
 | |
|         } else {
 | |
|             const size_t size_dst_ddf = split ? (row_high[id]-row_low[id])*ne1*sizeof(float) : ggml_nbytes(dst);
 | |
|             dst_dd[id] = (float *) ggml_cuda_pool_malloc(size_dst_ddf, &dst_as[id]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // if multiple devices are used they need to wait for the main device
 | |
|     // here an event is recorded that signals that the main device has finished calculating the input data
 | |
|     if (split && used_devices > 1) {
 | |
|         CUDA_CHECK(ggml_cuda_set_device(g_main_device));
 | |
|         CUDA_CHECK(cudaEventRecord(src0_extra->events[g_main_device][0], g_cudaStreams[g_main_device][0]));
 | |
|     }
 | |
| 
 | |
|     const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11;
 | |
|     for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) {
 | |
|         const int64_t is = split ? (src1_col_0/src1_col_stride) % MAX_STREAMS : 0;
 | |
|         const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride;
 | |
| 
 | |
|         for (int64_t id = 0; id < g_device_count; ++id) {
 | |
|             if ((!split && id != g_main_device) || row_low[id] == row_high[id]) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device;
 | |
|             const bool  dst_on_device =  dst->backend == GGML_BACKEND_GPU && id == g_main_device;
 | |
|             const int64_t row_diff = row_high[id] - row_low[id];
 | |
| 
 | |
|             ggml_cuda_set_device(id);
 | |
|             const cudaStream_t stream = g_cudaStreams[id][is];
 | |
| 
 | |
|             // wait for main GPU data if necessary
 | |
|             if (split && (id != g_main_device || is != 0)) {
 | |
|                 CUDA_CHECK(cudaStreamWaitEvent(stream, src0_extra->events[g_main_device][0], 0));
 | |
|             }
 | |
| 
 | |
|             for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) {
 | |
|                 const int64_t i03 = i0 / ne12;
 | |
|                 const int64_t i02 = i0 % ne12;
 | |
| 
 | |
|                 const size_t src1_ddq_i_offset = (i0*ne11 + src1_col_0) * src1_padded_col_size*q8_1_ts/q8_1_bs;
 | |
| 
 | |
|                 // for split tensors the data begins at i0 == i0_offset_low
 | |
|                 char  *  src0_dd_i =  src0_dd[id] + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs;
 | |
|                 float * src1_ddf_i = src1_ddf[id] + (i0*ne11 + src1_col_0) * ne10;
 | |
|                 char  * src1_ddq_i = src1_ddq[id] +  src1_ddq_i_offset;
 | |
|                 float *   dst_dd_i =   dst_dd[id] + (i0*ne1  + src1_col_0) * (dst_on_device ? ne0 : row_diff);
 | |
| 
 | |
|                 // the main device memory buffer can be on VRAM scratch, with space for all partial results
 | |
|                 // in that case an offset on dst_ddf_i is needed
 | |
|                 if (dst->backend == GGML_BACKEND_GPU && id == g_main_device) {
 | |
|                     dst_dd_i += row_low[id]; // offset is 0 if no tensor split
 | |
|                 }
 | |
| 
 | |
|                 // copy src0, src1 to device if necessary
 | |
|                 if (src1->backend == GGML_BACKEND_GPU && src1_is_contiguous) {
 | |
|                     if (id != g_main_device) {
 | |
|                         if (convert_src1_to_q8_1) {
 | |
|                             char * src1_ddq_i_source = src1_ddq[g_main_device] + src1_ddq_i_offset;
 | |
|                             CUDA_CHECK(cudaMemcpyAsync(src1_ddq_i, src1_ddq_i_source, src1_ncols*src1_padded_col_size*q8_1_ts/q8_1_bs,
 | |
|                                                     cudaMemcpyDeviceToDevice, stream));
 | |
|                         } else {
 | |
|                             float * src1_ddf_i_source = (float *) src1_extra->data_device[g_main_device];
 | |
|                             src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10;
 | |
|                             CUDA_CHECK(cudaMemcpyAsync(src1_ddf_i, src1_ddf_i_source, src1_ncols*ne10*sizeof(float),
 | |
|                                                     cudaMemcpyDeviceToDevice, stream));
 | |
|                         }
 | |
|                     }
 | |
|                 } else if (src1->backend == GGML_BACKEND_CPU || (src1_on_device && !src1_is_contiguous)) {
 | |
|                     CUDA_CHECK(ggml_cuda_cpy_tensor_2d(
 | |
|                                    src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
 | |
|                 } else {
 | |
|                     GGML_ASSERT(false);
 | |
|                 }
 | |
| 
 | |
|                 if (convert_src1_to_q8_1 && (src1->backend == GGML_BACKEND_CPU || !src1_is_contiguous)) {
 | |
|                     quantize_row_q8_1_cuda(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
 | |
|                     CUDA_CHECK(cudaGetLastError());
 | |
|                 }
 | |
| 
 | |
|                 if (src1_col_0 == 0 && (!src0_on_device || !src0_is_contiguous) && i02 % i02_divisor == 0) {
 | |
|                     CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, row_low[id], row_high[id], stream));
 | |
|                 }
 | |
| 
 | |
|                 // do the computation
 | |
|                 op(src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i,
 | |
|                    row_low[id], row_high[id], src1_ncols, src1_padded_col_size, stream);
 | |
|                 CUDA_CHECK(cudaGetLastError());
 | |
| 
 | |
|                 // copy dst to host or other device if necessary
 | |
|                 if (!dst_on_device) {
 | |
|                     void * dst_off_device;
 | |
|                     cudaMemcpyKind kind;
 | |
|                     if (dst->backend == GGML_BACKEND_CPU) {
 | |
|                         dst_off_device = dst->data;
 | |
|                         kind = cudaMemcpyDeviceToHost;
 | |
|                     } else if (dst->backend == GGML_BACKEND_GPU) {
 | |
|                         dst_off_device = dst_extra->data_device[g_main_device];
 | |
|                         kind = cudaMemcpyDeviceToDevice;
 | |
|                     } else {
 | |
|                         GGML_ASSERT(false);
 | |
|                     }
 | |
|                     if (split) {
 | |
|                         // src0 = weight matrix is saved as a transposed matrix for better memory layout.
 | |
|                         // dst is NOT transposed.
 | |
|                         // The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
 | |
|                         // Instead they need to be copied to the correct slice in ne0 = dst row index.
 | |
|                         // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
 | |
|                         float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
 | |
|                         GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
 | |
|                         dhf_dst_i += src1_col_0*ne0 + row_low[id];
 | |
|                         CUDA_CHECK(cudaMemcpy2DAsync(dhf_dst_i, ne0*sizeof(float), dst_dd_i, row_diff*sizeof(float),
 | |
|                                                     row_diff*sizeof(float), src1_ncols, kind, stream));
 | |
|                     } else {
 | |
|                         float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
 | |
|                         GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
 | |
|                         dhf_dst_i += src1_col_0*ne0;
 | |
|                         CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_dd_i, src1_ncols*ne0*sizeof(float), kind, stream));
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 // add event for the main device to wait on until other device is done
 | |
|                 if (split && (id != g_main_device || is != 0)) {
 | |
|                     CUDA_CHECK(cudaEventRecord(src0_extra->events[id][is], stream));
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (int64_t id = 0; id < g_device_count; ++id) {
 | |
|         if ((!split && id != g_main_device) || row_low[id] == row_high[id]) {
 | |
|             continue;
 | |
|         }
 | |
|         CUDA_CHECK(ggml_cuda_set_device(id));
 | |
| 
 | |
|         // free buffers again when done
 | |
|         if (src0_as[id] > 0) {
 | |
|             ggml_cuda_pool_free(src0_dd[id], src0_as[id]);
 | |
|         }
 | |
|         if (src1_asf[id] > 0) {
 | |
|             ggml_cuda_pool_free(src1_ddf[id], src1_asf[id]);
 | |
|         }
 | |
|         if (src1_asq[id] > 0) {
 | |
|             ggml_cuda_pool_free(src1_ddq[id], src1_asq[id]);
 | |
|         }
 | |
|         if (dst_as[id] > 0) {
 | |
|             ggml_cuda_pool_free(dst_dd[id], dst_as[id]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // main device waits for all other devices to be finished
 | |
|     if (split && g_device_count > 1) {
 | |
|         int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE;
 | |
|         is_max = is_max <= MAX_STREAMS ? is_max : MAX_STREAMS;
 | |
| 
 | |
|         CUDA_CHECK(ggml_cuda_set_device(g_main_device));
 | |
|         for (int64_t id = 0; id < g_device_count; ++id) {
 | |
|             if (row_low[id] == row_high[id]) {
 | |
|                 continue;
 | |
|             }
 | |
|             for (int64_t is = 0; is < is_max; ++is) {
 | |
|                 CUDA_CHECK(cudaStreamWaitEvent(g_cudaStreams[g_main_device][0], src0_extra->events[id][is], 0));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (dst->backend == GGML_BACKEND_CPU) {
 | |
|         CUDA_CHECK(ggml_cuda_set_device(g_main_device));
 | |
|         CUDA_CHECK(cudaDeviceSynchronize());
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_repeat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_repeat);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_get_rows(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_get_rows);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_add);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_acc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_acc);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_mul);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_div(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_div);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_gelu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_gelu);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_silu);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_gelu_quick(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_gelu_quick);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_tanh(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_tanh);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_relu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_relu);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_leaky_relu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_leaky_relu);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_sqr(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_sqr);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_norm);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_group_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_group_norm);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_concat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_concat);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_upscale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_upscale);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_pad(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_pad);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rms_norm);
 | |
| }
 | |
| 
 | |
| bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
 | |
|     if (!g_cublas_loaded) return false;
 | |
| 
 | |
|     const int64_t ne10 = src1->ne[0];
 | |
| 
 | |
|     const int64_t ne0 = dst->ne[0];
 | |
|     const int64_t ne1 = dst->ne[1];
 | |
| 
 | |
|     // TODO: find the optimal values for these
 | |
|     return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
 | |
|             src1->type == GGML_TYPE_F32 &&
 | |
|              dst->type == GGML_TYPE_F32 &&
 | |
|             (ne0 >= 32 && ne1 >= 32 && ne10 >= 32);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
 | |
|     GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
 | |
|     GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
 | |
|     GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
 | |
|     GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F16);
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | |
| 
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t ne01 = src0->ne[1];
 | |
|     const int64_t ne02 = src0->ne[2];
 | |
| 
 | |
|     const int64_t ne12 = src1->ne[2];
 | |
| 
 | |
|     CUDA_CHECK(ggml_cuda_set_device(g_main_device));
 | |
|     cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
 | |
| 
 | |
|     ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
 | |
|     void * src0_ddq = src0_extra->data_device[g_main_device];
 | |
| 
 | |
|     ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
 | |
|     float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
 | |
| 
 | |
|     ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
 | |
|     float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
 | |
| 
 | |
|     ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
 | |
|     GGML_ASSERT(!ggml_is_transposed(src0));
 | |
|     GGML_ASSERT(!ggml_is_transposed(src1));
 | |
|     GGML_ASSERT(!ggml_is_permuted(src0));
 | |
|     GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F16);
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | |
| 
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t ne01 = src0->ne[1];
 | |
|     const int64_t ne02 = src0->ne[2];
 | |
| 
 | |
|     const int64_t nb01 = src0->nb[1];
 | |
|     const int64_t nb02 = src0->nb[2];
 | |
| 
 | |
|     const int64_t ne12 = src1->ne[2];
 | |
| 
 | |
|     CUDA_CHECK(ggml_cuda_set_device(g_main_device));
 | |
|     cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
 | |
| 
 | |
|     ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
 | |
|     void * src0_ddq = src0_extra->data_device[g_main_device];
 | |
| 
 | |
|     ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
 | |
|     float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
 | |
| 
 | |
|     ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
 | |
|     float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
 | |
| 
 | |
|     const int64_t row_stride_x = nb01 / sizeof(half);
 | |
|     const int64_t channel_stride_x = nb02 / sizeof(half);
 | |
| 
 | |
|     ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
 | |
| }
 | |
| 
 | |
| static __global__ void k_compute_batched_ptrs(
 | |
|         const half * src0_as_f16, const half * src1_as_f16, char * dst,
 | |
|         const void ** ptrs_src, void ** ptrs_dst,
 | |
|         int64_t ne12, int64_t ne13,
 | |
|         int64_t ne23,
 | |
|         size_t  nb02, size_t  nb03,
 | |
|         size_t  nb12, size_t  nb13,
 | |
|         size_t  nbd2, size_t  nbd3,
 | |
|         int64_t r2,   int64_t r3) {
 | |
|     int64_t i13 = blockIdx.x * blockDim.x + threadIdx.x;
 | |
|     int64_t i12 = blockIdx.y * blockDim.y + threadIdx.y;
 | |
| 
 | |
|     if (i13 >= ne13 || i12 >= ne12) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     int64_t i03 = i13 / r3;
 | |
|     int64_t i02 = i12 / r2;
 | |
| 
 | |
|     ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02   + i03*nb03;
 | |
|     ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12/2 + i13*nb13/2;
 | |
|     ptrs_dst[0*ne23 + i12 + i13*ne12] = (      char *)         dst + i12*nbd2   + i13*nbd3;
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     GGML_ASSERT(!ggml_is_transposed(src0));
 | |
|     GGML_ASSERT(!ggml_is_transposed(src1));
 | |
| 
 | |
|     GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F16);
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | |
| 
 | |
|     const int64_t ne00 = src0->ne[0]; GGML_UNUSED(ne00);
 | |
|     const int64_t ne01 = src0->ne[1];
 | |
|     const int64_t ne02 = src0->ne[2];
 | |
|     const int64_t ne03 = src0->ne[3];
 | |
| 
 | |
|     const int64_t nb01 = src0->nb[1];
 | |
|     const int64_t nb02 = src0->nb[2]; GGML_UNUSED(nb02);
 | |
|     const int64_t nb03 = src0->nb[3]; GGML_UNUSED(nb03);
 | |
| 
 | |
|     const int64_t ne10 = src1->ne[0];
 | |
|     const int64_t ne11 = src1->ne[1];
 | |
|     const int64_t ne12 = src1->ne[2];
 | |
|     const int64_t ne13 = src1->ne[3];
 | |
| 
 | |
|     const int64_t nb11 = src1->nb[1];
 | |
|     const int64_t nb12 = src1->nb[2]; GGML_UNUSED(nb12);
 | |
|     const int64_t nb13 = src1->nb[3]; GGML_UNUSED(nb13);
 | |
| 
 | |
|     const int64_t ne1 = ggml_nelements(src1);
 | |
|     const int64_t ne  = ggml_nelements(dst);
 | |
| 
 | |
|     CUDA_CHECK(ggml_cuda_set_device(g_main_device));
 | |
|     cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
 | |
| 
 | |
|     CUBLAS_CHECK(cublasSetStream(g_cublas_handles[g_main_device], main_stream));
 | |
| 
 | |
|     ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
 | |
|     void * src0_ddq = src0_extra->data_device[g_main_device];
 | |
|     half * src0_as_f16 = (half *) src0_ddq;
 | |
| 
 | |
|     ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
 | |
|     float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
 | |
| 
 | |
|     ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
 | |
|     float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
 | |
| 
 | |
|     // convert src1 to fp16
 | |
|     const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
 | |
|     GGML_ASSERT(to_fp16_cuda != nullptr);
 | |
| 
 | |
|     size_t src1_as = 0;
 | |
|     half * src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne1 * sizeof(half), &src1_as);
 | |
|     to_fp16_cuda(src1_ddf, src1_as_f16, ne1, main_stream);
 | |
| 
 | |
|     size_t dst_as = 0;
 | |
| 
 | |
|     half * dst_f16 = nullptr;
 | |
|     char * dst_t   = nullptr;
 | |
| 
 | |
|     cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
 | |
|     cudaDataType_t      cu_data_type    = CUDA_R_16F;
 | |
| 
 | |
|     // dst strides
 | |
|     size_t nbd2 = dst->nb[2];
 | |
|     size_t nbd3 = dst->nb[3];
 | |
| 
 | |
|     const half  alpha_f16 = 1.0f;
 | |
|     const half  beta_f16  = 0.0f;
 | |
| 
 | |
|     const float alpha_f32 = 1.0f;
 | |
|     const float beta_f32  = 0.0f;
 | |
| 
 | |
|     const void * alpha = &alpha_f16;
 | |
|     const void * beta  = &beta_f16;
 | |
| 
 | |
|     if (dst->op_params[0] == GGML_PREC_DEFAULT) {
 | |
|         dst_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &dst_as);
 | |
|         dst_t   = (char *) dst_f16;
 | |
| 
 | |
|         nbd2 /= sizeof(float) / sizeof(half);
 | |
|         nbd3 /= sizeof(float) / sizeof(half);
 | |
|     } else {
 | |
|         dst_t = (char *) dst_ddf;
 | |
| 
 | |
|         cu_compute_type = CUBLAS_COMPUTE_32F;
 | |
|         cu_data_type    = CUDA_R_32F;
 | |
| 
 | |
|         alpha = &alpha_f32;
 | |
|         beta  = &beta_f32;
 | |
|     }
 | |
| 
 | |
|     GGML_ASSERT(ne12 % ne02 == 0);
 | |
|     GGML_ASSERT(ne13 % ne03 == 0);
 | |
| 
 | |
|     // broadcast factors
 | |
|     const int64_t r2 = ne12/ne02;
 | |
|     const int64_t r3 = ne13/ne03;
 | |
| 
 | |
| #if 0
 | |
|     // use cublasGemmEx
 | |
|     {
 | |
|         for (int i13 = 0; i13 < ne13; ++i13) {
 | |
|             for (int i12 = 0; i12 < ne12; ++i12) {
 | |
|                 int i03 = i13 / r3;
 | |
|                 int i02 = i12 / r2;
 | |
| 
 | |
|                 CUBLAS_CHECK(
 | |
|                         cublasGemmEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
 | |
|                             ne01, ne11, ne10,
 | |
|                             alpha, (const char *) src0_as_f16 + i02*src0->nb[2]   + i03*src0->nb[3]  , CUDA_R_16F,   nb01/sizeof(half),
 | |
|                                    (const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, CUDA_R_16F,   nb11/sizeof(float),
 | |
|                             beta,  (      char *)       dst_t + i12*nbd2          + i13*nbd3,          cu_data_type, ne01,
 | |
|                             cu_compute_type,
 | |
|                             CUBLAS_GEMM_DEFAULT_TENSOR_OP));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| #else
 | |
|     if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) {
 | |
|         // there is no broadcast and src0, src1 are contiguous across dims 2, 3
 | |
|         // use cublasGemmStridedBatchedEx
 | |
|         CUBLAS_CHECK(
 | |
|         cublasGemmStridedBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
 | |
|                 ne01, ne11, ne10,
 | |
|                 alpha, (const char *) src0_as_f16, CUDA_R_16F,   nb01/sizeof(half),  src0->nb[2]/sizeof(half),  // strideA
 | |
|                        (const char *) src1_as_f16, CUDA_R_16F,   nb11/sizeof(float), src1->nb[2]/sizeof(float), // strideB
 | |
|                 beta,  (      char *)       dst_t, cu_data_type, ne01,                dst->nb[2]/sizeof(float), // strideC
 | |
|                 ne12*ne13,
 | |
|                 cu_compute_type,
 | |
|                 CUBLAS_GEMM_DEFAULT_TENSOR_OP));
 | |
|     } else {
 | |
|         // use cublasGemmBatchedEx
 | |
|         const int ne23 = ne12*ne13;
 | |
| 
 | |
|         const void ** ptrs_src = nullptr;
 | |
|               void ** ptrs_dst = nullptr;
 | |
| 
 | |
|         size_t ptrs_src_s = 0;
 | |
|         size_t ptrs_dst_s = 0;
 | |
| 
 | |
|         ptrs_src = (const void **) ggml_cuda_pool_malloc(2*ne23*sizeof(void *), &ptrs_src_s);
 | |
|         ptrs_dst = (      void **) ggml_cuda_pool_malloc(1*ne23*sizeof(void *), &ptrs_dst_s);
 | |
| 
 | |
|         dim3 block_dims(ne13, ne12);
 | |
|         k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>(
 | |
|                 src0_as_f16, src1_as_f16, dst_t,
 | |
|                 ptrs_src, ptrs_dst,
 | |
|                 ne12, ne13,
 | |
|                 ne23,
 | |
|                 nb02, nb03,
 | |
|                 nb12, nb13,
 | |
|                 nbd2, nbd3,
 | |
|                 r2, r3);
 | |
|         CUDA_CHECK(cudaGetLastError());
 | |
| 
 | |
|         CUBLAS_CHECK(
 | |
|         cublasGemmBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
 | |
|                 ne01, ne11, ne10,
 | |
|                 alpha, (const void **) (ptrs_src + 0*ne23), CUDA_R_16F,   nb01/sizeof(half),
 | |
|                        (const void **) (ptrs_src + 1*ne23), CUDA_R_16F,   nb11/sizeof(float),
 | |
|                 beta,  (      void **) (ptrs_dst + 0*ne23), cu_data_type, ne01,
 | |
|                 ne23,
 | |
|                 cu_compute_type,
 | |
|                 CUBLAS_GEMM_DEFAULT_TENSOR_OP));
 | |
| 
 | |
|         if (ptrs_src_s != 0) {
 | |
|             ggml_cuda_pool_free(ptrs_src, ptrs_src_s);
 | |
|         }
 | |
|         if (ptrs_dst_s != 0) {
 | |
|             ggml_cuda_pool_free(ptrs_dst, ptrs_dst_s);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (dst->op_params[0] == GGML_PREC_DEFAULT) {
 | |
|         const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
 | |
|         to_fp32_cuda(dst_f16, dst_ddf, ne, main_stream);
 | |
| 
 | |
|         ggml_cuda_pool_free(dst_f16, dst_as);
 | |
|     }
 | |
| 
 | |
|     ggml_cuda_pool_free(src1_as_f16, src1_as);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     const bool all_on_device =
 | |
|         (src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) &&
 | |
|         (src1->backend == GGML_BACKEND_GPU) &&
 | |
|         ( dst->backend == GGML_BACKEND_GPU);
 | |
| 
 | |
|     const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
 | |
| 
 | |
|     int64_t min_compute_capability = INT_MAX;
 | |
|     for (int64_t id = 0; id < g_device_count; ++id) {
 | |
|         if (min_compute_capability > g_compute_capabilities[id] && g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) {
 | |
|             min_compute_capability = g_compute_capabilities[id];
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #ifdef CUDA_USE_TENSOR_CORES
 | |
|     const bool use_tensor_cores = true;
 | |
| #else
 | |
|     const bool use_tensor_cores = false;
 | |
| #endif
 | |
| 
 | |
|     // debug helpers
 | |
|     //printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
 | |
|     //printf("      %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]);
 | |
|     //printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
 | |
|     //printf("      %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
 | |
|     //printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
 | |
|     //printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
 | |
| 
 | |
|     if (!split && all_on_device && !use_tensor_cores && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
 | |
|         // KQ single-batch
 | |
|         ggml_cuda_mul_mat_vec_p021(src0, src1, dst);
 | |
|     } else if (!split && all_on_device && !use_tensor_cores && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
 | |
|         // KQV single-batch
 | |
|         ggml_cuda_mul_mat_vec_nc(src0, src1, dst);
 | |
|     } else if (!split && all_on_device && use_tensor_cores && src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) {
 | |
|         // KQ + KQV multi-batch
 | |
|         ggml_cuda_mul_mat_mat_batched_cublas(src0, src1, dst);
 | |
|     } else if (src0->type == GGML_TYPE_F32) {
 | |
|         ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false);
 | |
|     } else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) {
 | |
|         if (src1->ne[1] == 1 && src0->ne[0] % GGML_CUDA_DMMV_X == 0) {
 | |
| #ifdef GGML_CUDA_FORCE_DMMV
 | |
|             const bool use_mul_mat_vec_q = false;
 | |
| #else
 | |
|             const bool use_mul_mat_vec_q = min_compute_capability >= MIN_CC_DP4A && ggml_is_quantized(src0->type) && ggml_nrows(src1) == 1;
 | |
| #endif // GGML_CUDA_FORCE_DMMV
 | |
| 
 | |
|             if (use_mul_mat_vec_q) {
 | |
|                 // NOTE: this kernel does not support ggml_nrows(src1) > 1
 | |
|                 ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, true);
 | |
|             } else {
 | |
|                 ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, false);
 | |
|             }
 | |
|         } else {
 | |
|             bool use_mul_mat_q = min_compute_capability >= MIN_CC_DP4A && ggml_is_quantized(src0->type);
 | |
| 
 | |
|             // when tensor cores are available, use them for large batch size
 | |
|             // ref: https://github.com/ggerganov/llama.cpp/pull/3776
 | |
|             if (use_tensor_cores && min_compute_capability >= CC_VOLTA && src1->ne[1] > MMQ_MAX_BATCH_SIZE) {
 | |
|                 use_mul_mat_q = false;
 | |
|             }
 | |
| 
 | |
|             if (use_mul_mat_q) {
 | |
|                 ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_q, true);
 | |
|             } else {
 | |
|                 ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false);
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| template<typename ... Srcs>
 | |
| static __global__ void k_compute_batched_ptrs_id(
 | |
|         const void ** ptrs_src, void ** ptrs_dst,
 | |
|         int ne12, int ne13,
 | |
|         int ne23,
 | |
|         int nb02, int nb03,
 | |
|         int nb12, int nb13,
 | |
|         int nb2, int nb3,
 | |
|         int r2, int r3,
 | |
|         ggml_type src0_type, half * src0_as_f16, int64_t src0_ne,
 | |
|         const half * src1_f16, half * dst_f16,
 | |
|         const int32_t * ids, const int id,
 | |
|         Srcs... src0s) {
 | |
| 
 | |
|     int i = ids[id];
 | |
| 
 | |
|     half * src0_f16;
 | |
|     const void * srcs_ar[] = { (const half *) src0s... };
 | |
|     if (src0_type == GGML_TYPE_F16) {
 | |
|         src0_f16 = (half *) srcs_ar[i];
 | |
|     } else {
 | |
|         src0_f16 = src0_as_f16;
 | |
|         if (threadIdx.x == 0 && threadIdx.y == 0) {
 | |
|             const to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(src0_type);
 | |
|             to_fp16(srcs_ar[i], src0_f16, src0_ne, cudaStreamFireAndForget);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     int i13 = blockIdx.x * blockDim.x + threadIdx.x;
 | |
|     int i12 = blockIdx.y * blockDim.y + threadIdx.y;
 | |
| 
 | |
|     if (i13 >= ne13 || i12 >= ne12) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     int i03 = i13 / r3;
 | |
|     int i02 = i12 / r2;
 | |
| 
 | |
|     ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_f16 + i02*nb02   + i03*nb03;
 | |
|     ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_f16 + i12*nb12/2 + i13*nb13/2;
 | |
|     ptrs_dst[0*ne23 + i12 + i13*ne12] = (      char *)  dst_f16 + i12* nb2/2 + i13* nb3/2;
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_mul_mat_id_cublas(ggml_tensor * dst) {
 | |
|     const struct ggml_tensor * ids = dst->src[0];
 | |
|     const struct ggml_tensor * src1 = dst->src[1];
 | |
|     const struct ggml_tensor * src00 = dst->src[2];
 | |
| 
 | |
|     const int id = dst->op_params[0];
 | |
| 
 | |
|     GGML_ASSERT(!ggml_is_transposed(src00));
 | |
|     GGML_ASSERT(!ggml_is_transposed(src1));
 | |
| 
 | |
|     GGML_ASSERT(src00->backend != GGML_BACKEND_GPU_SPLIT);
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | |
| 
 | |
|     const int64_t ne00 = src00->ne[0]; GGML_UNUSED(ne00);
 | |
|     const int64_t ne01 = src00->ne[1];
 | |
|     const int64_t ne02 = src00->ne[2];
 | |
|     const int64_t ne03 = src00->ne[3];
 | |
| 
 | |
|     //const int64_t nb01 = src00->nb[1];
 | |
|     const int64_t nb02 = src00->nb[2]; GGML_UNUSED(nb02);
 | |
|     const int64_t nb03 = src00->nb[3]; GGML_UNUSED(nb03);
 | |
| 
 | |
|     const int64_t ne10 = src1->ne[0];
 | |
|     const int64_t ne11 = src1->ne[1];
 | |
|     const int64_t ne12 = src1->ne[2];
 | |
|     const int64_t ne13 = src1->ne[3];
 | |
| 
 | |
|     //const int64_t nb11 = src1->nb[1];
 | |
|     const int64_t nb12 = src1->nb[2]; GGML_UNUSED(nb12);
 | |
|     const int64_t nb13 = src1->nb[3]; GGML_UNUSED(nb13);
 | |
| 
 | |
|     const int64_t ne1 = ggml_nelements(src1);
 | |
|     const int64_t ne  = ggml_nelements(dst);
 | |
| 
 | |
|     CUDA_CHECK(ggml_cuda_set_device(g_main_device));
 | |
|     cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
 | |
| 
 | |
|     CUBLAS_CHECK(cublasSetStream(g_cublas_handles[g_main_device], main_stream));
 | |
| 
 | |
|     //ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
 | |
|     //void * src0_ddq = src0_extra->data_device[g_main_device];
 | |
|     //half * src0_as_f16 = (half *) src0_ddq;
 | |
| 
 | |
|     ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
 | |
|     float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
 | |
| 
 | |
|     ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
 | |
|     float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
 | |
| 
 | |
|     // convert src1 to fp16
 | |
|     const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
 | |
|     GGML_ASSERT(to_fp16_cuda != nullptr);
 | |
| 
 | |
|     size_t src1_as = 0;
 | |
|     half * src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne1 * sizeof(half), &src1_as);
 | |
|     to_fp16_cuda(src1_ddf, src1_as_f16, ne1, main_stream);
 | |
| 
 | |
|     size_t dst_as = 0;
 | |
|     half * dst_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &dst_as);
 | |
| 
 | |
|     GGML_ASSERT(ne12 % ne02 == 0);
 | |
|     GGML_ASSERT(ne13 % ne03 == 0);
 | |
| 
 | |
|     // broadcast factors
 | |
|     const int64_t r2 = ne12/ne02;
 | |
|     const int64_t r3 = ne13/ne03;
 | |
| 
 | |
|     const half alpha_f16 = 1.0f;
 | |
|     const half beta_f16  = 0.0f;
 | |
| 
 | |
|     // use cublasGemmBatchedEx
 | |
|     const int ne23 = ne12*ne13;
 | |
| 
 | |
|     const void ** ptrs_src = nullptr;
 | |
|           void ** ptrs_dst = nullptr;
 | |
| 
 | |
|     size_t ptrs_src_s = 0;
 | |
|     size_t ptrs_dst_s = 0;
 | |
| 
 | |
|     ptrs_src = (const void **) ggml_cuda_pool_malloc(2*ne23*sizeof(void *), &ptrs_src_s);
 | |
|     ptrs_dst = (      void **) ggml_cuda_pool_malloc(1*ne23*sizeof(void *), &ptrs_dst_s);
 | |
| 
 | |
|     int64_t src0_ne = ggml_nelements(src00);
 | |
|     half * src0_as_f16 = nullptr;
 | |
|     size_t src0_as = 0;
 | |
|     if (src00->type != GGML_TYPE_F16) {
 | |
|         src0_as_f16 = (half *) ggml_cuda_pool_malloc(src0_ne * sizeof(half), &src0_as);
 | |
|     }
 | |
| 
 | |
|     static_assert(GGML_MAX_SRC == 6, "GGML_MAX_SRC == 6");
 | |
|     dim3 block_dims(ne13, ne12);
 | |
|     k_compute_batched_ptrs_id<<<1, block_dims, 0, main_stream>>>(
 | |
|             ptrs_src, ptrs_dst,
 | |
|             ne12, ne13,
 | |
|             ne23,
 | |
|             ne00*ne01*sizeof(half), ne00*ne01*ne02*sizeof(half),
 | |
|             nb12, nb13,
 | |
|             dst->nb[2], dst->nb[3],
 | |
|             r2, r3,
 | |
|             src00->type, src0_as_f16, src0_ne,
 | |
|             src1_as_f16, dst_f16,
 | |
|             (const int *)((ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device], id,
 | |
|             dst->src[2] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[2]->extra)->data_device[g_main_device] : nullptr,
 | |
|             dst->src[3] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[3]->extra)->data_device[g_main_device] : nullptr,
 | |
|             dst->src[4] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[4]->extra)->data_device[g_main_device] : nullptr,
 | |
|             dst->src[5] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[5]->extra)->data_device[g_main_device] : nullptr
 | |
|     );
 | |
|     CUDA_CHECK(cudaGetLastError());
 | |
| 
 | |
|     CUBLAS_CHECK(
 | |
|     cublasGemmBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
 | |
|             ne01, ne11, ne10,
 | |
|             &alpha_f16, (const void **) (ptrs_src + 0*ne23), CUDA_R_16F, ne00,
 | |
|                         (const void **) (ptrs_src + 1*ne23), CUDA_R_16F, ne10,
 | |
|             &beta_f16,  (      void **) (ptrs_dst + 0*ne23), CUDA_R_16F, ne01,
 | |
|             ne23,
 | |
|             CUBLAS_COMPUTE_16F,
 | |
|             CUBLAS_GEMM_DEFAULT_TENSOR_OP));
 | |
| 
 | |
|     if (src0_as != 0) {
 | |
|         ggml_cuda_pool_free(src0_as_f16, src0_as);
 | |
|     }
 | |
|     if (ptrs_src_s != 0) {
 | |
|         ggml_cuda_pool_free(ptrs_src, ptrs_src_s);
 | |
|     }
 | |
|     if (ptrs_dst_s != 0) {
 | |
|         ggml_cuda_pool_free(ptrs_dst, ptrs_dst_s);
 | |
|     }
 | |
| 
 | |
|     const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
 | |
|     to_fp32_cuda(dst_f16, dst_ddf, ne, main_stream);
 | |
| 
 | |
|     ggml_cuda_pool_free(src1_as_f16, src1_as);
 | |
|     ggml_cuda_pool_free(dst_f16, dst_as);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
| #if 0
 | |
|     ggml_cuda_mul_mat_id_cublas(dst);
 | |
|     // TODO: mmq/mmv support
 | |
| #endif
 | |
| 
 | |
|     const int64_t nb11 = src1->nb[1];
 | |
|     const int64_t nb1  =  dst->nb[1];
 | |
| 
 | |
|     const struct ggml_tensor * ids = src0;
 | |
|     const int32_t id = ((int32_t *) dst->op_params)[0];
 | |
|     const int32_t n_as = ((int32_t *) dst->op_params)[1];
 | |
| 
 | |
|     std::vector<char> ids_host(ggml_nbytes(ids));
 | |
| 
 | |
|     const cudaStream_t stream = g_cudaStreams[g_main_device][0];
 | |
| 
 | |
|     if (ids->backend == GGML_BACKEND_GPU) {
 | |
|         const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device];
 | |
|         CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
 | |
|         CUDA_CHECK(cudaStreamSynchronize(stream));
 | |
|     } else {
 | |
|         memcpy(ids_host.data(), ids->data, ggml_nbytes(ids));
 | |
|     }
 | |
| 
 | |
|     const ggml_tensor_extra_gpu * src1_extra = (const ggml_tensor_extra_gpu *) src1->extra;
 | |
|     const ggml_tensor_extra_gpu * dst_extra = (const ggml_tensor_extra_gpu *) dst->extra;
 | |
| 
 | |
|     ggml_tensor_extra_gpu src1_row_extra;
 | |
|     ggml_tensor_extra_gpu dst_row_extra;
 | |
| 
 | |
|     ggml_tensor src1_row = *src1;
 | |
|     ggml_tensor dst_row = *dst;
 | |
| 
 | |
|     src1_row.backend = GGML_BACKEND_GPU;
 | |
|     dst_row.backend  = GGML_BACKEND_GPU;
 | |
| 
 | |
|     src1_row.extra = &src1_row_extra;
 | |
|     dst_row.extra = &dst_row_extra;
 | |
| 
 | |
|     char * src1_original = src1->backend == GGML_BACKEND_CPU ?
 | |
|         (char *) src1->data : (char *) src1_extra->data_device[g_main_device];
 | |
|     char * dst_original  =  dst->backend == GGML_BACKEND_CPU ?
 | |
|         (char *)  dst->data : (char *)  dst_extra->data_device[g_main_device];
 | |
| 
 | |
|     if (src1->ne[1] == 1) {
 | |
|         GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
 | |
|         GGML_ASSERT(dst->backend  == GGML_BACKEND_GPU);
 | |
| 
 | |
|         for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
 | |
|             //int32_t row_id;
 | |
|             //CUDA_CHECK(cudaMemcpyAsync(&row_id, ids_dev + i01*ids->nb[1] + id*ids->nb[0], sizeof(int32_t), cudaMemcpyDeviceToHost, g_cudaStreams[g_main_device][0]));
 | |
|             //CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[g_main_device][0]));
 | |
| 
 | |
|             const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
 | |
| 
 | |
|             GGML_ASSERT(row_id >= 0 && row_id < n_as);
 | |
| 
 | |
|             const struct ggml_tensor * src0_row = dst->src[row_id + 2];
 | |
| 
 | |
|             src1_row_extra.data_device[g_main_device] = src1_original + i01*src1->nb[1];
 | |
|             src1_row.data = (char *) src1->data + i01*src1->nb[1]; // TODO why is this set?
 | |
| 
 | |
|             dst_row_extra.data_device[g_main_device] = dst_original + i01*dst->nb[1];
 | |
|             dst_row.data = (char *) dst->data + i01*dst->nb[1]; // TODO why is this set?
 | |
| 
 | |
|             ggml_cuda_mul_mat(src0_row, &src1_row, &dst_row);
 | |
|         }
 | |
|     } else {
 | |
|         size_t as_src1, as_dst;
 | |
|         char * src1_contiguous = (char *) ggml_cuda_pool_malloc(sizeof(float)*ggml_nelements(src1), &as_src1);
 | |
|         char *  dst_contiguous = (char *) ggml_cuda_pool_malloc(sizeof(float)*ggml_nelements(dst),  &as_dst);
 | |
| 
 | |
|         src1_row_extra.data_device[g_main_device] = src1_contiguous;
 | |
|         dst_row_extra.data_device[g_main_device]  =  dst_contiguous;
 | |
| 
 | |
|         const cudaMemcpyKind src1_kind = src1->backend == GGML_BACKEND_CPU ?
 | |
|             cudaMemcpyHostToDevice : cudaMemcpyDeviceToDevice;
 | |
|         const cudaMemcpyKind dst_kind  =  dst->backend == GGML_BACKEND_CPU ?
 | |
|             cudaMemcpyDeviceToHost : cudaMemcpyDeviceToDevice;
 | |
| 
 | |
|         for (int32_t row_id = 0; row_id < n_as; ++row_id) {
 | |
|             const struct ggml_tensor * src0_row = dst->src[row_id + 2];
 | |
| 
 | |
|             int64_t num_src1_rows = 0;
 | |
|             for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
 | |
|                 const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
 | |
| 
 | |
|                 if (row_id_i != row_id) {
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 GGML_ASSERT(row_id >= 0 && row_id < n_as);
 | |
| 
 | |
|                 CUDA_CHECK(cudaMemcpyAsync(src1_contiguous + num_src1_rows*nb11, src1_original + i01*nb11,
 | |
|                                         nb11, src1_kind, stream));
 | |
|                 num_src1_rows++;
 | |
|             }
 | |
| 
 | |
|             if (num_src1_rows == 0) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             src1_row.ne[1] = num_src1_rows;
 | |
|             dst_row.ne[1] = num_src1_rows;
 | |
| 
 | |
|             src1_row.nb[1] = nb11;
 | |
|             src1_row.nb[2] = num_src1_rows*nb11;
 | |
|             src1_row.nb[3] = num_src1_rows*nb11;
 | |
| 
 | |
|             dst_row.nb[1] = nb1;
 | |
|             dst_row.nb[2] = num_src1_rows*nb1;
 | |
|             dst_row.nb[3] = num_src1_rows*nb1;
 | |
| 
 | |
|             ggml_cuda_mul_mat(src0_row, &src1_row, &dst_row);
 | |
| 
 | |
|             num_src1_rows = 0;
 | |
|             for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
 | |
|                 const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
 | |
| 
 | |
|                 if (row_id_i != row_id) {
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 GGML_ASSERT(row_id >= 0 && row_id < n_as);
 | |
| 
 | |
|                 CUDA_CHECK(cudaMemcpyAsync(dst_original + i01*nb1, dst_contiguous + num_src1_rows*nb1,
 | |
|                                         nb1, dst_kind, stream));
 | |
|                 num_src1_rows++;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         ggml_cuda_pool_free(src1_contiguous, as_src1);
 | |
|         ggml_cuda_pool_free(dst_contiguous,  as_dst);
 | |
|     }
 | |
| 
 | |
|     if (dst->backend == GGML_BACKEND_CPU) {
 | |
|         CUDA_CHECK(cudaStreamSynchronize(stream));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_scale);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_clamp(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_clamp);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     const int64_t ne = ggml_nelements(src0);
 | |
|     GGML_ASSERT(ne == ggml_nelements(src1));
 | |
| 
 | |
|     GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
 | |
|     GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
 | |
| 
 | |
|     GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
 | |
|     GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
 | |
| 
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t ne01 = src0->ne[1];
 | |
|     GGML_ASSERT(src0->ne[3] == 1);
 | |
| 
 | |
|     const int64_t nb00 = src0->nb[0];
 | |
|     const int64_t nb01 = src0->nb[1];
 | |
|     const int64_t nb02 = src0->nb[2];
 | |
| 
 | |
|     const int64_t ne10 = src1->ne[0];
 | |
|     const int64_t ne11 = src1->ne[1];
 | |
|     GGML_ASSERT(src1->ne[3] == 1);
 | |
| 
 | |
|     const int64_t nb10 = src1->nb[0];
 | |
|     const int64_t nb11 = src1->nb[1];
 | |
|     const int64_t nb12 = src1->nb[2];
 | |
| 
 | |
|     CUDA_CHECK(ggml_cuda_set_device(g_main_device));
 | |
|     cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
 | |
| 
 | |
|     const ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
 | |
|     const ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
 | |
| 
 | |
|     char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
 | |
|     char * src1_ddc = (char *) src1_extra->data_device[g_main_device];
 | |
| 
 | |
|     if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
 | |
|         ggml_cpy_f32_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
 | |
|     } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
 | |
|         ggml_cpy_f32_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
 | |
|     } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
 | |
|         ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
 | |
|     } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
 | |
|         ggml_cpy_f32_q4_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
 | |
|     } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
 | |
|         ggml_cpy_f32_q4_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
 | |
|     } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
 | |
|         ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
 | |
|     } else {
 | |
|         fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
 | |
|                 ggml_type_name(src0->type), ggml_type_name(src1->type));
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| 
 | |
|     (void) dst;
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_dup(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     // TODO: why do we pass dst as src1 here?
 | |
|     ggml_cuda_cpy(src0, dst, nullptr);
 | |
|     (void) src1;
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_diag_mask_inf(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_diag_mask_inf);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_soft_max(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_soft_max);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_is_contiguous(src0)); // TODO: this restriction is temporary until non-cont support is implemented
 | |
|     ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rope);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_alibi(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_alibi);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_im2col(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_im2col);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_sum_rows(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_is_contiguous(src0));
 | |
|     ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_sum_rows);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_argsort(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_is_contiguous(src0));
 | |
|     ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_argsort);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     (void) src0;
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
| }
 | |
| 
 | |
| static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
 | |
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | |
| 
 | |
|     return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
 | |
| }
 | |
| 
 | |
| void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
 | |
|     const int64_t nrows = ggml_nrows(tensor);
 | |
| 
 | |
|     const int64_t ne0 = tensor->ne[0];
 | |
| 
 | |
|     const size_t nb1 = tensor->nb[1];
 | |
| 
 | |
|     ggml_backend_type backend = tensor->backend;
 | |
|     ggml_tensor_extra_gpu * extra = new struct ggml_tensor_extra_gpu;
 | |
|     memset(extra, 0, sizeof(*extra));
 | |
| 
 | |
|     for (int64_t id = 0; id < g_device_count; ++id) {
 | |
|         if (backend == GGML_BACKEND_GPU && id != g_main_device) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         ggml_cuda_set_device(id);
 | |
| 
 | |
|         int64_t row_low, row_high;
 | |
|         if (backend == GGML_BACKEND_GPU) {
 | |
|             row_low = 0;
 | |
|             row_high = nrows;
 | |
|         } else if (backend == GGML_BACKEND_GPU_SPLIT) {
 | |
|             const int64_t rounding = get_row_rounding(tensor->type);
 | |
| 
 | |
|             row_low = id == 0 ? 0 : nrows*g_tensor_split[id];
 | |
|             row_low -= row_low % rounding;
 | |
| 
 | |
|             if (id == g_device_count - 1) {
 | |
|                 row_high = nrows;
 | |
|             } else {
 | |
|                 row_high = nrows*g_tensor_split[id + 1];
 | |
|                 row_high -= row_high % rounding;
 | |
|             }
 | |
|         } else {
 | |
|             GGML_ASSERT(false);
 | |
|         }
 | |
|         if (row_low == row_high) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         int64_t nrows_split = row_high - row_low;
 | |
| 
 | |
|         const size_t offset_split = row_low*nb1;
 | |
|         size_t size = ggml_nbytes_split(tensor, nrows_split);
 | |
|         const size_t original_size = size;
 | |
| 
 | |
|         // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
 | |
|         if (ne0 % MATRIX_ROW_PADDING != 0) {
 | |
|             size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
 | |
|         }
 | |
| 
 | |
|         char * buf;
 | |
|         CUDA_CHECK(cudaMalloc(&buf, size));
 | |
|         char * buf_host = (char *)data + offset_split;
 | |
| 
 | |
|         // set padding to 0 to avoid possible NaN values
 | |
|         if (size > original_size) {
 | |
|             CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size));
 | |
|         }
 | |
| 
 | |
|         CUDA_CHECK(cudaMemcpy(buf, buf_host, original_size, cudaMemcpyHostToDevice));
 | |
| 
 | |
|         extra->data_device[id] = buf;
 | |
| 
 | |
|         if (backend == GGML_BACKEND_GPU_SPLIT) {
 | |
|             for (int64_t is = 0; is < MAX_STREAMS; ++is) {
 | |
|                 CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     tensor->extra = extra;
 | |
| }
 | |
| 
 | |
| void ggml_cuda_free_data(struct ggml_tensor * tensor) {
 | |
|     if (!tensor || !tensor->extra || (tensor->backend != GGML_BACKEND_GPU && tensor->backend != GGML_BACKEND_GPU_SPLIT) ) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
 | |
| 
 | |
|     for (int64_t id = 0; id < g_device_count; ++id) {
 | |
|         if (extra->data_device[id] != nullptr) {
 | |
|             CUDA_CHECK(ggml_cuda_set_device(id));
 | |
|             CUDA_CHECK(cudaFree(extra->data_device[id]));
 | |
|         }
 | |
| 
 | |
|         for (int64_t is = 0; is < MAX_STREAMS; ++is) {
 | |
|             if (extra->events[id][is] != nullptr) {
 | |
|                 CUDA_CHECK(ggml_cuda_set_device(id));
 | |
|                 CUDA_CHECK(cudaEventDestroy(extra->events[id][is]));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     delete extra;
 | |
| }
 | |
| 
 | |
| static ggml_tensor_extra_gpu * g_temp_tensor_extras = nullptr;
 | |
| static size_t g_temp_tensor_extra_index = 0;
 | |
| 
 | |
| static ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
 | |
|     if (g_temp_tensor_extras == nullptr) {
 | |
|         g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_CUDA_MAX_NODES];
 | |
|     }
 | |
| 
 | |
|     size_t alloc_index = g_temp_tensor_extra_index;
 | |
|     g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_CUDA_MAX_NODES;
 | |
|     ggml_tensor_extra_gpu * extra = &g_temp_tensor_extras[alloc_index];
 | |
|     memset(extra, 0, sizeof(*extra));
 | |
| 
 | |
|     return extra;
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bool force_inplace, bool no_alloc) {
 | |
|     if (scratch && g_scratch_size == 0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     tensor->backend = GGML_BACKEND_GPU;
 | |
| 
 | |
|     // recursively assign CUDA buffers until a compute tensor is found
 | |
|     if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_CPU) {
 | |
|         const ggml_op src0_op = tensor->src[0]->op;
 | |
|         if (src0_op == GGML_OP_RESHAPE || src0_op == GGML_OP_TRANSPOSE || src0_op == GGML_OP_VIEW || src0_op == GGML_OP_PERMUTE) {
 | |
|             ggml_cuda_assign_buffers_impl(tensor->src[0], scratch, force_inplace, no_alloc);
 | |
|         }
 | |
|     }
 | |
|     if (tensor->op == GGML_OP_CPY && tensor->src[1]->backend == GGML_BACKEND_CPU) {
 | |
|         ggml_cuda_assign_buffers_impl(tensor->src[1], scratch, force_inplace, no_alloc);
 | |
|     }
 | |
| 
 | |
|     if (scratch && no_alloc) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     ggml_tensor_extra_gpu * extra;
 | |
| 
 | |
|     const bool inplace = (tensor->src[0] != nullptr && tensor->src[0]->data == tensor->data) ||
 | |
|         tensor->op == GGML_OP_VIEW ||
 | |
|         force_inplace;
 | |
|     const size_t size = ggml_nbytes(tensor);
 | |
| 
 | |
|     CUDA_CHECK(ggml_cuda_set_device(g_main_device));
 | |
|     if (inplace && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) {
 | |
|         ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src[0]->extra;
 | |
|         char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
 | |
|         size_t offset = 0;
 | |
|         if (tensor->op == GGML_OP_VIEW) {
 | |
|             memcpy(&offset, tensor->op_params, sizeof(size_t));
 | |
|         }
 | |
|         extra = ggml_cuda_alloc_temp_tensor_extra();
 | |
|         extra->data_device[g_main_device] = src0_ddc + offset;
 | |
|     } else if (tensor->op == GGML_OP_CPY) {
 | |
|         ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu * ) tensor->src[1]->extra;
 | |
|         void * src1_ddv = src1_extra->data_device[g_main_device];
 | |
|         extra = ggml_cuda_alloc_temp_tensor_extra();
 | |
|         extra->data_device[g_main_device] = src1_ddv;
 | |
|     } else if (scratch) {
 | |
|         GGML_ASSERT(size <= g_scratch_size);
 | |
|         if (g_scratch_offset + size > g_scratch_size) {
 | |
|             g_scratch_offset = 0;
 | |
|         }
 | |
| 
 | |
|         char * data = (char *) g_scratch_buffer;
 | |
|         if (data == nullptr) {
 | |
|             CUDA_CHECK(cudaMalloc(&data, g_scratch_size));
 | |
|             g_scratch_buffer = data;
 | |
|         }
 | |
|         extra = ggml_cuda_alloc_temp_tensor_extra();
 | |
|         extra->data_device[g_main_device] = data + g_scratch_offset;
 | |
| 
 | |
|         g_scratch_offset += size;
 | |
| 
 | |
|         GGML_ASSERT(g_scratch_offset <= g_scratch_size);
 | |
|     } else { // allocate new buffers outside of scratch
 | |
|         void * data;
 | |
|         CUDA_CHECK(cudaMalloc(&data, size));
 | |
|         CUDA_CHECK(cudaMemset(data, 0, size));
 | |
|         extra = new ggml_tensor_extra_gpu;
 | |
|         memset(extra, 0, sizeof(*extra));
 | |
|         extra->data_device[g_main_device] = data;
 | |
|     }
 | |
| 
 | |
|     tensor->extra = extra;
 | |
| }
 | |
| 
 | |
| void ggml_cuda_assign_scratch_offset(struct ggml_tensor * tensor, size_t offset) {
 | |
|     if (g_scratch_size == 0) {
 | |
|         return;
 | |
|     }
 | |
|     if (g_scratch_buffer == nullptr) {
 | |
|         ggml_cuda_set_device(g_main_device);
 | |
|         CUDA_CHECK(cudaMalloc(&g_scratch_buffer, g_scratch_size));
 | |
|     }
 | |
| 
 | |
|     ggml_tensor_extra_gpu * extra = ggml_cuda_alloc_temp_tensor_extra();
 | |
| 
 | |
|     const bool inplace = tensor->view_src != nullptr;
 | |
| 
 | |
|     if (inplace && (tensor->view_src->backend == GGML_BACKEND_GPU || tensor->view_src->backend == GGML_BACKEND_GPU_SPLIT)) {
 | |
|         ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->view_src->extra;
 | |
|         char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
 | |
|         size_t view_offset = 0;
 | |
|         if (tensor->op == GGML_OP_VIEW) {
 | |
|             memcpy(&view_offset, tensor->op_params, sizeof(size_t));
 | |
|         }
 | |
|         extra->data_device[g_main_device] = src0_ddc + view_offset;
 | |
|     } else {
 | |
|         extra->data_device[g_main_device] = (char *) g_scratch_buffer + offset;
 | |
|     }
 | |
| 
 | |
|     tensor->extra = extra;
 | |
| }
 | |
| 
 | |
| void ggml_cuda_copy_to_device(struct ggml_tensor * tensor) {
 | |
|     GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
 | |
|     GGML_ASSERT(ggml_is_contiguous(tensor));
 | |
| 
 | |
|     ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
 | |
|     CUDA_CHECK(ggml_cuda_set_device(g_main_device));
 | |
|     CUDA_CHECK(cudaMemcpy(extra->data_device[g_main_device], tensor->data, ggml_nbytes(tensor), cudaMemcpyHostToDevice));
 | |
| }
 | |
| 
 | |
| void ggml_cuda_assign_buffers(struct ggml_tensor * tensor) {
 | |
|     ggml_cuda_assign_buffers_impl(tensor, true, false, false);
 | |
| }
 | |
| 
 | |
| void ggml_cuda_assign_buffers_no_alloc(struct ggml_tensor * tensor) {
 | |
|     ggml_cuda_assign_buffers_impl(tensor, true, false, true);
 | |
| }
 | |
| 
 | |
| void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor) {
 | |
|     ggml_cuda_assign_buffers_impl(tensor, false, false, false);
 | |
| }
 | |
| 
 | |
| void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor) {
 | |
|     ggml_cuda_assign_buffers_impl(tensor, false, true, false);
 | |
| }
 | |
| 
 | |
| void ggml_cuda_set_main_device(const int main_device) {
 | |
|     if (main_device >= g_device_count) {
 | |
|         fprintf(stderr, "warning: cannot set main_device=%d because there are only %d devices. Using device %d instead.\n",
 | |
|                 main_device, g_device_count, g_main_device);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (g_main_device != main_device && g_device_count > 1) {
 | |
|         g_main_device = main_device;
 | |
|         cudaDeviceProp prop;
 | |
|         CUDA_CHECK(cudaGetDeviceProperties(&prop, g_main_device));
 | |
|         fprintf(stderr, "%s: using device %d (%s) as main device\n", __func__, g_main_device, prop.name);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void ggml_cuda_set_scratch_size(const size_t scratch_size) {
 | |
|     // this is a hack to not completely break llama.cpp when using multiple models or contexts simultaneously
 | |
|     // it still won't always work as expected, but it's better than nothing
 | |
|     if (scratch_size > g_scratch_size) {
 | |
|         ggml_cuda_free_scratch();
 | |
|     }
 | |
|     g_scratch_size = std::max(g_scratch_size, scratch_size);
 | |
| }
 | |
| 
 | |
| void ggml_cuda_free_scratch() {
 | |
|     if (g_scratch_buffer == nullptr) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     CUDA_CHECK(cudaFree(g_scratch_buffer));
 | |
|     g_scratch_buffer = nullptr;
 | |
| }
 | |
| 
 | |
| bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
 | |
|     if (!g_cublas_loaded) return false;
 | |
| 
 | |
|     ggml_cuda_func_t func;
 | |
|     const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
 | |
|         || (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
 | |
|         || (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU);
 | |
| 
 | |
|     if (!any_on_device && tensor->op != GGML_OP_MUL_MAT && tensor->op != GGML_OP_MUL_MAT_ID) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (tensor->op == GGML_OP_MUL_MAT) {
 | |
|         if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) {
 | |
| #ifndef NDEBUG
 | |
|             fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = %" PRId64 ", src1->ne[3] = %" PRId64 " - fallback to CPU\n", __func__, tensor->name, tensor->src[0]->ne[3], tensor->src[1]->ne[3]);
 | |
| #endif
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     switch (tensor->op) {
 | |
|         case GGML_OP_REPEAT:
 | |
|             func = ggml_cuda_repeat;
 | |
|             break;
 | |
|         case GGML_OP_GET_ROWS:
 | |
|             func = ggml_cuda_get_rows;
 | |
|             break;
 | |
|         case GGML_OP_DUP:
 | |
|             func = ggml_cuda_dup;
 | |
|             break;
 | |
|         case GGML_OP_ADD:
 | |
|             func = ggml_cuda_add;
 | |
|             break;
 | |
|         case GGML_OP_ACC:
 | |
|             func = ggml_cuda_acc;
 | |
|             break;
 | |
|         case GGML_OP_MUL:
 | |
|             func = ggml_cuda_mul;
 | |
|             break;
 | |
|         case GGML_OP_DIV:
 | |
|             func = ggml_cuda_div;
 | |
|             break;
 | |
|         case GGML_OP_UNARY:
 | |
|             switch (ggml_get_unary_op(tensor)) {
 | |
|                 case GGML_UNARY_OP_GELU:
 | |
|                     func = ggml_cuda_gelu;
 | |
|                     break;
 | |
|                 case GGML_UNARY_OP_SILU:
 | |
|                     func = ggml_cuda_silu;
 | |
|                     break;
 | |
|                 case GGML_UNARY_OP_GELU_QUICK:
 | |
|                     func = ggml_cuda_gelu_quick;
 | |
|                     break;
 | |
|                 case GGML_UNARY_OP_TANH:
 | |
|                     func = ggml_cuda_tanh;
 | |
|                     break;
 | |
|                 case GGML_UNARY_OP_RELU:
 | |
|                     func = ggml_cuda_relu;
 | |
|                     break;
 | |
|                 default:
 | |
|                     return false;
 | |
|             }
 | |
|             break;
 | |
|         case GGML_OP_NORM:
 | |
|             func = ggml_cuda_norm;
 | |
|             break;
 | |
|         case GGML_OP_GROUP_NORM:
 | |
|             func = ggml_cuda_group_norm;
 | |
|             break;
 | |
|         case GGML_OP_CONCAT:
 | |
|             func = ggml_cuda_concat;
 | |
|             break;
 | |
|         case GGML_OP_UPSCALE:
 | |
|             func = ggml_cuda_upscale;
 | |
|             break;
 | |
|         case GGML_OP_PAD:
 | |
|             func = ggml_cuda_pad;
 | |
|             break;
 | |
|         case GGML_OP_LEAKY_RELU:
 | |
|             func = ggml_cuda_leaky_relu;
 | |
|             break;
 | |
|         case GGML_OP_RMS_NORM:
 | |
|             func = ggml_cuda_rms_norm;
 | |
|             break;
 | |
|         case GGML_OP_MUL_MAT:
 | |
|             if (!any_on_device && !ggml_cuda_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
 | |
|                 return false;
 | |
|             }
 | |
|             func = ggml_cuda_mul_mat;
 | |
|             break;
 | |
|         case GGML_OP_MUL_MAT_ID:
 | |
|             if (!any_on_device && !ggml_cuda_can_mul_mat(tensor->src[2], tensor->src[1], tensor)) {
 | |
|                 return false;
 | |
|             }
 | |
|             func = ggml_cuda_mul_mat_id;
 | |
|             break;
 | |
|         case GGML_OP_SCALE:
 | |
|             func = ggml_cuda_scale;
 | |
|             break;
 | |
|         case GGML_OP_SQR:
 | |
|             func = ggml_cuda_sqr;
 | |
|             break;
 | |
|         case GGML_OP_CLAMP:
 | |
|             func = ggml_cuda_clamp;
 | |
|             break;
 | |
|         case GGML_OP_CPY:
 | |
|             func = ggml_cuda_cpy;
 | |
|             break;
 | |
|         case GGML_OP_CONT:
 | |
|             func = ggml_cuda_dup;
 | |
|             break;
 | |
|         case GGML_OP_NONE:
 | |
|         case GGML_OP_RESHAPE:
 | |
|         case GGML_OP_VIEW:
 | |
|         case GGML_OP_PERMUTE:
 | |
|         case GGML_OP_TRANSPOSE:
 | |
|             func = ggml_cuda_nop;
 | |
|             break;
 | |
|         case GGML_OP_DIAG_MASK_INF:
 | |
|             func = ggml_cuda_diag_mask_inf;
 | |
|             break;
 | |
|         case GGML_OP_SOFT_MAX:
 | |
|             func = ggml_cuda_soft_max;
 | |
|             break;
 | |
|         case GGML_OP_ROPE:
 | |
|             func = ggml_cuda_rope;
 | |
|             break;
 | |
|         case GGML_OP_ALIBI:
 | |
|             func = ggml_cuda_alibi;
 | |
|             break;
 | |
|         case GGML_OP_IM2COL:
 | |
|             func = ggml_cuda_im2col;
 | |
|             break;
 | |
|         case GGML_OP_SUM_ROWS:
 | |
|             func = ggml_cuda_sum_rows;
 | |
|             break;
 | |
|         case GGML_OP_ARGSORT:
 | |
|             func = ggml_cuda_argsort;
 | |
|             break;
 | |
|         default:
 | |
|             return false;
 | |
|     }
 | |
| 
 | |
|     if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT) {
 | |
|         ggml_cuda_set_peer_access(tensor->src[1]->ne[1]);
 | |
|     }
 | |
| 
 | |
|     if (params->ith != 0) {
 | |
|         return true;
 | |
|     }
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return true;
 | |
|     }
 | |
|     func(tensor->src[0], tensor->src[1], tensor);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| int ggml_cuda_get_device_count() {
 | |
|     int device_count;
 | |
|     if (cudaGetDeviceCount(&device_count) != cudaSuccess) {
 | |
|         return 0;
 | |
|     }
 | |
|     return device_count;
 | |
| }
 | |
| 
 | |
| void ggml_cuda_get_device_description(int device, char * description, size_t description_size) {
 | |
|     cudaDeviceProp prop;
 | |
|     CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
 | |
|     snprintf(description, description_size, "%s", prop.name);
 | |
| }
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| // backend interface
 | |
| 
 | |
| #define UNUSED GGML_UNUSED
 | |
| 
 | |
| // cuda buffer
 | |
| 
 | |
| struct ggml_backend_buffer_context_cuda {
 | |
|     int device;
 | |
|     void * dev_ptr = nullptr;
 | |
|     ggml_tensor_extra_gpu * temp_tensor_extras = nullptr;
 | |
|     size_t temp_tensor_extra_index = 0;
 | |
| 
 | |
|     ggml_backend_buffer_context_cuda(int device, void * dev_ptr) : device(device), dev_ptr(dev_ptr) {}
 | |
| 
 | |
|     ~ggml_backend_buffer_context_cuda() {
 | |
|         delete[] temp_tensor_extras;
 | |
|     }
 | |
| 
 | |
|     ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
 | |
|         if (temp_tensor_extras == nullptr) {
 | |
|             temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_CUDA_MAX_NODES];
 | |
|         }
 | |
| 
 | |
|         size_t alloc_index = temp_tensor_extra_index;
 | |
|         temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_CUDA_MAX_NODES;
 | |
|         ggml_tensor_extra_gpu * extra = &temp_tensor_extras[alloc_index];
 | |
|         memset(extra, 0, sizeof(*extra));
 | |
| 
 | |
|         return extra;
 | |
|     }
 | |
| };
 | |
| 
 | |
| static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
 | |
|     ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context;
 | |
|     CUDA_CHECK(cudaFree(ctx->dev_ptr));
 | |
|     delete ctx;
 | |
| }
 | |
| 
 | |
| static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) {
 | |
|     ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context;
 | |
|     return ctx->dev_ptr;
 | |
| }
 | |
| 
 | |
| static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
 | |
|     ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context;
 | |
| 
 | |
|     if (tensor->view_src != NULL && tensor->view_offs == 0) {
 | |
|         assert(tensor->view_src->buffer->buft == buffer->buft);
 | |
|         tensor->backend = tensor->view_src->backend;
 | |
|         tensor->extra = tensor->view_src->extra;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     ggml_tensor_extra_gpu * extra = ctx->ggml_cuda_alloc_temp_tensor_extra();
 | |
| 
 | |
|     extra->data_device[ctx->device] = tensor->data;
 | |
| 
 | |
|     tensor->backend = GGML_BACKEND_GPU;
 | |
|     tensor->extra = extra;
 | |
| 
 | |
|     if (ggml_is_quantized(tensor->type)) {
 | |
|         // initialize padding to 0 to avoid possible NaN values
 | |
|         int64_t row_low = 0;
 | |
|         int64_t row_high = ggml_nrows(tensor);
 | |
|         int64_t nrows_split = row_high - row_low;
 | |
| 
 | |
|         size_t original_size = ggml_nbytes_split(tensor, nrows_split);
 | |
|         size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
 | |
| 
 | |
|         if (padded_size > original_size && tensor->view_src == nullptr) {
 | |
|             CUDA_CHECK(cudaMemsetAsync((char *)tensor->data + original_size, 0, padded_size - original_size, g_cudaStreams[ctx->device][0]));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     UNUSED(buffer);
 | |
| }
 | |
| 
 | |
| static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
 | |
|     GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
 | |
| 
 | |
|     ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context;
 | |
| 
 | |
|     ggml_cuda_set_device(ctx->device);
 | |
|     CUDA_CHECK(cudaDeviceSynchronize());
 | |
| 
 | |
|     CUDA_CHECK(cudaMemcpy((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice));
 | |
| }
 | |
| 
 | |
| static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
 | |
|     GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
 | |
| 
 | |
|     ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context;
 | |
| 
 | |
|     ggml_cuda_set_device(ctx->device);
 | |
|     CUDA_CHECK(cudaDeviceSynchronize());
 | |
| 
 | |
|     CUDA_CHECK(cudaMemcpy(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost));
 | |
| }
 | |
| 
 | |
| static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
 | |
|     ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context;
 | |
| 
 | |
|     ggml_cuda_set_device(ctx->device);
 | |
|     CUDA_CHECK(cudaDeviceSynchronize());
 | |
| 
 | |
|     CUDA_CHECK(cudaMemset(ctx->dev_ptr, value, buffer->size));
 | |
| }
 | |
| 
 | |
| static struct ggml_backend_buffer_i cuda_backend_buffer_interface = {
 | |
|     /* .free_buffer     = */ ggml_backend_cuda_buffer_free_buffer,
 | |
|     /* .get_base        = */ ggml_backend_cuda_buffer_get_base,
 | |
|     /* .init_tensor     = */ ggml_backend_cuda_buffer_init_tensor,
 | |
|     /* .set_tensor      = */ ggml_backend_cuda_buffer_set_tensor,
 | |
|     /* .get_tensor      = */ ggml_backend_cuda_buffer_get_tensor,
 | |
|     /* .cpy_tensor_from = */ NULL,
 | |
|     /* .cpy_tensor_to   = */ NULL,
 | |
|     /* .clear           = */ ggml_backend_cuda_buffer_clear,
 | |
| };
 | |
| 
 | |
| // cuda buffer type
 | |
| 
 | |
| static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
 | |
|     int device = (int) (intptr_t) buft->context;
 | |
| 
 | |
|     ggml_cuda_set_device(device);
 | |
| 
 | |
|     size = std::max(size, (size_t)1); // cudaMalloc returns null for size 0
 | |
| 
 | |
|     void * dev_ptr;
 | |
|     CUDA_CHECK(cudaMalloc(&dev_ptr, size));
 | |
| 
 | |
|     ggml_backend_buffer_context_cuda * ctx = new ggml_backend_buffer_context_cuda(device, dev_ptr);
 | |
| 
 | |
|     return ggml_backend_buffer_init(buft, cuda_backend_buffer_interface, ctx, size);
 | |
| }
 | |
| 
 | |
| static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
 | |
|     return 128;
 | |
| 
 | |
|     UNUSED(buft);
 | |
| }
 | |
| 
 | |
| static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, ggml_tensor * tensor) {
 | |
|     int64_t row_low = 0;
 | |
|     int64_t row_high = ggml_nrows(tensor);
 | |
|     int64_t nrows_split = row_high - row_low;
 | |
| 
 | |
|     size_t size = ggml_nbytes_split(tensor, nrows_split);
 | |
| 
 | |
|     int64_t ne0 = tensor->ne[0];
 | |
| 
 | |
|     if (ggml_is_quantized(tensor->type)) {
 | |
|         if (ne0 % MATRIX_ROW_PADDING != 0) {
 | |
|             size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return size;
 | |
| 
 | |
|     UNUSED(buft);
 | |
| }
 | |
| 
 | |
| static bool ggml_backend_cuda_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
 | |
|     return ggml_backend_is_cuda(backend);
 | |
| 
 | |
|     UNUSED(buft);
 | |
| }
 | |
| 
 | |
| static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
 | |
|     /* .alloc_buffer     = */ ggml_backend_cuda_buffer_type_alloc_buffer,
 | |
|     /* .get_alignment    = */ ggml_backend_cuda_buffer_type_get_alignment,
 | |
|     /* .get_alloc_size   = */ ggml_backend_cuda_buffer_type_get_alloc_size,
 | |
|     /* .supports_backend = */ ggml_backend_cuda_buffer_type_supports_backend,
 | |
|     /* .is_host          = */ nullptr,
 | |
| };
 | |
| 
 | |
| ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
 | |
|     static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_types[GGML_CUDA_MAX_DEVICES];
 | |
| 
 | |
|     static bool ggml_backend_cuda_buffer_type_initialized = false;
 | |
| 
 | |
|     if (!ggml_backend_cuda_buffer_type_initialized) {
 | |
|         for (int i = 0; i < GGML_CUDA_MAX_DEVICES; i++) {
 | |
|             ggml_backend_cuda_buffer_types[i] = {
 | |
|                 /* .iface    = */ ggml_backend_cuda_buffer_type_interface,
 | |
|                 /* .context  = */ (ggml_backend_buffer_type_context_t) (intptr_t) i,
 | |
|             };
 | |
|         }
 | |
|         ggml_backend_cuda_buffer_type_initialized = true;
 | |
|     }
 | |
| 
 | |
|     return &ggml_backend_cuda_buffer_types[device];
 | |
| }
 | |
| 
 | |
| // host buffer type
 | |
| 
 | |
| static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
 | |
|     CUDA_CHECK(cudaFreeHost(buffer->context));
 | |
| }
 | |
| 
 | |
| static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
 | |
|     void * ptr;
 | |
|     CUDA_CHECK(cudaMallocHost(&ptr, size));
 | |
| 
 | |
|     // FIXME: this is a hack to avoid having to implement a new buffer type
 | |
|     ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
 | |
|     buffer->buft = buft;
 | |
|     buffer->iface.free_buffer = ggml_backend_cuda_host_buffer_free_buffer;
 | |
| 
 | |
|     return buffer;
 | |
| }
 | |
| 
 | |
| ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
 | |
|     static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_type_host = {
 | |
|         /* .iface    = */ {
 | |
|             /* .alloc_buffer     = */ ggml_backend_cuda_host_buffer_type_alloc_buffer,
 | |
|             /* .get_alignment    = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
 | |
|             /* .get_alloc_size   = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
 | |
|             /* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
 | |
|             /* .is_host          = */ ggml_backend_cpu_buffer_type()->iface.is_host,
 | |
|         },
 | |
|         /* .context  = */ nullptr,
 | |
|     };
 | |
| 
 | |
|     return &ggml_backend_cuda_buffer_type_host;
 | |
| }
 | |
| 
 | |
| // backend
 | |
| 
 | |
| struct ggml_backend_context_cuda {
 | |
|     int device;
 | |
| };
 | |
| 
 | |
| static const char * ggml_backend_cuda_name(ggml_backend_t backend) {
 | |
|     return GGML_CUDA_NAME;
 | |
| 
 | |
|     UNUSED(backend);
 | |
| }
 | |
| 
 | |
| static void ggml_backend_cuda_free(ggml_backend_t backend) {
 | |
|     ggml_backend_context_cuda * cuda_ctx = (ggml_backend_context_cuda *)backend->context;
 | |
| 
 | |
|     delete cuda_ctx;
 | |
|     delete backend;
 | |
| }
 | |
| 
 | |
| static ggml_backend_buffer_type_t ggml_backend_cuda_get_default_buffer_type(ggml_backend_t backend) {
 | |
|     ggml_backend_context_cuda * cuda_ctx = (ggml_backend_context_cuda *)backend->context;
 | |
| 
 | |
|     return ggml_backend_cuda_buffer_type(cuda_ctx->device);
 | |
| }
 | |
| 
 | |
| static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
 | |
|     ggml_backend_context_cuda * cuda_ctx = (ggml_backend_context_cuda *)backend->context;
 | |
| 
 | |
|     GGML_ASSERT(tensor->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
 | |
|     GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
 | |
| 
 | |
|     CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, g_cudaStreams[cuda_ctx->device][0]));
 | |
| }
 | |
| 
 | |
| static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
 | |
|     ggml_backend_context_cuda * cuda_ctx = (ggml_backend_context_cuda *)backend->context;
 | |
| 
 | |
|     GGML_ASSERT(tensor->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
 | |
|     GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
 | |
| 
 | |
|     CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, g_cudaStreams[cuda_ctx->device][0]));
 | |
| }
 | |
| 
 | |
| static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
 | |
|     ggml_backend_context_cuda * cuda_ctx = (ggml_backend_context_cuda *)backend->context;
 | |
| 
 | |
|     CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[cuda_ctx->device][0]));
 | |
| 
 | |
|     UNUSED(backend);
 | |
| }
 | |
| 
 | |
| static ggml_backend_graph_plan_t ggml_backend_cuda_graph_plan_create(ggml_backend_t backend, ggml_cgraph * cgraph) {
 | |
|     GGML_ASSERT(!"not implemented");
 | |
| 
 | |
|     return nullptr;
 | |
| 
 | |
|     UNUSED(backend);
 | |
|     UNUSED(cgraph);
 | |
| }
 | |
| 
 | |
| static void ggml_backend_cuda_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
 | |
|     GGML_ASSERT(!"not implemented");
 | |
| 
 | |
|     UNUSED(backend);
 | |
|     UNUSED(plan);
 | |
| }
 | |
| 
 | |
| static void ggml_backend_cuda_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
 | |
|     GGML_ASSERT(!"not implemented");
 | |
| 
 | |
|     UNUSED(backend);
 | |
|     UNUSED(plan);
 | |
| }
 | |
| 
 | |
| static void ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
 | |
|     ggml_backend_context_cuda * cuda_ctx = (ggml_backend_context_cuda *)backend->context;
 | |
| 
 | |
|     ggml_cuda_set_main_device(cuda_ctx->device);
 | |
| 
 | |
|     ggml_compute_params params = {};
 | |
|     params.type = GGML_TASK_COMPUTE;
 | |
|     params.ith = 0;
 | |
|     for (int i = 0; i < cgraph->n_nodes; i++) {
 | |
|         ggml_tensor * node = cgraph->nodes[i];
 | |
| 
 | |
|         if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE)
 | |
|             continue;
 | |
| 
 | |
|         assert(node->backend == GGML_BACKEND_GPU);
 | |
|         assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
 | |
|         assert(node->extra != nullptr);
 | |
| 
 | |
|         for (int j = 0; j < GGML_MAX_SRC; j++) {
 | |
|             if (node->src[j] != nullptr) {
 | |
|                 assert(node->src[j]->backend == GGML_BACKEND_GPU);
 | |
|                 assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
 | |
|                 assert(node->src[j]->extra != nullptr);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         bool ok = ggml_cuda_compute_forward(¶ms, node);
 | |
|         if (!ok) {
 | |
|             fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
 | |
|         }
 | |
|         GGML_ASSERT(ok);
 | |
| 
 | |
| #if 0
 | |
|         if (node->type == GGML_TYPE_F32) {
 | |
|             cudaDeviceSynchronize();
 | |
|             std::vector<float> tmp(ggml_nelements(node), 0.0f);
 | |
|             cudaMemcpy(tmp.data(), node->data, ggml_nelements(node)*sizeof(float), cudaMemcpyDeviceToHost);
 | |
|             printf("\n%s (%s) (%s %s) (%s %s): ", node->name, ggml_op_name(node->op),
 | |
|                 ggml_type_name(node->src[0]->type),
 | |
|                 node->src[1] ? ggml_type_name(node->src[1]->type) : "none",
 | |
|                 node->src[0]->name,
 | |
|                 node->src[1] ? node->src[1]->name : "none");
 | |
|             double sum = 0.0;
 | |
|             double sq_sum = 0.0;
 | |
|             for (int i = 0; i < ggml_nelements(node); i++) {
 | |
|                 printf("%f ", tmp[i]);
 | |
|                 sum += tmp[i];
 | |
|                 sq_sum += tmp[i]*tmp[i];
 | |
|             }
 | |
|             printf("\n");
 | |
|             printf("sum: %f, ", sum);
 | |
|             printf("sq_sum: %f\n", sq_sum);
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     UNUSED(backend);
 | |
| }
 | |
| 
 | |
| static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
 | |
|     switch (op->op) {
 | |
|         case GGML_OP_UNARY:
 | |
|             switch (ggml_get_unary_op(op)) {
 | |
|                 case GGML_UNARY_OP_GELU:
 | |
|                 case GGML_UNARY_OP_SILU:
 | |
|                 case GGML_UNARY_OP_RELU:
 | |
|                 case GGML_UNARY_OP_GELU_QUICK:
 | |
|                 case GGML_UNARY_OP_TANH:
 | |
|                     return true;
 | |
|                 default:
 | |
|                     return false;
 | |
|             }
 | |
|             break;
 | |
|         case GGML_OP_MUL_MAT:
 | |
|         case GGML_OP_MUL_MAT_ID:
 | |
|             {
 | |
|                 struct ggml_tensor * a;
 | |
|                 struct ggml_tensor * b;
 | |
|                 if (op->op == GGML_OP_MUL_MAT) {
 | |
|                     a = op->src[0];
 | |
|                     b = op->src[1];
 | |
|                 } else {
 | |
|                     a = op->src[2];
 | |
|                     b = op->src[1];
 | |
|                 }
 | |
|                 if (a->ne[3] != b->ne[3]) {
 | |
|                     return false;
 | |
|                 }
 | |
|                 return true;
 | |
|             } break;
 | |
|         case GGML_OP_GET_ROWS:
 | |
|             {
 | |
|                 switch (op->src[0]->type) {
 | |
|                     case GGML_TYPE_F16:
 | |
|                     case GGML_TYPE_F32:
 | |
|                     case GGML_TYPE_Q4_0:
 | |
|                     case GGML_TYPE_Q4_1:
 | |
|                     case GGML_TYPE_Q5_0:
 | |
|                     case GGML_TYPE_Q5_1:
 | |
|                     case GGML_TYPE_Q8_0:
 | |
|                         return true;
 | |
|                     default:
 | |
|                         return false;
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_CPY:
 | |
|             {
 | |
|                 ggml_type src0_type = op->src[0]->type;
 | |
|                 ggml_type src1_type = op->src[1]->type;
 | |
|                 if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
 | |
|                     return true;
 | |
|                 }
 | |
|                 if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
 | |
|                     return true;
 | |
|                 }
 | |
|                 if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) {
 | |
|                     return true;
 | |
|                 }
 | |
|                 if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_0) {
 | |
|                     return true;
 | |
|                 }
 | |
|                 if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_1) {
 | |
|                     return true;
 | |
|                 }
 | |
|                 if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
 | |
|                     return true;
 | |
|                 }
 | |
|                 return false;
 | |
|             } break;
 | |
|         case GGML_OP_NONE:
 | |
|         case GGML_OP_RESHAPE:
 | |
|         case GGML_OP_VIEW:
 | |
|         case GGML_OP_PERMUTE:
 | |
|         case GGML_OP_TRANSPOSE:
 | |
|         case GGML_OP_NORM:
 | |
|         case GGML_OP_REPEAT:
 | |
|         case GGML_OP_DUP:
 | |
|         case GGML_OP_ADD:
 | |
|         case GGML_OP_MUL:
 | |
|         case GGML_OP_DIV:
 | |
|         case GGML_OP_RMS_NORM:
 | |
|         case GGML_OP_SCALE:
 | |
|         case GGML_OP_SQR:
 | |
|         case GGML_OP_CLAMP:
 | |
|         case GGML_OP_CONT:
 | |
|         case GGML_OP_DIAG_MASK_INF:
 | |
|         case GGML_OP_SOFT_MAX:
 | |
|         case GGML_OP_ROPE:
 | |
|         case GGML_OP_ALIBI:
 | |
|         case GGML_OP_IM2COL:
 | |
|         case GGML_OP_SUM_ROWS:
 | |
|         case GGML_OP_ARGSORT:
 | |
|         case GGML_OP_ACC:
 | |
|         case GGML_OP_CONCAT:
 | |
|         case GGML_OP_GROUP_NORM:
 | |
|         case GGML_OP_UPSCALE:
 | |
|         case GGML_OP_PAD:
 | |
|         case GGML_OP_LEAKY_RELU:
 | |
|             return true;
 | |
|         default:
 | |
|             return false;
 | |
|     }
 | |
| 
 | |
|     UNUSED(backend);
 | |
| }
 | |
| 
 | |
| static ggml_backend_i cuda_backend_i = {
 | |
|     /* .get_name                = */ ggml_backend_cuda_name,
 | |
|     /* .free                    = */ ggml_backend_cuda_free,
 | |
|     /* .get_default_buffer_type = */ ggml_backend_cuda_get_default_buffer_type,
 | |
|     /* .set_tensor_async        = */ ggml_backend_cuda_set_tensor_async,
 | |
|     /* .get_tensor_async        = */ ggml_backend_cuda_get_tensor_async,
 | |
|     /* .cpy_tensor_from_async   = */ NULL,
 | |
|     /* .cpy_tensor_to_async     = */ NULL,
 | |
|     /* .synchronize             = */ ggml_backend_cuda_synchronize,
 | |
|     /* .graph_plan_create       = */ ggml_backend_cuda_graph_plan_create,
 | |
|     /* .graph_plan_free         = */ ggml_backend_cuda_graph_plan_free,
 | |
|     /* .graph_plan_compute      = */ ggml_backend_cuda_graph_plan_compute,
 | |
|     /* .graph_compute           = */ ggml_backend_cuda_graph_compute,
 | |
|     /* .supports_op             = */ ggml_backend_cuda_supports_op,
 | |
| };
 | |
| 
 | |
| ggml_backend_t ggml_backend_cuda_init(int device) {
 | |
|     ggml_init_cublas(); // TODO: remove from ggml.c
 | |
| 
 | |
|     if (device < 0 || device >= ggml_cuda_get_device_count()) {
 | |
|         fprintf(stderr, "%s: error: invalid device %d\n", __func__, device);
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     // not strictly necessary, but it may reduce the overhead of the first graph_compute
 | |
|     ggml_cuda_set_main_device(device);
 | |
| 
 | |
|     ggml_backend_context_cuda * ctx = new ggml_backend_context_cuda {
 | |
|         /* .device = */ device
 | |
|     };
 | |
| 
 | |
|     ggml_backend_t cuda_backend = new ggml_backend {
 | |
|         /* .interface = */ cuda_backend_i,
 | |
|         /* .context   = */ ctx
 | |
|     };
 | |
| 
 | |
|     return cuda_backend;
 | |
| }
 | |
| 
 | |
| bool ggml_backend_is_cuda(ggml_backend_t backend) {
 | |
|     return backend->iface.get_name == ggml_backend_cuda_name;
 | |
| }
 | |
| 
 | |
| static ggml_backend_t ggml_backend_reg_cuda_init(const char * params, void * user_data) {
 | |
|     ggml_backend_t cuda_backend = ggml_backend_cuda_init((int) (intptr_t) user_data);
 | |
|     return cuda_backend;
 | |
| 
 | |
|     UNUSED(params);
 | |
| }
 | |
| 
 | |
| extern "C" int ggml_backend_cuda_reg_devices();
 | |
| 
 | |
| int ggml_backend_cuda_reg_devices() {
 | |
|     int device_count = ggml_cuda_get_device_count();
 | |
|     //int device_count = 1; // DEBUG: some tools require delaying CUDA initialization
 | |
|     for (int i = 0; i < device_count; i++) {
 | |
|         char name[128];
 | |
|         snprintf(name, sizeof(name), "%s%d", GGML_CUDA_NAME, i);
 | |
|         ggml_backend_register(name, ggml_backend_reg_cuda_init, ggml_backend_cuda_buffer_type(i), (void *) (intptr_t) i);
 | |
|     }
 | |
|     return device_count;
 | |
| }
 |