mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 5dc9dd7152
			
		
	
	5dc9dd7152
	
	
	
		
			
			* Add Command R Plus GGUF * Add Command R Plus GGUF * Loading works up to LayerNorm2D * Export new tensors in 1D so they are not quantized. * Fix embedding layer based on Noeda's example * Whitespace * Add line * Fix unexpected tokens on MPS. Re-add F16 fix. ((Noeda) * dranger003: Fix block index overflow in CUDA dequantizing. * Reverted blocked multiplication code as it still has issues and could affect other Llama arches * export norms as f32 * fix overflow issues during quant and other cleanup * Type convention Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * dranger003: Fix more int overflow during quant. --------- Co-authored-by: S <seast@Ss-Mac-Studio.local> Co-authored-by: S <s@example.com> Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			873 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			873 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from __future__ import annotations
 | |
| 
 | |
| import sys
 | |
| from enum import Enum, IntEnum, auto
 | |
| from typing import Any
 | |
| 
 | |
| #
 | |
| # constants
 | |
| #
 | |
| 
 | |
| GGUF_MAGIC             = 0x46554747  # "GGUF"
 | |
| GGUF_VERSION           = 3
 | |
| GGUF_DEFAULT_ALIGNMENT = 32
 | |
| 
 | |
| #
 | |
| # metadata keys
 | |
| #
 | |
| 
 | |
| 
 | |
| class Keys:
 | |
|     class General:
 | |
|         ARCHITECTURE         = "general.architecture"
 | |
|         QUANTIZATION_VERSION = "general.quantization_version"
 | |
|         ALIGNMENT            = "general.alignment"
 | |
|         NAME                 = "general.name"
 | |
|         AUTHOR               = "general.author"
 | |
|         VERSION              = "general.version"
 | |
|         URL                  = "general.url"
 | |
|         DESCRIPTION          = "general.description"
 | |
|         LICENSE              = "general.license"
 | |
|         SOURCE_URL           = "general.source.url"
 | |
|         SOURCE_HF_REPO       = "general.source.huggingface.repository"
 | |
|         FILE_TYPE            = "general.file_type"
 | |
| 
 | |
|     class LLM:
 | |
|         VOCAB_SIZE            = "{arch}.vocab_size"
 | |
|         CONTEXT_LENGTH        = "{arch}.context_length"
 | |
|         EMBEDDING_LENGTH      = "{arch}.embedding_length"
 | |
|         BLOCK_COUNT           = "{arch}.block_count"
 | |
|         FEED_FORWARD_LENGTH   = "{arch}.feed_forward_length"
 | |
|         USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
 | |
|         TENSOR_DATA_LAYOUT    = "{arch}.tensor_data_layout"
 | |
|         EXPERT_COUNT          = "{arch}.expert_count"
 | |
|         EXPERT_USED_COUNT     = "{arch}.expert_used_count"
 | |
|         POOLING_TYPE          = "{arch}.pooling_type"
 | |
|         LOGIT_SCALE           = "{arch}.logit_scale"
 | |
| 
 | |
|     class Attention:
 | |
|         HEAD_COUNT        = "{arch}.attention.head_count"
 | |
|         HEAD_COUNT_KV     = "{arch}.attention.head_count_kv"
 | |
|         MAX_ALIBI_BIAS    = "{arch}.attention.max_alibi_bias"
 | |
|         CLAMP_KQV         = "{arch}.attention.clamp_kqv"
 | |
|         KEY_LENGTH        = "{arch}.attention.key_length"
 | |
|         VALUE_LENGTH      = "{arch}.attention.value_length"
 | |
|         LAYERNORM_EPS     = "{arch}.attention.layer_norm_epsilon"
 | |
|         LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
 | |
|         CAUSAL            = "{arch}.attention.causal"
 | |
| 
 | |
|     class Rope:
 | |
|         DIMENSION_COUNT      = "{arch}.rope.dimension_count"
 | |
|         FREQ_BASE            = "{arch}.rope.freq_base"
 | |
|         SCALING_TYPE         = "{arch}.rope.scaling.type"
 | |
|         SCALING_FACTOR       = "{arch}.rope.scaling.factor"
 | |
|         SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
 | |
|         SCALING_FINETUNED    = "{arch}.rope.scaling.finetuned"
 | |
| 
 | |
|     class SSM:
 | |
|         CONV_KERNEL    = "{arch}.ssm.conv_kernel"
 | |
|         INNER_SIZE     = "{arch}.ssm.inner_size"
 | |
|         STATE_SIZE     = "{arch}.ssm.state_size"
 | |
|         TIME_STEP_RANK = "{arch}.ssm.time_step_rank"
 | |
| 
 | |
|     class Tokenizer:
 | |
|         MODEL            = "tokenizer.ggml.model"
 | |
|         LIST             = "tokenizer.ggml.tokens"
 | |
|         TOKEN_TYPE       = "tokenizer.ggml.token_type"
 | |
|         TOKEN_TYPE_COUNT = "tokenizer.ggml.token_type_count"  # for BERT-style token types
 | |
|         SCORES           = "tokenizer.ggml.scores"
 | |
|         MERGES           = "tokenizer.ggml.merges"
 | |
|         BOS_ID           = "tokenizer.ggml.bos_token_id"
 | |
|         EOS_ID           = "tokenizer.ggml.eos_token_id"
 | |
|         UNK_ID           = "tokenizer.ggml.unknown_token_id"
 | |
|         SEP_ID           = "tokenizer.ggml.seperator_token_id"
 | |
|         PAD_ID           = "tokenizer.ggml.padding_token_id"
 | |
|         CLS_ID           = "tokenizer.ggml.cls_token_id"
 | |
|         MASK_ID          = "tokenizer.ggml.mask_token_id"
 | |
|         ADD_BOS          = "tokenizer.ggml.add_bos_token"
 | |
|         ADD_EOS          = "tokenizer.ggml.add_eos_token"
 | |
|         ADD_PREFIX       = "tokenizer.ggml.add_space_prefix"
 | |
|         HF_JSON          = "tokenizer.huggingface.json"
 | |
|         RWKV             = "tokenizer.rwkv.world"
 | |
|         CHAT_TEMPLATE    = "tokenizer.chat_template"
 | |
| 
 | |
| 
 | |
| #
 | |
| # recommended mapping of model tensor names for storage in gguf
 | |
| #
 | |
| 
 | |
| 
 | |
| class MODEL_ARCH(IntEnum):
 | |
|     LLAMA      = auto()
 | |
|     FALCON     = auto()
 | |
|     BAICHUAN   = auto()
 | |
|     GROK       = auto()
 | |
|     GPT2       = auto()
 | |
|     GPTJ       = auto()
 | |
|     GPTNEOX    = auto()
 | |
|     MPT        = auto()
 | |
|     STARCODER  = auto()
 | |
|     PERSIMMON  = auto()
 | |
|     REFACT     = auto()
 | |
|     BERT       = auto()
 | |
|     NOMIC_BERT = auto()
 | |
|     BLOOM      = auto()
 | |
|     STABLELM   = auto()
 | |
|     QWEN       = auto()
 | |
|     QWEN2      = auto()
 | |
|     PHI2       = auto()
 | |
|     PLAMO      = auto()
 | |
|     CODESHELL  = auto()
 | |
|     ORION      = auto()
 | |
|     INTERNLM2  = auto()
 | |
|     MINICPM    = auto()
 | |
|     GEMMA      = auto()
 | |
|     STARCODER2 = auto()
 | |
|     MAMBA      = auto()
 | |
|     XVERSE     = auto()
 | |
|     COMMAND_R  = auto()
 | |
| 
 | |
| 
 | |
| class MODEL_TENSOR(IntEnum):
 | |
|     TOKEN_EMBD      = auto()
 | |
|     TOKEN_EMBD_NORM = auto()
 | |
|     TOKEN_TYPES     = auto()
 | |
|     POS_EMBD        = auto()
 | |
|     OUTPUT          = auto()
 | |
|     OUTPUT_NORM     = auto()
 | |
|     ROPE_FREQS      = auto()
 | |
|     ATTN_Q          = auto()
 | |
|     ATTN_K          = auto()
 | |
|     ATTN_V          = auto()
 | |
|     ATTN_QKV        = auto()
 | |
|     ATTN_OUT        = auto()
 | |
|     ATTN_NORM       = auto()
 | |
|     ATTN_NORM_2     = auto()
 | |
|     ATTN_OUT_NORM   = auto()
 | |
|     ATTN_ROT_EMBD   = auto()
 | |
|     FFN_GATE_INP    = auto()
 | |
|     FFN_NORM        = auto()
 | |
|     FFN_GATE        = auto()
 | |
|     FFN_DOWN        = auto()
 | |
|     FFN_UP          = auto()
 | |
|     FFN_ACT         = auto()
 | |
|     FFN_GATE_EXP    = auto()
 | |
|     FFN_DOWN_EXP    = auto()
 | |
|     FFN_UP_EXP      = auto()
 | |
|     ATTN_Q_NORM     = auto()
 | |
|     ATTN_K_NORM     = auto()
 | |
|     LAYER_OUT_NORM  = auto()
 | |
|     SSM_IN          = auto()
 | |
|     SSM_CONV1D      = auto()
 | |
|     SSM_X           = auto()
 | |
|     SSM_DT          = auto()
 | |
|     SSM_A           = auto()
 | |
|     SSM_D           = auto()
 | |
|     SSM_OUT         = auto()
 | |
| 
 | |
| 
 | |
| MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
 | |
|     MODEL_ARCH.LLAMA:          "llama",
 | |
|     MODEL_ARCH.FALCON:         "falcon",
 | |
|     MODEL_ARCH.BAICHUAN:       "baichuan",
 | |
|     MODEL_ARCH.GROK:           "grok",
 | |
|     MODEL_ARCH.GPT2:           "gpt2",
 | |
|     MODEL_ARCH.GPTJ:           "gptj",
 | |
|     MODEL_ARCH.GPTNEOX:        "gptneox",
 | |
|     MODEL_ARCH.MPT:            "mpt",
 | |
|     MODEL_ARCH.STARCODER:      "starcoder",
 | |
|     MODEL_ARCH.PERSIMMON:      "persimmon",
 | |
|     MODEL_ARCH.REFACT:         "refact",
 | |
|     MODEL_ARCH.BERT:           "bert",
 | |
|     MODEL_ARCH.NOMIC_BERT:     "nomic-bert",
 | |
|     MODEL_ARCH.BLOOM:          "bloom",
 | |
|     MODEL_ARCH.STABLELM:       "stablelm",
 | |
|     MODEL_ARCH.QWEN:           "qwen",
 | |
|     MODEL_ARCH.QWEN2:          "qwen2",
 | |
|     MODEL_ARCH.PHI2:           "phi2",
 | |
|     MODEL_ARCH.PLAMO:          "plamo",
 | |
|     MODEL_ARCH.CODESHELL:      "codeshell",
 | |
|     MODEL_ARCH.ORION:          "orion",
 | |
|     MODEL_ARCH.INTERNLM2:      "internlm2",
 | |
|     MODEL_ARCH.MINICPM:        "minicpm",
 | |
|     MODEL_ARCH.GEMMA:          "gemma",
 | |
|     MODEL_ARCH.STARCODER2:     "starcoder2",
 | |
|     MODEL_ARCH.MAMBA:          "mamba",
 | |
|     MODEL_ARCH.XVERSE:         "xverse",
 | |
|     MODEL_ARCH.COMMAND_R:      "command-r",
 | |
| }
 | |
| 
 | |
| TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
 | |
|     MODEL_TENSOR.TOKEN_EMBD:      "token_embd",
 | |
|     MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
 | |
|     MODEL_TENSOR.TOKEN_TYPES:     "token_types",
 | |
|     MODEL_TENSOR.POS_EMBD:        "position_embd",
 | |
|     MODEL_TENSOR.OUTPUT_NORM:     "output_norm",
 | |
|     MODEL_TENSOR.OUTPUT:          "output",
 | |
|     MODEL_TENSOR.ROPE_FREQS:      "rope_freqs",
 | |
|     MODEL_TENSOR.ATTN_NORM:       "blk.{bid}.attn_norm",
 | |
|     MODEL_TENSOR.ATTN_NORM_2:     "blk.{bid}.attn_norm_2",
 | |
|     MODEL_TENSOR.ATTN_QKV:        "blk.{bid}.attn_qkv",
 | |
|     MODEL_TENSOR.ATTN_Q:          "blk.{bid}.attn_q",
 | |
|     MODEL_TENSOR.ATTN_K:          "blk.{bid}.attn_k",
 | |
|     MODEL_TENSOR.ATTN_V:          "blk.{bid}.attn_v",
 | |
|     MODEL_TENSOR.ATTN_OUT:        "blk.{bid}.attn_output",
 | |
|     MODEL_TENSOR.ATTN_ROT_EMBD:   "blk.{bid}.attn_rot_embd",
 | |
|     MODEL_TENSOR.ATTN_Q_NORM:     "blk.{bid}.attn_q_norm",
 | |
|     MODEL_TENSOR.ATTN_K_NORM:     "blk.{bid}.attn_k_norm",
 | |
|     MODEL_TENSOR.ATTN_OUT_NORM:   "blk.{bid}.attn_output_norm",
 | |
|     MODEL_TENSOR.FFN_GATE_INP:    "blk.{bid}.ffn_gate_inp",
 | |
|     MODEL_TENSOR.FFN_NORM:        "blk.{bid}.ffn_norm",
 | |
|     MODEL_TENSOR.FFN_GATE:        "blk.{bid}.ffn_gate",
 | |
|     MODEL_TENSOR.FFN_DOWN:        "blk.{bid}.ffn_down",
 | |
|     MODEL_TENSOR.FFN_UP:          "blk.{bid}.ffn_up",
 | |
|     MODEL_TENSOR.FFN_ACT:         "blk.{bid}.ffn",
 | |
|     MODEL_TENSOR.FFN_GATE_EXP:    "blk.{bid}.ffn_gate_exps",
 | |
|     MODEL_TENSOR.FFN_DOWN_EXP:    "blk.{bid}.ffn_down_exps",
 | |
|     MODEL_TENSOR.FFN_UP_EXP:      "blk.{bid}.ffn_up_exps",
 | |
|     MODEL_TENSOR.LAYER_OUT_NORM:  "blk.{bid}.layer_output_norm",
 | |
|     MODEL_TENSOR.SSM_IN:          "blk.{bid}.ssm_in",
 | |
|     MODEL_TENSOR.SSM_CONV1D:      "blk.{bid}.ssm_conv1d",
 | |
|     MODEL_TENSOR.SSM_X:           "blk.{bid}.ssm_x",
 | |
|     MODEL_TENSOR.SSM_DT:          "blk.{bid}.ssm_dt",
 | |
|     MODEL_TENSOR.SSM_A:           "blk.{bid}.ssm_a",
 | |
|     MODEL_TENSOR.SSM_D:           "blk.{bid}.ssm_d",
 | |
|     MODEL_TENSOR.SSM_OUT:         "blk.{bid}.ssm_out",
 | |
| }
 | |
| 
 | |
| MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
 | |
|     MODEL_ARCH.LLAMA: [
 | |
|         MODEL_TENSOR.TOKEN_EMBD,
 | |
|         MODEL_TENSOR.OUTPUT_NORM,
 | |
|         MODEL_TENSOR.OUTPUT,
 | |
|         MODEL_TENSOR.ROPE_FREQS,
 | |
|         MODEL_TENSOR.ATTN_NORM,
 | |
|         MODEL_TENSOR.ATTN_Q,
 | |
|         MODEL_TENSOR.ATTN_K,
 | |
|         MODEL_TENSOR.ATTN_V,
 | |
|         MODEL_TENSOR.ATTN_OUT,
 | |
|         MODEL_TENSOR.ATTN_ROT_EMBD,
 | |
|         MODEL_TENSOR.FFN_GATE_INP,
 | |
|         MODEL_TENSOR.FFN_NORM,
 | |
|         MODEL_TENSOR.FFN_GATE,
 | |
|         MODEL_TENSOR.FFN_DOWN,
 | |
|         MODEL_TENSOR.FFN_UP,
 | |
|         MODEL_TENSOR.FFN_GATE_EXP,
 | |
|         MODEL_TENSOR.FFN_DOWN_EXP,
 | |
|         MODEL_TENSOR.FFN_UP_EXP,
 | |
|     ],
 | |
|     MODEL_ARCH.GROK: [
 | |
|         MODEL_TENSOR.TOKEN_EMBD,
 | |
|         MODEL_TENSOR.OUTPUT_NORM,
 | |
|         MODEL_TENSOR.OUTPUT,
 | |
|         MODEL_TENSOR.ROPE_FREQS,
 | |
|         MODEL_TENSOR.ATTN_NORM,
 | |
|         MODEL_TENSOR.ATTN_Q,
 | |
|         MODEL_TENSOR.ATTN_K,
 | |
|         MODEL_TENSOR.ATTN_V,
 | |
|         MODEL_TENSOR.ATTN_OUT,
 | |
|         MODEL_TENSOR.ATTN_ROT_EMBD,
 | |
|         MODEL_TENSOR.ATTN_OUT_NORM,
 | |
|         MODEL_TENSOR.FFN_GATE_INP,
 | |
|         MODEL_TENSOR.FFN_NORM,
 | |
|         MODEL_TENSOR.FFN_GATE,
 | |
|         MODEL_TENSOR.FFN_DOWN,
 | |
|         MODEL_TENSOR.FFN_UP,
 | |
|         MODEL_TENSOR.FFN_GATE_EXP,
 | |
|         MODEL_TENSOR.FFN_DOWN_EXP,
 | |
|         MODEL_TENSOR.FFN_UP_EXP,
 | |
|         MODEL_TENSOR.LAYER_OUT_NORM,
 | |
|     ],
 | |
|     MODEL_ARCH.GPTNEOX: [
 | |
|         MODEL_TENSOR.TOKEN_EMBD,
 | |
|         MODEL_TENSOR.OUTPUT_NORM,
 | |
|         MODEL_TENSOR.OUTPUT,
 | |
|         MODEL_TENSOR.ATTN_NORM,
 | |
|         MODEL_TENSOR.ATTN_QKV,
 | |
|         MODEL_TENSOR.ATTN_OUT,
 | |
|         MODEL_TENSOR.FFN_NORM,
 | |
|         MODEL_TENSOR.FFN_DOWN,
 | |
|         MODEL_TENSOR.FFN_UP,
 | |
|     ],
 | |
|     MODEL_ARCH.FALCON: [
 | |
|         MODEL_TENSOR.TOKEN_EMBD,
 | |
|         MODEL_TENSOR.OUTPUT_NORM,
 | |
|         MODEL_TENSOR.OUTPUT,
 | |
|         MODEL_TENSOR.ATTN_NORM,
 | |
|         MODEL_TENSOR.ATTN_NORM_2,
 | |
|         MODEL_TENSOR.ATTN_QKV,
 | |
|         MODEL_TENSOR.ATTN_OUT,
 | |
|         MODEL_TENSOR.FFN_DOWN,
 | |
|         MODEL_TENSOR.FFN_UP,
 | |
|     ],
 | |
|     MODEL_ARCH.BAICHUAN: [
 | |
|         MODEL_TENSOR.TOKEN_EMBD,
 | |
|         MODEL_TENSOR.OUTPUT_NORM,
 | |
|         MODEL_TENSOR.OUTPUT,
 | |
|         MODEL_TENSOR.ROPE_FREQS,
 | |
|         MODEL_TENSOR.ATTN_NORM,
 | |
|         MODEL_TENSOR.ATTN_Q,
 | |
|         MODEL_TENSOR.ATTN_K,
 | |
|         MODEL_TENSOR.ATTN_V,
 | |
|         MODEL_TENSOR.ATTN_OUT,
 | |
|         MODEL_TENSOR.ATTN_ROT_EMBD,
 | |
|         MODEL_TENSOR.FFN_NORM,
 | |
|         MODEL_TENSOR.FFN_GATE,
 | |
|         MODEL_TENSOR.FFN_DOWN,
 | |
|         MODEL_TENSOR.FFN_UP,
 | |
|     ],
 | |
|     MODEL_ARCH.STARCODER: [
 | |
|         MODEL_TENSOR.TOKEN_EMBD,
 | |
|         MODEL_TENSOR.POS_EMBD,
 | |
|         MODEL_TENSOR.OUTPUT_NORM,
 | |
|         MODEL_TENSOR.OUTPUT,
 | |
|         MODEL_TENSOR.ATTN_NORM,
 | |
|         MODEL_TENSOR.ATTN_QKV,
 | |
|         MODEL_TENSOR.ATTN_OUT,
 | |
|         MODEL_TENSOR.FFN_NORM,
 | |
|         MODEL_TENSOR.FFN_DOWN,
 | |
|         MODEL_TENSOR.FFN_UP,
 | |
|     ],
 | |
|     MODEL_ARCH.BERT: [
 | |
|         MODEL_TENSOR.TOKEN_EMBD,
 | |
|         MODEL_TENSOR.TOKEN_EMBD_NORM,
 | |
|         MODEL_TENSOR.TOKEN_TYPES,
 | |
|         MODEL_TENSOR.POS_EMBD,
 | |
|         MODEL_TENSOR.OUTPUT_NORM,
 | |
|         MODEL_TENSOR.ATTN_OUT_NORM,
 | |
|         MODEL_TENSOR.ATTN_Q,
 | |
|         MODEL_TENSOR.ATTN_K,
 | |
|         MODEL_TENSOR.ATTN_V,
 | |
|         MODEL_TENSOR.ATTN_OUT,
 | |
|         MODEL_TENSOR.FFN_DOWN,
 | |
|         MODEL_TENSOR.FFN_UP,
 | |
|         MODEL_TENSOR.LAYER_OUT_NORM,
 | |
|     ],
 | |
|     MODEL_ARCH.NOMIC_BERT: [
 | |
|         MODEL_TENSOR.TOKEN_EMBD,
 | |
|         MODEL_TENSOR.TOKEN_EMBD_NORM,
 | |
|         MODEL_TENSOR.TOKEN_TYPES,
 | |
|         MODEL_TENSOR.POS_EMBD,
 | |
|         MODEL_TENSOR.OUTPUT_NORM,
 | |
|         MODEL_TENSOR.ATTN_OUT_NORM,
 | |
|         MODEL_TENSOR.ATTN_QKV,
 | |
|         MODEL_TENSOR.ATTN_OUT,
 | |
|         MODEL_TENSOR.FFN_GATE,
 | |
|         MODEL_TENSOR.FFN_DOWN,
 | |
|         MODEL_TENSOR.FFN_UP,
 | |
|         MODEL_TENSOR.LAYER_OUT_NORM,
 | |
|     ],
 | |
|     MODEL_ARCH.MPT: [
 | |
|         MODEL_TENSOR.TOKEN_EMBD,
 | |
|         MODEL_TENSOR.OUTPUT_NORM,
 | |
|         MODEL_TENSOR.OUTPUT,
 | |
|         MODEL_TENSOR.ATTN_NORM,
 | |
|         MODEL_TENSOR.ATTN_QKV,
 | |
|         MODEL_TENSOR.ATTN_OUT,
 | |
|         MODEL_TENSOR.FFN_NORM,
 | |
|         MODEL_TENSOR.FFN_DOWN,
 | |
|         MODEL_TENSOR.FFN_UP,
 | |
|         MODEL_TENSOR.FFN_ACT,
 | |
|         MODEL_TENSOR.ATTN_Q_NORM,
 | |
|         MODEL_TENSOR.ATTN_K_NORM,
 | |
|         MODEL_TENSOR.POS_EMBD,
 | |
|     ],
 | |
|     MODEL_ARCH.GPTJ: [
 | |
|         MODEL_TENSOR.TOKEN_EMBD,
 | |
|         MODEL_TENSOR.OUTPUT_NORM,
 | |
|         MODEL_TENSOR.OUTPUT,
 | |
|         MODEL_TENSOR.ATTN_NORM,
 | |
|         MODEL_TENSOR.ATTN_Q,
 | |
|         MODEL_TENSOR.ATTN_K,
 | |
|         MODEL_TENSOR.ATTN_V,
 | |
|         MODEL_TENSOR.ATTN_OUT,
 | |
|         MODEL_TENSOR.FFN_DOWN,
 | |
|         MODEL_TENSOR.FFN_UP,
 | |
|     ],
 | |
|     MODEL_ARCH.PERSIMMON: [
 | |
|         MODEL_TENSOR.TOKEN_EMBD,
 | |
|         MODEL_TENSOR.OUTPUT,
 | |
|         MODEL_TENSOR.OUTPUT_NORM,
 | |
|         MODEL_TENSOR.ATTN_NORM,
 | |
|         MODEL_TENSOR.ATTN_QKV,
 | |
|         MODEL_TENSOR.ATTN_OUT,
 | |
|         MODEL_TENSOR.FFN_NORM,
 | |
|         MODEL_TENSOR.FFN_DOWN,
 | |
|         MODEL_TENSOR.FFN_UP,
 | |
|         MODEL_TENSOR.ATTN_Q_NORM,
 | |
|         MODEL_TENSOR.ATTN_K_NORM,
 | |
|         MODEL_TENSOR.ATTN_ROT_EMBD,
 | |
|     ],
 | |
|     MODEL_ARCH.REFACT: [
 | |
|         MODEL_TENSOR.TOKEN_EMBD,
 | |
|         MODEL_TENSOR.OUTPUT_NORM,
 | |
|         MODEL_TENSOR.OUTPUT,
 | |
|         MODEL_TENSOR.ATTN_NORM,
 | |
|         MODEL_TENSOR.ATTN_Q,
 | |
|         MODEL_TENSOR.ATTN_K,
 | |
|         MODEL_TENSOR.ATTN_V,
 | |
|         MODEL_TENSOR.ATTN_OUT,
 | |
|         MODEL_TENSOR.FFN_NORM,
 | |
|         MODEL_TENSOR.FFN_GATE,
 | |
|         MODEL_TENSOR.FFN_DOWN,
 | |
|         MODEL_TENSOR.FFN_UP,
 | |
|     ],
 | |
|     MODEL_ARCH.BLOOM: [
 | |
|         MODEL_TENSOR.TOKEN_EMBD,
 | |
|         MODEL_TENSOR.TOKEN_EMBD_NORM,
 | |
|         MODEL_TENSOR.OUTPUT_NORM,
 | |
|         MODEL_TENSOR.OUTPUT,
 | |
|         MODEL_TENSOR.ATTN_NORM,
 | |
|         MODEL_TENSOR.ATTN_QKV,
 | |
|         MODEL_TENSOR.ATTN_OUT,
 | |
|         MODEL_TENSOR.FFN_NORM,
 | |
|         MODEL_TENSOR.FFN_DOWN,
 | |
|         MODEL_TENSOR.FFN_UP,
 | |
|     ],
 | |
|     MODEL_ARCH.STABLELM: [
 | |
|         MODEL_TENSOR.TOKEN_EMBD,
 | |
|         MODEL_TENSOR.OUTPUT_NORM,
 | |
|         MODEL_TENSOR.OUTPUT,
 | |
|         MODEL_TENSOR.ROPE_FREQS,
 | |
|         MODEL_TENSOR.ATTN_NORM,
 | |
|         MODEL_TENSOR.ATTN_Q,
 | |
|         MODEL_TENSOR.ATTN_K,
 | |
|         MODEL_TENSOR.ATTN_V,
 | |
|         MODEL_TENSOR.ATTN_OUT,
 | |
|         MODEL_TENSOR.FFN_NORM,
 | |
|         MODEL_TENSOR.FFN_GATE,
 | |
|         MODEL_TENSOR.FFN_DOWN,
 | |
|         MODEL_TENSOR.FFN_UP,
 | |
|     ],
 | |
|     MODEL_ARCH.QWEN: [
 | |
|         MODEL_TENSOR.TOKEN_EMBD,
 | |
|         MODEL_TENSOR.OUTPUT_NORM,
 | |
|         MODEL_TENSOR.OUTPUT,
 | |
|         MODEL_TENSOR.ROPE_FREQS,
 | |
|         MODEL_TENSOR.ATTN_NORM,
 | |
|         MODEL_TENSOR.ATTN_QKV,
 | |
|         MODEL_TENSOR.ATTN_OUT,
 | |
|         MODEL_TENSOR.ATTN_ROT_EMBD,
 | |
|         MODEL_TENSOR.FFN_NORM,
 | |
|         MODEL_TENSOR.FFN_GATE,
 | |
|         MODEL_TENSOR.FFN_DOWN,
 | |
|         MODEL_TENSOR.FFN_UP,
 | |
|     ],
 | |
|     MODEL_ARCH.QWEN2: [
 | |
|         MODEL_TENSOR.TOKEN_EMBD,
 | |
|         MODEL_TENSOR.OUTPUT_NORM,
 | |
|         MODEL_TENSOR.OUTPUT,
 | |
|         MODEL_TENSOR.ATTN_NORM,
 | |
|         MODEL_TENSOR.ATTN_Q,
 | |
|         MODEL_TENSOR.ATTN_K,
 | |
|         MODEL_TENSOR.ATTN_V,
 | |
|         MODEL_TENSOR.ATTN_OUT,
 | |
|         MODEL_TENSOR.FFN_NORM,
 | |
|         MODEL_TENSOR.FFN_GATE,
 | |
|         MODEL_TENSOR.FFN_DOWN,
 | |
|         MODEL_TENSOR.FFN_UP,
 | |
|     ],
 | |
|     MODEL_ARCH.PLAMO: [
 | |
|         MODEL_TENSOR.TOKEN_EMBD,
 | |
|         MODEL_TENSOR.OUTPUT_NORM,
 | |
|         MODEL_TENSOR.OUTPUT,
 | |
|         MODEL_TENSOR.ROPE_FREQS,
 | |
|         MODEL_TENSOR.ATTN_NORM,
 | |
|         MODEL_TENSOR.ATTN_Q,
 | |
|         MODEL_TENSOR.ATTN_K,
 | |
|         MODEL_TENSOR.ATTN_V,
 | |
|         MODEL_TENSOR.ATTN_OUT,
 | |
|         MODEL_TENSOR.ATTN_ROT_EMBD,
 | |
|         MODEL_TENSOR.FFN_GATE,
 | |
|         MODEL_TENSOR.FFN_DOWN,
 | |
|         MODEL_TENSOR.FFN_UP,
 | |
|     ],
 | |
|     MODEL_ARCH.GPT2: [
 | |
|         MODEL_TENSOR.TOKEN_EMBD,
 | |
|         MODEL_TENSOR.POS_EMBD,
 | |
|         MODEL_TENSOR.OUTPUT_NORM,
 | |
|         MODEL_TENSOR.OUTPUT,
 | |
|         MODEL_TENSOR.ATTN_NORM,
 | |
|         MODEL_TENSOR.ATTN_QKV,
 | |
|         MODEL_TENSOR.ATTN_OUT,
 | |
|         MODEL_TENSOR.FFN_NORM,
 | |
|         MODEL_TENSOR.FFN_DOWN,
 | |
|         MODEL_TENSOR.FFN_UP,
 | |
|     ],
 | |
|     MODEL_ARCH.PHI2: [
 | |
|         MODEL_TENSOR.TOKEN_EMBD,
 | |
|         MODEL_TENSOR.OUTPUT_NORM,
 | |
|         MODEL_TENSOR.OUTPUT,
 | |
|         MODEL_TENSOR.ATTN_NORM,
 | |
|         MODEL_TENSOR.ATTN_QKV,
 | |
|         MODEL_TENSOR.ATTN_Q,
 | |
|         MODEL_TENSOR.ATTN_K,
 | |
|         MODEL_TENSOR.ATTN_V,
 | |
|         MODEL_TENSOR.ATTN_OUT,
 | |
|         MODEL_TENSOR.FFN_NORM,
 | |
|         MODEL_TENSOR.FFN_DOWN,
 | |
|         MODEL_TENSOR.FFN_UP,
 | |
|     ],
 | |
|     MODEL_ARCH.CODESHELL: [
 | |
|         MODEL_TENSOR.TOKEN_EMBD,
 | |
|         MODEL_TENSOR.POS_EMBD,
 | |
|         MODEL_TENSOR.OUTPUT_NORM,
 | |
|         MODEL_TENSOR.OUTPUT,
 | |
|         MODEL_TENSOR.ATTN_NORM,
 | |
|         MODEL_TENSOR.ATTN_QKV,
 | |
|         MODEL_TENSOR.ATTN_OUT,
 | |
|         MODEL_TENSOR.ATTN_ROT_EMBD,
 | |
|         MODEL_TENSOR.FFN_NORM,
 | |
|         MODEL_TENSOR.FFN_DOWN,
 | |
|         MODEL_TENSOR.FFN_UP,
 | |
|     ],
 | |
|     MODEL_ARCH.ORION: [
 | |
|         MODEL_TENSOR.TOKEN_EMBD,
 | |
|         MODEL_TENSOR.OUTPUT_NORM,
 | |
|         MODEL_TENSOR.OUTPUT,
 | |
|         MODEL_TENSOR.ROPE_FREQS,
 | |
|         MODEL_TENSOR.ATTN_NORM,
 | |
|         MODEL_TENSOR.ATTN_Q,
 | |
|         MODEL_TENSOR.ATTN_K,
 | |
|         MODEL_TENSOR.ATTN_V,
 | |
|         MODEL_TENSOR.ATTN_OUT,
 | |
|         MODEL_TENSOR.ATTN_ROT_EMBD,
 | |
|         MODEL_TENSOR.FFN_NORM,
 | |
|         MODEL_TENSOR.FFN_GATE,
 | |
|         MODEL_TENSOR.FFN_DOWN,
 | |
|         MODEL_TENSOR.FFN_UP,
 | |
|     ],
 | |
|     MODEL_ARCH.INTERNLM2: [
 | |
|         MODEL_TENSOR.TOKEN_EMBD,
 | |
|         MODEL_TENSOR.OUTPUT_NORM,
 | |
|         MODEL_TENSOR.OUTPUT,
 | |
|         MODEL_TENSOR.ATTN_NORM,
 | |
|         MODEL_TENSOR.ATTN_Q,
 | |
|         MODEL_TENSOR.ATTN_K,
 | |
|         MODEL_TENSOR.ATTN_V,
 | |
|         MODEL_TENSOR.ATTN_OUT,
 | |
|         MODEL_TENSOR.ATTN_ROT_EMBD,
 | |
|         MODEL_TENSOR.FFN_NORM,
 | |
|         MODEL_TENSOR.FFN_GATE,
 | |
|         MODEL_TENSOR.FFN_DOWN,
 | |
|         MODEL_TENSOR.FFN_UP,
 | |
|     ],
 | |
|     MODEL_ARCH.MINICPM: [
 | |
|         MODEL_TENSOR.TOKEN_EMBD,
 | |
|         MODEL_TENSOR.OUTPUT_NORM,
 | |
|         MODEL_TENSOR.ROPE_FREQS,
 | |
|         MODEL_TENSOR.ATTN_NORM,
 | |
|         MODEL_TENSOR.ATTN_Q,
 | |
|         MODEL_TENSOR.ATTN_K,
 | |
|         MODEL_TENSOR.ATTN_V,
 | |
|         MODEL_TENSOR.ATTN_OUT,
 | |
|         MODEL_TENSOR.ATTN_ROT_EMBD,
 | |
|         MODEL_TENSOR.FFN_GATE_INP,
 | |
|         MODEL_TENSOR.FFN_NORM,
 | |
|         MODEL_TENSOR.FFN_GATE,
 | |
|         MODEL_TENSOR.FFN_DOWN,
 | |
|         MODEL_TENSOR.FFN_UP,
 | |
|         MODEL_TENSOR.FFN_GATE_EXP,
 | |
|         MODEL_TENSOR.FFN_DOWN_EXP,
 | |
|         MODEL_TENSOR.FFN_UP_EXP,
 | |
|     ],
 | |
|     MODEL_ARCH.GEMMA: [
 | |
|         MODEL_TENSOR.TOKEN_EMBD,
 | |
|         MODEL_TENSOR.OUTPUT_NORM,
 | |
|         MODEL_TENSOR.ATTN_NORM,
 | |
|         MODEL_TENSOR.ATTN_Q,
 | |
|         MODEL_TENSOR.ATTN_K,
 | |
|         MODEL_TENSOR.ATTN_V,
 | |
|         MODEL_TENSOR.ATTN_OUT,
 | |
|         MODEL_TENSOR.FFN_GATE,
 | |
|         MODEL_TENSOR.FFN_DOWN,
 | |
|         MODEL_TENSOR.FFN_UP,
 | |
|         MODEL_TENSOR.FFN_NORM,
 | |
|     ],
 | |
|     MODEL_ARCH.STARCODER2: [
 | |
|         MODEL_TENSOR.TOKEN_EMBD,
 | |
|         MODEL_TENSOR.OUTPUT_NORM,
 | |
|         MODEL_TENSOR.OUTPUT,
 | |
|         MODEL_TENSOR.ROPE_FREQS,
 | |
|         MODEL_TENSOR.ATTN_NORM,
 | |
|         MODEL_TENSOR.ATTN_Q,
 | |
|         MODEL_TENSOR.ATTN_K,
 | |
|         MODEL_TENSOR.ATTN_V,
 | |
|         MODEL_TENSOR.ATTN_OUT,
 | |
|         MODEL_TENSOR.ATTN_ROT_EMBD,
 | |
|         MODEL_TENSOR.FFN_NORM,
 | |
|         MODEL_TENSOR.FFN_DOWN,
 | |
|         MODEL_TENSOR.FFN_UP,
 | |
|     ],
 | |
|     MODEL_ARCH.MAMBA: [
 | |
|         MODEL_TENSOR.TOKEN_EMBD,
 | |
|         MODEL_TENSOR.OUTPUT_NORM,
 | |
|         MODEL_TENSOR.OUTPUT,
 | |
|         MODEL_TENSOR.ATTN_NORM,
 | |
|         MODEL_TENSOR.SSM_IN,
 | |
|         MODEL_TENSOR.SSM_CONV1D,
 | |
|         MODEL_TENSOR.SSM_X,
 | |
|         MODEL_TENSOR.SSM_DT,
 | |
|         MODEL_TENSOR.SSM_A,
 | |
|         MODEL_TENSOR.SSM_D,
 | |
|         MODEL_TENSOR.SSM_OUT,
 | |
|     ],
 | |
|     MODEL_ARCH.XVERSE: [
 | |
|         MODEL_TENSOR.TOKEN_EMBD,
 | |
|         MODEL_TENSOR.OUTPUT_NORM,
 | |
|         MODEL_TENSOR.OUTPUT,
 | |
|         MODEL_TENSOR.ROPE_FREQS,
 | |
|         MODEL_TENSOR.ATTN_NORM,
 | |
|         MODEL_TENSOR.ATTN_Q,
 | |
|         MODEL_TENSOR.ATTN_K,
 | |
|         MODEL_TENSOR.ATTN_V,
 | |
|         MODEL_TENSOR.ATTN_OUT,
 | |
|         MODEL_TENSOR.ATTN_ROT_EMBD,
 | |
|         MODEL_TENSOR.FFN_NORM,
 | |
|         MODEL_TENSOR.FFN_GATE,
 | |
|         MODEL_TENSOR.FFN_DOWN,
 | |
|         MODEL_TENSOR.FFN_UP,
 | |
|     ],
 | |
|     MODEL_ARCH.COMMAND_R: [
 | |
|         MODEL_TENSOR.TOKEN_EMBD,
 | |
|         MODEL_TENSOR.OUTPUT_NORM,
 | |
|         MODEL_TENSOR.ATTN_NORM,
 | |
|         MODEL_TENSOR.ATTN_Q,
 | |
|         MODEL_TENSOR.ATTN_K,
 | |
|         MODEL_TENSOR.ATTN_V,
 | |
|         MODEL_TENSOR.ATTN_OUT,
 | |
|         MODEL_TENSOR.FFN_GATE,
 | |
|         MODEL_TENSOR.FFN_DOWN,
 | |
|         MODEL_TENSOR.FFN_UP,
 | |
|         MODEL_TENSOR.ATTN_K_NORM,
 | |
|         MODEL_TENSOR.ATTN_Q_NORM,
 | |
|     ],
 | |
|     # TODO
 | |
| }
 | |
| 
 | |
| # tensors that will not be serialized
 | |
| MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
 | |
|     MODEL_ARCH.LLAMA: [
 | |
|         MODEL_TENSOR.ROPE_FREQS,
 | |
|         MODEL_TENSOR.ATTN_ROT_EMBD,
 | |
|     ],
 | |
|     MODEL_ARCH.BAICHUAN: [
 | |
|         MODEL_TENSOR.ROPE_FREQS,
 | |
|         MODEL_TENSOR.ATTN_ROT_EMBD,
 | |
|     ],
 | |
|     MODEL_ARCH.PERSIMMON: [
 | |
|         MODEL_TENSOR.ROPE_FREQS,
 | |
|     ],
 | |
|     MODEL_ARCH.QWEN: [
 | |
|         MODEL_TENSOR.ROPE_FREQS,
 | |
|         MODEL_TENSOR.ATTN_ROT_EMBD,
 | |
|     ],
 | |
|     MODEL_ARCH.CODESHELL: [
 | |
|         MODEL_TENSOR.ROPE_FREQS,
 | |
|         MODEL_TENSOR.ATTN_ROT_EMBD,
 | |
|     ],
 | |
|     MODEL_ARCH.ORION: [
 | |
|         MODEL_TENSOR.ROPE_FREQS,
 | |
|         MODEL_TENSOR.ATTN_ROT_EMBD,
 | |
|     ],
 | |
|     MODEL_ARCH.STARCODER2: [
 | |
|         MODEL_TENSOR.ROPE_FREQS,
 | |
|         MODEL_TENSOR.ATTN_ROT_EMBD,
 | |
|     ],
 | |
|     MODEL_ARCH.XVERSE: [
 | |
|         MODEL_TENSOR.ROPE_FREQS,
 | |
|         MODEL_TENSOR.ATTN_ROT_EMBD,
 | |
|     ],
 | |
| }
 | |
| 
 | |
| #
 | |
| # types
 | |
| #
 | |
| 
 | |
| 
 | |
| class TokenType(IntEnum):
 | |
|     NORMAL       = 1
 | |
|     UNKNOWN      = 2
 | |
|     CONTROL      = 3
 | |
|     USER_DEFINED = 4
 | |
|     UNUSED       = 5
 | |
|     BYTE         = 6
 | |
| 
 | |
| 
 | |
| class RopeScalingType(Enum):
 | |
|     NONE   = 'none'
 | |
|     LINEAR = 'linear'
 | |
|     YARN   = 'yarn'
 | |
| 
 | |
| 
 | |
| class PoolingType(IntEnum):
 | |
|     NONE = 0
 | |
|     MEAN = 1
 | |
|     CLS  = 2
 | |
| 
 | |
| 
 | |
| class GGMLQuantizationType(IntEnum):
 | |
|     F32     = 0
 | |
|     F16     = 1
 | |
|     Q4_0    = 2
 | |
|     Q4_1    = 3
 | |
|     Q5_0    = 6
 | |
|     Q5_1    = 7
 | |
|     Q8_0    = 8
 | |
|     Q8_1    = 9
 | |
|     Q2_K    = 10
 | |
|     Q3_K    = 11
 | |
|     Q4_K    = 12
 | |
|     Q5_K    = 13
 | |
|     Q6_K    = 14
 | |
|     Q8_K    = 15
 | |
|     IQ2_XXS = 16
 | |
|     IQ2_XS  = 17
 | |
|     IQ3_XXS = 18
 | |
|     IQ1_S   = 19
 | |
|     IQ4_NL  = 20
 | |
|     IQ3_S   = 21
 | |
|     IQ2_S   = 22
 | |
|     IQ4_XS  = 23
 | |
|     I8      = 24
 | |
|     I16     = 25
 | |
|     I32     = 26
 | |
|     I64     = 27
 | |
|     F64     = 28
 | |
|     IQ1_M   = 29
 | |
| 
 | |
| 
 | |
| class GGUFEndian(IntEnum):
 | |
|     LITTLE = 0
 | |
|     BIG = 1
 | |
| 
 | |
| 
 | |
| class GGUFValueType(IntEnum):
 | |
|     UINT8   = 0
 | |
|     INT8    = 1
 | |
|     UINT16  = 2
 | |
|     INT16   = 3
 | |
|     UINT32  = 4
 | |
|     INT32   = 5
 | |
|     FLOAT32 = 6
 | |
|     BOOL    = 7
 | |
|     STRING  = 8
 | |
|     ARRAY   = 9
 | |
|     UINT64  = 10
 | |
|     INT64   = 11
 | |
|     FLOAT64 = 12
 | |
| 
 | |
|     @staticmethod
 | |
|     def get_type(val: Any) -> GGUFValueType:
 | |
|         if isinstance(val, (str, bytes, bytearray)):
 | |
|             return GGUFValueType.STRING
 | |
|         elif isinstance(val, list):
 | |
|             return GGUFValueType.ARRAY
 | |
|         elif isinstance(val, float):
 | |
|             return GGUFValueType.FLOAT32
 | |
|         elif isinstance(val, bool):
 | |
|             return GGUFValueType.BOOL
 | |
|         elif isinstance(val, int):
 | |
|             return GGUFValueType.INT32
 | |
|         # TODO: need help with 64-bit types in Python
 | |
|         else:
 | |
|             print("Unknown type:", type(val))
 | |
|             sys.exit()
 | |
| 
 | |
| 
 | |
| # Note: Does not support GGML_QKK_64
 | |
| QK_K = 256
 | |
| # Items here are (block size, type size)
 | |
| GGML_QUANT_SIZES = {
 | |
|     GGMLQuantizationType.F32:     (1, 4),
 | |
|     GGMLQuantizationType.F16:     (1, 2),
 | |
|     GGMLQuantizationType.Q4_0:    (32, 2 + 16),
 | |
|     GGMLQuantizationType.Q4_1:    (32, 2 + 2 + 16),
 | |
|     GGMLQuantizationType.Q5_0:    (32, 2 + 4 + 16),
 | |
|     GGMLQuantizationType.Q5_1:    (32, 2 + 2 + 4 + 16),
 | |
|     GGMLQuantizationType.Q8_0:    (32, 2 + 32),
 | |
|     GGMLQuantizationType.Q8_1:    (32, 4 + 4 + 32),
 | |
|     GGMLQuantizationType.Q2_K:    (256, 2 + 2 + QK_K // 16 + QK_K // 4),
 | |
|     GGMLQuantizationType.Q3_K:    (256, 2 + QK_K // 4 + QK_K // 8 + 12),
 | |
|     GGMLQuantizationType.Q4_K:    (256, 2 + 2 + QK_K // 2 + 12),
 | |
|     GGMLQuantizationType.Q5_K:    (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
 | |
|     GGMLQuantizationType.Q6_K:    (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
 | |
|     GGMLQuantizationType.Q8_K:    (256, 4 + QK_K + QK_K // 8),
 | |
|     GGMLQuantizationType.IQ2_XXS: (256, 2 + QK_K // 4),
 | |
|     GGMLQuantizationType.IQ2_XS:  (256, 2 + QK_K // 4 + QK_K // 32),
 | |
|     GGMLQuantizationType.IQ3_XXS: (256, 2 + QK_K // 4 + QK_K // 8),
 | |
|     GGMLQuantizationType.IQ1_S:   (256, 2 + QK_K // 8 + QK_K // 16),
 | |
|     GGMLQuantizationType.IQ4_NL:  (32, 2 + 16),
 | |
|     GGMLQuantizationType.IQ3_S:   (256, 2 + QK_K // 4 + QK_K // 8 + QK_K // 32 + 4),
 | |
|     GGMLQuantizationType.IQ2_S:   (256, 2 + QK_K // 4 + QK_K // 16),
 | |
|     GGMLQuantizationType.IQ4_XS:  (256, 2 + 2 + QK_K // 2 + QK_K // 64),
 | |
|     GGMLQuantizationType.I8:      (1, 1),
 | |
|     GGMLQuantizationType.I16:     (1, 2),
 | |
|     GGMLQuantizationType.I32:     (1, 4),
 | |
|     GGMLQuantizationType.I64:     (1, 8),
 | |
|     GGMLQuantizationType.F64:     (1, 8),
 | |
| }
 | |
| 
 | |
| 
 | |
| # Aliases for backward compatibility.
 | |
| 
 | |
| # general
 | |
| KEY_GENERAL_ARCHITECTURE         = Keys.General.ARCHITECTURE
 | |
| KEY_GENERAL_QUANTIZATION_VERSION = Keys.General.QUANTIZATION_VERSION
 | |
| KEY_GENERAL_ALIGNMENT            = Keys.General.ALIGNMENT
 | |
| KEY_GENERAL_NAME                 = Keys.General.NAME
 | |
| KEY_GENERAL_AUTHOR               = Keys.General.AUTHOR
 | |
| KEY_GENERAL_URL                  = Keys.General.URL
 | |
| KEY_GENERAL_DESCRIPTION          = Keys.General.DESCRIPTION
 | |
| KEY_GENERAL_LICENSE              = Keys.General.LICENSE
 | |
| KEY_GENERAL_SOURCE_URL           = Keys.General.SOURCE_URL
 | |
| KEY_GENERAL_SOURCE_HF_REPO       = Keys.General.SOURCE_HF_REPO
 | |
| KEY_GENERAL_FILE_TYPE            = Keys.General.FILE_TYPE
 | |
| 
 | |
| # LLM
 | |
| KEY_VOCAB_SIZE            = Keys.LLM.VOCAB_SIZE
 | |
| KEY_CONTEXT_LENGTH        = Keys.LLM.CONTEXT_LENGTH
 | |
| KEY_EMBEDDING_LENGTH      = Keys.LLM.EMBEDDING_LENGTH
 | |
| KEY_BLOCK_COUNT           = Keys.LLM.BLOCK_COUNT
 | |
| KEY_FEED_FORWARD_LENGTH   = Keys.LLM.FEED_FORWARD_LENGTH
 | |
| KEY_USE_PARALLEL_RESIDUAL = Keys.LLM.USE_PARALLEL_RESIDUAL
 | |
| KEY_TENSOR_DATA_LAYOUT    = Keys.LLM.TENSOR_DATA_LAYOUT
 | |
| 
 | |
| # attention
 | |
| KEY_ATTENTION_HEAD_COUNT        = Keys.Attention.HEAD_COUNT
 | |
| KEY_ATTENTION_HEAD_COUNT_KV     = Keys.Attention.HEAD_COUNT_KV
 | |
| KEY_ATTENTION_MAX_ALIBI_BIAS    = Keys.Attention.MAX_ALIBI_BIAS
 | |
| KEY_ATTENTION_CLAMP_KQV         = Keys.Attention.CLAMP_KQV
 | |
| KEY_ATTENTION_LAYERNORM_EPS     = Keys.Attention.LAYERNORM_EPS
 | |
| KEY_ATTENTION_LAYERNORM_RMS_EPS = Keys.Attention.LAYERNORM_RMS_EPS
 | |
| 
 | |
| # RoPE
 | |
| KEY_ROPE_DIMENSION_COUNT      = Keys.Rope.DIMENSION_COUNT
 | |
| KEY_ROPE_FREQ_BASE            = Keys.Rope.FREQ_BASE
 | |
| KEY_ROPE_SCALING_TYPE         = Keys.Rope.SCALING_TYPE
 | |
| KEY_ROPE_SCALING_FACTOR       = Keys.Rope.SCALING_FACTOR
 | |
| KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
 | |
| KEY_ROPE_SCALING_FINETUNED    = Keys.Rope.SCALING_FINETUNED
 | |
| 
 | |
| # SSM
 | |
| KEY_SSM_CONV_KERNEL    = Keys.SSM.CONV_KERNEL
 | |
| KEY_SSM_INNER_SIZE     = Keys.SSM.INNER_SIZE
 | |
| KEY_SSM_STATE_SIZE     = Keys.SSM.STATE_SIZE
 | |
| KEY_SSM_TIME_STEP_RANK = Keys.SSM.TIME_STEP_RANK
 | |
| 
 | |
| # tokenization
 | |
| KEY_TOKENIZER_MODEL      = Keys.Tokenizer.MODEL
 | |
| KEY_TOKENIZER_LIST       = Keys.Tokenizer.LIST
 | |
| KEY_TOKENIZER_TOKEN_TYPE = Keys.Tokenizer.TOKEN_TYPE
 | |
| KEY_TOKENIZER_SCORES     = Keys.Tokenizer.SCORES
 | |
| KEY_TOKENIZER_MERGES     = Keys.Tokenizer.MERGES
 | |
| KEY_TOKENIZER_BOS_ID     = Keys.Tokenizer.BOS_ID
 | |
| KEY_TOKENIZER_EOS_ID     = Keys.Tokenizer.EOS_ID
 | |
| KEY_TOKENIZER_UNK_ID     = Keys.Tokenizer.UNK_ID
 | |
| KEY_TOKENIZER_SEP_ID     = Keys.Tokenizer.SEP_ID
 | |
| KEY_TOKENIZER_PAD_ID     = Keys.Tokenizer.PAD_ID
 | |
| KEY_TOKENIZER_CLS_ID     = Keys.Tokenizer.CLS_ID
 | |
| KEY_TOKENIZER_MASK_ID    = Keys.Tokenizer.MASK_ID
 | |
| KEY_TOKENIZER_HF_JSON    = Keys.Tokenizer.HF_JSON
 | |
| KEY_TOKENIZER_RWKV       = Keys.Tokenizer.RWKV
 |