mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			904 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			904 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python3
 | |
| from __future__ import annotations
 | |
| 
 | |
| import json
 | |
| import os
 | |
| import shutil
 | |
| import struct
 | |
| import sys
 | |
| import tempfile
 | |
| from enum import IntEnum, auto
 | |
| from io import BufferedWriter
 | |
| from pathlib import Path
 | |
| from typing import IO, Any, BinaryIO, Callable, Sequence
 | |
| 
 | |
| import numpy as np
 | |
| 
 | |
| #
 | |
| # constants
 | |
| #
 | |
| 
 | |
| GGUF_MAGIC             = 0x46554747
 | |
| GGUF_VERSION           = 2
 | |
| GGUF_DEFAULT_ALIGNMENT = 32
 | |
| 
 | |
| # general
 | |
| KEY_GENERAL_ARCHITECTURE         = "general.architecture"
 | |
| KEY_GENERAL_QUANTIZATION_VERSION = "general.quantization_version"
 | |
| KEY_GENERAL_ALIGNMENT            = "general.alignment"
 | |
| KEY_GENERAL_NAME                 = "general.name"
 | |
| KEY_GENERAL_AUTHOR               = "general.author"
 | |
| KEY_GENERAL_URL                  = "general.url"
 | |
| KEY_GENERAL_DESCRIPTION          = "general.description"
 | |
| KEY_GENERAL_LICENSE              = "general.license"
 | |
| KEY_GENERAL_SOURCE_URL           = "general.source.url"
 | |
| KEY_GENERAL_SOURCE_HF_REPO       = "general.source.hugginface.repository"
 | |
| KEY_GENERAL_FILE_TYPE            = "general.file_type"
 | |
| 
 | |
| # LLM
 | |
| KEY_CONTEXT_LENGTH          = "{arch}.context_length"
 | |
| KEY_EMBEDDING_LENGTH        = "{arch}.embedding_length"
 | |
| KEY_BLOCK_COUNT             = "{arch}.block_count"
 | |
| KEY_FEED_FORWARD_LENGTH     = "{arch}.feed_forward_length"
 | |
| KEY_USE_PARALLEL_RESIDUAL   = "{arch}.use_parallel_residual"
 | |
| KEY_TENSOR_DATA_LAYOUT      = "{arch}.tensor_data_layout"
 | |
| KEY_MAX_POSITION_EMBEDDINGS = "{arch}.max_position_embeddings"
 | |
| 
 | |
| # attention
 | |
| KEY_ATTENTION_HEAD_COUNT        = "{arch}.attention.head_count"
 | |
| KEY_ATTENTION_HEAD_COUNT_KV     = "{arch}.attention.head_count_kv"
 | |
| KEY_ATTENTION_MAX_ALIBI_BIAS    = "{arch}.attention.max_alibi_bias"
 | |
| KEY_ATTENTION_CLAMP_KQV         = "{arch}.attention.clamp_kqv"
 | |
| KEY_ATTENTION_LAYERNORM_EPS     = "{arch}.attention.layer_norm_epsilon"
 | |
| KEY_ATTENTION_LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
 | |
| 
 | |
| # RoPE
 | |
| KEY_ROPE_DIMENSION_COUNT = "{arch}.rope.dimension_count"
 | |
| KEY_ROPE_FREQ_BASE       = "{arch}.rope.freq_base"
 | |
| KEY_ROPE_SCALE_LINEAR    = "{arch}.rope.scale_linear"
 | |
| 
 | |
| # tokenization
 | |
| KEY_TOKENIZER_MODEL      = "tokenizer.ggml.model"
 | |
| KEY_TOKENIZER_LIST       = "tokenizer.ggml.tokens"
 | |
| KEY_TOKENIZER_TOKEN_TYPE = "tokenizer.ggml.token_type"
 | |
| KEY_TOKENIZER_SCORES     = "tokenizer.ggml.scores"
 | |
| KEY_TOKENIZER_MERGES     = "tokenizer.ggml.merges"
 | |
| KEY_TOKENIZER_BOS_ID     = "tokenizer.ggml.bos_token_id"
 | |
| KEY_TOKENIZER_EOS_ID     = "tokenizer.ggml.eos_token_id"
 | |
| KEY_TOKENIZER_UNK_ID     = "tokenizer.ggml.unknown_token_id"
 | |
| KEY_TOKENIZER_SEP_ID     = "tokenizer.ggml.seperator_token_id"
 | |
| KEY_TOKENIZER_PAD_ID     = "tokenizer.ggml.padding_token_id"
 | |
| KEY_TOKENIZER_HF_JSON    = "tokenizer.huggingface.json"
 | |
| KEY_TOKENIZER_RWKV       = "tokenizer.rwkv.world"
 | |
| 
 | |
| 
 | |
| #
 | |
| # recommended mapping of model tensor names for storage in gguf
 | |
| #
 | |
| 
 | |
| 
 | |
| class MODEL_ARCH(IntEnum):
 | |
|     LLAMA         : int = auto()
 | |
|     FALCON        : int = auto()
 | |
|     BAICHUAN      : int = auto()
 | |
|     GPT2          : int = auto()
 | |
|     GPTJ          : int = auto()
 | |
|     GPTNEOX       : int = auto()
 | |
|     MPT           : int = auto()
 | |
|     STARCODER     : int = auto()
 | |
| 
 | |
| 
 | |
| class MODEL_TENSOR(IntEnum):
 | |
|     TOKEN_EMBD   : int = auto()
 | |
|     POS_EMBD     : int = auto()
 | |
|     OUTPUT       : int = auto()
 | |
|     OUTPUT_NORM  : int = auto()
 | |
|     ROPE_FREQS   : int = auto()
 | |
|     ATTN_Q       : int = auto()
 | |
|     ATTN_K       : int = auto()
 | |
|     ATTN_V       : int = auto()
 | |
|     ATTN_QKV     : int = auto()
 | |
|     ATTN_OUT     : int = auto()
 | |
|     ATTN_NORM    : int = auto()
 | |
|     ATTN_NORM_2  : int = auto()
 | |
|     ATTN_ROT_EMBD: int = auto()
 | |
|     FFN_GATE     : int = auto()
 | |
|     FFN_DOWN     : int = auto()
 | |
|     FFN_UP       : int = auto()
 | |
|     FFN_NORM     : int = auto()
 | |
| 
 | |
| 
 | |
| MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
 | |
|     MODEL_ARCH.LLAMA:          "llama",
 | |
|     MODEL_ARCH.FALCON:         "falcon",
 | |
|     MODEL_ARCH.BAICHUAN:       "baichuan",
 | |
|     MODEL_ARCH.GPT2:           "gpt2",
 | |
|     MODEL_ARCH.GPTJ:           "gptj",
 | |
|     MODEL_ARCH.GPTNEOX:        "gptneox",
 | |
|     MODEL_ARCH.MPT:            "mpt",
 | |
|     MODEL_ARCH.STARCODER:      "starcoder",
 | |
| }
 | |
| 
 | |
| MODEL_TENSOR_NAMES: dict[MODEL_ARCH, dict[MODEL_TENSOR, str]] = {
 | |
|     MODEL_ARCH.LLAMA: {
 | |
|         MODEL_TENSOR.TOKEN_EMBD:    "token_embd",
 | |
|         MODEL_TENSOR.OUTPUT_NORM:   "output_norm",
 | |
|         MODEL_TENSOR.OUTPUT:        "output",
 | |
|         MODEL_TENSOR.ROPE_FREQS:    "rope_freqs",
 | |
|         MODEL_TENSOR.ATTN_NORM:     "blk.{bid}.attn_norm",
 | |
|         MODEL_TENSOR.ATTN_Q:        "blk.{bid}.attn_q",
 | |
|         MODEL_TENSOR.ATTN_K:        "blk.{bid}.attn_k",
 | |
|         MODEL_TENSOR.ATTN_V:        "blk.{bid}.attn_v",
 | |
|         MODEL_TENSOR.ATTN_OUT:      "blk.{bid}.attn_output",
 | |
|         MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
 | |
|         MODEL_TENSOR.FFN_NORM:      "blk.{bid}.ffn_norm",
 | |
|         MODEL_TENSOR.FFN_GATE:      "blk.{bid}.ffn_gate",
 | |
|         MODEL_TENSOR.FFN_DOWN:      "blk.{bid}.ffn_down",
 | |
|         MODEL_TENSOR.FFN_UP:        "blk.{bid}.ffn_up",
 | |
|     },
 | |
|     MODEL_ARCH.GPTNEOX: {
 | |
|         MODEL_TENSOR.TOKEN_EMBD:    "token_embd",
 | |
|         MODEL_TENSOR.OUTPUT_NORM:   "output_norm",
 | |
|         MODEL_TENSOR.OUTPUT:        "output",
 | |
|         MODEL_TENSOR.ATTN_NORM:     "blk.{bid}.attn_norm",
 | |
|         MODEL_TENSOR.ATTN_QKV:      "blk.{bid}.attn_qkv",
 | |
|         MODEL_TENSOR.ATTN_OUT:      "blk.{bid}.attn_output",
 | |
|         MODEL_TENSOR.FFN_NORM:      "blk.{bid}.ffn_norm",
 | |
|         MODEL_TENSOR.FFN_DOWN:      "blk.{bid}.ffn_down",
 | |
|         MODEL_TENSOR.FFN_UP:        "blk.{bid}.ffn_up",
 | |
|     },
 | |
|     MODEL_ARCH.FALCON: {
 | |
|         MODEL_TENSOR.TOKEN_EMBD:  "token_embd",
 | |
|         MODEL_TENSOR.OUTPUT_NORM: "output_norm",
 | |
|         MODEL_TENSOR.OUTPUT:      "output",
 | |
|         MODEL_TENSOR.ATTN_NORM:   "blk.{bid}.attn_norm",
 | |
|         MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
 | |
|         MODEL_TENSOR.ATTN_QKV:    "blk.{bid}.attn_qkv",
 | |
|         MODEL_TENSOR.ATTN_OUT:    "blk.{bid}.attn_output",
 | |
|         MODEL_TENSOR.FFN_DOWN:    "blk.{bid}.ffn_down",
 | |
|         MODEL_TENSOR.FFN_UP:      "blk.{bid}.ffn_up",
 | |
|     },
 | |
|     MODEL_ARCH.BAICHUAN: {
 | |
|         MODEL_TENSOR.TOKEN_EMBD:    "token_embd",
 | |
|         MODEL_TENSOR.OUTPUT_NORM:   "output_norm",
 | |
|         MODEL_TENSOR.OUTPUT:        "output",
 | |
|         MODEL_TENSOR.ROPE_FREQS:    "rope_freqs",
 | |
|         MODEL_TENSOR.ATTN_NORM:     "blk.{bid}.attn_norm",
 | |
|         MODEL_TENSOR.ATTN_Q:        "blk.{bid}.attn_q",
 | |
|         MODEL_TENSOR.ATTN_K:        "blk.{bid}.attn_k",
 | |
|         MODEL_TENSOR.ATTN_V:        "blk.{bid}.attn_v",
 | |
|         MODEL_TENSOR.ATTN_OUT:      "blk.{bid}.attn_output",
 | |
|         MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
 | |
|         MODEL_TENSOR.FFN_NORM:      "blk.{bid}.ffn_norm",
 | |
|         MODEL_TENSOR.FFN_GATE:      "blk.{bid}.ffn_gate",
 | |
|         MODEL_TENSOR.FFN_DOWN:      "blk.{bid}.ffn_down",
 | |
|         MODEL_TENSOR.FFN_UP:        "blk.{bid}.ffn_up",
 | |
|     },
 | |
|     MODEL_ARCH.STARCODER: {
 | |
|         MODEL_TENSOR.TOKEN_EMBD:    "token_embd",
 | |
|         MODEL_TENSOR.POS_EMBD:      "position_embd",
 | |
|         MODEL_TENSOR.OUTPUT_NORM:   "output_norm",
 | |
|         MODEL_TENSOR.OUTPUT:        "output",
 | |
|         MODEL_TENSOR.ATTN_NORM:     "blk.{bid}.attn_norm",
 | |
|         MODEL_TENSOR.ATTN_QKV:      "blk.{bid}.attn_qkv",
 | |
|         MODEL_TENSOR.ATTN_OUT:      "blk.{bid}.attn_output",
 | |
|         MODEL_TENSOR.FFN_NORM:      "blk.{bid}.ffn_norm",
 | |
|         MODEL_TENSOR.FFN_DOWN:      "blk.{bid}.ffn_down",
 | |
|         MODEL_TENSOR.FFN_UP:        "blk.{bid}.ffn_up",
 | |
|     },
 | |
|     MODEL_ARCH.GPT2: {
 | |
|         # TODO
 | |
|     },
 | |
|     # TODO
 | |
| }
 | |
| 
 | |
| # tensors that will not be serialized
 | |
| MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
 | |
|     MODEL_ARCH.LLAMA: [
 | |
|         MODEL_TENSOR.ROPE_FREQS,
 | |
|         MODEL_TENSOR.ATTN_ROT_EMBD,
 | |
|     ],
 | |
|     MODEL_ARCH.BAICHUAN: [
 | |
|         MODEL_TENSOR.ROPE_FREQS,
 | |
|         MODEL_TENSOR.ATTN_ROT_EMBD,
 | |
|     ],
 | |
| }
 | |
| 
 | |
| 
 | |
| class TensorNameMap:
 | |
|     mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
 | |
|         # Token embeddings
 | |
|         MODEL_TENSOR.TOKEN_EMBD: (
 | |
|             "gpt_neox.embed_in",           # gptneox
 | |
|             "transformer.wte",             # gpt2 mpt
 | |
|             "transformer.word_embeddings", # falcon
 | |
|             "model.embed_tokens",          # llama-hf
 | |
|             "tok_embeddings",              # llama-pth
 | |
|         ),
 | |
| 
 | |
|         # Position embeddings
 | |
|         MODEL_TENSOR.POS_EMBD: (
 | |
|             "transformer.wpe", # gpt2
 | |
|         ),
 | |
| 
 | |
|         # Output
 | |
|         MODEL_TENSOR.OUTPUT: (
 | |
|             "embed_out", # gptneox
 | |
|             "lm_head",   # gpt2 mpt falcon llama-hf baichuan
 | |
|             "output",    # llama-pth
 | |
|         ),
 | |
| 
 | |
|         # Output norm
 | |
|         MODEL_TENSOR.OUTPUT_NORM: (
 | |
|             "gpt_neox.final_layer_norm", # gptneox
 | |
|             "transformer.ln_f",          # gpt2 falcon
 | |
|             "model.norm",                # llama-hf baichuan
 | |
|             "norm",                      # llama-pth
 | |
|         ),
 | |
| 
 | |
|         # Rope frequencies
 | |
|         MODEL_TENSOR.ROPE_FREQS: (
 | |
|             "rope.freqs", # llama-pth
 | |
|         ),
 | |
|     }
 | |
| 
 | |
|     block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
 | |
|         # Attention norm
 | |
|         MODEL_TENSOR.ATTN_NORM: (
 | |
|             "gpt_neox.layers.{bid}.input_layernorm", # gptneox
 | |
|             "transformer.h.{bid}.ln_1",              # gpt2
 | |
|             "transformer.blocks.{bid}.norm_1",       # mpt
 | |
|             "transformer.h.{bid}.input_layernorm",   # falcon7b
 | |
|             "transformer.h.{bid}.ln_mlp",            # falcon40b
 | |
|             "model.layers.{bid}.input_layernorm",    # llama-hf
 | |
|             "layers.{bid}.attention_norm",           # llama-pth
 | |
|         ),
 | |
| 
 | |
|         # Attention norm 2
 | |
|         MODEL_TENSOR.ATTN_NORM_2: (
 | |
|             "transformer.h.{bid}.ln_attn", # falcon40b
 | |
|         ),
 | |
| 
 | |
|         # Attention query-key-value
 | |
|         MODEL_TENSOR.ATTN_QKV: (
 | |
|             "gpt_neox.layers.{bid}.attention.query_key_value",    # gptneox
 | |
|             "transformer.h.{bid}.attn.c_attn",                    # gpt2
 | |
|             "transformer.blocks.{bid}.attn.Wqkv",                 # mpt
 | |
|             "transformer.h.{bid}.self_attention.query_key_value", # falcon
 | |
|         ),
 | |
| 
 | |
|         # Attention query
 | |
|         MODEL_TENSOR.ATTN_Q: (
 | |
|             "model.layers.{bid}.self_attn.q_proj", # llama-hf
 | |
|             "layers.{bid}.attention.wq",           # llama-pth
 | |
|         ),
 | |
| 
 | |
|         # Attention key
 | |
|         MODEL_TENSOR.ATTN_K: (
 | |
|             "model.layers.{bid}.self_attn.k_proj", # llama-hf
 | |
|             "layers.{bid}.attention.wk",           # llama-pth
 | |
|         ),
 | |
| 
 | |
|         # Attention value
 | |
|         MODEL_TENSOR.ATTN_V: (
 | |
|             "model.layers.{bid}.self_attn.v_proj", # llama-hf
 | |
|             "layers.{bid}.attention.wv",           # llama-pth
 | |
|         ),
 | |
| 
 | |
|         # Attention output
 | |
|         MODEL_TENSOR.ATTN_OUT: (
 | |
|             "gpt_neox.layers.{bid}.attention.dense",    # gptneox
 | |
|             "transformer.h.{bid}.attn.c_proj",          # gpt2
 | |
|             "transformer.blocks.{bid}.attn.out_proj",   # mpt
 | |
|             "transformer.h.{bid}.self_attention.dense", # falcon
 | |
|             "model.layers.{bid}.self_attn.o_proj",      # llama-hf
 | |
|             "layers.{bid}.attention.wo",                # llama-pth
 | |
|         ),
 | |
| 
 | |
|         # Rotary embeddings
 | |
|         MODEL_TENSOR.ATTN_ROT_EMBD: (
 | |
|             "model.layers.{bid}.self_attn.rotary_emb.inv_freq",  # llama-hf
 | |
|             "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
 | |
|         ),
 | |
| 
 | |
|         # Feed-forward norm
 | |
|         MODEL_TENSOR.FFN_NORM: (
 | |
|             "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
 | |
|             "transformer.h.{bid}.ln_2",                       # gpt2
 | |
|             "transformer.blocks.{bid}.norm_2",                # mpt
 | |
|             "model.layers.{bid}.post_attention_layernorm",    # llama-hf
 | |
|             "layers.{bid}.ffn_norm",                          # llama-pth
 | |
|         ),
 | |
| 
 | |
|         # Feed-forward up
 | |
|         MODEL_TENSOR.FFN_UP: (
 | |
|             "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
 | |
|             "transformer.h.{bid}.mlp.c_fc",            # gpt2
 | |
|             "transformer.blocks.{bid}.ffn.up_proj",    # mpt
 | |
|             "transformer.h.{bid}.mlp.dense_h_to_4h",   # falcon
 | |
|             "model.layers.{bid}.mlp.up_proj",          # llama-hf
 | |
|             "layers.{bid}.feed_forward.w3",            # llama-pth
 | |
|         ),
 | |
| 
 | |
|         # Feed-forward gate
 | |
|         MODEL_TENSOR.FFN_GATE: (
 | |
|             "model.layers.{bid}.mlp.gate_proj", # llama-hf
 | |
|             "layers.{bid}.feed_forward.w1",     # llama-pth
 | |
|         ),
 | |
| 
 | |
|         # Feed-forward down
 | |
|         MODEL_TENSOR.FFN_DOWN: (
 | |
|             "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
 | |
|             "transformer.h.{bid}.mlp.c_proj",          # gpt2
 | |
|             "transformer.blocks.{bid}.ffn.down_proj",  # mpt
 | |
|             "transformer.h.{bid}.mlp.dense_4h_to_h",   # falcon
 | |
|             "model.layers.{bid}.mlp.down_proj",        # llama-hf
 | |
|             "layers.{bid}.feed_forward.w2",            # llama-pth
 | |
|         ),
 | |
|     }
 | |
| 
 | |
|     mapping: dict[str, tuple[MODEL_TENSOR, str]]
 | |
| 
 | |
|     tensor_names: dict[MODEL_TENSOR, str]
 | |
| 
 | |
|     def __init__(self, arch: MODEL_ARCH, n_blocks: int):
 | |
|         mapping = self.mapping = {}
 | |
|         tensor_names = self.tensor_names = MODEL_TENSOR_NAMES[arch]
 | |
|         for tensor, keys in self.mappings_cfg.items():
 | |
|             tensor_name = tensor_names.get(tensor)
 | |
|             if tensor_name is None:
 | |
|                 continue
 | |
|             mapping[tensor_name] = (tensor, tensor_name)
 | |
|             for key in keys:
 | |
|                 mapping[key] = (tensor, tensor_name)
 | |
|         for bid in range(n_blocks):
 | |
|             for tensor, keys in self.block_mappings_cfg.items():
 | |
|                 tensor_name = tensor_names.get(tensor)
 | |
|                 if tensor_name is None:
 | |
|                     continue
 | |
|                 tensor_name = tensor_name.format(bid = bid)
 | |
|                 mapping[tensor_name] = (tensor, tensor_name)
 | |
|                 for key in keys:
 | |
|                     key = key.format(bid = bid)
 | |
|                     mapping[key] = (tensor, tensor_name)
 | |
| 
 | |
|     def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
 | |
|         result = self.mapping.get(key)
 | |
|         if result is not None:
 | |
|             return result
 | |
|         for suffix in try_suffixes:
 | |
|             if key.endswith(suffix):
 | |
|                 result = self.mapping.get(key[:-len(suffix)])
 | |
|                 if result is not None:
 | |
|                     return (result[0], result[1] + suffix)
 | |
|         return None
 | |
| 
 | |
|     def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
 | |
|         result = self.get_type_and_name(key, try_suffixes = try_suffixes)
 | |
|         if result is None:
 | |
|             return None
 | |
|         return result[1]
 | |
| 
 | |
|     def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
 | |
|         result = self.get_type_and_name(key, try_suffixes = try_suffixes)
 | |
|         if result is None:
 | |
|             return None
 | |
|         return result[0]
 | |
| 
 | |
|     def __getitem__(self, key: str) -> str:
 | |
|         try:
 | |
|             return self.mapping[key][1]
 | |
|         except KeyError:
 | |
|             raise KeyError(key)
 | |
| 
 | |
|     def __contains__(self, key: str) -> bool:
 | |
|         return key in self.mapping
 | |
| 
 | |
|     def __repr__(self) -> str:
 | |
|         return repr(self.mapping)
 | |
| 
 | |
| def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
 | |
|     return TensorNameMap(arch, n_blocks)
 | |
| 
 | |
| class TokenType(IntEnum):
 | |
|     NORMAL       = 1
 | |
|     UNKNOWN      = 2
 | |
|     CONTROL      = 3
 | |
|     USER_DEFINED = 4
 | |
|     UNUSED       = 5
 | |
|     BYTE         = 6
 | |
| 
 | |
| #
 | |
| # implementation
 | |
| #
 | |
| 
 | |
| 
 | |
| class GGMLQuantizationType(IntEnum):
 | |
|     F32  = 0
 | |
|     F16  = 1
 | |
|     Q4_0 = 2
 | |
|     Q4_1 = 3
 | |
|     Q5_0 = 6
 | |
|     Q5_1 = 7
 | |
|     Q8_0 = 8
 | |
|     Q8_1 = 9
 | |
|     Q2_K = 10
 | |
|     Q3_K = 11
 | |
|     Q4_K = 12
 | |
|     Q5_K = 13
 | |
|     Q6_K = 14
 | |
|     Q8_K = 15
 | |
| 
 | |
| 
 | |
| class GGUFValueType(IntEnum):
 | |
|     UINT8   = 0
 | |
|     INT8    = 1
 | |
|     UINT16  = 2
 | |
|     INT16   = 3
 | |
|     UINT32  = 4
 | |
|     INT32   = 5
 | |
|     FLOAT32 = 6
 | |
|     BOOL    = 7
 | |
|     STRING  = 8
 | |
|     ARRAY   = 9
 | |
|     UINT64  = 10
 | |
|     INT64   = 11
 | |
|     FLOAT64 = 12
 | |
| 
 | |
|     @staticmethod
 | |
|     def get_type(val):
 | |
|         if isinstance(val, str) or isinstance(val, bytes) or isinstance(val, bytearray):
 | |
|             return GGUFValueType.STRING
 | |
|         elif isinstance(val, list):
 | |
|             return GGUFValueType.ARRAY
 | |
|         elif isinstance(val, float):
 | |
|             return GGUFValueType.FLOAT32
 | |
|         elif isinstance(val, bool):
 | |
|             return GGUFValueType.BOOL
 | |
|         elif isinstance(val, int):
 | |
|             return GGUFValueType.INT32
 | |
|         # TODO: need help with 64-bit types in Python
 | |
|         else:
 | |
|             print("Unknown type: "+str(type(val)))
 | |
|             sys.exit()
 | |
| 
 | |
| 
 | |
| class GGUFWriter:
 | |
|     fout: BufferedWriter
 | |
|     arch: str
 | |
|     offset_tensor = 0
 | |
|     data_alignment = GGUF_DEFAULT_ALIGNMENT
 | |
|     kv_data = b""
 | |
|     kv_data_count = 0
 | |
|     ti_data = b""
 | |
|     ti_data_count = 0
 | |
|     use_temp_file: bool
 | |
|     temp_file: tempfile.SpooledTemporaryFile[bytes] | None = None
 | |
|     tensors: list[tuple[np.ndarray[Any, Any], int]]
 | |
| 
 | |
|     def __init__(self, path: os.PathLike[str] | str, arch: str, use_temp_file = True):
 | |
|         self.fout = open(path, "wb")
 | |
|         self.arch = arch
 | |
|         self.add_architecture()
 | |
|         self.use_temp_file = use_temp_file
 | |
|         self.tensors = []
 | |
| 
 | |
|     def write_header_to_file(self):
 | |
|         self.fout.write(struct.pack("<I", GGUF_MAGIC))
 | |
|         self.fout.write(struct.pack("<I", GGUF_VERSION))
 | |
|         self.fout.write(struct.pack("<Q", self.ti_data_count))
 | |
|         self.fout.write(struct.pack("<Q", self.kv_data_count))
 | |
|         self.flush()
 | |
| #        print("tensors " + str(self.ti_data_count) + " kv " + str(self.kv_data_count))
 | |
| 
 | |
|     def write_kv_data_to_file(self):
 | |
|         self.fout.write(self.kv_data)
 | |
|         self.flush()
 | |
| 
 | |
|     def write_ti_data_to_file(self):
 | |
|         self.fout.write(self.ti_data)
 | |
|         self.flush()
 | |
| 
 | |
|     def add_key(self, key: str):
 | |
|         self.add_val(key, GGUFValueType.STRING, add_vtype=False)
 | |
| 
 | |
|     def add_uint8(self, key: str, val: int):
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.UINT8)
 | |
| 
 | |
|     def add_int8(self, key: str, val: int):
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.INT8)
 | |
| 
 | |
|     def add_uint16(self, key: str, val: int):
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.UINT16)
 | |
| 
 | |
|     def add_int16(self, key: str, val: int):
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.INT16)
 | |
| 
 | |
|     def add_uint32(self, key: str, val: int):
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.UINT32)
 | |
| 
 | |
|     def add_int32(self, key: str, val: int):
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.INT32)
 | |
| 
 | |
|     def add_float32(self, key: str, val: float):
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.FLOAT32)
 | |
| 
 | |
|     def add_uint64(self, key: str, val: int):
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.UINT64)
 | |
| 
 | |
|     def add_int64(self, key: str, val: int):
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.INT64)
 | |
| 
 | |
|     def add_float64(self, key: str, val: float):
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.FLOAT64)
 | |
| 
 | |
|     def add_bool(self, key: str, val: bool):
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.BOOL)
 | |
| 
 | |
|     def add_string(self, key: str, val: str):
 | |
|         if len(val) == 0:
 | |
|             return
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.STRING)
 | |
| 
 | |
|     def add_array(self, key: str, val: Sequence[Any]):
 | |
|         if not isinstance(val, Sequence):
 | |
|             raise ValueError("Value must be a sequence for array type")
 | |
| 
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.ARRAY)
 | |
| 
 | |
|     _simple_value_packing = {
 | |
|         GGUFValueType.UINT8:   "<B",
 | |
|         GGUFValueType.INT8:    "<b",
 | |
|         GGUFValueType.UINT16:  "<H",
 | |
|         GGUFValueType.INT16:   "<h",
 | |
|         GGUFValueType.UINT32:  "<I",
 | |
|         GGUFValueType.INT32:   "<i",
 | |
|         GGUFValueType.FLOAT32: "<f",
 | |
|         GGUFValueType.UINT64:  "<Q",
 | |
|         GGUFValueType.INT64:   "<q",
 | |
|         GGUFValueType.FLOAT64: "<d",
 | |
|         GGUFValueType.BOOL:    "?" ,
 | |
|     }
 | |
|     def add_val(self, val: Any, vtype: GGUFValueType | None = None, add_vtype: bool = True):
 | |
|         if vtype is None:
 | |
|             vtype = GGUFValueType.get_type(val)
 | |
| 
 | |
|         if add_vtype:
 | |
|             self.kv_data += struct.pack("<I", vtype)
 | |
|             self.kv_data_count += 1
 | |
| 
 | |
|         pack_fmt = self._simple_value_packing.get(vtype)
 | |
|         if pack_fmt is not None:
 | |
|             self.kv_data += struct.pack(pack_fmt, val)
 | |
|         elif vtype == GGUFValueType.STRING:
 | |
|             encoded_val = val.encode("utf8") if isinstance(val, str) else val
 | |
|             self.kv_data += struct.pack("<Q", len(encoded_val))
 | |
|             self.kv_data += encoded_val
 | |
|         elif vtype == GGUFValueType.ARRAY and isinstance(val, Sequence) and len(val) > 0:
 | |
|             ltype = GGUFValueType.get_type(val[0])
 | |
|             if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]):
 | |
|                 raise ValueError("All items in a GGUF array should be of the same type")
 | |
|             self.kv_data += struct.pack("<I", ltype)
 | |
|             self.kv_data += struct.pack("<Q", len(val))
 | |
|             for item in val:
 | |
|                 self.add_val(item, add_vtype=False)
 | |
|         else:
 | |
|             raise ValueError("Invalid GGUF metadata value type or value")
 | |
| 
 | |
|     @staticmethod
 | |
|     def ggml_pad(x: int, n: int) -> int:
 | |
|         return ((x + n - 1) // n) * n
 | |
| 
 | |
|     def add_tensor_info(self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype[np.float16] | np.dtype[np.float32], tensor_nbytes: int, raw_dtype: GGMLQuantizationType | None = None):
 | |
|         assert raw_dtype is not None or tensor_dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now"
 | |
| 
 | |
|         encoded_name = name.encode("utf8")
 | |
|         self.ti_data += struct.pack("<Q", len(encoded_name))
 | |
|         self.ti_data += encoded_name
 | |
|         n_dims = len(tensor_shape)
 | |
|         self.ti_data += struct.pack("<I", n_dims)
 | |
|         for i in range(n_dims):
 | |
|             self.ti_data += struct.pack("<Q", tensor_shape[n_dims - 1 - i])
 | |
|         if raw_dtype is None:
 | |
|             dtype = GGMLQuantizationType.F32 if tensor_dtype == np.float32 else GGMLQuantizationType.F16
 | |
|         else:
 | |
|             dtype = raw_dtype
 | |
|         self.ti_data += struct.pack("<I", dtype)
 | |
|         self.ti_data += struct.pack("<Q", self.offset_tensor)
 | |
|         self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
 | |
|         self.ti_data_count += 1
 | |
| 
 | |
|     def add_tensor(self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Sequence[int] | None = None, raw_dtype: GGMLQuantizationType | None = None):
 | |
|         if self.use_temp_file and self.temp_file is None:
 | |
|             fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256*1024*1024)
 | |
|             fp.seek(0)
 | |
|             self.temp_file = fp
 | |
| 
 | |
|         shape: Sequence[int] = raw_shape if raw_shape is not None else tensor.shape
 | |
|         self.add_tensor_info(name, shape, tensor.dtype, tensor.nbytes, raw_dtype = raw_dtype)
 | |
| 
 | |
|         pad = GGUFWriter.ggml_pad(tensor.nbytes, self.data_alignment) - tensor.nbytes
 | |
| 
 | |
|         if  self.temp_file is None:
 | |
|             self.tensors.append((tensor, pad))
 | |
|             return
 | |
| 
 | |
|         tensor.tofile(self.temp_file)
 | |
| 
 | |
|         if pad != 0:
 | |
|             self.temp_file.write(bytes([0] * pad))
 | |
| 
 | |
|     def write_padding(self, fp: BinaryIO, n: int, align: int | None = None):
 | |
|         pad = GGUFWriter.ggml_pad(n, align if align is not None else self.data_alignment) - n
 | |
|         if pad != 0:
 | |
|             fp.write(bytes([0] * pad))
 | |
| 
 | |
|     def write_tensor_data(self, tensor: np.ndarray[Any, Any]):
 | |
|         self.write_padding(self.fout, self.fout.tell())
 | |
|         tensor.tofile(self.fout)
 | |
|         self.write_padding(self.fout, tensor.nbytes)
 | |
| 
 | |
|     def write_tensors_to_file(self):
 | |
|         self.write_ti_data_to_file()
 | |
| 
 | |
|         self.write_padding(self.fout, self.fout.tell())
 | |
| 
 | |
|         if self.temp_file is None:
 | |
|             for (currtensor, currpad) in self.tensors:
 | |
|                 currtensor.tofile(self.fout)
 | |
|                 if currpad != 0:
 | |
|                     self.fout.write(bytes([0] * currpad))
 | |
|             return
 | |
| 
 | |
|         self.temp_file.seek(0)
 | |
| 
 | |
|         shutil.copyfileobj(self.temp_file, self.fout)
 | |
|         self.flush()
 | |
|         self.temp_file.close()
 | |
| 
 | |
|     def flush(self):
 | |
|         self.fout.flush()
 | |
| 
 | |
|     def close(self):
 | |
|         self.fout.close()
 | |
| 
 | |
|     def add_architecture(self):
 | |
|         self.add_string(KEY_GENERAL_ARCHITECTURE, self.arch)
 | |
| 
 | |
|     def add_author(self, author: str):
 | |
|         self.add_string(KEY_GENERAL_AUTHOR, author)
 | |
| 
 | |
|     def add_tensor_data_layout(self, layout: str):
 | |
|         self.add_string(KEY_TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
 | |
| 
 | |
|     def add_url(self, url: str):
 | |
|         self.add_string(KEY_GENERAL_URL, url)
 | |
| 
 | |
|     def add_description(self, description: str):
 | |
|         self.add_string(KEY_GENERAL_DESCRIPTION, description)
 | |
| 
 | |
|     def add_source_url(self, url: str):
 | |
|         self.add_string(KEY_GENERAL_SOURCE_URL, url)
 | |
| 
 | |
|     def add_source_hf_repo(self, repo: str):
 | |
|         self.add_string(KEY_GENERAL_SOURCE_HF_REPO, repo)
 | |
| 
 | |
|     def add_file_type(self, ftype: int):
 | |
|         self.add_uint32(KEY_GENERAL_FILE_TYPE, ftype)
 | |
| 
 | |
|     def add_name(self, name: str):
 | |
|         self.add_string(KEY_GENERAL_NAME, name)
 | |
| 
 | |
|     def add_quantization_version(self, quantization_version: GGMLQuantizationType):
 | |
|         self.add_uint32(
 | |
|             KEY_GENERAL_QUANTIZATION_VERSION, quantization_version)
 | |
| 
 | |
|     def add_custom_alignment(self, alignment: int):
 | |
|         self.data_alignment = alignment
 | |
|         self.add_uint32(KEY_GENERAL_ALIGNMENT, alignment)
 | |
| 
 | |
|     def add_context_length(self, length: int):
 | |
|         self.add_uint32(
 | |
|             KEY_CONTEXT_LENGTH.format(arch=self.arch), length)
 | |
| 
 | |
|     def add_embedding_length(self, length: int):
 | |
|         self.add_uint32(
 | |
|             KEY_EMBEDDING_LENGTH.format(arch=self.arch), length)
 | |
| 
 | |
|     def add_max_position_embeddings(self, length: int):
 | |
|         self.add_uint32(
 | |
|             KEY_MAX_POSITION_EMBEDDINGS.format(arch=self.arch), length)
 | |
| 
 | |
|     def add_block_count(self, length: int):
 | |
|         self.add_uint32(
 | |
|             KEY_BLOCK_COUNT.format(arch=self.arch), length)
 | |
| 
 | |
|     def add_feed_forward_length(self, length: int):
 | |
|         self.add_uint32(
 | |
|             KEY_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
 | |
| 
 | |
|     def add_parallel_residual(self, use: bool):
 | |
|         self.add_bool(
 | |
|             KEY_USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)
 | |
| 
 | |
|     def add_head_count(self, count: int):
 | |
|         self.add_uint32(
 | |
|             KEY_ATTENTION_HEAD_COUNT.format(arch=self.arch), count)
 | |
| 
 | |
|     def add_head_count_kv(self, count: int):
 | |
|         self.add_uint32(
 | |
|             KEY_ATTENTION_HEAD_COUNT_KV.format(arch=self.arch), count)
 | |
| 
 | |
|     def add_max_alibi_bias(self, bias: float):
 | |
|         self.add_float32(
 | |
|             KEY_ATTENTION_MAX_ALIBI_BIAS.format(arch=self.arch), bias)
 | |
| 
 | |
|     def add_clamp_kqv(self, value: float):
 | |
|         self.add_float32(
 | |
|             KEY_ATTENTION_CLAMP_KQV.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_layer_norm_eps(self, value: float):
 | |
|         self.add_float32(
 | |
|             KEY_ATTENTION_LAYERNORM_EPS.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_layer_norm_rms_eps(self, value: float):
 | |
|         self.add_float32(
 | |
|             KEY_ATTENTION_LAYERNORM_RMS_EPS.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_rope_dimension_count(self, count: int):
 | |
|         self.add_uint32(
 | |
|             KEY_ROPE_DIMENSION_COUNT.format(arch=self.arch), count)
 | |
| 
 | |
|     def add_rope_freq_base(self, value: float):
 | |
|         self.add_float32(KEY_ROPE_FREQ_BASE.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_rope_scale_linear(self, value: float):
 | |
|         self.add_float32(KEY_ROPE_SCALE_LINEAR.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_tokenizer_model(self, model: str):
 | |
|         self.add_string(KEY_TOKENIZER_MODEL, model)
 | |
| 
 | |
|     def add_token_list(self, tokens: Sequence[str] | Sequence[bytes] | Sequence[bytearray]):
 | |
|         self.add_array(KEY_TOKENIZER_LIST, tokens)
 | |
| 
 | |
|     def add_token_merges(self, merges: Sequence[str] | Sequence[bytes] | Sequence[bytearray]):
 | |
|         self.add_array(KEY_TOKENIZER_MERGES, merges)
 | |
| 
 | |
|     def add_token_types(self, types: Sequence[TokenType] | Sequence[int]):
 | |
|         self.add_array(KEY_TOKENIZER_TOKEN_TYPE, types)
 | |
| 
 | |
|     def add_token_scores(self, scores: Sequence[float]):
 | |
|         self.add_array(KEY_TOKENIZER_SCORES, scores)
 | |
| 
 | |
|     def add_bos_token_id(self, id: int):
 | |
|         self.add_uint32(KEY_TOKENIZER_BOS_ID, id)
 | |
| 
 | |
|     def add_eos_token_id(self, id: int):
 | |
|         self.add_uint32(KEY_TOKENIZER_EOS_ID, id)
 | |
| 
 | |
|     def add_unk_token_id(self, id: int):
 | |
|         self.add_uint32(KEY_TOKENIZER_UNK_ID, id)
 | |
| 
 | |
|     def add_sep_token_id(self, id: int):
 | |
|         self.add_uint32(KEY_TOKENIZER_SEP_ID, id)
 | |
| 
 | |
|     def add_pad_token_id(self, id: int):
 | |
|         self.add_uint32(KEY_TOKENIZER_PAD_ID, id)
 | |
| 
 | |
| 
 | |
| class SpecialVocab:
 | |
|     load_merges: bool = False
 | |
|     merges: list[str] = []
 | |
|     special_token_types: tuple[str, ...] = ('bos', 'eos', 'unk', 'sep', 'pad')
 | |
|     special_token_ids: dict[str, int] = {}
 | |
| 
 | |
|     def __init__(self, path: Path, load_merges: bool = False, special_token_types: tuple[str, ...] | None = None):
 | |
|         self.special_token_ids = {}
 | |
|         self.load_merges = load_merges
 | |
|         if special_token_types is not None:
 | |
|             self.special_token_types = special_token_types
 | |
|         self.load(path)
 | |
| 
 | |
|     def load(self, path: Path):
 | |
|         if not self.try_load_from_tokenizer_json(path):
 | |
|             self.try_load_from_config_json(path)
 | |
| 
 | |
|     def try_load_from_tokenizer_json(self, path: Path) -> bool:
 | |
|         tokenizer_file = path / 'tokenizer.json'
 | |
|         if not tokenizer_file.is_file():
 | |
|             return False
 | |
|         with open(tokenizer_file, 'r', encoding = 'utf-8') as f:
 | |
|             tokenizer = json.load(f)
 | |
|         if self.load_merges:
 | |
|             merges = tokenizer.get('model', {}).get('merges')
 | |
|             if isinstance(merges, list) and len(merges) > 0 and isinstance(merges[0], str):
 | |
|                 self.merges = merges
 | |
|         tokenizer_config_file = path / 'tokenizer_config.json'
 | |
|         added_tokens = tokenizer.get('added_tokens')
 | |
|         if added_tokens is None or not tokenizer_config_file.is_file():
 | |
|             return True
 | |
|         with open(tokenizer_config_file, 'r', encoding = 'utf-8') as f:
 | |
|             tokenizer_config = json.load(f)
 | |
|         for typ in self.special_token_types:
 | |
|             entry = tokenizer_config.get(f'{typ}_token')
 | |
|             if isinstance(entry, str):
 | |
|                 tc_content = entry
 | |
|             elif isinstance(entry, dict):
 | |
|                 entry_content = entry.get('content')
 | |
|                 if not isinstance(entry_content, str):
 | |
|                     continue
 | |
|                 tc_content = entry_content
 | |
|             else:
 | |
|                 continue
 | |
|             for maybe_token_id in (atok.get('id') for atok in added_tokens if atok.get('content') == tc_content):
 | |
|                 if isinstance(maybe_token_id, int) and maybe_token_id >= 0:
 | |
|                     self.special_token_ids[typ] = maybe_token_id
 | |
|                 break
 | |
|         return True
 | |
| 
 | |
|     def try_load_from_config_json(self, path: Path) -> bool:
 | |
|         config_file = path / 'config.json'
 | |
|         if not config_file.is_file():
 | |
|             return False
 | |
|         with open(config_file, 'r', encoding = 'utf-8') as f:
 | |
|             config = json.load(f)
 | |
|         for typ in self.special_token_types:
 | |
|             maybe_token_id = config.get(f'{typ}_token_id')
 | |
|             if isinstance(maybe_token_id, int) and maybe_token_id >= 0:
 | |
|                 self.special_token_ids[typ] = maybe_token_id
 | |
|         return True
 | |
| 
 | |
|     def add_to_gguf(self, gw: GGUFWriter):
 | |
|         if len(self.merges) > 0:
 | |
|             print(f'gguf: Adding {len(self.merges)} merge(s).')
 | |
|             gw.add_token_merges(self.merges)
 | |
|         for typ, tokid in self.special_token_ids.items():
 | |
|             handler: Callable[[int], None] | None = getattr(gw, f'add_{typ}_token_id', None)
 | |
|             if handler is None:
 | |
|                 print(f'gguf: WARNING: No handler for special token type {typ} with id {tokid} - skipping')
 | |
|                 continue
 | |
|             print(f'gguf: Setting special token type {typ} to {tokid}')
 | |
|             handler(tokid)
 | |
| 
 | |
|     def __repr__(self):
 | |
|         return f'<SpecialVocab with {len(self.merges)} merges and special tokens {self.special_token_ids if self.special_token_ids else "unset"}>'
 | |
| 
 | |
| 
 | |
| # Example usage:
 | |
| if __name__ == "__main__":
 | |
|     # Example usage with a file
 | |
|     gguf_writer = GGUFWriter("example.gguf", "llama")
 | |
| 
 | |
|     gguf_writer.add_architecture()
 | |
|     gguf_writer.add_block_count(12)
 | |
|     gguf_writer.add_uint32("answer", 42)  # Write a 32-bit integer
 | |
|     gguf_writer.add_float32("answer_in_float", 42.0)  # Write a 32-bit float
 | |
|     gguf_writer.add_custom_alignment(64)
 | |
| 
 | |
|     tensor1 = np.ones((32,), dtype=np.float32) * 100.0
 | |
|     tensor2 = np.ones((64,), dtype=np.float32) * 101.0
 | |
|     tensor3 = np.ones((96,), dtype=np.float32) * 102.0
 | |
| 
 | |
|     gguf_writer.add_tensor("tensor1", tensor1)
 | |
|     gguf_writer.add_tensor("tensor2", tensor2)
 | |
|     gguf_writer.add_tensor("tensor3", tensor3)
 | |
| 
 | |
|     gguf_writer.write_header_to_file()
 | |
|     gguf_writer.write_kv_data_to_file()
 | |
|     gguf_writer.write_tensors_to_file()
 | |
| 
 | |
|     gguf_writer.close()
 | 
