Files
llama.cpp/ggml/src/ggml-cuda/mmq.cu
deepsek 66906cd82a HIP: Enable Matrix cores for MMQ Kernels, Enable stream-K for CDNA 3 (#14624)
This commit adds support for MFMA instructions to MMQ. CDNA1/GFX908 CDNA2/GFX90a and CDNA3/GFX942 are supported by the MFMA-enabled code path added by this commit. The code path and stream-k is only enabled on CDNA3 for now as it fails to outperform blas in all cases on the other devices.
Blas is currently only consistently outperformed on CDNA3 due to issues in the amd-provided blas libraries.
This commit also improves the awareness of MMQ towards different warp sizes and as a side effect improves the performance of all quant formats besides q4_0 and q4_1, which regress slightly, on GCN gpus.
2025-07-27 00:28:14 +02:00

327 lines
13 KiB
Plaintext

#include "mmq.cuh"
#include "quantize.cuh"
#include <vector>
static void ggml_cuda_mul_mat_q_switch_type(ggml_backend_cuda_context & ctx, const mmq_args & args, cudaStream_t stream) {
switch (args.type_x) {
case GGML_TYPE_Q4_0:
mul_mat_q_case<GGML_TYPE_Q4_0>(ctx, args, stream);
break;
case GGML_TYPE_Q4_1:
mul_mat_q_case<GGML_TYPE_Q4_1>(ctx, args, stream);
break;
case GGML_TYPE_Q5_0:
mul_mat_q_case<GGML_TYPE_Q5_0>(ctx, args, stream);
break;
case GGML_TYPE_Q5_1:
mul_mat_q_case<GGML_TYPE_Q5_1>(ctx, args, stream);
break;
case GGML_TYPE_Q8_0:
mul_mat_q_case<GGML_TYPE_Q8_0>(ctx, args, stream);
break;
case GGML_TYPE_Q2_K:
mul_mat_q_case<GGML_TYPE_Q2_K>(ctx, args, stream);
break;
case GGML_TYPE_Q3_K:
mul_mat_q_case<GGML_TYPE_Q3_K>(ctx, args, stream);
break;
case GGML_TYPE_Q4_K:
mul_mat_q_case<GGML_TYPE_Q4_K>(ctx, args, stream);
break;
case GGML_TYPE_Q5_K:
mul_mat_q_case<GGML_TYPE_Q5_K>(ctx, args, stream);
break;
case GGML_TYPE_Q6_K:
mul_mat_q_case<GGML_TYPE_Q6_K>(ctx, args, stream);
break;
case GGML_TYPE_IQ2_XXS:
mul_mat_q_case<GGML_TYPE_IQ2_XXS>(ctx, args, stream);
break;
case GGML_TYPE_IQ2_XS:
mul_mat_q_case<GGML_TYPE_IQ2_XS>(ctx, args, stream);
break;
case GGML_TYPE_IQ2_S:
mul_mat_q_case<GGML_TYPE_IQ2_S>(ctx, args, stream);
break;
case GGML_TYPE_IQ3_XXS:
mul_mat_q_case<GGML_TYPE_IQ3_XXS>(ctx, args, stream);
break;
case GGML_TYPE_IQ3_S:
mul_mat_q_case<GGML_TYPE_IQ3_S>(ctx, args, stream);
break;
case GGML_TYPE_IQ1_S:
mul_mat_q_case<GGML_TYPE_IQ1_S>(ctx, args, stream);
break;
case GGML_TYPE_IQ4_XS:
mul_mat_q_case<GGML_TYPE_IQ4_XS>(ctx, args, stream);
break;
case GGML_TYPE_IQ4_NL:
mul_mat_q_case<GGML_TYPE_IQ4_NL>(ctx, args, stream);
break;
default:
GGML_ABORT("fatal error");
break;
}
}
void ggml_cuda_mul_mat_q(
ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst) {
GGML_ASSERT( src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(!ids || ids->type == GGML_TYPE_I32); // Optional, used for batched GGML_MUL_MAT_ID.
GGML_TENSOR_BINARY_OP_LOCALS;
cudaStream_t stream = ctx.stream();
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
const size_t ts_src0 = ggml_type_size(src0->type);
const size_t ts_src1 = ggml_type_size(src1->type);
const size_t ts_dst = ggml_type_size(dst->type);
GGML_ASSERT( nb00 == ts_src0);
GGML_ASSERT( nb10 == ts_src1);
GGML_ASSERT( nb0 == ts_dst);
GGML_ASSERT(!ids || ids->nb[0] == ggml_type_size(ids->type));
const char * src0_d = (const char *) src0->data;
const float * src1_d = (const float *) src1->data;
float * dst_d = (float *) dst->data;
// If src0 is a temporary compute buffer, clear any potential padding.
if (ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
const size_t size_data = ggml_nbytes(src0);
const size_t size_alloc = ggml_backend_buffer_get_alloc_size(src0->buffer, src0);
if (size_alloc > size_data) {
GGML_ASSERT(ggml_is_contiguously_allocated(src0));
GGML_ASSERT(!src0->view_src);
CUDA_CHECK(cudaMemsetAsync((char *) src0->data + size_data, 0, size_alloc - size_data, stream));
}
}
const int64_t ne10_padded = GGML_PAD(ne10, MATRIX_ROW_PADDING);
const int64_t s01 = src0->nb[1] / ts_src0;
const int64_t s1 = dst->nb[1] / ts_dst;
const int64_t s02 = src0->nb[2] / ts_src0;
const int64_t s2 = dst->nb[2] / ts_dst;
const int64_t s03 = src0->nb[3] / ts_src0;
const int64_t s3 = dst->nb[3] / ts_dst;
const bool use_stream_k = ((GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA)
|| (GGML_CUDA_CC_IS_AMD(cc) && GGML_CUDA_CC_IS_CDNA3(cc)));
if (!ids) {
const size_t nbytes_src1_q8_1 = ne13*ne12 * ne11*ne10_padded * sizeof(block_q8_1)/QK8_1 +
get_mmq_x_max_host(cc)*sizeof(block_q8_1_mmq);
ggml_cuda_pool_alloc<char> src1_q8_1(ctx.pool(), nbytes_src1_q8_1);
{
const int64_t s11 = src1->nb[1] / ts_src1;
const int64_t s12 = src1->nb[2] / ts_src1;
const int64_t s13 = src1->nb[3] / ts_src1;
quantize_mmq_q8_1_cuda(src1_d, nullptr, src1_q8_1.get(), src0->type,
ne10, s11, s12, s13, ne10_padded, ne11, ne12, ne13, stream);
CUDA_CHECK(cudaGetLastError());
}
const int64_t s12 = ne11*ne10_padded * sizeof(block_q8_1)/(QK8_1*sizeof(int));
const int64_t s13 = ne12*s12;
const mmq_args args = {
src0_d, src0->type, (const int *) src1_q8_1.ptr, nullptr, nullptr, dst_d,
ne00, ne01, ne1, s01, ne11, s1,
ne02, ne12, s02, s12, s2,
ne03, ne13, s03, s13, s3,
use_stream_k};
ggml_cuda_mul_mat_q_switch_type(ctx, args, stream);
return;
}
GGML_ASSERT(ne13 == 1);
GGML_ASSERT(nb12 % nb11 == 0);
GGML_ASSERT(nb2 % nb1 == 0);
const int64_t n_expert_used = ids->ne[0];
const int64_t ne_get_rows = ne12 * n_expert_used;
std::vector<char> ids_host(ggml_nbytes(ids));
std::vector<int32_t> ids_src1_host;
ids_src1_host.reserve(ne_get_rows);
std::vector<int32_t> ids_dst_host;
ids_dst_host.reserve(ne_get_rows);
std::vector<int32_t> tokens_per_expert_host(ne02);
std::vector<int32_t> expert_bounds_host(ne02 + 1);
ggml_cuda_pool_alloc<int32_t> ids_buf_dev(ctx.pool());
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids->data, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
CUDA_CHECK(cudaStreamSynchronize(stream));
for (int64_t i02 = 0; i02 < ne02; ++i02) { // expert matrices
for (int64_t i12 = 0; i12 < ne12; ++i12) { // tokens
for (int64_t iex = 0; iex < n_expert_used; ++iex) {
const int32_t expert_to_use = *(const int32_t *)(ids_host.data() + i12*ids->nb[1] + iex*ids->nb[0]);
assert(expert_to_use >= 0 && expert_to_use < ne02);
if (expert_to_use == i02) {
ids_src1_host.push_back(i12*(nb12/nb11) + iex % ne11);
ids_dst_host.push_back(i12*ne1 + iex);
tokens_per_expert_host[i02]++;
break;
}
}
}
}
int32_t cumsum = 0;
for (int64_t i = 0; i < ne02; ++i) {
expert_bounds_host[i] = cumsum;
cumsum += tokens_per_expert_host[i];
}
expert_bounds_host[ne02] = cumsum;
std::vector<int32_t> ids_buf_host;
ids_buf_host.reserve(ids_src1_host.size() + ids_dst_host.size() + expert_bounds_host.size());
ids_buf_host.insert(ids_buf_host.end(), ids_src1_host.begin(), ids_src1_host.end());
ids_buf_host.insert(ids_buf_host.end(), ids_dst_host.begin(), ids_dst_host.end());
ids_buf_host.insert(ids_buf_host.end(), expert_bounds_host.begin(), expert_bounds_host.end());
ids_buf_dev.alloc(ids_buf_host.size() + get_mmq_x_max_host(cc)); // Expert bounds are padded on device.
CUDA_CHECK(cudaMemcpyAsync(ids_buf_dev.ptr, ids_buf_host.data(), ids_buf_host.size()*sizeof(int32_t), cudaMemcpyHostToDevice, stream));
CUDA_CHECK(cudaStreamSynchronize(stream));
const int32_t * ids_src1_dev = ids_buf_dev.ptr;
const int32_t * ids_dst_dev = ids_src1_dev + ids_src1_host.size();
const int32_t * expert_bounds_dev = ids_dst_dev + ids_dst_host.size();
const size_t nbytes_src1_q8_1 = ne12*n_expert_used*ne10_padded * sizeof(block_q8_1)/QK8_1 +
get_mmq_x_max_host(cc)*sizeof(block_q8_1_mmq);
ggml_cuda_pool_alloc<char> src1_q8_1(ctx.pool(), nbytes_src1_q8_1);
const int64_t ne11_flat = ne12*n_expert_used;
const int64_t ne12_flat = 1;
const int64_t ne13_flat = 1;
{
const int64_t s11 = src1->nb[1] / ts_src1;
const int64_t s12 = src1->nb[2] / ts_src1;
const int64_t s13 = src1->nb[2] / ts_src1;
quantize_mmq_q8_1_cuda(src1_d, ids_src1_dev, src1_q8_1.get(), src0->type,
ne10, s11, s12, s13, ne10_padded, ne11_flat, ne12_flat, ne13_flat, stream);
CUDA_CHECK(cudaGetLastError());
}
const int64_t s12 = ne11*ne10_padded * sizeof(block_q8_1)/(QK8_1*sizeof(int));
const int64_t s13 = ne12*s12;
// Note that ne02 is used instead of ne12 because the number of y channels determines the z dimension of the CUDA grid.
const mmq_args args = {
src0_d, src0->type, (const int *) src1_q8_1.ptr, ids_dst_dev, expert_bounds_dev, dst_d,
ne00, ne01, ne_get_rows, s01, ne_get_rows, s1,
ne02, ne02, s02, s12, s2,
ne03, ne13, s03, s13, s3,
use_stream_k};
ggml_cuda_mul_mat_q_switch_type(ctx, args, stream);
}
void ggml_cuda_op_mul_mat_q(
ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
const int64_t src1_padded_row_size, cudaStream_t stream) {
const int64_t ne00 = src0->ne[0];
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
GGML_ASSERT(ne10 % QK8_1 == 0);
const int64_t ne0 = dst->ne[0];
const int64_t row_diff = row_high - row_low;
const int64_t stride01 = ne00 / ggml_blck_size(src0->type);
const int id = ggml_cuda_get_device();
const int cc = ggml_cuda_info().devices[id].cc;
// the main device has a larger memory buffer to hold the results from all GPUs
// nrows_dst == nrows of the matrix that the kernel writes into
const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
// The stream-k decomposition is only faster for recent NVIDIA GPUs.
// Also its fixup needs to allocate a temporary buffer in the memory pool.
// There are multiple parallel CUDA streams for src1_ncols != ne11 which would introduce a race condition for this buffer.
const bool use_stream_k = ((GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA)
|| (GGML_CUDA_CC_IS_AMD(cc) && GGML_CUDA_CC_IS_CDNA3(cc)))
&& src1_ncols == ne11;
const mmq_args args = {
src0_dd_i, src0->type, (const int *) src1_ddq_i, nullptr, nullptr, dst_dd_i,
ne00, row_diff, src1_ncols, stride01, ne11, nrows_dst,
1, 1, 0, 0, 0,
1, 1, 0, 0, 0,
use_stream_k};
ggml_cuda_mul_mat_q_switch_type(ctx, args, stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_ddf_i);
GGML_UNUSED(src1_padded_row_size);
}
bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
#ifdef GGML_CUDA_FORCE_CUBLAS
return false;
#endif // GGML_CUDA_FORCE_CUBLAS
bool mmq_supported;
switch (type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_NL:
mmq_supported = true;
break;
default:
mmq_supported = false;
break;
}
if (!mmq_supported) {
return false;
}
if (new_mma_available(cc) || amd_mfma_available(cc)) {
return true;
}
if (ggml_cuda_highest_compiled_arch(cc) < GGML_CUDA_CC_DP4A) {
return false;
}
#ifdef GGML_CUDA_FORCE_MMQ
return true;
#endif //GGML_CUDA_FORCE_MMQ
if (GGML_CUDA_CC_IS_NVIDIA(cc)) {
return !fp16_mma_hardware_available(cc) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
}
return (!GGML_CUDA_CC_IS_RDNA4(cc) && !GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
}