mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	 1966eb2615
			
		
	
	1966eb2615
	
	
	
		
			
			* Implement '--keep-split' to quantize model into several shards * Add test script * Update examples/quantize/quantize.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Split model correctly even if tensor id is out-of-order * Update llama_model_quantize_params * Fix preci failures --------- Co-authored-by: z5269887 <z5269887@unsw.edu.au> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			435 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			435 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "common.h"
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <cstdio>
 | |
| #include <cstring>
 | |
| #include <vector>
 | |
| #include <string>
 | |
| #include <unordered_map>
 | |
| #include <fstream>
 | |
| #include <cmath>
 | |
| #include <algorithm>
 | |
| 
 | |
| struct quant_option {
 | |
|     std::string name;
 | |
|     llama_ftype ftype;
 | |
|     std::string desc;
 | |
| };
 | |
| 
 | |
| static const std::vector<struct quant_option> QUANT_OPTIONS = {
 | |
|     { "Q4_0",   LLAMA_FTYPE_MOSTLY_Q4_0,   " 3.56G, +0.2166 ppl @ LLaMA-v1-7B", },
 | |
|     { "Q4_1",   LLAMA_FTYPE_MOSTLY_Q4_1,   " 3.90G, +0.1585 ppl @ LLaMA-v1-7B", },
 | |
|     { "Q5_0",   LLAMA_FTYPE_MOSTLY_Q5_0,   " 4.33G, +0.0683 ppl @ LLaMA-v1-7B", },
 | |
|     { "Q5_1",   LLAMA_FTYPE_MOSTLY_Q5_1,   " 4.70G, +0.0349 ppl @ LLaMA-v1-7B", },
 | |
|     { "IQ2_XXS",LLAMA_FTYPE_MOSTLY_IQ2_XXS," 2.06 bpw quantization",            },
 | |
|     { "IQ2_XS", LLAMA_FTYPE_MOSTLY_IQ2_XS, " 2.31 bpw quantization",            },
 | |
|     { "IQ2_S",  LLAMA_FTYPE_MOSTLY_IQ2_S,  " 2.5  bpw quantization",            },
 | |
|     { "IQ2_M",  LLAMA_FTYPE_MOSTLY_IQ2_M,  " 2.7  bpw quantization",            },
 | |
|     { "IQ1_S",  LLAMA_FTYPE_MOSTLY_IQ1_S,  " 1.56 bpw quantization",            },
 | |
|     { "IQ1_M",  LLAMA_FTYPE_MOSTLY_IQ1_M,  " 1.75 bpw quantization",            },
 | |
|     { "Q2_K",   LLAMA_FTYPE_MOSTLY_Q2_K,   " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", },
 | |
|     { "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.16G, +9.0634 ppl @ LLaMA-v1-7B", },
 | |
|     { "IQ3_XXS",LLAMA_FTYPE_MOSTLY_IQ3_XXS," 3.06 bpw quantization",            },
 | |
|     { "IQ3_S",  LLAMA_FTYPE_MOSTLY_IQ3_S,  " 3.44 bpw quantization",            },
 | |
|     { "IQ3_M",  LLAMA_FTYPE_MOSTLY_IQ3_M,  " 3.66 bpw quantization mix",        },
 | |
|     { "Q3_K",   LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
 | |
|     { "IQ3_XS", LLAMA_FTYPE_MOSTLY_IQ3_XS, " 3.3 bpw quantization"   ,          },
 | |
|     { "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 2.75G, +0.5551 ppl @ LLaMA-v1-7B", },
 | |
|     { "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.07G, +0.2496 ppl @ LLaMA-v1-7B", },
 | |
|     { "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 3.35G, +0.1764 ppl @ LLaMA-v1-7B", },
 | |
|     { "IQ4_NL", LLAMA_FTYPE_MOSTLY_IQ4_NL, " 4.50 bpw non-linear quantization", },
 | |
|     { "IQ4_XS", LLAMA_FTYPE_MOSTLY_IQ4_XS, " 4.25 bpw non-linear quantization", },
 | |
|     { "Q4_K",   LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", },
 | |
|     { "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 3.59G, +0.0992 ppl @ LLaMA-v1-7B", },
 | |
|     { "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 3.80G, +0.0532 ppl @ LLaMA-v1-7B", },
 | |
|     { "Q5_K",   LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", },
 | |
|     { "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 4.33G, +0.0400 ppl @ LLaMA-v1-7B", },
 | |
|     { "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 4.45G, +0.0122 ppl @ LLaMA-v1-7B", },
 | |
|     { "Q6_K",   LLAMA_FTYPE_MOSTLY_Q6_K,   " 5.15G, +0.0008 ppl @ LLaMA-v1-7B", },
 | |
|     { "Q8_0",   LLAMA_FTYPE_MOSTLY_Q8_0,   " 6.70G, +0.0004 ppl @ LLaMA-v1-7B", },
 | |
|     { "F16",    LLAMA_FTYPE_MOSTLY_F16,    "13.00G              @ 7B", },
 | |
|     { "F32",    LLAMA_FTYPE_ALL_F32,       "26.00G              @ 7B", },
 | |
|     // Note: Ensure COPY comes after F32 to avoid ftype 0 from matching.
 | |
|     { "COPY",   LLAMA_FTYPE_ALL_F32,       "only copy tensors, no quantizing", },
 | |
| };
 | |
| 
 | |
| 
 | |
| static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) {
 | |
|     std::string ftype_str;
 | |
| 
 | |
|     for (auto ch : ftype_str_in) {
 | |
|         ftype_str.push_back(std::toupper(ch));
 | |
|     }
 | |
|     for (auto & it : QUANT_OPTIONS) {
 | |
|         if (it.name == ftype_str) {
 | |
|             ftype = it.ftype;
 | |
|             ftype_str_out = it.name;
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
|     try {
 | |
|         int ftype_int = std::stoi(ftype_str);
 | |
|         for (auto & it : QUANT_OPTIONS) {
 | |
|             if (it.ftype == ftype_int) {
 | |
|                 ftype = it.ftype;
 | |
|                 ftype_str_out = it.name;
 | |
|                 return true;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     catch (...) {
 | |
|         // stoi failed
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| // usage:
 | |
| //  ./quantize [--allow-requantize] [--leave-output-tensor] [--pure] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads]
 | |
| //
 | |
| [[noreturn]]
 | |
| static void usage(const char * executable) {
 | |
|     printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] [--output-tensor-type] [--token-embedding-type] [--override-kv] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
 | |
|     printf("  --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
 | |
|     printf("  --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
 | |
|     printf("  --pure: Disable k-quant mixtures and quantize all tensors to the same type\n");
 | |
|     printf("  --imatrix file_name: use data in file_name as importance matrix for quant optimizations\n");
 | |
|     printf("  --include-weights tensor_name: use importance matrix for this/these tensor(s)\n");
 | |
|     printf("  --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n");
 | |
|     printf("  --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor\n");
 | |
|     printf("  --token-embedding-type ggml_type: use this ggml_type for the token embeddings tensor\n");
 | |
|     printf("  --keep-split: will generate quatized model in the same shards as input");
 | |
|     printf("  --override-kv KEY=TYPE:VALUE\n");
 | |
|     printf("      Advanced option to override model metadata by key in the quantized model. May be specified multiple times.\n");
 | |
|     printf("Note: --include-weights and --exclude-weights cannot be used together\n");
 | |
|     printf("\nAllowed quantization types:\n");
 | |
|     for (auto & it : QUANT_OPTIONS) {
 | |
|         if (it.name != "COPY") {
 | |
|             printf("  %2d  or  ", it.ftype);
 | |
|         } else {
 | |
|             printf("          ");
 | |
|         }
 | |
|         printf("%-7s : %s\n", it.name.c_str(), it.desc.c_str());
 | |
|     }
 | |
|     exit(1);
 | |
| }
 | |
| 
 | |
| static void load_imatrix(const std::string & imatrix_file, std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
 | |
|     std::ifstream in(imatrix_file.c_str(), std::ios::binary);
 | |
|     if (!in) {
 | |
|         printf("%s: failed to open %s\n",__func__, imatrix_file.c_str());
 | |
|         exit(1);
 | |
|     }
 | |
|     int n_entries;
 | |
|     in.read((char *)&n_entries, sizeof(n_entries));
 | |
|     if (in.fail() || n_entries < 1) {
 | |
|         printf("%s: no data in file %s\n", __func__, imatrix_file.c_str());
 | |
|         exit(1);
 | |
|     }
 | |
|     for (int i = 0; i < n_entries; ++i) {
 | |
|         int len; in.read((char *)&len, sizeof(len));
 | |
|         std::vector<char> name_as_vec(len+1);
 | |
|         in.read((char *)name_as_vec.data(), len);
 | |
|         if (in.fail()) {
 | |
|             printf("%s: failed reading name for entry %d from %s\n", __func__, i+1, imatrix_file.c_str());
 | |
|             exit(1);
 | |
|         }
 | |
|         name_as_vec[len] = 0;
 | |
|         std::string name{name_as_vec.data()};
 | |
|         auto & e = imatrix_data[name];
 | |
|         int ncall;
 | |
|         in.read((char *)&ncall, sizeof(ncall));
 | |
|         int nval;
 | |
|         in.read((char *)&nval, sizeof(nval));
 | |
|         if (in.fail() || nval < 1) {
 | |
|             printf("%s: failed reading number of values for entry %d\n", __func__, i);
 | |
|             imatrix_data = {};
 | |
|             exit(1);
 | |
|         }
 | |
|         e.resize(nval);
 | |
|         in.read((char *)e.data(), nval*sizeof(float));
 | |
|         if (in.fail()) {
 | |
|             printf("%s: failed reading data for entry %d\n", __func__, i);
 | |
|             imatrix_data = {};
 | |
|             exit(1);
 | |
|         }
 | |
|         if (ncall > 0) {
 | |
|             for (auto& v : e) v /= ncall;
 | |
|         }
 | |
| 
 | |
|         if (getenv("LLAMA_TRACE")) {
 | |
|             printf("%s: loaded data (size = %6d, ncall = %6d) for '%s'\n", __func__, int(e.size()), ncall, name.c_str());
 | |
|         }
 | |
|     }
 | |
|     printf("%s: loaded %d importance matrix entries from %s\n", __func__, int(imatrix_data.size()), imatrix_file.c_str());
 | |
| }
 | |
| 
 | |
| static void prepare_imatrix(const std::string & imatrix_file,
 | |
|         const std::vector<std::string> & included_weights,
 | |
|         const std::vector<std::string> & excluded_weights,
 | |
|         std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
 | |
|     if (!imatrix_file.empty()) {
 | |
|         load_imatrix(imatrix_file, imatrix_data);
 | |
|     }
 | |
|     if (imatrix_data.empty()) {
 | |
|         return;
 | |
|     }
 | |
|     if (!excluded_weights.empty()) {
 | |
|         for (auto& name : excluded_weights) {
 | |
|             for (auto it = imatrix_data.begin(); it != imatrix_data.end(); ) {
 | |
|                 auto pos = it->first.find(name);
 | |
|                 if (pos != std::string::npos) it = imatrix_data.erase(it);
 | |
|                 else ++it;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (!included_weights.empty()) {
 | |
|         std::unordered_map<std::string, std::vector<float>> tmp;
 | |
|         for (auto& name : included_weights) {
 | |
|             for (auto& e : imatrix_data) {
 | |
|                 auto pos = e.first.find(name);
 | |
|                 if (pos != std::string::npos) {
 | |
|                     tmp.emplace(std::move(e));
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         imatrix_data = std::move(tmp);
 | |
|     }
 | |
|     if (!imatrix_data.empty()) {
 | |
|         printf("%s: have %d importance matrix entries\n", __func__, int(imatrix_data.size()));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static ggml_type parse_ggml_type(const char * arg) {
 | |
|     ggml_type result = GGML_TYPE_COUNT;
 | |
|     for (int j = 0; j < GGML_TYPE_COUNT; ++j) {
 | |
|         auto type = ggml_type(j);
 | |
|         const auto * name = ggml_type_name(type);
 | |
|         if (name && strcmp(arg, name) == 0) {
 | |
|             result = type; break;
 | |
|         }
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static bool parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) {
 | |
|     const char* sep = strchr(data, '=');
 | |
|     if (sep == nullptr || sep - data >= 128) {
 | |
|         fprintf(stderr, "%s: malformed KV override '%s'\n", __func__, data);
 | |
|         return false;
 | |
|     }
 | |
|     llama_model_kv_override kvo;
 | |
|     std::strncpy(kvo.key, data, sep - data);
 | |
|     kvo.key[sep - data] = 0;
 | |
|     sep++;
 | |
|     if (strncmp(sep, "int:", 4) == 0) {
 | |
|         sep += 4;
 | |
|         kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
 | |
|         kvo.int_value = std::atol(sep);
 | |
|     } else if (strncmp(sep, "float:", 6) == 0) {
 | |
|         sep += 6;
 | |
|         kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
 | |
|         kvo.float_value = std::atof(sep);
 | |
|     } else if (strncmp(sep, "bool:", 5) == 0) {
 | |
|         sep += 5;
 | |
|         kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
 | |
|         if (std::strcmp(sep, "true") == 0) {
 | |
|             kvo.bool_value = true;
 | |
|         } else if (std::strcmp(sep, "false") == 0) {
 | |
|             kvo.bool_value = false;
 | |
|         } else {
 | |
|             fprintf(stderr, "%s: invalid boolean value for KV override '%s'\n", __func__, data);
 | |
|             return false;
 | |
|         }
 | |
|     } else {
 | |
|         fprintf(stderr, "%s: invalid type for KV override '%s'\n", __func__, data);
 | |
|         return false;
 | |
|     }
 | |
|     overrides.emplace_back(std::move(kvo));
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     if (argc < 3) {
 | |
|         usage(argv[0]);
 | |
|     }
 | |
| 
 | |
|     llama_model_quantize_params params = llama_model_quantize_default_params();
 | |
| 
 | |
|     int arg_idx = 1;
 | |
|     std::string imatrix_file;
 | |
|     std::vector<std::string> included_weights, excluded_weights;
 | |
|     std::vector<llama_model_kv_override> kv_overrides;
 | |
| 
 | |
|     for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
 | |
|         if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) {
 | |
|             params.quantize_output_tensor = false;
 | |
|         } else if (strcmp(argv[arg_idx], "--output-tensor-type") == 0) {
 | |
|             if (arg_idx < argc-1) {
 | |
|                 params.output_tensor_type = parse_ggml_type(argv[++arg_idx]);
 | |
|             } else {
 | |
|                 usage(argv[0]);
 | |
|             }
 | |
|         } else if (strcmp(argv[arg_idx], "--token-embedding-type") == 0) {
 | |
|             if (arg_idx < argc-1) {
 | |
|                 params.token_embedding_type = parse_ggml_type(argv[++arg_idx]);
 | |
|             } else {
 | |
|                 usage(argv[0]);
 | |
|             }
 | |
|         } else if (strcmp(argv[arg_idx], "--override-kv") == 0) {
 | |
|             if (arg_idx == argc-1 || !parse_kv_override(argv[++arg_idx], kv_overrides)) {
 | |
|                 usage(argv[0]);
 | |
|             }
 | |
|         } else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) {
 | |
|             params.allow_requantize = true;
 | |
|         } else if (strcmp(argv[arg_idx], "--pure") == 0) {
 | |
|             params.pure = true;
 | |
|         } else if (strcmp(argv[arg_idx], "--imatrix") == 0) {
 | |
|             if (arg_idx < argc-1) {
 | |
|                 imatrix_file = argv[++arg_idx];
 | |
|             } else {
 | |
|                 usage(argv[0]);
 | |
|             }
 | |
|         } else if (strcmp(argv[arg_idx], "--include-weights") == 0) {
 | |
|             if (arg_idx < argc-1) {
 | |
|                 included_weights.emplace_back(argv[++arg_idx]);
 | |
|             } else {
 | |
|                 usage(argv[0]);
 | |
|             }
 | |
|         } else if (strcmp(argv[arg_idx], "--exclude-weights") == 0) {
 | |
|             if (arg_idx < argc-1) {
 | |
|                 excluded_weights.emplace_back(argv[++arg_idx]);
 | |
|             } else {
 | |
|                 usage(argv[0]);
 | |
|             }
 | |
|         } else if (strcmp(argv[arg_idx], "--keep-split")) {
 | |
|             params.keep_split = true;
 | |
|         } else {
 | |
|             usage(argv[0]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (argc - arg_idx < 2) {
 | |
|         printf("%s: bad arguments\n", argv[0]);
 | |
|         usage(argv[0]);
 | |
|     }
 | |
|     if (!included_weights.empty() && !excluded_weights.empty()) {
 | |
|         usage(argv[0]);
 | |
|     }
 | |
| 
 | |
|     std::unordered_map<std::string, std::vector<float>> imatrix_data;
 | |
|     prepare_imatrix(imatrix_file, included_weights, excluded_weights, imatrix_data);
 | |
|     if (!imatrix_data.empty()) {
 | |
|         params.imatrix = &imatrix_data;
 | |
|     }
 | |
|     if (!kv_overrides.empty()) {
 | |
|         kv_overrides.emplace_back();
 | |
|         kv_overrides.back().key[0] = 0;
 | |
|         params.kv_overrides = &kv_overrides;
 | |
|     }
 | |
| 
 | |
|     llama_backend_init();
 | |
| 
 | |
|     // parse command line arguments
 | |
|     const std::string fname_inp = argv[arg_idx];
 | |
|     arg_idx++;
 | |
|     std::string fname_out;
 | |
| 
 | |
|     std::string ftype_str;
 | |
|     std::string suffix = ".gguf";
 | |
|     if (try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
 | |
|         std::string fpath;
 | |
|         const size_t pos = fname_inp.find_last_of("/\\");
 | |
|         if (pos != std::string::npos) {
 | |
|             fpath = fname_inp.substr(0, pos + 1);
 | |
|         }
 | |
| 
 | |
|         // export as [inp path]/ggml-model-[ftype]. Only add extension if there is no splitting
 | |
|         fname_out = fpath + "ggml-model-" + ftype_str;
 | |
|         if (!params.keep_split) {
 | |
|             fname_out += suffix;
 | |
|         }
 | |
|         arg_idx++;
 | |
|         if (ftype_str == "COPY") {
 | |
|             params.only_copy = true;
 | |
|         }
 | |
|     } else {
 | |
|         fname_out = argv[arg_idx];
 | |
|         if (params.keep_split && fname_out.find(suffix) != std::string::npos) {
 | |
|             fname_out = fname_out.substr(0, fname_out.length() - suffix.length());
 | |
|         }
 | |
|         arg_idx++;
 | |
| 
 | |
|         if (argc <= arg_idx) {
 | |
|             fprintf(stderr, "%s: missing ftype\n", __func__);
 | |
|             return 1;
 | |
|         }
 | |
|         if (!try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
 | |
|             fprintf(stderr, "%s: invalid ftype '%s'\n", __func__, argv[3]);
 | |
|             return 1;
 | |
|         }
 | |
|         if (ftype_str == "COPY") {
 | |
|            params.only_copy = true;
 | |
|         }
 | |
|         arg_idx++;
 | |
|     }
 | |
| 
 | |
|     // parse nthreads
 | |
|     if (argc > arg_idx) {
 | |
|         try {
 | |
|             params.nthread = std::stoi(argv[arg_idx]);
 | |
|         }
 | |
|         catch (const std::exception & e) {
 | |
|             fprintf(stderr, "%s: invalid nthread '%s' (%s)\n", __func__, argv[arg_idx], e.what());
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if ((params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS ||
 | |
|          params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_S  ||
 | |
|          params.ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S ||
 | |
|          params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_S  ||
 | |
|          params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) && imatrix_data.empty()) {
 | |
|         fprintf(stderr, "\n==========================================================================================================\n");
 | |
|         fprintf(stderr, "Please do not use IQ1_S, IQ1_M, IQ2_S, IQ2_XXS, IQ2_XS or Q2_K_S quantization without an importance matrix\n");
 | |
|         fprintf(stderr, "==========================================================================================================\n\n\n");
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     print_build_info();
 | |
| 
 | |
|     fprintf(stderr, "%s: quantizing '%s' to '%s' as %s", __func__, fname_inp.c_str(), fname_out.c_str(), ftype_str.c_str());
 | |
|     if (params.nthread > 0) {
 | |
|         fprintf(stderr, " using %d threads", params.nthread);
 | |
|     }
 | |
|     fprintf(stderr, "\n");
 | |
| 
 | |
|     const int64_t t_main_start_us = llama_time_us();
 | |
| 
 | |
|     int64_t t_quantize_us = 0;
 | |
| 
 | |
|     // load the model
 | |
|     {
 | |
|         const int64_t t_start_us = llama_time_us();
 | |
| 
 | |
|         if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), ¶ms)) {
 | |
|             fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         t_quantize_us = llama_time_us() - t_start_us;
 | |
|     }
 | |
| 
 | |
|     // report timing
 | |
|     {
 | |
|         const int64_t t_main_end_us = llama_time_us();
 | |
| 
 | |
|         printf("\n");
 | |
|         printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0);
 | |
|         printf("%s:    total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0);
 | |
|     }
 | |
| 
 | |
|     llama_backend_free();
 | |
| 
 | |
|     return 0;
 | |
| }
 |