mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	* add refact model * resolve comments * rebase to the latest * solve alibi cpu error --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			319 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			319 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
#!/usr/bin/env python3
 | 
						|
# HF refact--> gguf conversion
 | 
						|
 | 
						|
from __future__ import annotations
 | 
						|
 | 
						|
import argparse
 | 
						|
import json
 | 
						|
import os
 | 
						|
import sys
 | 
						|
from pathlib import Path
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import torch
 | 
						|
from transformers import AutoTokenizer  # type: ignore[import]
 | 
						|
 | 
						|
if "NO_LOCAL_GGUF" not in os.environ:
 | 
						|
    sys.path.insert(1, str(Path(__file__).parent / "gguf-py" / "gguf"))
 | 
						|
import gguf
 | 
						|
 | 
						|
 | 
						|
def bytes_to_unicode():
 | 
						|
    # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
 | 
						|
    """
 | 
						|
    Returns list of utf-8 byte and a corresponding list of unicode strings.
 | 
						|
    The reversible bpe codes work on unicode strings.
 | 
						|
    This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
 | 
						|
    When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
 | 
						|
    This is a significant percentage of your normal, say, 32K bpe vocab.
 | 
						|
    To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
 | 
						|
    And avoids mapping to whitespace/control characters the bpe code barfs on.
 | 
						|
    """
 | 
						|
    bs = (
 | 
						|
        list(range(ord("!"), ord("~") + 1))
 | 
						|
        + list(range(ord("¡"), ord("¬") + 1))
 | 
						|
        + list(range(ord("®"), ord("ÿ") + 1))
 | 
						|
    )
 | 
						|
    cs = bs[:]
 | 
						|
    n = 0
 | 
						|
    for b in range(2**8):
 | 
						|
        if b not in bs:
 | 
						|
            bs.append(b)
 | 
						|
            cs.append(2**8 + n)
 | 
						|
            n += 1
 | 
						|
    return dict(zip(bs, (chr(n) for n in cs)))
 | 
						|
 | 
						|
 | 
						|
def count_model_parts(dir_model: Path) -> int:
 | 
						|
    num_parts = 0
 | 
						|
    for filename in os.listdir(dir_model):
 | 
						|
        if filename.startswith("pytorch_model-"):
 | 
						|
            num_parts += 1
 | 
						|
 | 
						|
    if num_parts > 0:
 | 
						|
        print("gguf: found " + str(num_parts) + " model parts")
 | 
						|
    return num_parts
 | 
						|
 | 
						|
 | 
						|
def parse_args() -> argparse.Namespace:
 | 
						|
    parser = argparse.ArgumentParser(
 | 
						|
        description="Convert a Refact model to a GGML compatible file"
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--vocab-only",
 | 
						|
        action="store_true",
 | 
						|
        help="extract only the vocab",
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--outfile",
 | 
						|
        type=Path,
 | 
						|
        help="path to write to; default: based on input",
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "model",
 | 
						|
        type=Path,
 | 
						|
        help="directory containing model file, or model file itself (*.bin)",
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "ftype",
 | 
						|
        type=int,
 | 
						|
        choices=[0, 1],
 | 
						|
        default=1,
 | 
						|
        nargs="?",
 | 
						|
        help="output format - use 0 for float32, 1 for float16",
 | 
						|
    )
 | 
						|
    return parser.parse_args()
 | 
						|
 | 
						|
 | 
						|
args = parse_args()
 | 
						|
 | 
						|
dir_model = args.model
 | 
						|
ftype = args.ftype
 | 
						|
if not dir_model.is_dir():
 | 
						|
    print(f"Error: {args.model} is not a directory", file=sys.stderr)
 | 
						|
    sys.exit(1)
 | 
						|
 | 
						|
# possible tensor data types
 | 
						|
#   ftype == 0 -> float32
 | 
						|
#   ftype == 1 -> float16
 | 
						|
 | 
						|
# map from ftype to string
 | 
						|
ftype_str = ["f32", "f16"]
 | 
						|
 | 
						|
if args.outfile is not None:
 | 
						|
    fname_out = args.outfile
 | 
						|
else:
 | 
						|
    # output in the same directory as the model by default
 | 
						|
    fname_out = dir_model / f"ggml-model-{ftype_str[ftype]}.gguf"
 | 
						|
 | 
						|
print("gguf: loading model " + dir_model.name)
 | 
						|
 | 
						|
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
 | 
						|
    hparams = json.load(f)
 | 
						|
 | 
						|
if hparams["architectures"][0] != "GPTRefactForCausalLM":
 | 
						|
    print("Model architecture not supported: " + hparams["architectures"][0])
 | 
						|
 | 
						|
    sys.exit(1)
 | 
						|
 | 
						|
# get number of model parts
 | 
						|
num_parts = count_model_parts(dir_model)
 | 
						|
 | 
						|
ARCH = gguf.MODEL_ARCH.REFACT
 | 
						|
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
 | 
						|
 | 
						|
print("gguf: get model metadata")
 | 
						|
 | 
						|
# Get refact feed forward dimension
 | 
						|
hidden_dim = hparams["n_embd"]
 | 
						|
inner_dim = 4 * hidden_dim
 | 
						|
hidden_dim = int(2 * inner_dim / 3)
 | 
						|
multiple_of = 256
 | 
						|
ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
 | 
						|
 | 
						|
block_count = hparams["n_layer"]
 | 
						|
 | 
						|
gguf_writer.add_name("Refact")
 | 
						|
# refact uses Alibi. So this is from config.json which might be used by training.
 | 
						|
gguf_writer.add_context_length(hparams["n_positions"])
 | 
						|
gguf_writer.add_embedding_length(hparams["n_embd"])
 | 
						|
 | 
						|
gguf_writer.add_feed_forward_length(ff_dim)
 | 
						|
gguf_writer.add_block_count(block_count)
 | 
						|
gguf_writer.add_head_count(hparams["n_head"])
 | 
						|
gguf_writer.add_head_count_kv(1)
 | 
						|
gguf_writer.add_layer_norm_rms_eps(hparams["layer_norm_epsilon"])
 | 
						|
gguf_writer.add_file_type(ftype)
 | 
						|
 | 
						|
# TOKENIZATION
 | 
						|
 | 
						|
print("gguf: get tokenizer metadata")
 | 
						|
 | 
						|
tokens: list[bytearray] = []
 | 
						|
scores: list[float] = []
 | 
						|
toktypes: list[int] = []
 | 
						|
 | 
						|
tokenizer_json_file = dir_model / "tokenizer.json"
 | 
						|
if not tokenizer_json_file.is_file():
 | 
						|
    print(f"Error: Missing {tokenizer_json_file}", file=sys.stderr)
 | 
						|
    sys.exit(1)
 | 
						|
 | 
						|
# gpt2 tokenizer
 | 
						|
gguf_writer.add_tokenizer_model("gpt2")
 | 
						|
 | 
						|
with open(tokenizer_json_file, "r", encoding="utf-8") as f:
 | 
						|
    tokenizer_json = json.load(f)
 | 
						|
 | 
						|
print("gguf: get gpt2 tokenizer vocab")
 | 
						|
 | 
						|
# The number of tokens in tokenizer.json can differ from the expected vocab size.
 | 
						|
# This causes downstream issues with mismatched tensor sizes when running the inference
 | 
						|
vocab_size = (
 | 
						|
    hparams["vocab_size"]
 | 
						|
    if "vocab_size" in hparams
 | 
						|
    else len(tokenizer_json["model"]["vocab"])
 | 
						|
)
 | 
						|
 | 
						|
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
 | 
						|
 | 
						|
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
 | 
						|
byte_encoder = bytes_to_unicode()
 | 
						|
byte_decoder = {v: k for k, v in byte_encoder.items()}
 | 
						|
 | 
						|
for i in range(vocab_size):
 | 
						|
    if i in reverse_vocab:
 | 
						|
        text = reverse_vocab[i]
 | 
						|
        try:
 | 
						|
            text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
 | 
						|
        except KeyError:
 | 
						|
            text = bytearray()
 | 
						|
            for c in reverse_vocab[i]:
 | 
						|
                if ord(c) < 256:  # single byte character
 | 
						|
                    text.append(byte_decoder[ord(c)])
 | 
						|
                else:  # multibyte special token character
 | 
						|
                    text.extend(c.encode("utf-8"))
 | 
						|
    else:
 | 
						|
        print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
 | 
						|
        pad_token = f"[PAD{i}]".encode("utf8")
 | 
						|
        text = bytearray(pad_token)
 | 
						|
 | 
						|
    tokens.append(text)
 | 
						|
    scores.append(0.0)  # dymmy
 | 
						|
    toktypes.append(gguf.TokenType.NORMAL)  # dummy
 | 
						|
 | 
						|
gguf_writer.add_token_list(tokens)
 | 
						|
gguf_writer.add_token_scores(scores)
 | 
						|
gguf_writer.add_token_types(toktypes)
 | 
						|
 | 
						|
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
 | 
						|
special_vocab.add_to_gguf(gguf_writer)
 | 
						|
 | 
						|
# TENSORS
 | 
						|
 | 
						|
tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
 | 
						|
 | 
						|
# params for qkv transform
 | 
						|
n_head = hparams["n_head"]
 | 
						|
n_head_kv = 1
 | 
						|
 | 
						|
head_dim = hparams["n_embd"] // n_head
 | 
						|
 | 
						|
# tensor info
 | 
						|
print("gguf: get tensor metadata")
 | 
						|
 | 
						|
if num_parts == 0:
 | 
						|
    part_names = iter(("pytorch_model.bin",))
 | 
						|
else:
 | 
						|
    part_names = (
 | 
						|
        f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
 | 
						|
    )
 | 
						|
for part_name in part_names:
 | 
						|
    if args.vocab_only:
 | 
						|
        break
 | 
						|
    print("gguf: loading model part '" + part_name + "'")
 | 
						|
    model_part = torch.load(dir_model / part_name, map_location="cpu")
 | 
						|
 | 
						|
    for i in range(block_count):
 | 
						|
        if f"transformer.h.{i}.attn.kv.weight" in model_part:
 | 
						|
            data = model_part[f"transformer.h.{i}.attn.kv.weight"]
 | 
						|
            model_part[f"model.layers.{i}.self_attn.k_proj.weight"] = data[
 | 
						|
                : n_head_kv * head_dim
 | 
						|
            ]
 | 
						|
            model_part[f"model.layers.{i}.self_attn.v_proj.weight"] = data[
 | 
						|
                n_head_kv * head_dim :
 | 
						|
            ]
 | 
						|
            del model_part[f"transformer.h.{i}.attn.kv.weight"]
 | 
						|
        if f"transformer.h.{i}.attn.q.weight" in model_part:
 | 
						|
            model_part[f"model.layers.{i}.self_attn.q_proj.weight"] = model_part[
 | 
						|
                f"transformer.h.{i}.attn.q.weight"
 | 
						|
            ]
 | 
						|
            del model_part[f"transformer.h.{i}.attn.q.weight"]
 | 
						|
        if f"transformer.h.{i}.mlp.gate_up_proj.weight" in model_part:
 | 
						|
            data = model_part[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
 | 
						|
            model_part[f"model.layers.{i}.mlp.gate_proj.weight"] = data[:ff_dim]
 | 
						|
            model_part[f"model.layers.{i}.mlp.up_proj.weight"] = data[ff_dim:]
 | 
						|
            del model_part[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
 | 
						|
 | 
						|
    for name in model_part.keys():
 | 
						|
        data = model_part[name]
 | 
						|
 | 
						|
        old_dtype = data.dtype
 | 
						|
 | 
						|
        # convert any unsupported data types to float32
 | 
						|
        if data.dtype != torch.float16 and data.dtype != torch.float32:
 | 
						|
            data = data.to(torch.float32)
 | 
						|
 | 
						|
        data = data.squeeze().numpy()
 | 
						|
 | 
						|
        # map tensor names
 | 
						|
        new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
 | 
						|
        if new_name is None:
 | 
						|
            print("Can not map tensor '" + name + "'")
 | 
						|
            sys.exit()
 | 
						|
 | 
						|
        n_dims = len(data.shape)
 | 
						|
        data_dtype = data.dtype
 | 
						|
 | 
						|
        # if f32 desired, convert any float16 to float32
 | 
						|
        if ftype == 0 and data_dtype == np.float16:
 | 
						|
            data = data.astype(np.float32)
 | 
						|
 | 
						|
        # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | 
						|
        if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | 
						|
            data = data.astype(np.float32)
 | 
						|
 | 
						|
        # if f16 desired, convert any float32 2-dim weight tensors to float16
 | 
						|
        if (
 | 
						|
            ftype == 1
 | 
						|
            and data_dtype == np.float32
 | 
						|
            and name.endswith(".weight")
 | 
						|
            and n_dims == 2
 | 
						|
        ):
 | 
						|
            data = data.astype(np.float16)
 | 
						|
 | 
						|
        print(
 | 
						|
            new_name
 | 
						|
            + ", n_dims = "
 | 
						|
            + str(n_dims)
 | 
						|
            + ", "
 | 
						|
            + str(old_dtype)
 | 
						|
            + " --> "
 | 
						|
            + str(data.dtype)
 | 
						|
        )
 | 
						|
 | 
						|
        gguf_writer.add_tensor(new_name, data)
 | 
						|
 | 
						|
 | 
						|
print("gguf: write header")
 | 
						|
gguf_writer.write_header_to_file()
 | 
						|
print("gguf: write metadata")
 | 
						|
gguf_writer.write_kv_data_to_file()
 | 
						|
if not args.vocab_only:
 | 
						|
    print("gguf: write tensors")
 | 
						|
    gguf_writer.write_tensors_to_file()
 | 
						|
 | 
						|
gguf_writer.close()
 | 
						|
 | 
						|
print(f"gguf: model successfully exported to '{fname_out}'")
 | 
						|
print("")
 |