mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	 a07d0fee1f
			
		
	
	a07d0fee1f
	
	
	
		
			
			* ggml: aarch64: implement smmla kernel for q8_0_q8_0 quantized gemm armv8.2-a and above supports MMLA instructions that have higher throughput than DOT. this commit adds mmla kernel for q8_0_q8_0 gemm. The feature is enabled if the platform supports "__ARM_FEATURE_MATMUL_INT8" On AWS Graviton3 processors this kernel resulted up to 1.5x improvement for prompt evaluation throughput compared to the default sdot kernel. * ggml: aarch64: implement smmla kernel for q4_0_q8_0 quantized gemm armv8.2-a and above supports MMLA instructions that have higher throughput than DOT. this commit adds mmla kernel for q4_0_q8_0 gemm. The feature is enabled if the platform supports "__ARM_FEATURE_MATMUL_INT8" On AWS Graviton3 processors this kernel resulted up to 1.5x improvement for prompt evaluation throughput compared to the default sdot kernel. * ggml: aarch64: implement smmla kernel for q4_1_q8_1 quantized gemm armv8.2-a and above supports MMLA instructions that have higher throughput than DOT. this commit adds mmla kernel for q4_1_q8_1 gemm. The feature is enabled if the platform supports "__ARM_FEATURE_MATMUL_INT8" On AWS Graviton3 processors this kernel resulted up to 1.5x improvement for prompt evaluation throughput compared to the default sdot kernel. * ggml: update unit tests for the new vec_dot interface * llama.cpp: add MATMUL_INT8 capability to system_info
		
			
				
	
	
		
			364 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			364 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Benchmark quantization specific functions on synthetic data
 | |
| 
 | |
| #include "ggml.h"
 | |
| 
 | |
| #undef NDEBUG
 | |
| #include <algorithm>
 | |
| #include <assert.h>
 | |
| #include <functional>
 | |
| #include <inttypes.h>
 | |
| #include <math.h>
 | |
| #include <memory>
 | |
| #include <stdio.h>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #pragma warning(disable: 4244 4267) // possible loss of data
 | |
| #endif
 | |
| 
 | |
| #define MAX_ALIGNMENT 64
 | |
| #define QK 32
 | |
| #define WARMUP 5
 | |
| #define ITERATIONS 10
 | |
| #define MAX_ITERATIONS 100000000
 | |
| 
 | |
| #define L1_SIZE      32*128
 | |
| #define L2_SIZE     32*2048
 | |
| #define L3_SIZE    32*20480
 | |
| #define MEM_SIZE 32*2048000
 | |
| 
 | |
| struct quantize_perf_params {
 | |
|     std::vector<std::string> include_types;
 | |
|     std::vector<size_t> test_sizes;
 | |
|     size_t alignment_offset = 0;
 | |
|     bool op_quantize_row_q_reference = false;
 | |
|     bool op_quantize_row_q = false;
 | |
|     bool op_dequantize_row_q = false;
 | |
|     bool op_quantize_row_q_dot = false;
 | |
|     bool op_vec_dot_q = false;
 | |
|     int64_t iterations = ITERATIONS;
 | |
| };
 | |
| 
 | |
| #if defined(__x86_64__) || defined(__i386__)
 | |
| 
 | |
| #include <x86intrin.h>
 | |
| inline int64_t cpu_cycles() {
 | |
| // Rough way to detect new-ish CPUs
 | |
| #ifdef __POPCNT__
 | |
|     unsigned int dummy;
 | |
|     return __rdtscp(&dummy);
 | |
| #else
 | |
|     return __rdtsc();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| #define cpu_cycles() 0
 | |
| 
 | |
| #endif
 | |
| 
 | |
| 
 | |
| // Generate synthetic data
 | |
| static void generate_data(float offset, size_t n, float * dst) {
 | |
|     for (size_t i = 0; i < n; i++) {
 | |
|         dst[i] = 0.1 + 2*cosf(i + offset);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static float gigabytes_per_second(size_t bytes, int64_t usecs) {
 | |
|     return bytes / (float) usecs * 1000000 / (1024*1024*1024);
 | |
| }
 | |
| 
 | |
| static void * align_with_offset(void * ptr, int offset) {
 | |
|     size_t dummy_size = MAX_ALIGNMENT * 4;
 | |
|     return (char *) std::align(MAX_ALIGNMENT, MAX_ALIGNMENT, ptr, dummy_size) + offset;
 | |
| }
 | |
| 
 | |
| static void benchmark_function(size_t size, size_t q_size, int64_t iterations, const std::function<float(void)> & func) {
 | |
|     int64_t min_time_us = INT64_MAX;
 | |
|     int64_t total_time_us = 0;
 | |
|     int64_t min_time_cycles = INT64_MAX;
 | |
|     int64_t total_time_cycles = 0;
 | |
| 
 | |
|     for (int i = 0; i < WARMUP; i++) {
 | |
|         func();
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < iterations; i++) {
 | |
|         const int64_t start_time = ggml_time_us();
 | |
|         const int64_t start_cycles = cpu_cycles();
 | |
| 
 | |
|         func();
 | |
| 
 | |
|         const int64_t end_cycles = cpu_cycles();
 | |
|         const int64_t end_time = ggml_time_us();
 | |
| 
 | |
|         total_time_cycles += end_cycles - start_cycles;
 | |
|         min_time_cycles = std::min(min_time_cycles, end_cycles - start_cycles);
 | |
|         total_time_us += end_time - start_time;
 | |
|         min_time_us = std::min(min_time_us, end_time - start_time);
 | |
|     }
 | |
| 
 | |
|     printf("      min cycles/%d vals   : %9.2f\n",  QK, QK * min_time_cycles / (float) size);
 | |
|     printf("      avg cycles/%d vals   : %9.2f\n",  QK, QK * total_time_cycles / (float) (size * iterations));
 | |
|     printf("      float32 throughput   : %9.2f GB/s\n",  gigabytes_per_second(4 * size * iterations, total_time_us));
 | |
|     printf("      quantized throughput : %9.2f GB/s\n",  gigabytes_per_second(q_size * iterations, total_time_us));
 | |
| }
 | |
| 
 | |
| static void usage(char * argv[]) {
 | |
|     printf("Benchmark quantization specific functions on synthetic data\n");
 | |
|     printf("\n");
 | |
|     printf("usage: %s [options]\n", argv[0]);
 | |
|     printf("\n");
 | |
|     printf("options: (default)\n");
 | |
|     printf("  -h, --help            show this help message and exit\n");
 | |
|     printf("  --size SIZE           set test size, divisible by 32 (L1_SIZE:%d)\n", L1_SIZE);
 | |
|     printf("  -3                    use size as L1, L2, L3 sizes (L1:%d L2:%d L3:%d)\n", L1_SIZE, L2_SIZE, L3_SIZE);
 | |
|     printf("  -4                    use size as L1, L2, L3, MEM sizes (L1:%d L2:%d L3:%d MEM:%d)\n", L1_SIZE, L2_SIZE, L3_SIZE, MEM_SIZE);
 | |
|     printf("  --op OP               set test operation as quantize_row_q_reference, quantize_row_q, dequantize_row_q,\n");
 | |
|     printf("                        quantize_row_q_dot, vec_dot_q (all)\n");
 | |
|     printf("  --type TYPE           set test type as");
 | |
|     for (int i = 0; i < GGML_TYPE_COUNT; i++) {
 | |
|         ggml_type type = (ggml_type) i;
 | |
|         ggml_type_traits_t qfns = ggml_internal_get_type_traits(type);
 | |
|         if (ggml_type_name(type) != NULL) {
 | |
|             if (qfns.from_float && qfns.to_float) {
 | |
|                 printf(" %s", ggml_type_name(type));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     printf(" (all)\n");
 | |
|     printf("  --alignment-offset OFFSET\n");
 | |
|     printf("                        set alignment offset as OFFSET (0)\n");
 | |
|     printf("  -i NUM, --iterations NUM\n");
 | |
|     printf("                        set test iteration number (%d)\n", ITERATIONS);
 | |
| }
 | |
| 
 | |
| int main(int argc, char * argv[]) {
 | |
|     quantize_perf_params params {};
 | |
| 
 | |
|     // read command line
 | |
| 
 | |
|     bool invalid_param = false;
 | |
|     std::string arg;
 | |
|     for (int i = 1; i < argc; i++) {
 | |
|         arg = argv[i];
 | |
| 
 | |
|         if (arg == "--size") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             size_t size = std::stoi(argv[i]);
 | |
|             if (size % 32 != 0) {
 | |
|                 fprintf(stderr, "error: size %zu not divisible by 32\n", size);
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.test_sizes.push_back(size);
 | |
|         } else if (arg == "-3") {
 | |
|             // quick select sizes that probably fit in CPU caches
 | |
|             params.test_sizes.push_back(L1_SIZE);
 | |
|             params.test_sizes.push_back(L2_SIZE);
 | |
|             params.test_sizes.push_back(L3_SIZE);
 | |
|         } else if (arg == "-4") {
 | |
|             // quick select cache sizes + memory
 | |
|             params.test_sizes.push_back(L1_SIZE);
 | |
|             params.test_sizes.push_back(L2_SIZE);
 | |
|             params.test_sizes.push_back(L3_SIZE);
 | |
|             params.test_sizes.push_back(MEM_SIZE);
 | |
|         } else if (arg == "--op") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             std::string op {argv[i]};
 | |
|             if (op == "quantize_row_q_reference") {
 | |
|                 params.op_quantize_row_q_reference = true;
 | |
|             } else if (op == "quantize_row_q") {
 | |
|                 params.op_quantize_row_q = true;
 | |
|             } else if (op == "dequantize_row_q") {
 | |
|                 params.op_dequantize_row_q = true;
 | |
|             } else if (op == "quantize_row_q_dot") {
 | |
|                 params.op_quantize_row_q_dot = true;
 | |
|             } else if (op == "vec_dot_q") {
 | |
|                 params.op_vec_dot_q = true;
 | |
|             } else {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|         } else if (arg == "--type") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.include_types.push_back(argv[i]);
 | |
|         } else if (arg == "--alignment-offset") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             int alignment = std::stoi(argv[i]);
 | |
|             if (alignment < 0 || alignment > MAX_ALIGNMENT) {
 | |
|             fprintf(stderr, "error: alignment-offset must be less than %d\n", MAX_ALIGNMENT);
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.alignment_offset = alignment;
 | |
|         } else if ((arg == "-i") || (arg == "--iterations")) {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             int number = std::stoi(argv[i]);
 | |
|             if (number < 0 || number > MAX_ITERATIONS) {
 | |
|             fprintf(stderr, "error: iterations must be less than %d\n", MAX_ITERATIONS);
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.iterations = number;
 | |
|         } else if ((arg == "-h") || (arg == "--help")) {
 | |
|             usage(argv);
 | |
|             return 1;
 | |
|         } else {
 | |
|             fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
|     if (invalid_param) {
 | |
|         fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (params.test_sizes.empty()) {
 | |
|         params.test_sizes.push_back(L1_SIZE);
 | |
|     }
 | |
|     if (!(params.op_quantize_row_q_reference || params.op_quantize_row_q || params.op_dequantize_row_q || params.op_quantize_row_q_dot || params.op_vec_dot_q)) {
 | |
|         params.op_quantize_row_q_reference = params.op_quantize_row_q = params.op_dequantize_row_q = params.op_quantize_row_q_dot = params.op_vec_dot_q = true;
 | |
|     }
 | |
| 
 | |
|     std::sort(params.test_sizes.begin(), params.test_sizes.end());
 | |
|     size_t largest = params.test_sizes.back();
 | |
| 
 | |
|     std::vector<uint8_t> test_data1_v(largest*4 + MAX_ALIGNMENT*2);
 | |
|     std::vector<uint8_t> test_data2_v(largest*4 + MAX_ALIGNMENT*2);
 | |
|     std::vector<uint8_t> test_q1_v   (largest*4 + MAX_ALIGNMENT*2);
 | |
|     std::vector<uint8_t> test_q2_v   (largest*4 + MAX_ALIGNMENT*2);
 | |
|     std::vector<uint8_t> test_out_v  (largest*4 + MAX_ALIGNMENT*2);
 | |
| 
 | |
|     float * test_data1 = (float *) align_with_offset(test_data1_v.data(), params.alignment_offset);
 | |
|     float * test_data2 = (float *) align_with_offset(test_data2_v.data(), params.alignment_offset);
 | |
|     float * test_q1    = (float *) align_with_offset(test_q1_v.data(),    params.alignment_offset);
 | |
|     float * test_q2    = (float *) align_with_offset(test_q2_v.data(),    params.alignment_offset);
 | |
|     float * test_out   = (float *) align_with_offset(test_out_v.data(),   params.alignment_offset);
 | |
| 
 | |
|     generate_data(0, largest, test_data1);
 | |
|     generate_data(1, largest, test_data2);
 | |
| 
 | |
|     int64_t iterations = params.iterations;
 | |
| 
 | |
| 
 | |
|     // Initialize GGML, ensures float conversion tables are initialized
 | |
|     struct ggml_init_params ggml_params = {
 | |
|         /* .mem_size   = */ 1*1024,
 | |
|         /* .mem_buffer = */ NULL,
 | |
|         /* .no_alloc   = */ true,
 | |
|     };
 | |
|     struct ggml_context * ctx = ggml_init(ggml_params);
 | |
| 
 | |
|     for (int i = 0; i < GGML_TYPE_COUNT; i++) {
 | |
|         ggml_type type = (ggml_type) i;
 | |
|         ggml_type_traits_t qfns = ggml_internal_get_type_traits(type);
 | |
|         if (!params.include_types.empty() && ggml_type_name(type) && std::find(params.include_types.begin(), params.include_types.end(), ggml_type_name(type)) == params.include_types.end()) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         if (qfns.from_float && qfns.to_float) {
 | |
|             printf("%s\n", ggml_type_name(type));
 | |
| 
 | |
|             ggml_quantize_init(type);
 | |
| 
 | |
|             if (params.op_quantize_row_q_reference) {
 | |
|                 printf("  quantize_row_q_reference\n");
 | |
|                 for (size_t size : params.test_sizes) {
 | |
|                     printf("    %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
 | |
|                     auto quantize_fn = [&](void) -> float {
 | |
|                         qfns.from_float_reference(test_data1, test_q1, size);
 | |
|                         return test_q1[0];
 | |
|                     };
 | |
|                     size_t quantized_size = ggml_row_size(type, size);
 | |
|                     benchmark_function(size, quantized_size, iterations, quantize_fn);
 | |
|                 }
 | |
|                 printf("\n");
 | |
|             }
 | |
| 
 | |
|             if (params.op_quantize_row_q) {
 | |
|                 printf("  quantize_row_q\n");
 | |
|                 for (size_t size : params.test_sizes) {
 | |
|                     printf("    %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
 | |
|                     auto quantize_fn = [&](void) -> float {
 | |
|                         qfns.from_float(test_data1, test_q1, size);
 | |
|                         return test_q1[0];
 | |
|                     };
 | |
|                     size_t quantized_size = ggml_row_size(type, size);
 | |
|                     benchmark_function(size, quantized_size, iterations, quantize_fn);
 | |
|                 }
 | |
|                 printf("\n");
 | |
|             }
 | |
| 
 | |
|             if (params.op_dequantize_row_q) {
 | |
|                 printf("  dequantize_row_q\n");
 | |
|                 qfns.from_float(test_data1, test_q1, largest);
 | |
|                 for (size_t size : params.test_sizes) {
 | |
|                     printf("    %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
 | |
|                     auto quantize_fn = [&](void) -> float {
 | |
|                         qfns.to_float(test_q1, test_out, size);
 | |
|                         return test_out[0];
 | |
|                     };
 | |
|                     size_t quantized_size = ggml_row_size(type, size);
 | |
|                     benchmark_function(size, quantized_size, iterations, quantize_fn);
 | |
|                 }
 | |
|                 printf("\n");
 | |
|             }
 | |
| 
 | |
|             if (params.op_quantize_row_q_dot) {
 | |
|                 printf("  quantize_row_q_dot\n");
 | |
|                 for (size_t size : params.test_sizes) {
 | |
|                     printf("    %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
 | |
|                     auto quantize_fn = [&](void) -> float {
 | |
|                         auto vdot = ggml_internal_get_type_traits(qfns.vec_dot_type);
 | |
|                         vdot.from_float(test_data1, test_q1, size);
 | |
|                         return test_q1[0];
 | |
|                     };
 | |
|                     size_t quantized_size = ggml_row_size(type, size);
 | |
|                     benchmark_function(size, quantized_size, iterations, quantize_fn);
 | |
|                 }
 | |
|                 printf("\n");
 | |
|             }
 | |
| 
 | |
|             if (params.op_vec_dot_q) {
 | |
|                 printf("  vec_dot_q\n");
 | |
|                 qfns.from_float(test_data1, test_q1, largest);
 | |
|                 qfns.from_float(test_data2, test_q2, largest);
 | |
|                 for (size_t size : params.test_sizes) {
 | |
|                     printf("    %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
 | |
|                     auto quantize_fn = [&](void) -> float {
 | |
|                         float result;
 | |
|                         qfns.vec_dot(size, &result, 0, test_q1, 0, test_q2, 0, 1);
 | |
|                         return result;
 | |
|                     };
 | |
|                     size_t quantized_size = ggml_row_size(type, size);
 | |
|                     benchmark_function(size, quantized_size, iterations, quantize_fn);
 | |
|                 }
 | |
|                 printf("\n");
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ggml_free(ctx);
 | |
| 
 | |
|     return 0;
 | |
| }
 |