mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* llama : move end-user examples to tools directory --------- Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
		
			
				
	
	
		
			181 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			181 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# convert the https://huggingface.co/novateur/WavTokenizer-large-speech-75token to HF format
 | 
						|
# the goal is to be able to reuse the convert_hf_to_gguf.py after that to create a GGUF file with the WavTokenizer decoder
 | 
						|
#
 | 
						|
# TODO: this script is LLM-generated and probably very inefficient and should be rewritten
 | 
						|
 | 
						|
import torch
 | 
						|
import json
 | 
						|
import os
 | 
						|
import sys
 | 
						|
import re
 | 
						|
 | 
						|
from safetensors.torch import save_file
 | 
						|
 | 
						|
# default
 | 
						|
model_path = './model.pt';
 | 
						|
 | 
						|
# read from CLI
 | 
						|
if len(sys.argv) > 1:
 | 
						|
    model_path = sys.argv[1]
 | 
						|
 | 
						|
# get the directory of the input model
 | 
						|
path_dst = os.path.dirname(model_path)
 | 
						|
 | 
						|
print(f"Loading model from {model_path}")
 | 
						|
 | 
						|
model = torch.load(model_path, map_location='cpu')
 | 
						|
 | 
						|
#print(model)
 | 
						|
 | 
						|
# print all keys
 | 
						|
for key in model.keys():
 | 
						|
    print(key)
 | 
						|
    if key == 'hyper_parameters':
 | 
						|
        #print(model[key])
 | 
						|
        # dump as json pretty
 | 
						|
        print(json.dumps(model[key], indent=4))
 | 
						|
    #if key != 'state_dict' and key != 'optimizer_states':
 | 
						|
    #    print(model[key])
 | 
						|
 | 
						|
# Check if the loaded model is a state_dict or a model instance
 | 
						|
if isinstance(model, torch.nn.Module):
 | 
						|
    state_dict = model.state_dict()
 | 
						|
else:
 | 
						|
    state_dict = model
 | 
						|
 | 
						|
# Print the structure of the state_dict to understand its format
 | 
						|
print("State dictionary keys:")
 | 
						|
for key in state_dict.keys():
 | 
						|
    print(key)
 | 
						|
 | 
						|
# Ensure the state_dict is flat and contains only torch.Tensor objects
 | 
						|
def flatten_state_dict(state_dict, parent_key='', sep='.'):
 | 
						|
    items = []
 | 
						|
    items_new = []
 | 
						|
 | 
						|
    for k, v in state_dict.items():
 | 
						|
        new_key = f"{parent_key}{sep}{k}" if parent_key else k
 | 
						|
        if isinstance(v, torch.Tensor):
 | 
						|
            items.append((new_key, v))
 | 
						|
        elif isinstance(v, dict):
 | 
						|
            items.extend(flatten_state_dict(v, new_key, sep=sep).items())
 | 
						|
            return dict(items)
 | 
						|
 | 
						|
    size_total_mb = 0
 | 
						|
 | 
						|
    for key, value in list(items):
 | 
						|
        # keep only what we need for inference
 | 
						|
        if not key.startswith('state_dict.feature_extractor.encodec.quantizer.') and \
 | 
						|
           not key.startswith('state_dict.backbone.') and \
 | 
						|
           not key.startswith('state_dict.head.out'):
 | 
						|
               print('Skipping key: ', key)
 | 
						|
               continue
 | 
						|
 | 
						|
        new_key = key
 | 
						|
 | 
						|
        new_key = new_key.replace('state_dict.', '')
 | 
						|
        new_key = new_key.replace('pos_net', 'posnet')
 | 
						|
 | 
						|
        # check if matches "backbone.posnet.%d.bias" or "backbone.posnet.%d.weight"
 | 
						|
        if new_key.startswith("backbone.posnet."):
 | 
						|
            match = re.match(r"backbone\.posnet\.(\d+)\.(bias|weight)", new_key)
 | 
						|
            if match:
 | 
						|
               new_key = f"backbone.posnet.{match.group(1)}.norm.{match.group(2)}"
 | 
						|
 | 
						|
        # "feature_extractor.encodec.quantizer.vq.layers.0._codebook.embed" -> "backbone.embedding.weight"
 | 
						|
        if new_key == "feature_extractor.encodec.quantizer.vq.layers.0._codebook.embed":
 | 
						|
            new_key = "backbone.embedding.weight"
 | 
						|
 | 
						|
        # these are the only rows used
 | 
						|
        # ref: https://github.com/edwko/OuteTTS/blob/a613e79c489d8256dd657ea9168d78de75895d82/outetts/wav_tokenizer/audio_codec.py#L100
 | 
						|
        if new_key.endswith("norm.scale.weight"):
 | 
						|
            new_key = new_key.replace("norm.scale.weight", "norm.weight")
 | 
						|
            value = value[0]
 | 
						|
 | 
						|
        if new_key.endswith("norm.shift.weight"):
 | 
						|
            new_key = new_key.replace("norm.shift.weight", "norm.bias")
 | 
						|
            value = value[0]
 | 
						|
 | 
						|
        if new_key.endswith("gamma"):
 | 
						|
            new_key = new_key.replace("gamma", "gamma.weight")
 | 
						|
 | 
						|
        # convert from 1D [768] to 2D [768, 1] so that ggml_add can broadcast the bias
 | 
						|
        if (new_key.endswith("norm.weight") or new_key.endswith("norm1.weight") or new_key.endswith("norm2.weight") or new_key.endswith(".bias")) and (new_key.startswith("backbone.posnet") or new_key.startswith("backbone.embed.bias")):
 | 
						|
            value = value.unsqueeze(1)
 | 
						|
 | 
						|
        if new_key.endswith("dwconv.bias"):
 | 
						|
            value = value.unsqueeze(1)
 | 
						|
 | 
						|
        size_mb = value.element_size() * value.nelement() / (1024 * 1024)
 | 
						|
        print(f"{size_mb:8.2f} MB - {new_key}: {value.shape}")
 | 
						|
 | 
						|
        size_total_mb += size_mb
 | 
						|
 | 
						|
        #print(key, '->', new_key, ': ', value)
 | 
						|
        #print(key, '->', new_key)
 | 
						|
 | 
						|
        items_new.append((new_key, value))
 | 
						|
 | 
						|
    print(f"Total size: {size_total_mb:8.2f} MB")
 | 
						|
 | 
						|
    return dict(items_new)
 | 
						|
 | 
						|
flattened_state_dict = flatten_state_dict(state_dict)
 | 
						|
 | 
						|
 | 
						|
# Convert the model to the safetensors format
 | 
						|
output_path = path_dst + '/model.safetensors'
 | 
						|
save_file(flattened_state_dict, output_path)
 | 
						|
 | 
						|
print(f"Model has been successfully converted and saved to {output_path}")
 | 
						|
 | 
						|
# Calculate the total size of the .safetensors file
 | 
						|
total_size = os.path.getsize(output_path)
 | 
						|
 | 
						|
# Create the weight map
 | 
						|
weight_map = {
 | 
						|
    "model.safetensors": ["*"]  # Assuming all weights are in one file
 | 
						|
}
 | 
						|
 | 
						|
# Create metadata for the index.json file
 | 
						|
metadata = {
 | 
						|
    "total_size": total_size,
 | 
						|
    "weight_map": weight_map
 | 
						|
}
 | 
						|
 | 
						|
# Save the metadata to index.json
 | 
						|
index_path = path_dst + '/index.json'
 | 
						|
with open(index_path, 'w') as f:
 | 
						|
    json.dump(metadata, f, indent=4)
 | 
						|
 | 
						|
print(f"Metadata has been saved to {index_path}")
 | 
						|
 | 
						|
config = {
 | 
						|
    "architectures": [
 | 
						|
        "WavTokenizerDec"
 | 
						|
    ],
 | 
						|
    "hidden_size": 1282,
 | 
						|
    "n_embd_features": 512,
 | 
						|
    "n_ff": 2304,
 | 
						|
    "vocab_size": 4096,
 | 
						|
    "n_head": 1,
 | 
						|
    "layer_norm_epsilon": 1e-6,
 | 
						|
    "group_norm_epsilon": 1e-6,
 | 
						|
    "group_norm_groups": 32,
 | 
						|
    "max_position_embeddings": 8192, # ?
 | 
						|
    "n_layer": 12,
 | 
						|
    "posnet": {
 | 
						|
        "n_embd": 768,
 | 
						|
        "n_layer": 6
 | 
						|
    },
 | 
						|
    "convnext": {
 | 
						|
        "n_embd": 768,
 | 
						|
        "n_layer": 12
 | 
						|
    },
 | 
						|
}
 | 
						|
 | 
						|
with open(path_dst + '/config.json', 'w') as f:
 | 
						|
    json.dump(config, f, indent=4)
 | 
						|
 | 
						|
print(f"Config has been saved to {path_dst + 'config.json'}")
 |