mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-02 09:12:03 +00:00 
			
		
		
		
	* gguf-debug: Example how to use ggml callback for debugging * gguf-debug: no mutex, verify type, fix stride. * llama: cv eval: move cb eval field in common gpt_params * ggml_debug: use common gpt_params to pass cb eval. Fix get tensor SIGV random. * ggml_debug: ci: add tests * ggml_debug: EOL in CMakeLists.txt * ggml_debug: Remove unused param n_batch, no batching here * ggml_debug: fix trailing spaces * ggml_debug: fix trailing spaces * common: fix cb_eval and user data not initialized * ci: build revert label * ggml_debug: add main test label * doc: add a model: add a link to ggml-debug * ggml-debug: add to make toolchain * ggml-debug: tests add the main label * ggml-debug: ci add test curl label * common: allow the warmup to be disabled in llama_init_from_gpt_params * ci: add curl test * ggml-debug: better tensor type support * gitignore : ggml-debug * ggml-debug: printing also the sum of each tensor * ggml-debug: remove block size * eval-callback: renamed from ggml-debug * eval-callback: fix make toolchain --------- Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			96 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			96 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
# llama.cpp/examples/eval-callback
 | 
						|
 | 
						|
A simple example which demonstrates how to use callback during the inference.
 | 
						|
It simply prints to the console all operations and tensor data.
 | 
						|
 | 
						|
Usage:
 | 
						|
 | 
						|
```shell
 | 
						|
eval-callback \
 | 
						|
  --hf-repo ggml-org/models \
 | 
						|
  --hf-file phi-2/ggml-model-q4_0.gguf \
 | 
						|
  --model phi-2-q4_0.gguf \
 | 
						|
  --prompt hello \
 | 
						|
  --seed 42 \
 | 
						|
  -ngl 33
 | 
						|
```
 | 
						|
 | 
						|
Will print:
 | 
						|
 | 
						|
```shell
 | 
						|
llm_load_tensors: offloaded 33/33 layers to GPU
 | 
						|
...
 | 
						|
llama_new_context_with_model: n_ctx      = 512
 | 
						|
...
 | 
						|
llama_new_context_with_model:      CUDA0 compute buffer size =   105.00 MiB
 | 
						|
llama_new_context_with_model:  CUDA_Host compute buffer size =     6.01 MiB
 | 
						|
llama_new_context_with_model: graph nodes  = 1225
 | 
						|
llama_new_context_with_model: graph splits = 2
 | 
						|
ggml_debug:                 inp_embd = (f32)   GET_ROWS(token_embd.weight{2560, 51200, 1, 1}, inp_tokens{1, 1, 1, 1}}) = {2560, 1, 1, 1}
 | 
						|
                                     [
 | 
						|
                                      [
 | 
						|
                                       [ -0.0181,   0.0272,   0.0272, ...],
 | 
						|
                                      ],
 | 
						|
                                     ]
 | 
						|
ggml_debug:                   norm-0 = (f32)       NORM(CUDA0#inp_embd#0{2560, 1, 1, 1}, }) = {2560, 1, 1, 1}
 | 
						|
                                     [
 | 
						|
                                      [
 | 
						|
                                       [ -0.6989,   1.0636,   1.0636, ...],
 | 
						|
                                      ],
 | 
						|
                                     ]
 | 
						|
ggml_debug:                 norm_w-0 = (f32)        MUL(norm-0{2560, 1, 1, 1}, blk.0.attn_norm.weight{2560, 1, 1, 1}}) = {2560, 1, 1, 1}
 | 
						|
                                     [
 | 
						|
                                      [
 | 
						|
                                       [ -0.1800,   0.2817,   0.2632, ...],
 | 
						|
                                      ],
 | 
						|
                                     ]
 | 
						|
ggml_debug:              attn_norm-0 = (f32)        ADD(norm_w-0{2560, 1, 1, 1}, blk.0.attn_norm.bias{2560, 1, 1, 1}}) = {2560, 1, 1, 1}
 | 
						|
                                     [
 | 
						|
                                      [
 | 
						|
                                       [ -0.1863,   0.2970,   0.2604, ...],
 | 
						|
                                      ],
 | 
						|
                                     ]
 | 
						|
ggml_debug:                   wqkv-0 = (f32)    MUL_MAT(blk.0.attn_qkv.weight{2560, 7680, 1, 1}, attn_norm-0{2560, 1, 1, 1}}) = {7680, 1, 1, 1}
 | 
						|
                                     [
 | 
						|
                                      [
 | 
						|
                                       [ -1.1238,   1.2876,  -1.8086, ...],
 | 
						|
                                      ],
 | 
						|
                                     ]
 | 
						|
ggml_debug:                   bqkv-0 = (f32)        ADD(wqkv-0{7680, 1, 1, 1}, blk.0.attn_qkv.bias{7680, 1, 1, 1}}) = {7680, 1, 1, 1}
 | 
						|
                                     [
 | 
						|
                                      [
 | 
						|
                                       [ -1.1135,   1.4604,  -1.9226, ...],
 | 
						|
                                      ],
 | 
						|
                                     ]
 | 
						|
ggml_debug:            bqkv-0 (view) = (f32)       VIEW(bqkv-0{7680, 1, 1, 1}, }) = {2560, 1, 1, 1}
 | 
						|
                                     [
 | 
						|
                                      [
 | 
						|
                                       [ -1.1135,   1.4604,  -1.9226, ...],
 | 
						|
                                      ],
 | 
						|
                                     ]
 | 
						|
ggml_debug:                   Qcur-0 = (f32)       CONT(bqkv-0 (view){2560, 1, 1, 1}, }) = {2560, 1, 1, 1}
 | 
						|
                                     [
 | 
						|
                                      [
 | 
						|
                                       [ -1.1135,   1.4604,  -1.9226, ...],
 | 
						|
                                      ],
 | 
						|
                                     ]
 | 
						|
ggml_debug:        Qcur-0 (reshaped) = (f32)    RESHAPE(Qcur-0{2560, 1, 1, 1}, }) = {80, 32, 1, 1}
 | 
						|
                                     [
 | 
						|
                                      [
 | 
						|
                                       [ -1.1135,   1.4604,  -1.9226, ...],
 | 
						|
                                       [ -0.3608,   0.5076,  -1.8866, ...],
 | 
						|
                                       [  1.7643,   0.0273,  -2.1065, ...],
 | 
						|
                                       ...
 | 
						|
                                      ],
 | 
						|
                                     ]
 | 
						|
ggml_debug:                   Qcur-0 = (f32)       ROPE(Qcur-0 (reshaped){80, 32, 1, 1}, CUDA0#inp_pos#0{1, 1, 1, 1}}) = {80, 32, 1, 1}
 | 
						|
                                     [
 | 
						|
                                      [
 | 
						|
                                       [ -1.1135,   1.4604,  -1.9226, ...],
 | 
						|
                                       [ -0.3608,   0.5076,  -1.8866, ...],
 | 
						|
                                       [  1.7643,   0.0273,  -2.1065, ...],
 | 
						|
                                       ...
 | 
						|
                                      ],
 | 
						|
                                     ]
 | 
						|
```
 |