mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-02 09:12:03 +00:00 
			
		
		
		
	* Factor string_join, string_split, string_repeat into common * json: refactor to surface a versatile builder * Update common.cpp
		
			
				
	
	
		
			700 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			700 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Various helper functions and utilities
 | 
						|
 | 
						|
#pragma once
 | 
						|
 | 
						|
#include "llama-cpp.h"
 | 
						|
 | 
						|
#include <string>
 | 
						|
#include <vector>
 | 
						|
#include <sstream>
 | 
						|
 | 
						|
#ifdef _WIN32
 | 
						|
#define DIRECTORY_SEPARATOR '\\'
 | 
						|
#else
 | 
						|
#define DIRECTORY_SEPARATOR '/'
 | 
						|
#endif // _WIN32
 | 
						|
 | 
						|
#define die(msg)          do { fputs("error: " msg "\n", stderr);                exit(1); } while (0)
 | 
						|
#define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
 | 
						|
 | 
						|
#define print_build_info() do {                                                                     \
 | 
						|
    fprintf(stderr, "%s: build = %d (%s)\n",      __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT);      \
 | 
						|
    fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET);    \
 | 
						|
} while(0)
 | 
						|
 | 
						|
#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
 | 
						|
 | 
						|
struct common_adapter_lora_info {
 | 
						|
    std::string path;
 | 
						|
    float scale;
 | 
						|
 | 
						|
    struct llama_adapter_lora * ptr;
 | 
						|
};
 | 
						|
 | 
						|
using llama_tokens = std::vector<llama_token>;
 | 
						|
 | 
						|
// build info
 | 
						|
extern int LLAMA_BUILD_NUMBER;
 | 
						|
extern const char * LLAMA_COMMIT;
 | 
						|
extern const char * LLAMA_COMPILER;
 | 
						|
extern const char * LLAMA_BUILD_TARGET;
 | 
						|
 | 
						|
struct common_control_vector_load_info;
 | 
						|
 | 
						|
//
 | 
						|
// CPU utils
 | 
						|
//
 | 
						|
 | 
						|
struct cpu_params {
 | 
						|
    int      n_threads                   = -1;
 | 
						|
    bool     cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
 | 
						|
    bool     mask_valid                  = false;   // Default: any CPU
 | 
						|
    enum ggml_sched_priority  priority   = GGML_SCHED_PRIO_NORMAL;  // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
 | 
						|
    bool     strict_cpu                  = false;   // Use strict CPU placement
 | 
						|
    uint32_t poll                        = 50;      // Polling (busywait) level (0 - no polling, 100 - mostly polling)
 | 
						|
};
 | 
						|
 | 
						|
int32_t cpu_get_num_physical_cores();
 | 
						|
int32_t cpu_get_num_math();
 | 
						|
 | 
						|
//
 | 
						|
// Common params
 | 
						|
//
 | 
						|
 | 
						|
enum llama_example {
 | 
						|
    LLAMA_EXAMPLE_COMMON,
 | 
						|
    LLAMA_EXAMPLE_SPECULATIVE,
 | 
						|
    LLAMA_EXAMPLE_MAIN,
 | 
						|
    LLAMA_EXAMPLE_INFILL,
 | 
						|
    LLAMA_EXAMPLE_EMBEDDING,
 | 
						|
    LLAMA_EXAMPLE_PERPLEXITY,
 | 
						|
    LLAMA_EXAMPLE_RETRIEVAL,
 | 
						|
    LLAMA_EXAMPLE_PASSKEY,
 | 
						|
    LLAMA_EXAMPLE_IMATRIX,
 | 
						|
    LLAMA_EXAMPLE_BENCH,
 | 
						|
    LLAMA_EXAMPLE_SERVER,
 | 
						|
    LLAMA_EXAMPLE_CVECTOR_GENERATOR,
 | 
						|
    LLAMA_EXAMPLE_EXPORT_LORA,
 | 
						|
    LLAMA_EXAMPLE_LLAVA,
 | 
						|
    LLAMA_EXAMPLE_LOOKUP,
 | 
						|
    LLAMA_EXAMPLE_PARALLEL,
 | 
						|
    LLAMA_EXAMPLE_TTS,
 | 
						|
 | 
						|
    LLAMA_EXAMPLE_COUNT,
 | 
						|
};
 | 
						|
 | 
						|
enum common_sampler_type {
 | 
						|
    COMMON_SAMPLER_TYPE_NONE        = 0,
 | 
						|
    COMMON_SAMPLER_TYPE_DRY         = 1,
 | 
						|
    COMMON_SAMPLER_TYPE_TOP_K       = 2,
 | 
						|
    COMMON_SAMPLER_TYPE_TOP_P       = 3,
 | 
						|
    COMMON_SAMPLER_TYPE_MIN_P       = 4,
 | 
						|
  //COMMON_SAMPLER_TYPE_TFS_Z       = 5,
 | 
						|
    COMMON_SAMPLER_TYPE_TYPICAL_P   = 6,
 | 
						|
    COMMON_SAMPLER_TYPE_TEMPERATURE = 7,
 | 
						|
    COMMON_SAMPLER_TYPE_XTC         = 8,
 | 
						|
    COMMON_SAMPLER_TYPE_INFILL      = 9,
 | 
						|
    COMMON_SAMPLER_TYPE_PENALTIES   = 10,
 | 
						|
};
 | 
						|
 | 
						|
// dimensionality reduction methods, used by cvector-generator
 | 
						|
enum dimre_method {
 | 
						|
    DIMRE_METHOD_PCA,
 | 
						|
    DIMRE_METHOD_MEAN,
 | 
						|
};
 | 
						|
 | 
						|
enum common_conversation_mode {
 | 
						|
    COMMON_CONVERSATION_MODE_DISABLED = 0,
 | 
						|
    COMMON_CONVERSATION_MODE_ENABLED  = 1,
 | 
						|
    COMMON_CONVERSATION_MODE_AUTO     = 2,
 | 
						|
};
 | 
						|
 | 
						|
// sampling parameters
 | 
						|
struct common_params_sampling {
 | 
						|
    uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
 | 
						|
 | 
						|
    int32_t n_prev             = 64;    // number of previous tokens to remember
 | 
						|
    int32_t n_probs            = 0;     // if greater than 0, output the probabilities of top n_probs tokens.
 | 
						|
    int32_t min_keep           = 0;     // 0 = disabled, otherwise samplers should return at least min_keep tokens
 | 
						|
    int32_t top_k              = 40;    // <= 0 to use vocab size
 | 
						|
    float   top_p              = 0.95f; // 1.0 = disabled
 | 
						|
    float   min_p              = 0.05f; // 0.0 = disabled
 | 
						|
    float   xtc_probability    = 0.00f; // 0.0 = disabled
 | 
						|
    float   xtc_threshold      = 0.10f; // > 0.5 disables XTC
 | 
						|
    float   typ_p              = 1.00f; // typical_p, 1.0 = disabled
 | 
						|
    float   temp               = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
 | 
						|
    float   dynatemp_range     = 0.00f; // 0.0 = disabled
 | 
						|
    float   dynatemp_exponent  = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
 | 
						|
    int32_t penalty_last_n     = 64;    // last n tokens to penalize (0 = disable penalty, -1 = context size)
 | 
						|
    float   penalty_repeat     = 1.00f; // 1.0 = disabled
 | 
						|
    float   penalty_freq       = 0.00f; // 0.0 = disabled
 | 
						|
    float   penalty_present    = 0.00f; // 0.0 = disabled
 | 
						|
    float   dry_multiplier     = 0.0f;  // 0.0 = disabled;      DRY repetition penalty for tokens extending repetition:
 | 
						|
    float   dry_base           = 1.75f; // 0.0 = disabled;      multiplier * base ^ (length of sequence before token - allowed length)
 | 
						|
    int32_t dry_allowed_length = 2;     // tokens extending repetitions beyond this receive penalty
 | 
						|
    int32_t dry_penalty_last_n = -1;    // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size)
 | 
						|
    int32_t mirostat           = 0;     // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
 | 
						|
    float   mirostat_tau       = 5.00f; // target entropy
 | 
						|
    float   mirostat_eta       = 0.10f; // learning rate
 | 
						|
    bool    ignore_eos         = false;
 | 
						|
    bool    no_perf            = false; // disable performance metrics
 | 
						|
    bool    timing_per_token   = false;
 | 
						|
 | 
						|
    std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"};     // default sequence breakers for DRY
 | 
						|
 | 
						|
 | 
						|
    std::vector<enum common_sampler_type> samplers = {
 | 
						|
        COMMON_SAMPLER_TYPE_PENALTIES,
 | 
						|
        COMMON_SAMPLER_TYPE_DRY,
 | 
						|
        COMMON_SAMPLER_TYPE_TOP_K,
 | 
						|
        COMMON_SAMPLER_TYPE_TYPICAL_P,
 | 
						|
        COMMON_SAMPLER_TYPE_TOP_P,
 | 
						|
        COMMON_SAMPLER_TYPE_MIN_P,
 | 
						|
        COMMON_SAMPLER_TYPE_XTC,
 | 
						|
        COMMON_SAMPLER_TYPE_TEMPERATURE,
 | 
						|
    };
 | 
						|
 | 
						|
    std::string grammar; // optional BNF-like grammar to constrain sampling
 | 
						|
 | 
						|
    std::vector<llama_logit_bias> logit_bias; // logit biases to apply
 | 
						|
 | 
						|
    // print the parameters into a string
 | 
						|
    std::string print() const;
 | 
						|
};
 | 
						|
 | 
						|
struct common_params_speculative {
 | 
						|
    std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
 | 
						|
 | 
						|
    int32_t n_ctx        =     0; // draft context size
 | 
						|
    int32_t n_max        =    16; // maximum number of tokens to draft during speculative decoding
 | 
						|
    int32_t n_min        =     5; // minimum number of draft tokens to use for speculative decoding
 | 
						|
    int32_t n_gpu_layers =    -1; // number of layers to store in VRAM for the draft model (-1 - use default)
 | 
						|
    float   p_split      =  0.1f; // speculative decoding split probability
 | 
						|
    float   p_min        =  0.9f; // minimum speculative decoding probability (greedy)
 | 
						|
 | 
						|
    struct cpu_params cpuparams;
 | 
						|
    struct cpu_params cpuparams_batch;
 | 
						|
 | 
						|
    std::string hf_repo = ""; // HF repo                                                     // NOLINT
 | 
						|
    std::string hf_file = ""; // HF file                                                     // NOLINT
 | 
						|
 | 
						|
    std::string model = "";     // draft model for speculative decoding                      // NOLINT
 | 
						|
    std::string model_url = ""; // model url to download                                     // NOLINT
 | 
						|
};
 | 
						|
 | 
						|
struct common_params_vocoder {
 | 
						|
    std::string hf_repo = ""; // HF repo                                                     // NOLINT
 | 
						|
    std::string hf_file = ""; // HF file                                                     // NOLINT
 | 
						|
 | 
						|
    std::string model     = ""; // model path                                                // NOLINT
 | 
						|
    std::string model_url = ""; // model url to download                                     // NOLINT
 | 
						|
 | 
						|
    bool use_guide_tokens = false; // enable guide tokens to improve TTS accuracy            // NOLINT
 | 
						|
};
 | 
						|
 | 
						|
struct common_params {
 | 
						|
    int32_t n_predict             =    -1; // new tokens to predict
 | 
						|
    int32_t n_ctx                 =  4096; // context size
 | 
						|
    int32_t n_batch               =  2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
 | 
						|
    int32_t n_ubatch              =   512; // physical batch size for prompt processing (must be >=32 to use BLAS)
 | 
						|
    int32_t n_keep                =     0; // number of tokens to keep from initial prompt
 | 
						|
    int32_t n_chunks              =    -1; // max number of chunks to process (-1 = unlimited)
 | 
						|
    int32_t n_parallel            =     1; // number of parallel sequences to decode
 | 
						|
    int32_t n_sequences           =     1; // number of sequences to decode
 | 
						|
    int32_t grp_attn_n            =     1; // group-attention factor
 | 
						|
    int32_t grp_attn_w            =   512; // group-attention width
 | 
						|
    int32_t n_print               =    -1; // print token count every n tokens (-1 = disabled)
 | 
						|
    float   rope_freq_base        =  0.0f; // RoPE base frequency
 | 
						|
    float   rope_freq_scale       =  0.0f; // RoPE frequency scaling factor
 | 
						|
    float   yarn_ext_factor       = -1.0f; // YaRN extrapolation mix factor
 | 
						|
    float   yarn_attn_factor      =  1.0f; // YaRN magnitude scaling factor
 | 
						|
    float   yarn_beta_fast        = 32.0f; // YaRN low correction dim
 | 
						|
    float   yarn_beta_slow        =  1.0f; // YaRN high correction dim
 | 
						|
    int32_t yarn_orig_ctx         =     0; // YaRN original context length
 | 
						|
    float   defrag_thold          =  0.1f; // KV cache defragmentation threshold
 | 
						|
 | 
						|
    // offload params
 | 
						|
    std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
 | 
						|
 | 
						|
    int32_t n_gpu_layers      = -1;  // number of layers to store in VRAM (-1 - use default)
 | 
						|
    int32_t main_gpu          = 0;   // the GPU that is used for scratch and small tensors
 | 
						|
    float   tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
 | 
						|
 | 
						|
    enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
 | 
						|
 | 
						|
    struct cpu_params cpuparams;
 | 
						|
    struct cpu_params cpuparams_batch;
 | 
						|
 | 
						|
    ggml_backend_sched_eval_callback cb_eval = nullptr;
 | 
						|
    void * cb_eval_user_data                 = nullptr;
 | 
						|
 | 
						|
    ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
 | 
						|
 | 
						|
    enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
 | 
						|
    enum llama_pooling_type      pooling_type      = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
 | 
						|
    enum llama_attention_type    attention_type    = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
 | 
						|
 | 
						|
    struct common_params_sampling    sampling;
 | 
						|
    struct common_params_speculative speculative;
 | 
						|
    struct common_params_vocoder     vocoder;
 | 
						|
 | 
						|
    std::string model                = ""; // model path                                                    // NOLINT
 | 
						|
    std::string model_alias          = ""; // model alias                                                   // NOLINT
 | 
						|
    std::string model_url            = ""; // model url to download                                         // NOLINT
 | 
						|
    std::string hf_token             = ""; // HF token                                                      // NOLINT
 | 
						|
    std::string hf_repo              = ""; // HF repo                                                       // NOLINT
 | 
						|
    std::string hf_file              = ""; // HF file                                                       // NOLINT
 | 
						|
    std::string prompt               = "";                                                                  // NOLINT
 | 
						|
    std::string prompt_file          = ""; // store the external prompt file name                           // NOLINT
 | 
						|
    std::string path_prompt_cache    = ""; // path to file for saving/loading prompt eval state             // NOLINT
 | 
						|
    std::string input_prefix         = ""; // string to prefix user inputs with                             // NOLINT
 | 
						|
    std::string input_suffix         = ""; // string to suffix user inputs with                             // NOLINT
 | 
						|
    std::string lookup_cache_static  = ""; // path of static ngram cache file for lookup decoding           // NOLINT
 | 
						|
    std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding          // NOLINT
 | 
						|
    std::string logits_file          = ""; // file for saving *all* logits                                  // NOLINT
 | 
						|
 | 
						|
    std::vector<std::string> in_files;   // all input files
 | 
						|
    std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
 | 
						|
    std::vector<llama_model_kv_override> kv_overrides;
 | 
						|
 | 
						|
    bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_adapter_lora_apply)
 | 
						|
    std::vector<common_adapter_lora_info> lora_adapters; // lora adapter path with user defined scale
 | 
						|
 | 
						|
    std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
 | 
						|
 | 
						|
    int32_t verbosity                  = 0;
 | 
						|
    int32_t control_vector_layer_start = -1; // layer range for control vector
 | 
						|
    int32_t control_vector_layer_end   = -1; // layer range for control vector
 | 
						|
 | 
						|
    int32_t ppl_stride      = 0;     // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
 | 
						|
    int32_t ppl_output_type = 0;     // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
 | 
						|
                                     //                                       (which is more convenient to use for plotting)
 | 
						|
                                     //
 | 
						|
    bool   hellaswag        = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
 | 
						|
    size_t hellaswag_tasks  = 400;   // number of tasks to use when computing the HellaSwag score
 | 
						|
 | 
						|
    bool   winogrande       = false; // compute Winogrande score over random tasks from datafile supplied in prompt
 | 
						|
    size_t winogrande_tasks = 0;     // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
 | 
						|
 | 
						|
    bool   multiple_choice  = false;  // compute TruthfulQA score over random tasks from datafile supplied in prompt
 | 
						|
    size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
 | 
						|
 | 
						|
    bool   kl_divergence    = false; // compute KL divergence
 | 
						|
 | 
						|
    bool usage             = false; // print usage
 | 
						|
    bool use_color         = false; // use color to distinguish generations and inputs
 | 
						|
    bool special           = false; // enable special token output
 | 
						|
    bool interactive       = false; // interactive mode
 | 
						|
    bool interactive_first = false; // wait for user input immediately
 | 
						|
    bool prompt_cache_all  = false; // save user input and generations to prompt cache
 | 
						|
    bool prompt_cache_ro   = false; // open the prompt cache read-only and do not update it
 | 
						|
 | 
						|
    bool escape            = true;  // escape "\n", "\r", "\t", "\'", "\"", and "\\"
 | 
						|
    bool multiline_input   = false; // reverse the usage of `\`
 | 
						|
    bool simple_io         = false; // improves compatibility with subprocesses and limited consoles
 | 
						|
    bool cont_batching     = true;  // insert new sequences for decoding on-the-fly
 | 
						|
    bool flash_attn        = false; // flash attention
 | 
						|
    bool no_perf           = false; // disable performance metrics
 | 
						|
    bool ctx_shift         = true;  // context shift on inifinite text generation
 | 
						|
 | 
						|
    bool input_prefix_bos  = false; // prefix BOS to user inputs, preceding input_prefix
 | 
						|
    bool logits_all        = false; // return logits for all tokens in the batch
 | 
						|
    bool use_mmap          = true;  // use mmap for faster loads
 | 
						|
    bool use_mlock         = false; // use mlock to keep model in memory
 | 
						|
    bool verbose_prompt    = false; // print prompt tokens before generation
 | 
						|
    bool display_prompt    = true;  // print prompt before generation
 | 
						|
    bool dump_kv_cache     = false; // dump the KV cache contents for debugging purposes
 | 
						|
    bool no_kv_offload     = false; // disable KV offloading
 | 
						|
    bool warmup            = true;  // warmup run
 | 
						|
    bool check_tensors     = false; // validate tensor data
 | 
						|
 | 
						|
    ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
 | 
						|
    ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
 | 
						|
 | 
						|
    common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO;
 | 
						|
 | 
						|
    // multimodal models (see examples/llava)
 | 
						|
    std::string mmproj = "";        // path to multimodal projector                                         // NOLINT
 | 
						|
    std::vector<std::string> image; // path to image file(s)
 | 
						|
 | 
						|
    // embedding
 | 
						|
    bool embedding         = false; // get only sentence embedding
 | 
						|
    int32_t embd_normalize = 2;     // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
 | 
						|
    std::string embd_out   = "";    // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
 | 
						|
    std::string embd_sep   = "\n";  // separator of embeddings
 | 
						|
    bool reranking         = false; // enable reranking support on server
 | 
						|
 | 
						|
    // server params
 | 
						|
    int32_t port           = 8080;         // server listens on this network port
 | 
						|
    int32_t timeout_read   = 600;          // http read timeout in seconds
 | 
						|
    int32_t timeout_write  = timeout_read; // http write timeout in seconds
 | 
						|
    int32_t n_threads_http = -1;           // number of threads to process HTTP requests (TODO: support threadpool)
 | 
						|
    int32_t n_cache_reuse  = 0;            // min chunk size to reuse from the cache via KV shifting
 | 
						|
 | 
						|
    std::string hostname      = "127.0.0.1";
 | 
						|
    std::string public_path   = "";                                                                         // NOLINT
 | 
						|
    std::string chat_template = "";                                                                         // NOLINT
 | 
						|
    bool use_jinja = false;                                                                                 // NOLINT
 | 
						|
    bool enable_chat_template = true;
 | 
						|
 | 
						|
    std::vector<std::string> api_keys;
 | 
						|
 | 
						|
    std::string ssl_file_key  = "";                                                                         // NOLINT
 | 
						|
    std::string ssl_file_cert = "";                                                                         // NOLINT
 | 
						|
 | 
						|
    // "advanced" endpoints are disabled by default for better security
 | 
						|
    bool webui            = true;
 | 
						|
    bool endpoint_slots   = false;
 | 
						|
    bool endpoint_props   = false; // only control POST requests, not GET
 | 
						|
    bool endpoint_metrics = false;
 | 
						|
 | 
						|
    bool log_json = false;
 | 
						|
 | 
						|
    std::string slot_save_path;
 | 
						|
 | 
						|
    float slot_prompt_similarity = 0.5f;
 | 
						|
 | 
						|
    // batched-bench params
 | 
						|
    bool is_pp_shared = false;
 | 
						|
 | 
						|
    std::vector<int32_t> n_pp;
 | 
						|
    std::vector<int32_t> n_tg;
 | 
						|
    std::vector<int32_t> n_pl;
 | 
						|
 | 
						|
    // retrieval params
 | 
						|
    std::vector<std::string> context_files; // context files to embed
 | 
						|
 | 
						|
    int32_t chunk_size = 64; // chunk size for context embedding
 | 
						|
 | 
						|
    std::string chunk_separator = "\n"; // chunk separator for context embedding
 | 
						|
 | 
						|
    // passkey params
 | 
						|
    int32_t n_junk = 250; // number of times to repeat the junk text
 | 
						|
    int32_t i_pos  = -1;  // position of the passkey in the junk text
 | 
						|
 | 
						|
    // imatrix params
 | 
						|
    std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
 | 
						|
 | 
						|
    int32_t n_out_freq  = 10; // output the imatrix every n_out_freq iterations
 | 
						|
    int32_t n_save_freq =  0; // save the imatrix every n_save_freq iterations
 | 
						|
    int32_t i_chunk     =  0; // start processing from this chunk
 | 
						|
 | 
						|
    bool process_output = false; // collect data for the output tensor
 | 
						|
    bool compute_ppl    = true;  // whether to compute perplexity
 | 
						|
 | 
						|
    // cvector-generator params
 | 
						|
    int n_pca_batch = 100;
 | 
						|
    int n_pca_iterations = 1000;
 | 
						|
    dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
 | 
						|
    std::string cvector_outfile       = "control_vector.gguf";
 | 
						|
    std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
 | 
						|
    std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
 | 
						|
 | 
						|
    bool spm_infill = false; // suffix/prefix/middle pattern for infill
 | 
						|
 | 
						|
    std::string lora_outfile = "ggml-lora-merged-f16.gguf";
 | 
						|
 | 
						|
    // batched-bench params
 | 
						|
    bool batched_bench_output_jsonl = false;
 | 
						|
};
 | 
						|
 | 
						|
// call once at the start of a program if it uses libcommon
 | 
						|
// initializes the logging system and prints info about the build
 | 
						|
void common_init();
 | 
						|
 | 
						|
std::string common_params_get_system_info(const common_params & params);
 | 
						|
 | 
						|
bool parse_cpu_range(const std::string & range, bool(&boolmask)[GGML_MAX_N_THREADS]);
 | 
						|
bool parse_cpu_mask(const std::string & mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
 | 
						|
void postprocess_cpu_params(cpu_params & cpuparams, const cpu_params * role_model = nullptr);
 | 
						|
bool set_process_priority(enum ggml_sched_priority prio);
 | 
						|
 | 
						|
//
 | 
						|
// String utils
 | 
						|
//
 | 
						|
 | 
						|
#ifdef __GNUC__
 | 
						|
#ifdef __MINGW32__
 | 
						|
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
 | 
						|
#else
 | 
						|
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
 | 
						|
#endif
 | 
						|
#else
 | 
						|
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
 | 
						|
#endif
 | 
						|
 | 
						|
LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
 | 
						|
std::string string_format(const char * fmt, ...);
 | 
						|
 | 
						|
std::string string_strip(const std::string & str);
 | 
						|
std::string string_get_sortable_timestamp();
 | 
						|
 | 
						|
std::string string_join(const std::vector<std::string> & values, const std::string & separator);
 | 
						|
std::vector<std::string> string_split(const std::string & str, const std::string & delimiter);
 | 
						|
std::string string_repeat(const std::string & str, size_t n);
 | 
						|
 | 
						|
void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
 | 
						|
 | 
						|
template<class T>
 | 
						|
static std::vector<T> string_split(const std::string & str, char delim) {
 | 
						|
    static_assert(!std::is_same<T, std::string>::value, "Please use the specialized version for std::string");
 | 
						|
    std::vector<T> values;
 | 
						|
    std::istringstream str_stream(str);
 | 
						|
    std::string token;
 | 
						|
    while (std::getline(str_stream, token, delim)) {
 | 
						|
        T value;
 | 
						|
        std::istringstream token_stream(token);
 | 
						|
        token_stream >> value;
 | 
						|
        values.push_back(value);
 | 
						|
    }
 | 
						|
    return values;
 | 
						|
}
 | 
						|
 | 
						|
template<>
 | 
						|
std::vector<std::string> string_split<std::string>(const std::string & input, char separator)
 | 
						|
{
 | 
						|
    std::vector<std::string> parts;
 | 
						|
    size_t begin_pos = 0;
 | 
						|
    size_t separator_pos = input.find(separator);
 | 
						|
    while (separator_pos != std::string::npos) {
 | 
						|
        std::string part = input.substr(begin_pos, separator_pos - begin_pos);
 | 
						|
        parts.emplace_back(part);
 | 
						|
        begin_pos = separator_pos + 1;
 | 
						|
        separator_pos = input.find(separator, begin_pos);
 | 
						|
    }
 | 
						|
    parts.emplace_back(input.substr(begin_pos, separator_pos - begin_pos));
 | 
						|
    return parts;
 | 
						|
}
 | 
						|
 | 
						|
static bool string_starts_with(const std::string & str,
 | 
						|
                               const std::string & prefix) {  // While we wait for C++20's std::string::starts_with...
 | 
						|
    return str.rfind(prefix, 0) == 0;
 | 
						|
}
 | 
						|
 | 
						|
static bool string_ends_with(const std::string & str,
 | 
						|
                               const std::string & suffix) {  // While we wait for C++20's std::string::ends_with...
 | 
						|
    return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
 | 
						|
}
 | 
						|
 | 
						|
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
 | 
						|
void string_process_escapes(std::string & input);
 | 
						|
 | 
						|
std::string string_from(bool value);
 | 
						|
std::string string_from(const std::vector<int> & values);
 | 
						|
std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens);
 | 
						|
std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch);
 | 
						|
 | 
						|
//
 | 
						|
// Filesystem utils
 | 
						|
//
 | 
						|
 | 
						|
bool fs_validate_filename(const std::string & filename);
 | 
						|
bool fs_create_directory_with_parents(const std::string & path);
 | 
						|
 | 
						|
std::string fs_get_cache_directory();
 | 
						|
std::string fs_get_cache_file(const std::string & filename);
 | 
						|
 | 
						|
//
 | 
						|
// Model utils
 | 
						|
//
 | 
						|
 | 
						|
// note: defines object's lifetime
 | 
						|
struct common_init_result {
 | 
						|
    llama_model_ptr   model;
 | 
						|
    llama_context_ptr context;
 | 
						|
 | 
						|
    std::vector<llama_adapter_lora_ptr> lora;
 | 
						|
};
 | 
						|
 | 
						|
struct common_init_result     common_init_from_params(common_params & params);
 | 
						|
 | 
						|
struct llama_model_params     common_model_params_to_llama  (      common_params & params);
 | 
						|
struct llama_context_params   common_context_params_to_llama(const common_params & params);
 | 
						|
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
 | 
						|
 | 
						|
struct llama_model * common_load_model_from_url(
 | 
						|
    const std::string & model_url,
 | 
						|
    const std::string & local_path,
 | 
						|
    const std::string & hf_token,
 | 
						|
    const struct llama_model_params & params);
 | 
						|
 | 
						|
struct llama_model * common_load_model_from_hf(
 | 
						|
    const std::string & repo,
 | 
						|
    const std::string & remote_path,
 | 
						|
    const std::string & local_path,
 | 
						|
    const std::string & hf_token,
 | 
						|
    const struct llama_model_params & params);
 | 
						|
 | 
						|
std::pair<std::string, std::string> common_get_hf_file(
 | 
						|
    const std::string & hf_repo_with_tag,
 | 
						|
    const std::string & hf_token);
 | 
						|
 | 
						|
// clear LoRA adapters from context, then apply new list of adapters
 | 
						|
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora);
 | 
						|
 | 
						|
//
 | 
						|
// Batch utils
 | 
						|
//
 | 
						|
 | 
						|
void common_batch_clear(struct llama_batch & batch);
 | 
						|
 | 
						|
void common_batch_add(
 | 
						|
                 struct llama_batch & batch,
 | 
						|
                        llama_token   id,
 | 
						|
                          llama_pos   pos,
 | 
						|
    const std::vector<llama_seq_id> & seq_ids,
 | 
						|
                               bool   logits);
 | 
						|
 | 
						|
//
 | 
						|
// Token utils
 | 
						|
//
 | 
						|
 | 
						|
// longest common prefix
 | 
						|
size_t common_lcp(const llama_tokens & a, const llama_tokens & b);
 | 
						|
 | 
						|
// longet common subsequence
 | 
						|
size_t common_lcs(const llama_tokens & a, const llama_tokens & b);
 | 
						|
 | 
						|
//
 | 
						|
// Vocab utils
 | 
						|
//
 | 
						|
 | 
						|
// tokenizes a string into a vector of tokens
 | 
						|
// should work similar to Python's `tokenizer.encode`
 | 
						|
std::vector<llama_token> common_tokenize(
 | 
						|
  const struct llama_context * ctx,
 | 
						|
           const std::string & text,
 | 
						|
                        bool   add_special,
 | 
						|
                        bool   parse_special = false);
 | 
						|
 | 
						|
std::vector<llama_token> common_tokenize(
 | 
						|
    const struct llama_vocab * vocab,
 | 
						|
           const std::string & text,
 | 
						|
                        bool   add_special,
 | 
						|
                        bool   parse_special = false);
 | 
						|
 | 
						|
// tokenizes a token into a piece, optionally renders special/control tokens
 | 
						|
// should work similar to Python's `tokenizer.id_to_piece`
 | 
						|
std::string common_token_to_piece(
 | 
						|
        const struct llama_context * ctx,
 | 
						|
                       llama_token   token,
 | 
						|
                       bool          special = true);
 | 
						|
 | 
						|
std::string common_token_to_piece(
 | 
						|
          const struct llama_vocab * vocab,
 | 
						|
                       llama_token   token,
 | 
						|
                       bool          special = true);
 | 
						|
 | 
						|
// detokenizes a vector of tokens into a string
 | 
						|
// should work similar to Python's `tokenizer.decode`
 | 
						|
// optionally renders special/control tokens
 | 
						|
std::string common_detokenize(
 | 
						|
            const struct llama_context * ctx,
 | 
						|
        const std::vector<llama_token> & tokens,
 | 
						|
                                  bool   special = true);
 | 
						|
 | 
						|
std::string common_detokenize(
 | 
						|
              const struct llama_vocab * vocab,
 | 
						|
        const std::vector<llama_token> & tokens,
 | 
						|
                                  bool   special = true);
 | 
						|
 | 
						|
//
 | 
						|
// Chat template utils
 | 
						|
//
 | 
						|
 | 
						|
// same with llama_chat_message, but uses std::string
 | 
						|
struct common_chat_msg {
 | 
						|
    std::string role;
 | 
						|
    std::string content;
 | 
						|
};
 | 
						|
 | 
						|
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
 | 
						|
bool common_chat_verify_template(const std::string & tmpl, bool use_jinja);
 | 
						|
 | 
						|
namespace minja {
 | 
						|
    class chat_template;
 | 
						|
}
 | 
						|
 | 
						|
typedef minja::chat_template common_chat_template;
 | 
						|
 | 
						|
struct common_chat_templates {
 | 
						|
    bool has_explicit_template; // Model had builtin template or template overridde was specified.
 | 
						|
    std::unique_ptr<common_chat_template> template_default; // always set (defaults to chatml)
 | 
						|
    std::unique_ptr<common_chat_template> template_tool_use;
 | 
						|
};
 | 
						|
 | 
						|
// CPP wrapper for llama_chat_apply_template
 | 
						|
// If the built-in template is not supported, we default to chatml
 | 
						|
// If the custom "tmpl" is not supported, we throw an error
 | 
						|
std::string common_chat_apply_template(
 | 
						|
        const common_chat_template & tmpl,
 | 
						|
        const std::vector<common_chat_msg> & chat,
 | 
						|
        bool add_ass,
 | 
						|
        bool use_jinja);
 | 
						|
 | 
						|
// Format single message, while taking into account the position of that message in chat history
 | 
						|
std::string common_chat_format_single(
 | 
						|
        const common_chat_template & tmpl,
 | 
						|
        const std::vector<common_chat_msg> & past_msg,
 | 
						|
        const common_chat_msg & new_msg,
 | 
						|
        bool add_ass,
 | 
						|
        bool use_jinja);
 | 
						|
 | 
						|
// Returns an example of formatted chat
 | 
						|
std::string common_chat_format_example(
 | 
						|
    const common_chat_template & tmpl, bool use_jinja);
 | 
						|
 | 
						|
common_chat_templates common_chat_templates_from_model(const struct llama_model * model, const std::string & chat_template_override);
 | 
						|
 | 
						|
//
 | 
						|
// KV cache utils
 | 
						|
//
 | 
						|
 | 
						|
// Dump the KV cache view with the number of sequences per cell.
 | 
						|
void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
 | 
						|
 | 
						|
// Dump the KV cache view showing individual sequences in each cell (long output).
 | 
						|
void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
 | 
						|
 | 
						|
//
 | 
						|
// Embedding utils
 | 
						|
//
 | 
						|
 | 
						|
// TODO: repace embd_norm with an enum
 | 
						|
void common_embd_normalize(const float * inp, float * out, int n, int embd_norm);
 | 
						|
 | 
						|
float common_embd_similarity_cos(const float * embd1, const float * embd2, int n);
 | 
						|
 | 
						|
//
 | 
						|
// Control vector utils
 | 
						|
//
 | 
						|
 | 
						|
struct common_control_vector_data {
 | 
						|
    int n_embd;
 | 
						|
 | 
						|
    // stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
 | 
						|
    std::vector<float> data;
 | 
						|
};
 | 
						|
 | 
						|
struct common_control_vector_load_info {
 | 
						|
    float strength;
 | 
						|
 | 
						|
    std::string fname;
 | 
						|
};
 | 
						|
 | 
						|
// Load control vectors, scale each by strength, and add them together.
 | 
						|
// On error, returns {-1, empty}
 | 
						|
common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos);
 | 
						|
 | 
						|
//
 | 
						|
// Split utils
 | 
						|
//
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
const char * const LLM_KV_SPLIT_NO            = "split.no";
 | 
						|
const char * const LLM_KV_SPLIT_COUNT         = "split.count";
 | 
						|
const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
 | 
						|
 | 
						|
}
 |