mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			6352 lines
		
	
	
		
			251 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			6352 lines
		
	
	
		
			251 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //
 | ||
| // MIT license
 | ||
| // Copyright (C) 2024 Intel Corporation
 | ||
| // SPDX-License-Identifier: MIT
 | ||
| //
 | ||
| 
 | ||
| //
 | ||
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | ||
| // See https://llvm.org/LICENSE.txt for license information.
 | ||
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | ||
| //
 | ||
| 
 | ||
| #include <algorithm>
 | ||
| #include <assert.h>
 | ||
| #include <atomic>
 | ||
| #include <cinttypes>
 | ||
| #include <cstddef>
 | ||
| #include <cstdint>
 | ||
| #include <cstdlib>
 | ||
| #include <float.h>
 | ||
| #include <limits>
 | ||
| #include <stdint.h>
 | ||
| #include <stdio.h>
 | ||
| #include <vector>
 | ||
| #include <cmath>
 | ||
| #include <iostream>
 | ||
| #include <fstream>
 | ||
| #include <stdio.h>
 | ||
| #include <stdlib.h>
 | ||
| #include <regex>
 | ||
| 
 | ||
| #include <sycl/sycl.hpp>
 | ||
| #include <sycl/half_type.hpp>
 | ||
| 
 | ||
| #include "ggml-sycl.h"
 | ||
| #include "ggml.h"
 | ||
| #include "ggml-backend-impl.h"
 | ||
| 
 | ||
| #include "ggml-sycl/backend.hpp"
 | ||
| 
 | ||
| bool   ggml_sycl_loaded(void);
 | ||
| void   ggml_sycl_free_data(struct ggml_tensor * tensor);
 | ||
| void   ggml_sycl_copy_to_device(struct ggml_tensor * tensor);
 | ||
| void   ggml_sycl_set_main_device(int main_device);
 | ||
| void   ggml_sycl_set_mul_mat_q(bool mul_mat_q);
 | ||
| void   ggml_sycl_get_device_description(int device, char * description, size_t description_size);
 | ||
| bool   ggml_backend_is_sycl(ggml_backend_t backend);
 | ||
| int    ggml_backend_sycl_get_device(ggml_backend_t backend);
 | ||
| static bool ggml_backend_buffer_is_sycl_split(ggml_backend_buffer_t buffer);
 | ||
| static inline int get_sycl_env(const char *env_name, int default_val);
 | ||
| static inline int get_work_group_size(const sycl::device& device);
 | ||
| 
 | ||
| void dev2dev_memcpy(sycl::queue &q_dst, sycl::queue &q_src, void *ptr_dst,
 | ||
|                     const void *ptr_src, size_t size) {
 | ||
|     char *host_buf = (char *)malloc(size);
 | ||
|     q_src.memcpy(host_buf, (const char *)ptr_src, size).wait();
 | ||
|     q_dst.memcpy((char *)ptr_dst, host_buf, size).wait();
 | ||
|     free(host_buf);
 | ||
| }
 | ||
| 
 | ||
| typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
 | ||
| typedef void (*ggml_sycl_func_t)(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
 | ||
| typedef void (*ggml_sycl_op_mul_mat_t)(
 | ||
|     ggml_backend_sycl_context & ctx,
 | ||
|     const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
 | ||
|     const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
 | ||
|     float *dst_dd_i, const int64_t row_low, const int64_t row_high,
 | ||
|     const int64_t src1_ncols, const int64_t src1_padded_row_size,
 | ||
|     const queue_ptr &stream);
 | ||
| typedef void (*ggml_sycl_op_flatten_t)(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
 | ||
|                                        const ggml_tensor *src1,
 | ||
|                                        ggml_tensor *dst, const float *src0_dd,
 | ||
|                                        const float *src1_dd, float *dst_dd,
 | ||
|                                        const queue_ptr &main_stream);
 | ||
| 
 | ||
| static __dpct_inline__ float warp_reduce_sum(float x,
 | ||
|                                              const sycl::nd_item<3> &item_ct1) {
 | ||
| #pragma unroll
 | ||
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | ||
|         /*
 | ||
|         DPCT1096:98: The right-most dimension of the work-group used in the SYCL
 | ||
|         kernel that calls this function may be less than "32". The function
 | ||
|         "dpct::permute_sub_group_by_xor" may return an unexpected result on the
 | ||
|         CPU device. Modify the size of the work-group to ensure that the value
 | ||
|         of the right-most dimension is a multiple of "32".
 | ||
|         */
 | ||
|         x += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), x, mask);
 | ||
|     }
 | ||
|     return x;
 | ||
| }
 | ||
| 
 | ||
| static __dpct_inline__ sycl::float2
 | ||
| warp_reduce_sum(sycl::float2 a, const sycl::nd_item<3> &item_ct1) {
 | ||
| #pragma unroll
 | ||
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | ||
|         a.x() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.x(),
 | ||
|                                                 mask);
 | ||
|         a.y() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.y(),
 | ||
|                                                 mask);
 | ||
|     }
 | ||
|     return a;
 | ||
| }
 | ||
| 
 | ||
| static __dpct_inline__ float warp_reduce_max(float x,
 | ||
|                                              const sycl::nd_item<3> &item_ct1) {
 | ||
| #pragma unroll
 | ||
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | ||
|         /*
 | ||
|         DPCT1096:97: The right-most dimension of the work-group used in the SYCL
 | ||
|         kernel that calls this function may be less than "32". The function
 | ||
|         "dpct::permute_sub_group_by_xor" may return an unexpected result on the
 | ||
|         CPU device. Modify the size of the work-group to ensure that the value
 | ||
|         of the right-most dimension is a multiple of "32".
 | ||
|         */
 | ||
|         x = sycl::fmax(x, dpct::permute_sub_group_by_xor(
 | ||
|                               item_ct1.get_sub_group(), x, mask));
 | ||
|     }
 | ||
|     return x;
 | ||
| }
 | ||
| 
 | ||
| static __dpct_inline__ float op_repeat(const float a, const float b) {
 | ||
|     return b;
 | ||
|     GGML_UNUSED(a);
 | ||
| }
 | ||
| 
 | ||
| static __dpct_inline__ float op_add(const float a, const float b) {
 | ||
|     return a + b;
 | ||
| }
 | ||
| 
 | ||
| static __dpct_inline__ float op_mul(const float a, const float b) {
 | ||
|     return a * b;
 | ||
| }
 | ||
| 
 | ||
| static __dpct_inline__ float op_div(const float a, const float b) {
 | ||
|     return a / b;
 | ||
| }
 | ||
| 
 | ||
| template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
 | ||
| static void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
 | ||
|         int ne0, int ne1, int ne2, int ne3,
 | ||
|         int ne10, int ne11, int ne12, int ne13,
 | ||
|         /*int s0, */ int s1,  int s2,  int s3,
 | ||
|         /*int s10,*/ int s11, int s12, int s13,
 | ||
|         const sycl::nd_item<3> &item_ct1) {
 | ||
|     const int i0s = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | ||
|                     item_ct1.get_local_id(2);
 | ||
|     const int i1 = (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
 | ||
|                     item_ct1.get_local_id(1));
 | ||
|     const int i2 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
 | ||
|                     item_ct1.get_local_id(0)) /
 | ||
|                    ne3;
 | ||
|     const int i3 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
 | ||
|                     item_ct1.get_local_id(0)) %
 | ||
|                    ne3;
 | ||
| 
 | ||
|     if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
 | ||
|         return;
 | ||
|     }
 | ||
| 
 | ||
|     const int i11 = i1 % ne11;
 | ||
|     const int i12 = i2 % ne12;
 | ||
|     const int i13 = i3 % ne13;
 | ||
| 
 | ||
|     const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
 | ||
|     const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
 | ||
|     const size_t i_dst  = i_src0;
 | ||
| 
 | ||
|     const src0_t * src0_row = src0 + i_src0;
 | ||
|     const src1_t * src1_row = src1 + i_src1;
 | ||
|     dst_t * dst_row = dst + i_dst;
 | ||
| 
 | ||
|     for (int i0 = i0s; i0 < ne0;
 | ||
|          i0 += item_ct1.get_local_range(2) * item_ct1.get_group_range(2)) {
 | ||
|         const int i10 = i0 % ne10;
 | ||
|         dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
 | ||
| static void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
 | ||
|         int ne0, int ne1, int ne2, int ne3,
 | ||
|         int ne10, int ne11, int ne12, int ne13,
 | ||
|         /*int s0, */ int s1,  int s2,  int s3,
 | ||
|         /*int s10,*/ int s11, int s12, int s13,
 | ||
|         const sycl::nd_item<3> &item_ct1) {
 | ||
| 
 | ||
|     const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | ||
|                   item_ct1.get_local_id(2);
 | ||
| 
 | ||
|     const int i3 = i/(ne2*ne1*ne0);
 | ||
|     const int i2 = (i/(ne1*ne0)) % ne2;
 | ||
|     const int i1 = (i/ne0) % ne1;
 | ||
|     const int i0 = i % ne0;
 | ||
| 
 | ||
|     if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
 | ||
|         return;
 | ||
|     }
 | ||
| 
 | ||
|     const int i11 = i1 % ne11;
 | ||
|     const int i12 = i2 % ne12;
 | ||
|     const int i13 = i3 % ne13;
 | ||
| 
 | ||
|     const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
 | ||
|     const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
 | ||
|     const size_t i_dst  = i_src0;
 | ||
| 
 | ||
|     const src0_t * src0_row = src0 + i_src0;
 | ||
|     const src1_t * src1_row = src1 + i_src1;
 | ||
|     dst_t * dst_row = dst + i_dst;
 | ||
| 
 | ||
|     const int i10 = i0 % ne10;
 | ||
|     dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
 | ||
| }
 | ||
| 
 | ||
| static void acc_f32(const float * x, const float * y, float * dst, const int ne,
 | ||
|     const int ne10, const int ne11, const int ne12,
 | ||
|     const int nb1, const int nb2, int offset, const sycl::nd_item<3> &item_ct1) {
 | ||
|     const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | ||
|                   item_ct1.get_local_id(2);
 | ||
|     if (i >= ne) {
 | ||
|         return;
 | ||
|     }
 | ||
|     int src1_idx = i - offset;
 | ||
|     int oz = src1_idx / nb2;
 | ||
|     int oy = (src1_idx - (oz * nb2)) / nb1;
 | ||
|     int ox = src1_idx % nb1;
 | ||
|     if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) {
 | ||
|         dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11];
 | ||
|     } else {
 | ||
|         dst[i] = x[i];
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void gelu_f32(const float * x, float * dst, const int k,
 | ||
|                      const sycl::nd_item<3> &item_ct1) {
 | ||
|     const float GELU_COEF_A    = 0.044715f;
 | ||
|     const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
 | ||
|     const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | ||
|                   item_ct1.get_local_id(2);
 | ||
| 
 | ||
|     if (i >= k) {
 | ||
|         return;
 | ||
|     }
 | ||
| 
 | ||
|     float xi = x[i];
 | ||
|     dst[i] = 0.5f * xi *
 | ||
|              (1.0f +
 | ||
|               sycl::tanh(SQRT_2_OVER_PI * xi * (1.0f + GELU_COEF_A * xi * xi)));
 | ||
| }
 | ||
| 
 | ||
| static void silu_f32(const float * x, float * dst, const int k,
 | ||
|                      const sycl::nd_item<3> &item_ct1) {
 | ||
|     const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | ||
|                   item_ct1.get_local_id(2);
 | ||
| 
 | ||
|     if (i >= k) {
 | ||
|         return;
 | ||
|     }
 | ||
|     dst[i] = x[i] / (1.0f + sycl::native::exp(-x[i]));
 | ||
| }
 | ||
| 
 | ||
| static void gelu_quick_f32(const float *x, float *dst, int k,
 | ||
|                            const sycl::nd_item<3> &item_ct1) {
 | ||
|     const float GELU_QUICK_COEF = -1.702f;
 | ||
|     const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | ||
|                   item_ct1.get_local_id(2);
 | ||
|     if (i >= k) {
 | ||
|         return;
 | ||
|     }
 | ||
|     dst[i] = x[i] * (1.0f / (1.0f + sycl::native::exp(GELU_QUICK_COEF * x[i])));
 | ||
| }
 | ||
| 
 | ||
| static void tanh_f32(const float *x, float *dst, int k,
 | ||
|                      const sycl::nd_item<3> &item_ct1) {
 | ||
|     const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | ||
|                   item_ct1.get_local_id(2);
 | ||
|     if (i >= k) {
 | ||
|         return;
 | ||
|     }
 | ||
|     dst[i] = sycl::tanh((float)(x[i]));
 | ||
| }
 | ||
| 
 | ||
| static void relu_f32(const float * x, float * dst, const int k,
 | ||
|                      const sycl::nd_item<3> &item_ct1) {
 | ||
|     const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | ||
|                   item_ct1.get_local_id(2);
 | ||
| 
 | ||
|     if (i >= k) {
 | ||
|         return;
 | ||
|     }
 | ||
|     dst[i] = sycl::fmax((float)(x[i]), (float)0);
 | ||
| }
 | ||
| 
 | ||
| static void hardsigmoid_f32(const float * x, float * dst, const int k,
 | ||
|                             const sycl::nd_item<3> &item_ct1) {
 | ||
|     const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | ||
|                   item_ct1.get_local_id(2);
 | ||
| 
 | ||
|     if (i >= k) {
 | ||
|         return;
 | ||
|     }
 | ||
|     dst[i] = sycl::fmin(1.0f, sycl::fmax(0.0f, (x[i] + 3.0f) / 6.0f));
 | ||
| }
 | ||
| 
 | ||
| static void hardswish_f32(const float * x, float * dst, const int k,
 | ||
|                           const sycl::nd_item<3> &item_ct1) {
 | ||
|     const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | ||
|                   item_ct1.get_local_id(2);
 | ||
| 
 | ||
|     if (i >= k) {
 | ||
|         return;
 | ||
|     }
 | ||
|     dst[i] = x[i] * sycl::fmin(1.0f, sycl::fmax(0.0f, (x[i] + 3.0f) / 6.0f));
 | ||
| }
 | ||
| 
 | ||
| static void leaky_relu_f32(const float *x, float *dst, const int k, const float negative_slope,
 | ||
|                            const sycl::nd_item<3> &item_ct1) {
 | ||
|     const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | ||
|                   item_ct1.get_local_id(2);
 | ||
|     if (i >= k) {
 | ||
|         return;
 | ||
|     }
 | ||
|     dst[i] = sycl::fmax((float)(x[i]), (float)0) +
 | ||
|              sycl::fmin((float)(x[i]), 0.0f) * negative_slope;
 | ||
| }
 | ||
| 
 | ||
| static void sqr_f32(const float * x, float * dst, const int k,
 | ||
|                     const sycl::nd_item<3> &item_ct1) {
 | ||
|     const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | ||
|                   item_ct1.get_local_id(2);
 | ||
| 
 | ||
|     if (i >= k) {
 | ||
|         return;
 | ||
|     }
 | ||
|     dst[i] = x[i] * x[i];
 | ||
| }
 | ||
| 
 | ||
| static void norm_f32(const float * x, float * dst, const int ncols, const float eps,
 | ||
|                      const sycl::nd_item<3> &item_ct1, sycl::float2 *s_sum, int block_size) {
 | ||
|     const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
 | ||
|                     item_ct1.get_local_id(1);
 | ||
|     const int tid = item_ct1.get_local_id(2);
 | ||
| 
 | ||
|     sycl::float2 mean_var = sycl::float2(0.f, 0.f);
 | ||
| 
 | ||
|     for (int col = tid; col < ncols; col += block_size) {
 | ||
|         const float xi = x[row*ncols + col];
 | ||
|         mean_var.x() += xi;
 | ||
|         mean_var.y() += xi * xi;
 | ||
|     }
 | ||
| 
 | ||
|     // sum up partial sums
 | ||
|     mean_var = warp_reduce_sum(mean_var, item_ct1);
 | ||
|     if (block_size > WARP_SIZE) {
 | ||
| 
 | ||
|         int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
 | ||
|         int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
 | ||
|         if (lane_id == 0) {
 | ||
|             s_sum[warp_id] = mean_var;
 | ||
|         }
 | ||
|         /*
 | ||
|         DPCT1118:0: SYCL group functions and algorithms must be encountered in
 | ||
|         converged control flow. You may need to adjust the code.
 | ||
|         */
 | ||
|         item_ct1.barrier(sycl::access::fence_space::local_space);
 | ||
|         mean_var = s_sum[lane_id];
 | ||
|         mean_var = warp_reduce_sum(mean_var, item_ct1);
 | ||
|     }
 | ||
| 
 | ||
|     const float mean = mean_var.x() / ncols;
 | ||
|     const float var = mean_var.y() / ncols - mean * mean;
 | ||
|     const float inv_std = sycl::rsqrt(var + eps);
 | ||
| 
 | ||
|     for (int col = tid; col < ncols; col += block_size) {
 | ||
|         dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void concat_f32(const float  *x,const float  *y, float *dst, const int ne0, const int ne02,
 | ||
|                        const sycl::nd_item<3> &item_ct1) {
 | ||
|     int nidx = item_ct1.get_local_id(2) +
 | ||
|                item_ct1.get_group(2) * item_ct1.get_local_range(2);
 | ||
|     if (nidx >= ne0) {
 | ||
|         return;
 | ||
|     }
 | ||
|     // operation
 | ||
|     int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
 | ||
|                      item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
 | ||
|     if (item_ct1.get_group(0) < ne02) { // src0
 | ||
|         int offset_src =
 | ||
|             nidx + item_ct1.get_group(1) * ne0 +
 | ||
|             item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
 | ||
|             dst[offset_dst] = x[offset_src];
 | ||
|     } else {
 | ||
|         int offset_src =
 | ||
|             nidx + item_ct1.get_group(1) * ne0 +
 | ||
|             (item_ct1.get_group(0) - ne02) * ne0 * item_ct1.get_group_range(1);
 | ||
|             dst[offset_dst] = y[offset_src];
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void upscale_f32(const float  *x, float *dst, const int nb00, const int nb01,
 | ||
|                         const int nb02, const int nb03, const int ne10, const int ne11,
 | ||
|                         const int ne12, const int ne13, const float sf0, const float sf1,
 | ||
|                         const float sf2, const float sf3, const sycl::nd_item<1> &item_ct1) {
 | ||
|     int index = item_ct1.get_local_id(0) +
 | ||
|                item_ct1.get_group(0) * item_ct1.get_local_range(0);
 | ||
|     if (index >= ne10 * ne11 * ne12 * ne13) {
 | ||
|         return;
 | ||
|     }
 | ||
|     // operation
 | ||
|     int i10 = index % ne10;
 | ||
|     int i11 = (index / ne10) % ne11;
 | ||
|     int i12 = (index / (ne10 * ne11)) % ne12;
 | ||
|     int i13 = (index / (ne10 * ne11 * ne12)) % ne13;
 | ||
| 
 | ||
|     int i00 = i10 / sf0;
 | ||
|     int i01 = i11 / sf1;
 | ||
|     int i02 = i12 / sf2;
 | ||
|     int i03 = i13 / sf3;
 | ||
| 
 | ||
|     dst[index] = *(float *)((char *)x + i03 * nb03 + i02 * nb02 + i01 * nb01 + i00 * nb00);
 | ||
| }
 | ||
| 
 | ||
| static void pad_f32(const float  *x, float *dst, const int ne0, const int ne00, const int ne01, const int ne02,
 | ||
|                     const sycl::nd_item<3> &item_ct1) {
 | ||
|     int nidx = item_ct1.get_local_id(2) +
 | ||
|                item_ct1.get_group(2) * item_ct1.get_local_range(2);
 | ||
|     if (nidx >= ne0) {
 | ||
|         return;
 | ||
|     }
 | ||
| 
 | ||
|     // operation
 | ||
|     int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
 | ||
|                      item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
 | ||
|     if (nidx < ne00 && item_ct1.get_group(1) < ne01 &&
 | ||
|         item_ct1.get_group(0) < ne02) {
 | ||
|         int offset_src = nidx + item_ct1.get_group(1) * ne00 +
 | ||
|                          item_ct1.get_group(0) * ne00 * ne01;
 | ||
|             dst[offset_dst] = x[offset_src];
 | ||
|     } else {
 | ||
|         dst[offset_dst] = 0.0f;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps,
 | ||
|                            const sycl::nd_item<3> &item_ct1, float *s_sum, int block_size) {
 | ||
|     int start = item_ct1.get_group(2) * group_size;
 | ||
|     int end = start + group_size;
 | ||
| 
 | ||
|     start += item_ct1.get_local_id(2);
 | ||
| 
 | ||
|     if (end >= ne_elements) {
 | ||
|         end = ne_elements;
 | ||
|     }
 | ||
| 
 | ||
|     float tmp = 0.0f; // partial sum for thread in warp
 | ||
| 
 | ||
|     for (int j = start; j < end; j += block_size) {
 | ||
|         tmp += x[j];
 | ||
|     }
 | ||
| 
 | ||
|     tmp = warp_reduce_sum(tmp, item_ct1);
 | ||
|     if (block_size > WARP_SIZE) {
 | ||
| 
 | ||
|         int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
 | ||
|         int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
 | ||
|         if (lane_id == 0) {
 | ||
|             s_sum[warp_id] = tmp;
 | ||
|         }
 | ||
|         /*
 | ||
|         DPCT1118:1: SYCL group functions and algorithms must be encountered in
 | ||
|         converged control flow. You may need to adjust the code.
 | ||
|         */
 | ||
|         /*
 | ||
|         DPCT1065:54: Consider replacing sycl::nd_item::barrier() with
 | ||
|         sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
 | ||
|         better performance if there is no access to global memory.
 | ||
|         */
 | ||
|         item_ct1.barrier();
 | ||
|         tmp = s_sum[lane_id];
 | ||
|         tmp = warp_reduce_sum(tmp, item_ct1);
 | ||
|     }
 | ||
| 
 | ||
|     float mean = tmp / group_size;
 | ||
|     tmp = 0.0f;
 | ||
| 
 | ||
|     for (int j = start; j < end; j += block_size) {
 | ||
|         float xi = x[j] - mean;
 | ||
|         dst[j] = xi;
 | ||
|         tmp += xi * xi;
 | ||
|     }
 | ||
| 
 | ||
|     tmp = warp_reduce_sum(tmp, item_ct1);
 | ||
|     if (block_size > WARP_SIZE) {
 | ||
| 
 | ||
|         int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
 | ||
|         int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
 | ||
|         if (lane_id == 0) {
 | ||
|             s_sum[warp_id] = tmp;
 | ||
|         }
 | ||
|         /*
 | ||
|         DPCT1118:2: SYCL group functions and algorithms must be encountered in
 | ||
|         converged control flow. You may need to adjust the code.
 | ||
|         */
 | ||
|         /*
 | ||
|         DPCT1065:55: Consider replacing sycl::nd_item::barrier() with
 | ||
|         sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
 | ||
|         better performance if there is no access to global memory.
 | ||
|         */
 | ||
|         item_ct1.barrier();
 | ||
|         tmp = s_sum[lane_id];
 | ||
|         tmp = warp_reduce_sum(tmp, item_ct1);
 | ||
|     }
 | ||
| 
 | ||
|     float variance = tmp / group_size;
 | ||
|     float scale = sycl::rsqrt(variance + eps);
 | ||
|     for (int j = start; j < end; j += block_size) {
 | ||
|         dst[j] *= scale;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps,
 | ||
|                          const sycl::nd_item<3> &item_ct1, float *s_sum, int block_size) {
 | ||
|     const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
 | ||
|                     item_ct1.get_local_id(1);
 | ||
|     const int tid = item_ct1.get_local_id(2);
 | ||
| 
 | ||
|     float tmp = 0.0f; // partial sum for thread in warp
 | ||
| 
 | ||
|     for (int col = tid; col < ncols; col += block_size) {
 | ||
|         const float xi = x[row*ncols + col];
 | ||
|         tmp += xi * xi;
 | ||
|     }
 | ||
| 
 | ||
|     // sum up partial sums
 | ||
|     tmp = warp_reduce_sum(tmp, item_ct1);
 | ||
|     if (block_size > WARP_SIZE) {
 | ||
| 
 | ||
|         int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
 | ||
|         int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
 | ||
|         if (lane_id == 0) {
 | ||
|             s_sum[warp_id] = tmp;
 | ||
|         }
 | ||
|         /*
 | ||
|         DPCT1118:3: SYCL group functions and algorithms must be encountered in
 | ||
|         converged control flow. You may need to adjust the code.
 | ||
|         */
 | ||
|         item_ct1.barrier(sycl::access::fence_space::local_space);
 | ||
|         tmp = s_sum[lane_id];
 | ||
|         tmp = warp_reduce_sum(tmp, item_ct1);
 | ||
|     }
 | ||
| 
 | ||
|     const float mean = tmp / ncols;
 | ||
|     const float scale = sycl::rsqrt(mean + eps);
 | ||
| 
 | ||
|     for (int col = tid; col < ncols; col += block_size) {
 | ||
|         dst[row*ncols + col] = scale * x[row*ncols + col];
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded,
 | ||
|                           const sycl::nd_item<3> &item_ct1) {
 | ||
|     const int ix = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | ||
|                    item_ct1.get_local_id(2);
 | ||
| 
 | ||
|     if (ix >= kx_padded) {
 | ||
|         return;
 | ||
|     }
 | ||
| 
 | ||
|     const int iy = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
 | ||
|                    item_ct1.get_local_id(1);
 | ||
| 
 | ||
|     const int i_padded = iy*kx_padded + ix;
 | ||
| 
 | ||
|     block_q8_1 * y = (block_q8_1 *) vy;
 | ||
| 
 | ||
|     const int ib = i_padded / QK8_1; // block index
 | ||
|     const int iqs = i_padded % QK8_1; // quant index
 | ||
| 
 | ||
|     const float xi = ix < kx ? x[iy*kx + ix] : 0.0f;
 | ||
|     float amax = sycl::fabs((float)xi);
 | ||
|     float sum = xi;
 | ||
| 
 | ||
| #pragma unroll
 | ||
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | ||
|         amax = sycl::fmax(amax, dpct::permute_sub_group_by_xor(
 | ||
|                                     item_ct1.get_sub_group(), amax, mask));
 | ||
|         sum +=
 | ||
|             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), sum, mask);
 | ||
|     }
 | ||
| 
 | ||
|     const float d = amax / 127;
 | ||
|     const int8_t q = amax == 0.0f ? 0 : sycl::round(xi / d);
 | ||
| 
 | ||
|     y[ib].qs[iqs] = q;
 | ||
| 
 | ||
|     if (iqs > 0) {
 | ||
|         return;
 | ||
|     }
 | ||
| 
 | ||
|     reinterpret_cast<sycl::half &>(y[ib].ds.x()) = d;
 | ||
|     reinterpret_cast<sycl::half &>(y[ib].ds.y()) = sum;
 | ||
| }
 | ||
| 
 | ||
| template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
 | ||
| static void k_get_rows(
 | ||
|             const void * src0, const int32_t * src1, dst_t * dst,
 | ||
|             int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
 | ||
|             /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
 | ||
|             /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
 | ||
|             /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
 | ||
|             size_t s10, size_t s11, size_t s12,
 | ||
|             const sycl::nd_item<3> &item_ct1/*, size_t s13*/) {
 | ||
| 
 | ||
|     const int i00 = (item_ct1.get_group(2) * item_ct1.get_local_range(2) +
 | ||
|                      item_ct1.get_local_id(2)) *
 | ||
|                     2;
 | ||
|     const int i10 = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
 | ||
|                     item_ct1.get_local_id(1);
 | ||
|     const int i11 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
 | ||
|                      item_ct1.get_local_id(0)) /
 | ||
|                     ne12;
 | ||
|     const int i12 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
 | ||
|                      item_ct1.get_local_id(0)) %
 | ||
|                     ne12;
 | ||
| 
 | ||
|     if (i00 >= ne00) {
 | ||
|         return;
 | ||
|     }
 | ||
| 
 | ||
|     const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
 | ||
| 
 | ||
|     dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
 | ||
|     const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
 | ||
| 
 | ||
|     const int ib = i00/qk; // block index
 | ||
|     const int iqs = (i00%qk)/qr; // quant index
 | ||
|     const int iybs = i00 - i00%qk; // dst block start index
 | ||
|     const int y_offset = qr == 1 ? 1 : qk/2;
 | ||
| 
 | ||
|     // dequantize
 | ||
|     dfloat2 v;
 | ||
|     dequantize_kernel(src0_row, ib, iqs, v);
 | ||
| 
 | ||
|     dst_row[iybs + iqs + 0] = v.x();
 | ||
|     dst_row[iybs + iqs + y_offset] = v.y();
 | ||
| }
 | ||
| 
 | ||
| template<typename src0_t, typename dst_t>
 | ||
| static void k_get_rows_float(
 | ||
|             const src0_t * src0, const int32_t * src1, dst_t * dst,
 | ||
|             int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
 | ||
|             /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
 | ||
|             /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
 | ||
|             /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
 | ||
|             size_t s10, size_t s11, size_t s12,
 | ||
|             const sycl::nd_item<3> &item_ct1/*, size_t s13*/) {
 | ||
| 
 | ||
|     const int i00 = item_ct1.get_group(2) * item_ct1.get_local_range(2) +
 | ||
|                     item_ct1.get_local_id(2);
 | ||
|     const int i10 = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
 | ||
|                     item_ct1.get_local_id(1);
 | ||
|     const int i11 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
 | ||
|                      item_ct1.get_local_id(0)) /
 | ||
|                     ne12;
 | ||
|     const int i12 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
 | ||
|                      item_ct1.get_local_id(0)) %
 | ||
|                     ne12;
 | ||
| 
 | ||
|     if (i00 >= ne00) {
 | ||
|         return;
 | ||
|     }
 | ||
| 
 | ||
|     const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
 | ||
| 
 | ||
|     dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
 | ||
|     const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
 | ||
| 
 | ||
|     dst_row[i00] = src0_row[i00];
 | ||
| }
 | ||
| 
 | ||
| static void mul_mat_p021_f16_f32(
 | ||
|     const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
 | ||
|     const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y,
 | ||
|     const sycl::nd_item<3> &item_ct1) {
 | ||
| 
 | ||
|     const sycl::half *x = (const sycl::half *)vx;
 | ||
| 
 | ||
|     const int row_x = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
 | ||
|                       item_ct1.get_local_id(1);
 | ||
|     const int channel = item_ct1.get_local_range(0) * item_ct1.get_group(0) +
 | ||
|                         item_ct1.get_local_id(0);
 | ||
|     const int channel_x = channel / (nchannels_y / nchannels_x);
 | ||
| 
 | ||
|     const int nrows_y = ncols_x;
 | ||
|     const int nrows_dst = nrows_x;
 | ||
|     const int row_dst = row_x;
 | ||
| 
 | ||
|     float tmp = 0.0f;
 | ||
| 
 | ||
|     for (int col_x0 = 0; col_x0 < ncols_x;
 | ||
|          col_x0 += item_ct1.get_local_range(2)) {
 | ||
|         const int col_x = col_x0 + item_ct1.get_local_id(2);
 | ||
| 
 | ||
|         if (col_x >= ncols_x) {
 | ||
|             break;
 | ||
|         }
 | ||
| 
 | ||
|         // x is transposed and permuted
 | ||
|         const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
 | ||
|         const float xi =
 | ||
|             sycl::vec<sycl::half, 1>(x[ix])
 | ||
|                 .convert<float, sycl::rounding_mode::automatic>()[0];
 | ||
| 
 | ||
|         const int row_y = col_x;
 | ||
| 
 | ||
| 
 | ||
|         // y is not transposed but permuted
 | ||
|         const int iy = channel*nrows_y + row_y;
 | ||
| 
 | ||
|         tmp += xi * y[iy];
 | ||
|     }
 | ||
| 
 | ||
|     // dst is not transposed and not permuted
 | ||
|     const int idst = channel*nrows_dst + row_dst;
 | ||
| 
 | ||
|     // sum up partial sums and write back result
 | ||
| #pragma unroll
 | ||
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | ||
|         tmp +=
 | ||
|             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
 | ||
|     }
 | ||
| 
 | ||
|     if (item_ct1.get_local_id(2) == 0) {
 | ||
|         dst[idst] = tmp;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
 | ||
|     const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
 | ||
|     const int row_stride_x, const int channel_stride_x, const int channel_x_divisor,
 | ||
|     const sycl::nd_item<3> &item_ct1) {
 | ||
| 
 | ||
|     const sycl::half *x = (const sycl::half *)vx;
 | ||
| 
 | ||
|     const int row_x = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
 | ||
|                       item_ct1.get_local_id(1);
 | ||
|     const int channel = item_ct1.get_local_range(0) * item_ct1.get_group(0) +
 | ||
|                         item_ct1.get_local_id(0);
 | ||
|     const int channel_x = channel / channel_x_divisor;
 | ||
| 
 | ||
|     const int nrows_y   = ncols_x;
 | ||
|     const int nrows_dst = nrows_x;
 | ||
|     const int row_dst   = row_x;
 | ||
| 
 | ||
|     const int idst = channel*nrows_dst + row_dst;
 | ||
| 
 | ||
|     float tmp = 0.0f;
 | ||
| 
 | ||
|     for (int col_x0 = 0; col_x0 < ncols_x;
 | ||
|          col_x0 += item_ct1.get_local_range(2)) {
 | ||
|         const int col_x = col_x0 + item_ct1.get_local_id(2);
 | ||
| 
 | ||
|         if (col_x >= ncols_x) {
 | ||
|             break;
 | ||
|         }
 | ||
| 
 | ||
|         const int row_y = col_x;
 | ||
| 
 | ||
|         const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
 | ||
|         const int iy = channel*nrows_y + row_y;
 | ||
| 
 | ||
|         const float xi =
 | ||
|             sycl::vec<sycl::half, 1>(x[ix])
 | ||
|                 .convert<float, sycl::rounding_mode::automatic>()[0];
 | ||
| 
 | ||
|         tmp += xi * y[iy];
 | ||
|     }
 | ||
| 
 | ||
|     // sum up partial sums and write back result
 | ||
| #pragma unroll
 | ||
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | ||
|         tmp +=
 | ||
|             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
 | ||
|     }
 | ||
| 
 | ||
|     if (item_ct1.get_local_id(2) == 0) {
 | ||
|         dst[idst] = tmp;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void cpy_1_f32_f32(const char * cxi, char * cdsti) {
 | ||
|     const float * xi = (const float *) cxi;
 | ||
|     float * dsti = (float *) cdsti;
 | ||
| 
 | ||
|     *dsti = *xi;
 | ||
| }
 | ||
| 
 | ||
| static void cpy_1_f32_f16(const char * cxi, char * cdsti) {
 | ||
|     const float * xi = (const float *) cxi;
 | ||
|     sycl::half *dsti = (sycl::half *)cdsti;
 | ||
| 
 | ||
|     *dsti = sycl::vec<float, 1>(*xi)
 | ||
|                 .convert<sycl::half, sycl::rounding_mode::automatic>()[0];
 | ||
| }
 | ||
| 
 | ||
| static void cpy_1_f16_f16(const char * cxi, char * cdsti) {
 | ||
|     const sycl::half *xi = (const sycl::half *)cxi;
 | ||
|     sycl::half *dsti = (sycl::half *)cdsti;
 | ||
| 
 | ||
|     *dsti = *xi;
 | ||
| }
 | ||
| 
 | ||
| static void cpy_1_f16_f32(const char * cxi, char * cdsti) {
 | ||
|     const sycl::half *xi = (const sycl::half *)cxi;
 | ||
|     float * dsti = (float *) cdsti;
 | ||
| 
 | ||
|     *dsti = *xi;
 | ||
| }
 | ||
| 
 | ||
| static void cpy_1_i16_i16(const char * cxi, char * cdsti) {
 | ||
|     const int16_t *xi = (const int16_t *)cxi;
 | ||
|     int16_t *dsti = (int16_t *)cdsti;
 | ||
| 
 | ||
|     *dsti = *xi;
 | ||
| }
 | ||
| 
 | ||
| static void cpy_1_i32_i32(const char * cxi, char * cdsti) {
 | ||
|     const int32_t *xi = (const int32_t *)cxi;
 | ||
|     int32_t *dsti = (int32_t *)cdsti;
 | ||
| 
 | ||
|     *dsti = *xi;
 | ||
| }
 | ||
| 
 | ||
| template <cpy_kernel_t cpy_1>
 | ||
| static void cpy_f32_f16(const char * cx, char * cdst, const int ne,
 | ||
|                         const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
 | ||
|                         const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
 | ||
|                         const int nb12, const int nb13, const sycl::nd_item<3> &item_ct1) {
 | ||
|     const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | ||
|                   item_ct1.get_local_id(2);
 | ||
| 
 | ||
|     if (i >= ne) {
 | ||
|         return;
 | ||
|     }
 | ||
| 
 | ||
|     // determine indices i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
 | ||
|     // then combine those indices with the corresponding byte offsets to get the total offsets
 | ||
|     const int i03 = i/(ne00 * ne01 * ne02);
 | ||
|     const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
 | ||
|     const int i01 = (i - i03*ne00*ne01*ne02  -  i02*ne01*ne00) / ne00;
 | ||
|     const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
 | ||
|     const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
 | ||
| 
 | ||
|     const int i13 = i/(ne10 * ne11 * ne12);
 | ||
|     const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
 | ||
|     const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
 | ||
|     const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
 | ||
|     const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
 | ||
| 
 | ||
|     cpy_1(cx + x_offset, cdst + dst_offset);
 | ||
| }
 | ||
| 
 | ||
| static void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
 | ||
|     const float * xi = (const float *) cxi;
 | ||
|     block_q8_0 * dsti = (block_q8_0 *) cdsti;
 | ||
| 
 | ||
|     float amax = 0.0f; // absolute max
 | ||
| 
 | ||
|     for (int j = 0; j < QK8_0; j++) {
 | ||
|         const float v = xi[j];
 | ||
|         amax = sycl::fmax(amax, sycl::fabs((float)v));
 | ||
|     }
 | ||
| 
 | ||
|     const float d = amax / ((1 << 7) - 1);
 | ||
|     const float id = d ? 1.0f/d : 0.0f;
 | ||
| 
 | ||
|     dsti->d = d;
 | ||
| 
 | ||
|     for (int j = 0; j < QK8_0; ++j) {
 | ||
|         const float x0 = xi[j]*id;
 | ||
| 
 | ||
|         dsti->qs[j] = sycl::round((float)x0);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
 | ||
|     const float * xi = (const float *) cxi;
 | ||
|     block_q4_0 * dsti = (block_q4_0 *) cdsti;
 | ||
| 
 | ||
|     float amax = 0.0f;
 | ||
|     float vmax = 0.0f;
 | ||
| 
 | ||
|     for (int j = 0; j < QK4_0; ++j) {
 | ||
|         const float v = xi[j];
 | ||
|         if (amax < sycl::fabs((float)v)) {
 | ||
|             amax = sycl::fabs((float)v);
 | ||
|             vmax = v;
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     const float d  = vmax / -8;
 | ||
|     const float id = d ? 1.0f/d : 0.0f;
 | ||
| 
 | ||
|     dsti->d = d;
 | ||
| 
 | ||
|     for (int j = 0; j < QK4_0/2; ++j) {
 | ||
|         const float x0 = xi[0       + j]*id;
 | ||
|         const float x1 = xi[QK4_0/2 + j]*id;
 | ||
| 
 | ||
|         const uint8_t xi0 = dpct::min(15, (int8_t)(x0 + 8.5f));
 | ||
|         const uint8_t xi1 = dpct::min(15, (int8_t)(x1 + 8.5f));
 | ||
| 
 | ||
|         dsti->qs[j]  = xi0;
 | ||
|         dsti->qs[j] |= xi1 << 4;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
 | ||
|     const float * xi = (const float *) cxi;
 | ||
|     block_q4_1 * dsti = (block_q4_1 *) cdsti;
 | ||
| 
 | ||
|     float vmin = FLT_MAX;
 | ||
|     float vmax = -FLT_MAX;
 | ||
| 
 | ||
|     for (int j = 0; j < QK4_1; ++j) {
 | ||
|         const float v = xi[j];
 | ||
| 
 | ||
|         if (v < vmin) vmin = v;
 | ||
|         if (v > vmax) vmax = v;
 | ||
|     }
 | ||
| 
 | ||
|     const float d  = (vmax - vmin) / ((1 << 4) - 1);
 | ||
|     const float id = d ? 1.0f/d : 0.0f;
 | ||
| 
 | ||
|     dsti->dm.x() = d;
 | ||
|     dsti->dm.y() = vmin;
 | ||
| 
 | ||
|     for (int j = 0; j < QK4_1/2; ++j) {
 | ||
|         const float x0 = (xi[0       + j] - vmin)*id;
 | ||
|         const float x1 = (xi[QK4_1/2 + j] - vmin)*id;
 | ||
| 
 | ||
|         const uint8_t xi0 = dpct::min(15, (int8_t)(x0 + 0.5f));
 | ||
|         const uint8_t xi1 = dpct::min(15, (int8_t)(x1 + 0.5f));
 | ||
| 
 | ||
|         dsti->qs[j]  = xi0;
 | ||
|         dsti->qs[j] |= xi1 << 4;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| template <cpy_kernel_t cpy_blck, int qk>
 | ||
| static void cpy_f32_q(const char * cx, char * cdst, const int ne,
 | ||
|                       const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
 | ||
|                       const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
 | ||
|                       const int nb12, const int nb13, const sycl::nd_item<3> &item_ct1) {
 | ||
|     const int i = (item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | ||
|                    item_ct1.get_local_id(2)) *
 | ||
|                   qk;
 | ||
| 
 | ||
|     if (i >= ne) {
 | ||
|         return;
 | ||
|     }
 | ||
| 
 | ||
|     const int i03 = i/(ne00 * ne01 * ne02);
 | ||
|     const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
 | ||
|     const int i01 = (i - i03*ne00*ne01*ne02  -  i02*ne01*ne00) / ne00;
 | ||
|     const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
 | ||
|     const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
 | ||
| 
 | ||
|     const int i13 = i/(ne10 * ne11 * ne12);
 | ||
|     const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
 | ||
|     const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
 | ||
|     const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
 | ||
|     const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
 | ||
| 
 | ||
|     cpy_blck(cx + x_offset, cdst + dst_offset);
 | ||
| }
 | ||
| 
 | ||
| static float rope_yarn_ramp(const float low, const float high, const int i0) {
 | ||
|     const float y = (i0 / 2 - low) / sycl::max(0.001f, high - low);
 | ||
|     return 1.0f - sycl::min(1.0f, sycl::max(0.0f, y));
 | ||
| }
 | ||
| 
 | ||
| struct rope_corr_dims {
 | ||
|     float v[4];
 | ||
| };
 | ||
| 
 | ||
| // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
 | ||
| // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
 | ||
| static void rope_yarn(
 | ||
|     float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
 | ||
|     float * cos_theta, float * sin_theta
 | ||
| ) {
 | ||
|     // Get n-d rotational scaling corrected for extrapolation
 | ||
|     float theta_interp = freq_scale * theta_extrap;
 | ||
|     float theta = theta_interp;
 | ||
|     if (ext_factor != 0.0f) {
 | ||
|         float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
 | ||
|         theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
 | ||
| 
 | ||
|         // Get n-d magnitude scaling corrected for interpolation
 | ||
|         mscale *= 1.0f + 0.1f * sycl::log(1.0f / freq_scale);
 | ||
|     }
 | ||
|     *cos_theta = sycl::cos(theta) * mscale;
 | ||
|     *sin_theta = sycl::sin(theta) * mscale;
 | ||
| }
 | ||
| 
 | ||
| // rope == RoPE == rotary positional embedding
 | ||
| template<typename T, bool has_pos>
 | ||
| static void rope(
 | ||
|     const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
 | ||
|     float ext_factor, float attn_factor, rope_corr_dims corr_dims
 | ||
| ,
 | ||
|     const sycl::nd_item<3> &item_ct1) {
 | ||
|     const int col = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
 | ||
|                          item_ct1.get_local_id(1));
 | ||
| 
 | ||
|     if (col >= ncols) {
 | ||
|         return;
 | ||
|     }
 | ||
| 
 | ||
|     const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | ||
|                     item_ct1.get_local_id(2);
 | ||
|     const int i = row*ncols + col;
 | ||
|     const int i2 = row/p_delta_rows;
 | ||
| 
 | ||
|     const int p = has_pos ? pos[i2] : 0;
 | ||
|     const float theta_base = p * dpct::pow(freq_base, -float(col) / ncols);
 | ||
| 
 | ||
|     float cos_theta, sin_theta;
 | ||
|     rope_yarn(theta_base, freq_scale, corr_dims, col, ext_factor, attn_factor, &cos_theta, &sin_theta);
 | ||
| 
 | ||
|     const float x0 = x[i + 0];
 | ||
|     const float x1 = x[i + 1];
 | ||
| 
 | ||
|     dst[i + 0] = x0*cos_theta - x1*sin_theta;
 | ||
|     dst[i + 1] = x0*sin_theta + x1*cos_theta;
 | ||
| }
 | ||
| 
 | ||
| template<typename T, bool has_pos, bool has_freq_facs>
 | ||
| static void rope_neox(
 | ||
|     const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
 | ||
|     float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims,
 | ||
|     const float * freq_factors, const sycl::nd_item<3> &item_ct1) {
 | ||
|     const int col = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
 | ||
|                          item_ct1.get_local_id(1));
 | ||
| 
 | ||
|     if (col >= ncols) {
 | ||
|         return;
 | ||
|     }
 | ||
| 
 | ||
|     const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | ||
|                     item_ct1.get_local_id(2);
 | ||
|     const int ib = col / n_dims;
 | ||
|     const int ic = col % n_dims;
 | ||
| 
 | ||
|     if (ib > 0) {
 | ||
|         const int i = row*ncols + ib*n_dims + ic;
 | ||
| 
 | ||
|         dst[i + 0] = x[i + 0];
 | ||
|         dst[i + 1] = x[i + 1];
 | ||
| 
 | ||
|         return;
 | ||
|     }
 | ||
| 
 | ||
|     const int i  = row*ncols + ib*n_dims + ic/2;
 | ||
|     const int i2 = row/p_delta_rows;
 | ||
| 
 | ||
|     float cur_rot = inv_ndims * ic - ib;
 | ||
| 
 | ||
|     const int p = has_pos ? pos[i2] : 0;
 | ||
|     const float freq_factor = has_freq_facs ? freq_factors[ic/2] : 1.0f;
 | ||
| 
 | ||
|     const float theta_base =
 | ||
|         p * freq_scale * dpct::pow(theta_scale, col / 2.0f)/freq_factor;
 | ||
| 
 | ||
|     float cos_theta, sin_theta;
 | ||
|     rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
 | ||
| 
 | ||
|     const float x0 = x[i + 0];
 | ||
|     const float x1 = x[i + n_dims/2];
 | ||
| 
 | ||
|     dst[i + 0]        = x0*cos_theta - x1*sin_theta;
 | ||
|     dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
 | ||
| }
 | ||
| 
 | ||
| static void k_sum_rows_f32(const float * x, float * dst, const int ncols,
 | ||
|                            const sycl::nd_item<3> &item_ct1) {
 | ||
|     const int row = item_ct1.get_group(1);
 | ||
|     const int col = item_ct1.get_local_id(2);
 | ||
| 
 | ||
|     float sum = 0.0f;
 | ||
|     for (int i = col; i < ncols; i += item_ct1.get_local_range(2)) {
 | ||
|         sum += x[row * ncols + i];
 | ||
|     }
 | ||
| 
 | ||
|     sum = warp_reduce_sum(sum, item_ct1);
 | ||
| 
 | ||
|     if (col == 0) {
 | ||
|         dst[row] = sum;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| template<typename T>
 | ||
| static inline void ggml_sycl_swap(T & a, T & b) {
 | ||
|     T tmp = a;
 | ||
|     a = b;
 | ||
|     b = tmp;
 | ||
| }
 | ||
| 
 | ||
| template <ggml_sort_order order>
 | ||
| __dpct_inline__ static void
 | ||
| k_argsort_f32_i32(const float *x, int *dst, const int ncols, int ncols_pad,
 | ||
|                   const sycl::nd_item<3> &item_ct1, uint8_t *dpct_local) {
 | ||
|     // bitonic sort
 | ||
|     int col = item_ct1.get_local_id(2);
 | ||
|     int row = item_ct1.get_group(1);
 | ||
| 
 | ||
|     if (col >= ncols_pad) {
 | ||
|         return;
 | ||
|     }
 | ||
| 
 | ||
|     const float * x_row = x + row * ncols;
 | ||
|     auto dst_row = (int *)dpct_local;
 | ||
| 
 | ||
|     // initialize indices
 | ||
|     dst_row[col] = col;
 | ||
| 
 | ||
|     item_ct1.barrier(sycl::access::fence_space::local_space);
 | ||
| 
 | ||
|     for (int k = 2; k <= ncols_pad; k *= 2) {
 | ||
|         for (int j = k / 2; j > 0; j /= 2) {
 | ||
|             int ixj = col ^ j;
 | ||
|             if (ixj > col) {
 | ||
|                 if ((col & k) == 0) {
 | ||
|                     if (dst_row[col] >= ncols ||
 | ||
|                         (dst_row[ixj] < ncols && (order == GGML_SORT_ORDER_ASC ?
 | ||
|                             x_row[dst_row[col]] > x_row[dst_row[ixj]] :
 | ||
|                             x_row[dst_row[col]] < x_row[dst_row[ixj]]))
 | ||
|                     ) {
 | ||
|                         ggml_sycl_swap(dst_row[col], dst_row[ixj]);
 | ||
|                     }
 | ||
|                 } else {
 | ||
|                     if (dst_row[ixj] >= ncols ||
 | ||
|                         (dst_row[col] < ncols && (order == GGML_SORT_ORDER_ASC ?
 | ||
|                             x_row[dst_row[col]] < x_row[dst_row[ixj]] :
 | ||
|                             x_row[dst_row[col]] > x_row[dst_row[ixj]]))
 | ||
|                     ) {
 | ||
|                         ggml_sycl_swap(dst_row[col], dst_row[ixj]);
 | ||
|                     }
 | ||
|                 }
 | ||
|             }
 | ||
|             /*
 | ||
|             DPCT1118:1: SYCL group functions and algorithms must be encountered
 | ||
|             in converged control flow. You may need to adjust the code.
 | ||
|             */
 | ||
|             item_ct1.barrier(sycl::access::fence_space::local_space);
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     // copy the result to dst without the padding
 | ||
|     if (col < ncols) {
 | ||
|         dst[row * ncols + col] = dst_row[col];
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| static void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past,
 | ||
|                               const sycl::nd_item<3> &item_ct1) {
 | ||
|     const int col = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
 | ||
|                     item_ct1.get_local_id(1);
 | ||
|     const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | ||
|                     item_ct1.get_local_id(2);
 | ||
| 
 | ||
|     if (col >= ncols) {
 | ||
|         return;
 | ||
|     }
 | ||
| 
 | ||
|     const int i = row*ncols + col;
 | ||
|     //dst[i] = col > (n_past + row % rows_per_channel) ? -INFINITY : x[i];
 | ||
|     //dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
 | ||
|     dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| template <bool vals_smem, int ncols_template, int block_size_template>
 | ||
| static void soft_max_f32(const float * x, const float * mask, float * dst, const int ncols_par,
 | ||
|                          const int nrows_y, const float scale, const float max_bias, const float m0,
 | ||
|                          const float m1, uint32_t n_head_log2, const sycl::nd_item<3> &item_ct1, float *buf) {
 | ||
|     const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
 | ||
| 
 | ||
|     const int tid = item_ct1.get_local_id(2);
 | ||
|     const int rowx = item_ct1.get_group(2);
 | ||
|     const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension
 | ||
| 
 | ||
|     const int block_size = block_size_template == 0 ? item_ct1.get_local_range(2) : block_size_template;
 | ||
| 
 | ||
|     const int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
 | ||
|     const int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
 | ||
| 
 | ||
|     float slope = 1.0f;
 | ||
| 
 | ||
|     // ALiBi
 | ||
|     if (max_bias > 0.0f) {
 | ||
|         const uint32_t h = rowx/nrows_y; // head index
 | ||
| 
 | ||
|         const float base = h < n_head_log2 ? m0 : m1;
 | ||
|         const int   exp  = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
 | ||
| 
 | ||
|         slope = sycl::pow(base, float(exp));
 | ||
|     }
 | ||
| 
 | ||
|     float * vals = vals_smem ? buf + WARP_SIZE : dst + rowx*ncols;
 | ||
|     float max_val = -INFINITY;
 | ||
| 
 | ||
|     for (int col0 = 0; col0 < ncols; col0 += block_size) {
 | ||
|         const int col = col0 + tid;
 | ||
| 
 | ||
|         if (ncols_template == 0 && col >= ncols) {
 | ||
|             break;
 | ||
|         }
 | ||
| 
 | ||
|         const int ix = rowx*ncols + col;
 | ||
|         const int iy = rowy*ncols + col;
 | ||
| 
 | ||
|         const float val = x[ix]*scale + (mask ? slope*mask[iy] : 0.0f);
 | ||
| 
 | ||
|         vals[col] = val;
 | ||
|         max_val = sycl::max(max_val, val);
 | ||
|     }
 | ||
| 
 | ||
|     // find the max value in the block
 | ||
|     max_val = warp_reduce_max(max_val, item_ct1);
 | ||
|     if (block_size > WARP_SIZE) {
 | ||
|         if (warp_id == 0) {
 | ||
|             buf[lane_id] = -INFINITY;
 | ||
|         }
 | ||
|         item_ct1.barrier(sycl::access::fence_space::local_space);
 | ||
| 
 | ||
|         if (lane_id == 0) {
 | ||
|             buf[warp_id] = max_val;
 | ||
|         }
 | ||
|         item_ct1.barrier(sycl::access::fence_space::local_space);
 | ||
| 
 | ||
|         max_val = buf[lane_id];
 | ||
|         max_val = warp_reduce_max(max_val, item_ct1);
 | ||
|     }
 | ||
| 
 | ||
|     float tmp = 0.f;
 | ||
| 
 | ||
| #pragma unroll
 | ||
|     for (int col0 = 0; col0 < ncols; col0 += block_size) {
 | ||
|         const int col = col0 + tid;
 | ||
|                 if (ncols_template == 0 && col >= ncols) {
 | ||
|             break;
 | ||
|         }
 | ||
| 
 | ||
|         const float val = sycl::native::exp(vals[col] - max_val);
 | ||
|         tmp += val;
 | ||
|         vals[col] = val;
 | ||
|     }
 | ||
| 
 | ||
|     // find the sum of exps in the block
 | ||
|     tmp = warp_reduce_sum(tmp, item_ct1);
 | ||
|     if (block_size > WARP_SIZE) {
 | ||
|         item_ct1.barrier(sycl::access::fence_space::local_space);
 | ||
|         if (warp_id == 0) {
 | ||
|             buf[lane_id] = 0.f;
 | ||
|         }
 | ||
|         item_ct1.barrier(sycl::access::fence_space::local_space);
 | ||
| 
 | ||
|         if (lane_id == 0) {
 | ||
|             buf[warp_id] = tmp;
 | ||
|         }
 | ||
|         item_ct1.barrier(sycl::access::fence_space::local_space);
 | ||
| 
 | ||
|         tmp = buf[lane_id];
 | ||
|         tmp = warp_reduce_sum(tmp, item_ct1);
 | ||
|     }
 | ||
| 
 | ||
|     const float inv_sum = 1.f / tmp;
 | ||
| 
 | ||
| #pragma unroll
 | ||
|     for (int col0 = 0; col0 < ncols; col0 += block_size) {
 | ||
|         const int col = col0 + tid;
 | ||
| 
 | ||
|         if (ncols_template == 0 && col >= ncols) {
 | ||
|             return;
 | ||
|         }
 | ||
| 
 | ||
|         const int idst = rowx*ncols + col;
 | ||
|         dst[idst] = vals[col] * inv_sum;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void scale_f32(const float * x, float * dst, const float scale, const int k,
 | ||
|                       const sycl::nd_item<3> &item_ct1) {
 | ||
|     const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | ||
|                   item_ct1.get_local_id(2);
 | ||
| 
 | ||
|     if (i >= k) {
 | ||
|         return;
 | ||
|     }
 | ||
| 
 | ||
|     dst[i] = scale * x[i];
 | ||
| }
 | ||
| 
 | ||
| static void clamp_f32(const float * x, float * dst, const float min, const float max, const int k,
 | ||
|                       const sycl::nd_item<3> &item_ct1) {
 | ||
|     const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | ||
|                   item_ct1.get_local_id(2);
 | ||
| 
 | ||
|     if (i >= k) {
 | ||
|         return;
 | ||
|     }
 | ||
| 
 | ||
|     dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
 | ||
| }
 | ||
| 
 | ||
| template <typename T>
 | ||
| static void im2col_kernel(const float *x, T *dst, int offset_delta,
 | ||
|                            int IW, int IH, int OW, int KW, int KH,
 | ||
|                            int pelements, int CHW, int s0, int s1, int p0,
 | ||
|                            int p1, int d0, int d1,
 | ||
|                            const sycl::nd_item<3> &item_ct1) {
 | ||
|     const int i = item_ct1.get_local_id(2) +
 | ||
|                   item_ct1.get_group(2) * item_ct1.get_local_range(2);
 | ||
|     if (i >= pelements) {
 | ||
|         return;
 | ||
|     }
 | ||
| 
 | ||
|     const int ksize = OW * (KH > 1 ? KW : 1);
 | ||
|     const int kx = i / ksize;
 | ||
|     const int kd = kx * ksize;
 | ||
|     const int ky = (i - kd) / OW;
 | ||
|     const int ix = i % OW;
 | ||
| 
 | ||
|     const int64_t iiw = ix * s0 + kx * d0 - p0;
 | ||
|     const int64_t iih = item_ct1.get_group(1) * s1 + ky * d1 - p1;
 | ||
| 
 | ||
|     const int64_t offset_dst =
 | ||
|         (item_ct1.get_group(1) * OW + ix) * CHW +
 | ||
|         (item_ct1.get_group(0) * (KW * KH) + ky * KW + kx);
 | ||
| 
 | ||
|     if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
 | ||
|         dst[offset_dst] =
 | ||
|             sycl::vec<float, 1>(0.0f)
 | ||
|                 .convert<sycl::half, sycl::rounding_mode::automatic>()[0];
 | ||
|     } else {
 | ||
|         const int64_t offset_src = item_ct1.get_group(0) * offset_delta;
 | ||
|         dst[offset_dst] =
 | ||
|             sycl::vec<float, 1>(x[offset_src + iih * IW + iiw])
 | ||
|                 .convert<sycl::half, sycl::rounding_mode::automatic>()[0];
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| template <typename Ti, typename To>
 | ||
| static  void pool2d_nchw_kernel(
 | ||
|         const int ih, const int iw, const int oh, const int ow,
 | ||
|         const int kh, const int kw, const int sh, const int sw,
 | ||
|         const int ph, const int pw, const int parallel_elements,
 | ||
|         const Ti* src, To* dst, const enum ggml_op_pool op,
 | ||
|         const sycl::nd_item<3> &item_ct1) {
 | ||
|         int idx = item_ct1.get_local_id(2) +
 | ||
|                   item_ct1.get_group(2) * item_ct1.get_local_range(2);
 | ||
|         if (idx >= parallel_elements) {
 | ||
|             return;
 | ||
|         }
 | ||
| 
 | ||
|         const int I_HW = ih * iw;
 | ||
|         const int O_HW = oh * ow;
 | ||
|         const int nc = idx / O_HW;
 | ||
|         const int cur_oh = idx % O_HW / ow;
 | ||
|         const int cur_ow = idx % O_HW % ow;
 | ||
|         const Ti* i_ptr = src + nc * I_HW;
 | ||
|         To* o_ptr = dst + nc * O_HW;
 | ||
|         const int start_h = cur_oh * sh - ph;
 | ||
|         const int bh = sycl::max(0, start_h);
 | ||
|         const int eh = sycl::min(ih, start_h + kh);
 | ||
|         const int start_w = cur_ow * sw - pw;
 | ||
|         const int bw = sycl::max(0, start_w);
 | ||
|         const int ew = sycl::min(iw, start_w + kw);
 | ||
| 
 | ||
|         To res = 0;
 | ||
| 
 | ||
|         switch (op) {
 | ||
|             case GGML_OP_POOL_AVG: res = 0; break;
 | ||
|             case GGML_OP_POOL_MAX: res = -FLT_MAX; break;
 | ||
|         }
 | ||
| 
 | ||
|         for (int i = bh; i < eh; i += 1) {
 | ||
|             for (int j = bw; j < ew; j += 1) {
 | ||
| #if DPCT_COMPATIBILITY_TEMP >= 350
 | ||
|                 /*
 | ||
|                 DPCT1098:106: The '*' expression is used instead of the __ldg
 | ||
|                 call. These two expressions do not provide the exact same
 | ||
|                 functionality. Check the generated code for potential precision
 | ||
|                 and/or performance issues.
 | ||
|                 */
 | ||
|                 Ti cur = *(i_ptr + i * iw + j);
 | ||
| #else
 | ||
|                 Ti cur = i_ptr[i * iw + j];
 | ||
| #endif
 | ||
|                 switch (op) {
 | ||
|                     case GGML_OP_POOL_AVG: res += (cur / (kh * kw)); break;
 | ||
|                     case GGML_OP_POOL_MAX: res = sycl::max(res, (To)cur); break;
 | ||
|                 }
 | ||
|             }
 | ||
|         }
 | ||
|         o_ptr[cur_oh * ow + cur_ow] = res;
 | ||
| }
 | ||
| 
 | ||
| template <int qk, int qr, dequantize_kernel_t dq>
 | ||
| static void get_rows_sycl(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
 | ||
|                           ggml_tensor *dst, const void *src0_dd,
 | ||
|                           const int32_t *src1_dd, float *dst_dd,
 | ||
|                           queue_ptr stream) {
 | ||
| 
 | ||
|     GGML_TENSOR_BINARY_OP_LOCALS
 | ||
| 
 | ||
|     const sycl::range<3> block_dims(1, 1, SYCL_GET_ROWS_BLOCK_SIZE);
 | ||
|     const int block_num_x = (ne00 + 2*SYCL_GET_ROWS_BLOCK_SIZE - 1) / (2*SYCL_GET_ROWS_BLOCK_SIZE);
 | ||
|     const sycl::range<3> block_nums(ne11 * ne12, ne10, block_num_x);
 | ||
| 
 | ||
|     // strides in elements
 | ||
|     //const size_t s0 = nb0 / ggml_element_size(dst);
 | ||
|     const size_t s1 = nb1 / ggml_element_size(dst);
 | ||
|     const size_t s2 = nb2 / ggml_element_size(dst);
 | ||
|     const size_t s3 = nb3 / ggml_element_size(dst);
 | ||
| 
 | ||
|     const size_t s10 = nb10 / ggml_element_size(src1);
 | ||
|     const size_t s11 = nb11 / ggml_element_size(src1);
 | ||
|     const size_t s12 = nb12 / ggml_element_size(src1);
 | ||
|     //const size_t s13 = nb13 / ggml_element_size(src1);
 | ||
| 
 | ||
|     GGML_ASSERT(ne00 % 2 == 0);
 | ||
| 
 | ||
|     stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | ||
|                          [=](sycl::nd_item<3> item_ct1) {
 | ||
|                              k_get_rows<qk, qr, dq>(
 | ||
|                                  src0_dd, src1_dd, dst_dd, ne00, ne12, s1, s2,
 | ||
|                                  s3, nb01, nb02, nb03, s10, s11, s12, item_ct1);
 | ||
|                          });
 | ||
| 
 | ||
|     (void) dst;
 | ||
| }
 | ||
| 
 | ||
| template <typename src0_t>
 | ||
| static void get_rows_sycl_float(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
 | ||
|                                 const ggml_tensor *src1, ggml_tensor *dst,
 | ||
|                                 const src0_t *src0_dd, const int32_t *src1_dd,
 | ||
|                                 float *dst_dd, queue_ptr stream) {
 | ||
| 
 | ||
|     GGML_TENSOR_BINARY_OP_LOCALS
 | ||
| 
 | ||
|     const sycl::range<3> block_dims(1, 1, SYCL_GET_ROWS_BLOCK_SIZE);
 | ||
|     const int block_num_x = (ne00 + SYCL_GET_ROWS_BLOCK_SIZE - 1) / SYCL_GET_ROWS_BLOCK_SIZE;
 | ||
|     const sycl::range<3> block_nums(ne11 * ne12, ne10, block_num_x);
 | ||
| 
 | ||
|     // strides in elements
 | ||
|     //const size_t s0 = nb0 / ggml_element_size(dst);
 | ||
|     const size_t s1 = nb1 / ggml_element_size(dst);
 | ||
|     const size_t s2 = nb2 / ggml_element_size(dst);
 | ||
|     const size_t s3 = nb3 / ggml_element_size(dst);
 | ||
| 
 | ||
|     const size_t s10 = nb10 / ggml_element_size(src1);
 | ||
|     const size_t s11 = nb11 / ggml_element_size(src1);
 | ||
|     const size_t s12 = nb12 / ggml_element_size(src1);
 | ||
|     //const size_t s13 = nb13 / ggml_element_size(src1);
 | ||
| 
 | ||
|     {
 | ||
|         dpct::has_capability_or_fail(stream->get_device(),
 | ||
|                                      {sycl::aspect::fp16});
 | ||
| 
 | ||
|         stream->parallel_for(
 | ||
|             sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | ||
|             [=](sycl::nd_item<3> item_ct1) {
 | ||
|                 k_get_rows_float(src0_dd, src1_dd, dst_dd, ne00, ne12, s1, s2,
 | ||
|                                  s3, nb01, nb02, nb03, s10, s11, s12, item_ct1);
 | ||
|             });
 | ||
|     }
 | ||
| 
 | ||
|     (void) dst;
 | ||
| }
 | ||
| 
 | ||
| template<float (*bin_op)(const float, const float)>
 | ||
| struct bin_bcast_sycl {
 | ||
|     template <typename src0_t, typename src1_t, typename dst_t>
 | ||
|     void operator()(ggml_backend_sycl_context & ctx,
 | ||
|                     const struct ggml_tensor *src0,
 | ||
|                     const struct ggml_tensor *src1, struct ggml_tensor *dst,
 | ||
|                     const src0_t *src0_dd, const src1_t *src1_dd, dst_t *dst_dd,
 | ||
|                     queue_ptr stream) {
 | ||
| 
 | ||
|         GGML_TENSOR_BINARY_OP_LOCALS
 | ||
| 
 | ||
|         int nr0 = ne10/ne0;
 | ||
|         int nr1 = ne11/ne1;
 | ||
|         int nr2 = ne12/ne2;
 | ||
|         int nr3 = ne13/ne3;
 | ||
| 
 | ||
|         int nr[4] = { nr0, nr1, nr2, nr3 };
 | ||
| 
 | ||
|         // collapse dimensions until first broadcast dimension
 | ||
|         int64_t cne0[] = {ne0, ne1, ne2, ne3};
 | ||
|         int64_t cne1[] = {ne10, ne11, ne12, ne13};
 | ||
|         size_t cnb0[] = {nb0, nb1, nb2, nb3};
 | ||
|         size_t cnb1[] = {nb10, nb11, nb12, nb13};
 | ||
|         auto collapse = [](int64_t cne[]) {
 | ||
|             cne[0] *= cne[1];
 | ||
|             cne[1] = cne[2];
 | ||
|             cne[2] = cne[3];
 | ||
|             cne[3] = 1;
 | ||
|         };
 | ||
| 
 | ||
|         auto collapse_nb = [](size_t cnb[], int64_t cne[]) {
 | ||
|             cnb[1] *= cne[1];
 | ||
|             cnb[2] *= cne[2];
 | ||
|             cnb[3] *= cne[3];
 | ||
|         };
 | ||
| 
 | ||
|         for (int i = 0; i < 4; i++) {
 | ||
|             if (nr[i] != 1) {
 | ||
|                 break;
 | ||
|             }
 | ||
|             if (i > 0) {
 | ||
|                 collapse_nb(cnb0, cne0);
 | ||
|                 collapse_nb(cnb1, cne1);
 | ||
|                 collapse(cne0);
 | ||
|                 collapse(cne1);
 | ||
|             }
 | ||
|         }
 | ||
|         {
 | ||
|             int64_t ne0 = cne0[0];
 | ||
|             int64_t ne1 = cne0[1];
 | ||
|             int64_t ne2 = cne0[2];
 | ||
|             int64_t ne3 = cne0[3];
 | ||
| 
 | ||
|             int64_t ne10 = cne1[0];
 | ||
|             int64_t ne11 = cne1[1];
 | ||
|             int64_t ne12 = cne1[2];
 | ||
|             int64_t ne13 = cne1[3];
 | ||
| 
 | ||
|             size_t nb0 = cnb0[0];
 | ||
|             size_t nb1 = cnb0[1];
 | ||
|             size_t nb2 = cnb0[2];
 | ||
|             size_t nb3 = cnb0[3];
 | ||
| 
 | ||
|             size_t nb10 = cnb1[0];
 | ||
|             size_t nb11 = cnb1[1];
 | ||
|             size_t nb12 = cnb1[2];
 | ||
|             size_t nb13 = cnb1[3];
 | ||
| 
 | ||
|             size_t s0 = nb0 / sizeof(dst_t);
 | ||
|             size_t s1 = nb1 / sizeof(dst_t);
 | ||
|             size_t s2 = nb2 / sizeof(dst_t);
 | ||
|             size_t s3 = nb3 / sizeof(dst_t);
 | ||
| 
 | ||
|             size_t s10 = nb10 / sizeof(src1_t);
 | ||
|             size_t s11 = nb11 / sizeof(src1_t);
 | ||
|             size_t s12 = nb12 / sizeof(src1_t);
 | ||
|             size_t s13 = nb13 / sizeof(src1_t);
 | ||
| 
 | ||
|             GGML_ASSERT(s0 == 1);
 | ||
|             GGML_ASSERT(s10 == 1);
 | ||
| 
 | ||
|             const int block_size = 128;
 | ||
| 
 | ||
|             int64_t hne0 = std::max(ne0/2LL, 1LL);
 | ||
| 
 | ||
|             sycl::range<3> block_dims(1, 1, 1);
 | ||
|             block_dims[2] = std::min<unsigned int>(hne0, block_size);
 | ||
|             block_dims[1] = std::min<unsigned int>(
 | ||
|                 ne1, block_size / (unsigned int)block_dims[2]);
 | ||
|             block_dims[0] = std::min(
 | ||
|                 std::min<unsigned int>(
 | ||
|                     ne2 * ne3, block_size / (unsigned int)block_dims[2] /
 | ||
|                                    (unsigned int)block_dims[1]),
 | ||
|                 64U);
 | ||
| 
 | ||
|             sycl::range<3> block_nums(
 | ||
|                 (ne2 * ne3 + block_dims[0] - 1) / block_dims[0],
 | ||
|                 (ne1 + block_dims[1] - 1) / block_dims[1],
 | ||
|                 (hne0 + block_dims[2] - 1) / block_dims[2]);
 | ||
| 
 | ||
|             if (block_nums[0] > 65535) {
 | ||
|                 // this is the maximum number of blocks in z direction, fallback to 1D grid kernel
 | ||
|                 int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
 | ||
|                 {
 | ||
|                     dpct::has_capability_or_fail(stream->get_device(),
 | ||
|                                                  {sycl::aspect::fp16});
 | ||
| 
 | ||
|                     stream->parallel_for(
 | ||
|                         sycl::nd_range<3>(sycl::range<3>(1, 1, block_num) *
 | ||
|                                               sycl::range<3>(1, 1, block_size),
 | ||
|                                           sycl::range<3>(1, 1, block_size)),
 | ||
|                         [=](sycl::nd_item<3> item_ct1) {
 | ||
|                             k_bin_bcast_unravel<bin_op>(
 | ||
|                                 src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3,
 | ||
|                                 ne10, ne11, ne12, ne13, s1, s2, s3, s11, s12,
 | ||
|                                 s13, item_ct1);
 | ||
|                         });
 | ||
|                 }
 | ||
|             } else {
 | ||
|                 /*
 | ||
|                 DPCT1049:16: The work-group size passed to the SYCL kernel may
 | ||
|                 exceed the limit. To get the device limit, query
 | ||
|                 info::device::max_work_group_size. Adjust the work-group size if
 | ||
|                 needed.
 | ||
|                 */
 | ||
|                 dpct::has_capability_or_fail(stream->get_device(),
 | ||
|                                              {sycl::aspect::fp16});
 | ||
| 
 | ||
|                 stream->parallel_for(
 | ||
|                     sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | ||
|                     [=](sycl::nd_item<3> item_ct1) {
 | ||
|                         k_bin_bcast<bin_op>(src0_dd, src1_dd, dst_dd, ne0, ne1,
 | ||
|                                             ne2, ne3, ne10, ne11, ne12, ne13,
 | ||
|                                             s1, s2, s3, s11, s12, s13,
 | ||
|                                             item_ct1);
 | ||
|                     });
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
| };
 | ||
| 
 | ||
| static void acc_f32_sycl(const float *x, const float *y, float *dst,
 | ||
|                          const int n_elements, const int ne10, const int ne11,
 | ||
|                          const int ne12, const int nb1, const int nb2,
 | ||
|                          const int offset, queue_ptr stream) {
 | ||
|     int num_blocks = (n_elements + SYCL_ACC_BLOCK_SIZE - 1) / SYCL_ACC_BLOCK_SIZE;
 | ||
|     stream->parallel_for(
 | ||
|         sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | ||
|                               sycl::range<3>(1, 1, SYCL_ACC_BLOCK_SIZE),
 | ||
|                           sycl::range<3>(1, 1, SYCL_ACC_BLOCK_SIZE)),
 | ||
|         [=](sycl::nd_item<3> item_ct1) {
 | ||
|             acc_f32(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset,
 | ||
|                     item_ct1);
 | ||
|         });
 | ||
| }
 | ||
| 
 | ||
| static void gelu_f32_sycl(const float *x, float *dst, const int k,
 | ||
|                           queue_ptr stream) {
 | ||
|     const int num_blocks = (k + SYCL_GELU_BLOCK_SIZE - 1) / SYCL_GELU_BLOCK_SIZE;
 | ||
|     stream->parallel_for(
 | ||
|         sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | ||
|                               sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE),
 | ||
|                           sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE)),
 | ||
|         [=](sycl::nd_item<3> item_ct1) {
 | ||
|             gelu_f32(x, dst, k, item_ct1);
 | ||
|         });
 | ||
| }
 | ||
| 
 | ||
| static void silu_f32_sycl(const float *x, float *dst, const int k,
 | ||
|                           queue_ptr stream) {
 | ||
|     const int num_blocks = (k + SYCL_SILU_BLOCK_SIZE - 1) / SYCL_SILU_BLOCK_SIZE;
 | ||
|     stream->parallel_for(
 | ||
|         sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | ||
|                               sycl::range<3>(1, 1, SYCL_SILU_BLOCK_SIZE),
 | ||
|                           sycl::range<3>(1, 1, SYCL_SILU_BLOCK_SIZE)),
 | ||
|         [=](sycl::nd_item<3> item_ct1) {
 | ||
|             silu_f32(x, dst, k, item_ct1);
 | ||
|         });
 | ||
| }
 | ||
| 
 | ||
| static void gelu_quick_f32_sycl(const float *x, float *dst, const int k,
 | ||
|                                 queue_ptr stream) {
 | ||
|     const int num_blocks = (k + SYCL_GELU_BLOCK_SIZE - 1) / SYCL_GELU_BLOCK_SIZE;
 | ||
|     stream->parallel_for(
 | ||
|         sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | ||
|                               sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE),
 | ||
|                           sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE)),
 | ||
|         [=](sycl::nd_item<3> item_ct1) {
 | ||
|             gelu_quick_f32(x, dst, k, item_ct1);
 | ||
|         });
 | ||
| }
 | ||
| 
 | ||
| static void tanh_f32_sycl(const float *x, float *dst, const int k,
 | ||
|                           queue_ptr stream) {
 | ||
|     const int num_blocks = (k + SYCL_TANH_BLOCK_SIZE - 1) / SYCL_TANH_BLOCK_SIZE;
 | ||
|     stream->parallel_for(
 | ||
|         sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | ||
|                               sycl::range<3>(1, 1, SYCL_TANH_BLOCK_SIZE),
 | ||
|                           sycl::range<3>(1, 1, SYCL_TANH_BLOCK_SIZE)),
 | ||
|         [=](sycl::nd_item<3> item_ct1) {
 | ||
|             tanh_f32(x, dst, k, item_ct1);
 | ||
|         });
 | ||
| }
 | ||
| 
 | ||
| static void relu_f32_sycl(const float *x, float *dst, const int k,
 | ||
|                           queue_ptr stream) {
 | ||
|     const int num_blocks = (k + SYCL_RELU_BLOCK_SIZE - 1) / SYCL_RELU_BLOCK_SIZE;
 | ||
|     stream->parallel_for(
 | ||
|         sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | ||
|                               sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE),
 | ||
|                           sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE)),
 | ||
|         [=](sycl::nd_item<3> item_ct1) {
 | ||
|             relu_f32(x, dst, k, item_ct1);
 | ||
|         });
 | ||
| }
 | ||
| 
 | ||
| static void hardsigmoid_f32_sycl(const float *x, float *dst, const int k,
 | ||
|                                  queue_ptr stream) {
 | ||
|     const int num_blocks = (k + SYCL_HARDSIGMOID_BLOCK_SIZE - 1) / SYCL_HARDSIGMOID_BLOCK_SIZE;
 | ||
|     stream->parallel_for(
 | ||
|         sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | ||
|                               sycl::range<3>(1, 1, SYCL_HARDSIGMOID_BLOCK_SIZE),
 | ||
|                           sycl::range<3>(1, 1, SYCL_HARDSIGMOID_BLOCK_SIZE)),
 | ||
|         [=](sycl::nd_item<3> item_ct1) {
 | ||
|             hardsigmoid_f32(x, dst, k, item_ct1);
 | ||
|         });
 | ||
| }
 | ||
| 
 | ||
| static void hardswish_f32_sycl(const float *x, float *dst, const int k,
 | ||
|                                queue_ptr stream) {
 | ||
|     const int num_blocks = (k + SYCL_HARDSWISH_BLOCK_SIZE - 1) / SYCL_HARDSWISH_BLOCK_SIZE;
 | ||
|     stream->parallel_for(
 | ||
|         sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | ||
|                               sycl::range<3>(1, 1, SYCL_HARDSWISH_BLOCK_SIZE),
 | ||
|                           sycl::range<3>(1, 1, SYCL_HARDSWISH_BLOCK_SIZE)),
 | ||
|         [=](sycl::nd_item<3> item_ct1) {
 | ||
|             hardswish_f32(x, dst, k, item_ct1);
 | ||
|         });
 | ||
| }
 | ||
| 
 | ||
| static void leaky_relu_f32_sycl(const float *x, float *dst, const int k,
 | ||
|                                 const float negative_slope,
 | ||
|                                 queue_ptr stream) {
 | ||
|     const int num_blocks = (k + SYCL_RELU_BLOCK_SIZE - 1) / SYCL_RELU_BLOCK_SIZE;
 | ||
|     stream->parallel_for(
 | ||
|         sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | ||
|                               sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE),
 | ||
|                           sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE)),
 | ||
|         [=](sycl::nd_item<3> item_ct1) {
 | ||
|             leaky_relu_f32(x, dst, k, negative_slope, item_ct1);
 | ||
|         });
 | ||
| }
 | ||
| 
 | ||
| static void sqr_f32_sycl(const float *x, float *dst, const int k,
 | ||
|                          queue_ptr stream) {
 | ||
|     const int num_blocks = (k + SYCL_SQR_BLOCK_SIZE - 1) / SYCL_SQR_BLOCK_SIZE;
 | ||
|     stream->parallel_for(
 | ||
|         sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | ||
|                               sycl::range<3>(1, 1, SYCL_SQR_BLOCK_SIZE),
 | ||
|                           sycl::range<3>(1, 1, SYCL_SQR_BLOCK_SIZE)),
 | ||
|         [=](sycl::nd_item<3> item_ct1) {
 | ||
|             sqr_f32(x, dst, k, item_ct1);
 | ||
|         });
 | ||
| }
 | ||
| 
 | ||
| static void norm_f32_sycl(const float *x, float *dst, const int ncols,
 | ||
|                           const int nrows, const float eps,
 | ||
|                           queue_ptr stream) {
 | ||
|     GGML_ASSERT(ncols % WARP_SIZE == 0);
 | ||
|     if (ncols < 1024) {
 | ||
|         const sycl::range<3> block_dims(1, 1, WARP_SIZE);
 | ||
|         stream->submit([&](sycl::handler &cgh) {
 | ||
|             sycl::local_accessor<sycl::float2, 1> s_sum_acc_ct1(
 | ||
|                 sycl::range<1>(32), cgh);
 | ||
| 
 | ||
|             cgh.parallel_for(
 | ||
|                 sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
 | ||
|                                   block_dims),
 | ||
|                 [=](sycl::nd_item<3> item_ct1)
 | ||
|                     [[intel::reqd_sub_group_size(32)]] {
 | ||
|                         norm_f32(x, dst, ncols, eps, item_ct1,
 | ||
|                                             s_sum_acc_ct1.get_pointer(), WARP_SIZE);
 | ||
|                     });
 | ||
|         });
 | ||
|     } else {
 | ||
|         const int work_group_size = get_work_group_size(stream->get_device());
 | ||
|         const sycl::range<3> block_dims(1, 1, work_group_size);
 | ||
|         /*
 | ||
|         DPCT1049:17: The work-group size passed to the SYCL kernel may exceed
 | ||
|         the limit. To get the device limit, query
 | ||
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | ||
|         */
 | ||
|         stream->submit([&](sycl::handler &cgh) {
 | ||
|             sycl::local_accessor<sycl::float2, 1> s_sum_acc_ct1(
 | ||
|                 sycl::range<1>(32), cgh);
 | ||
| 
 | ||
|             cgh.parallel_for(
 | ||
|                 sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
 | ||
|                                   block_dims),
 | ||
|                 [=](sycl::nd_item<3> item_ct1)
 | ||
|                     [[intel::reqd_sub_group_size(32)]] {
 | ||
|                         norm_f32(x, dst, ncols, eps, item_ct1,
 | ||
|                                        s_sum_acc_ct1.get_pointer(), work_group_size);
 | ||
|                     });
 | ||
|         });
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void group_norm_f32_sycl(const float *x, float *dst,
 | ||
|                                 const int num_groups, const int group_size,
 | ||
|                                 const int ne_elements, queue_ptr stream) {
 | ||
|     static const float eps = 1e-6f;
 | ||
|     if (group_size < 1024) {
 | ||
|         const sycl::range<3> block_dims(1, 1, WARP_SIZE);
 | ||
|         stream->submit([&](sycl::handler &cgh) {
 | ||
|             sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
 | ||
|                                                          cgh);
 | ||
| 
 | ||
|             const float eps_ct4 = eps;
 | ||
| 
 | ||
|             cgh.parallel_for(
 | ||
|                 sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
 | ||
|                                   block_dims),
 | ||
|                 [=](sycl::nd_item<3> item_ct1)
 | ||
|                     [[intel::reqd_sub_group_size(32)]] {
 | ||
|                         group_norm_f32(
 | ||
|                             x, dst, group_size, ne_elements, eps_ct4, item_ct1,
 | ||
|                             s_sum_acc_ct1.get_pointer(), WARP_SIZE);
 | ||
|                     });
 | ||
|         });
 | ||
|     } else {
 | ||
|         const int work_group_size = get_work_group_size(stream->get_device());
 | ||
|         const sycl::range<3> block_dims(1, 1, work_group_size);
 | ||
|         /*
 | ||
|         DPCT1049:18: The work-group size passed to the SYCL kernel may exceed
 | ||
|         the limit. To get the device limit, query
 | ||
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | ||
|         */
 | ||
| 
 | ||
|         stream->submit([&](sycl::handler &cgh) {
 | ||
|             sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
 | ||
|                                                          cgh);
 | ||
| 
 | ||
|             const float eps_ct4 = eps;
 | ||
| 
 | ||
|             cgh.parallel_for(
 | ||
|                 sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
 | ||
|                                   block_dims),
 | ||
|                 [=](sycl::nd_item<3> item_ct1)
 | ||
|                     [[intel::reqd_sub_group_size(32)]] {
 | ||
|                         group_norm_f32(x, dst, group_size, ne_elements,
 | ||
|                                              eps_ct4, item_ct1,
 | ||
|                                              s_sum_acc_ct1.get_pointer(), work_group_size);
 | ||
|                     });
 | ||
|         });
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void concat_f32_sycl(const float *x, const float *y, float *dst,
 | ||
|                             const int ne0, int ne1, int ne2, int ne02,
 | ||
|                             queue_ptr stream) {
 | ||
|     int num_blocks = (ne0 + SYCL_CONCAT_BLOCK_SIZE - 1) / SYCL_CONCAT_BLOCK_SIZE;
 | ||
|     sycl::range<3> gridDim(ne2, ne1, num_blocks);
 | ||
|     stream->parallel_for(
 | ||
|         sycl::nd_range<3>(gridDim *
 | ||
|                               sycl::range<3>(1, 1, SYCL_CONCAT_BLOCK_SIZE),
 | ||
|                           sycl::range<3>(1, 1, SYCL_CONCAT_BLOCK_SIZE)),
 | ||
|         [=](sycl::nd_item<3> item_ct1) {
 | ||
|             concat_f32(x, y, dst, ne0, ne02, item_ct1);
 | ||
|         });
 | ||
| }
 | ||
| 
 | ||
| static void upscale_f32_sycl(const float *x, float *dst, const int nb00, const int nb01,
 | ||
|                              const int nb02, const int nb03, const int ne10, const int ne11,
 | ||
|                              const int ne12, const int ne13, const float sf0, const float sf1,
 | ||
|                              const float sf2, const float sf3, queue_ptr stream) {
 | ||
|     int dst_size = ne10 * ne11 * ne12 * ne13;
 | ||
|     int num_blocks = (dst_size + SYCL_UPSCALE_BLOCK_SIZE - 1) / SYCL_UPSCALE_BLOCK_SIZE;
 | ||
|     sycl::range<1> gridDim(num_blocks * SYCL_UPSCALE_BLOCK_SIZE);
 | ||
|     stream->parallel_for(
 | ||
|         sycl::nd_range<1>(gridDim, sycl::range<1>(SYCL_UPSCALE_BLOCK_SIZE)),
 | ||
|         [=](sycl::nd_item<1> item_ct1) {
 | ||
|             upscale_f32(x, dst, nb00, nb01, nb02, nb03, ne10, ne11, ne12, ne13, sf0, sf1, sf2, sf3, item_ct1);
 | ||
|         });
 | ||
| }
 | ||
| 
 | ||
| static void pad_f32_sycl(const float *x, float *dst, const int ne00,
 | ||
|                          const int ne01, const int ne02, const int ne0,
 | ||
|                          const int ne1, const int ne2, queue_ptr stream) {
 | ||
|     int num_blocks = (ne0 + SYCL_PAD_BLOCK_SIZE - 1) / SYCL_PAD_BLOCK_SIZE;
 | ||
|     sycl::range<3> gridDim(ne2, ne1, num_blocks);
 | ||
|     stream->parallel_for(
 | ||
|         sycl::nd_range<3>(gridDim * sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE),
 | ||
|                           sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE)),
 | ||
|         [=](sycl::nd_item<3> item_ct1) {
 | ||
|             pad_f32(x, dst, ne0, ne00, ne01, ne02, item_ct1);
 | ||
|         });
 | ||
| }
 | ||
| 
 | ||
| static void rms_norm_f32_sycl(const float *x, float *dst, const int ncols,
 | ||
|                               const int nrows, const float eps,
 | ||
|                               queue_ptr stream) {
 | ||
|     GGML_ASSERT(ncols % WARP_SIZE == 0);
 | ||
|     // printf("%s ncols=%d, nrows=%d, WARP_SIZE=%d\n", __func__, ncols, nrows, WARP_SIZE);
 | ||
|     if (ncols < 1024) {
 | ||
|         const sycl::range<3> block_dims(1, 1, WARP_SIZE);
 | ||
|         stream->submit([&](sycl::handler &cgh) {
 | ||
|             sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
 | ||
|                                                          cgh);
 | ||
| 
 | ||
|             cgh.parallel_for(
 | ||
|                 sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
 | ||
|                                   block_dims),
 | ||
|                 [=](sycl::nd_item<3> item_ct1)
 | ||
|                     [[intel::reqd_sub_group_size(32)]] {
 | ||
|                         rms_norm_f32(x, dst, ncols, eps, item_ct1,
 | ||
|                                                 s_sum_acc_ct1.get_pointer(), WARP_SIZE);
 | ||
|                     });
 | ||
|         });
 | ||
|     } else {
 | ||
|         const int work_group_size = get_work_group_size(stream->get_device());
 | ||
|         const sycl::range<3> block_dims(1, 1, work_group_size);
 | ||
|         /*
 | ||
|         DPCT1049:19: The work-group size passed to the SYCL kernel may exceed
 | ||
|         the limit. To get the device limit, query
 | ||
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | ||
|         */
 | ||
|         stream->submit([&](sycl::handler &cgh) {
 | ||
|             sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
 | ||
|                                                          cgh);
 | ||
| 
 | ||
|             cgh.parallel_for(
 | ||
|                 sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
 | ||
|                                   block_dims),
 | ||
|                 [=](sycl::nd_item<3> item_ct1)
 | ||
|                     [[intel::reqd_sub_group_size(32)]] {
 | ||
|                         rms_norm_f32(x, dst, ncols, eps, item_ct1,
 | ||
|                                            s_sum_acc_ct1.get_pointer(), work_group_size);
 | ||
|                     });
 | ||
|         });
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void quantize_row_q8_1_sycl(const float *x, void *vy, const int kx,
 | ||
|                                    const int ky, const int kx_padded,
 | ||
|                                    queue_ptr stream) {
 | ||
|     const int block_num_x = (kx_padded + SYCL_QUANTIZE_BLOCK_SIZE - 1) / SYCL_QUANTIZE_BLOCK_SIZE;
 | ||
|     const sycl::range<3> num_blocks(1, ky, block_num_x);
 | ||
|     const sycl::range<3> block_size(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE);
 | ||
|     {
 | ||
|         dpct::has_capability_or_fail(stream->get_device(),
 | ||
|                                      {sycl::aspect::fp16});
 | ||
| 
 | ||
|         stream->parallel_for(
 | ||
|             sycl::nd_range<3>(num_blocks * block_size, block_size),
 | ||
|             [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
 | ||
|                 quantize_q8_1(x, vy, kx, kx_padded, item_ct1);
 | ||
|             });
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void ggml_mul_mat_p021_f16_f32_sycl(const void *vx, const float *y,
 | ||
|                                            float *dst, const int ncols_x,
 | ||
|                                            const int nrows_x,
 | ||
|                                            const int nchannels_x,
 | ||
|                                            const int nchannels_y,
 | ||
|                                            queue_ptr stream) {
 | ||
| 
 | ||
|     const sycl::range<3> block_nums(nchannels_y, nrows_x, 1);
 | ||
|     const sycl::range<3> block_dims(1, 1, WARP_SIZE);
 | ||
|     {
 | ||
|         dpct::has_capability_or_fail(stream->get_device(),
 | ||
|                                      {sycl::aspect::fp16});
 | ||
| 
 | ||
|         stream->parallel_for(
 | ||
|             sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | ||
|             [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
 | ||
|                 mul_mat_p021_f16_f32(vx, y, dst, ncols_x, nrows_x, nchannels_x,
 | ||
|                                      nchannels_y, item_ct1);
 | ||
|             });
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void ggml_mul_mat_vec_nc_f16_f32_sycl(
 | ||
|     const void *vx, const float *y, float *dst, const int ncols_x,
 | ||
|     const int nrows_x, const int row_stride_x, const int nchannels_x,
 | ||
|     const int nchannels_y, const int channel_stride_x, queue_ptr stream) {
 | ||
| 
 | ||
|     const sycl::range<3> block_nums(nchannels_y, nrows_x, 1);
 | ||
|     const sycl::range<3> block_dims(1, 1, WARP_SIZE);
 | ||
|     {
 | ||
|         dpct::has_capability_or_fail(stream->get_device(),
 | ||
|                                      {sycl::aspect::fp16});
 | ||
| 
 | ||
|         stream->parallel_for(
 | ||
|             sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | ||
|             [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
 | ||
|                 mul_mat_vec_nc_f16_f32(vx, y, dst, ncols_x, nrows_x,
 | ||
|                                        row_stride_x, channel_stride_x,
 | ||
|                                        nchannels_y / nchannels_x, item_ct1);
 | ||
|             });
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| ggml_cpy_f16_f32_sycl(const char *cx, char *cdst, const int ne, const int ne00,
 | ||
|                       const int ne01, const int ne02, const int nb00,
 | ||
|                       const int nb01, const int nb02, const int nb03,
 | ||
|                       const int ne10, const int ne11, const int ne12,
 | ||
|                       const int nb10, const int nb11, const int nb12,
 | ||
|                       const int nb13, queue_ptr stream) {
 | ||
| 
 | ||
|     const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
 | ||
|     {
 | ||
|         dpct::has_capability_or_fail(stream->get_device(),
 | ||
|                                      {sycl::aspect::fp16});
 | ||
| 
 | ||
|         stream->parallel_for(
 | ||
|             sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | ||
|                                   sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
 | ||
|                               sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
 | ||
|             [=](sycl::nd_item<3> item_ct1) {
 | ||
|                 cpy_f32_f16<cpy_1_f16_f32>(cx, cdst, ne, ne00, ne01, ne02, nb00,
 | ||
|                                            nb01, nb02, nb03, ne10, ne11, ne12,
 | ||
|                                            nb10, nb11, nb12, nb13, item_ct1);
 | ||
|             });
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void ggml_cpy_f32_f32_sycl(const char *cx, char *cdst, const int ne,
 | ||
|                                   const int ne00, const int ne01,
 | ||
|                                   const int ne02, const int nb00,
 | ||
|                                   const int nb01, const int nb02,
 | ||
|                                   const int nb03, const int ne10,
 | ||
|                                   const int ne11, const int ne12,
 | ||
|                                   const int nb10, const int nb11,
 | ||
|                                   const int nb12, const int nb13,
 | ||
|                                   queue_ptr stream) {
 | ||
| 
 | ||
|     const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
 | ||
|     {
 | ||
|         dpct::has_capability_or_fail(stream->get_device(),
 | ||
|                                      {sycl::aspect::fp16});
 | ||
| 
 | ||
|         stream->parallel_for(
 | ||
|             sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | ||
|                                   sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
 | ||
|                               sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
 | ||
|             [=](sycl::nd_item<3> item_ct1) {
 | ||
|                 cpy_f32_f16<cpy_1_f32_f32>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
 | ||
|                                            nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
 | ||
|                                            item_ct1);
 | ||
|             });
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void ggml_cpy_f32_f16_sycl(const char *cx, char *cdst, const int ne,
 | ||
|                                   const int ne00, const int ne01,
 | ||
|                                   const int ne02, const int nb00,
 | ||
|                                   const int nb01, const int nb02,
 | ||
|                                   const int nb03, const int ne10,
 | ||
|                                   const int ne11, const int ne12,
 | ||
|                                   const int nb10, const int nb11,
 | ||
|                                   const int nb12, const int nb13,
 | ||
|                                   queue_ptr stream) {
 | ||
| 
 | ||
|     const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
 | ||
|     {
 | ||
|         dpct::has_capability_or_fail(stream->get_device(),
 | ||
|                                      {sycl::aspect::fp16});
 | ||
| 
 | ||
|         stream->parallel_for(
 | ||
|             sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | ||
|                                   sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
 | ||
|                               sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
 | ||
|             [=](sycl::nd_item<3> item_ct1) {
 | ||
|                 cpy_f32_f16<cpy_1_f32_f16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
 | ||
|                                            nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
 | ||
|                                            item_ct1);
 | ||
|             });
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void ggml_cpy_f32_q8_0_sycl(const char *cx, char *cdst, const int ne,
 | ||
|                                    const int ne00, const int ne01,
 | ||
|                                    const int ne02, const int nb00,
 | ||
|                                    const int nb01, const int nb02,
 | ||
|                                    const int nb03, const int ne10,
 | ||
|                                    const int ne11, const int ne12,
 | ||
|                                    const int nb10, const int nb11,
 | ||
|                                    const int nb12, const int nb13,
 | ||
|                                    queue_ptr stream) {
 | ||
| 
 | ||
|     GGML_ASSERT(ne % QK8_0 == 0);
 | ||
|     const int num_blocks = ne / QK8_0;
 | ||
|     stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks),
 | ||
|                                            sycl::range<3>(1, 1, 1)),
 | ||
|                          [=](sycl::nd_item<3> item_ct1) {
 | ||
|                              cpy_f32_q<cpy_blck_f32_q8_0, QK8_0>(
 | ||
|                                  cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
 | ||
|                                  nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
 | ||
|                                  item_ct1);
 | ||
|                          });
 | ||
| }
 | ||
| 
 | ||
| static void ggml_cpy_f32_q4_0_sycl(const char *cx, char *cdst, const int ne,
 | ||
|                                    const int ne00, const int ne01,
 | ||
|                                    const int ne02, const int nb00,
 | ||
|                                    const int nb01, const int nb02,
 | ||
|                                    const int nb03, const int ne10,
 | ||
|                                    const int ne11, const int ne12,
 | ||
|                                    const int nb10, const int nb11,
 | ||
|                                    const int nb12, const int nb13,
 | ||
|                                    queue_ptr stream) {
 | ||
| 
 | ||
|     GGML_ASSERT(ne % QK4_0 == 0);
 | ||
|     const int num_blocks = ne / QK4_0;
 | ||
|     stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks),
 | ||
|                                            sycl::range<3>(1, 1, 1)),
 | ||
|                          [=](sycl::nd_item<3> item_ct1) {
 | ||
|                              cpy_f32_q<cpy_blck_f32_q4_0, QK4_0>(
 | ||
|                                  cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
 | ||
|                                  nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
 | ||
|                                  item_ct1);
 | ||
|                          });
 | ||
| }
 | ||
| 
 | ||
| static void ggml_cpy_f32_q4_1_sycl(const char *cx, char *cdst, const int ne,
 | ||
|                                    const int ne00, const int ne01,
 | ||
|                                    const int ne02, const int nb00,
 | ||
|                                    const int nb01, const int nb02,
 | ||
|                                    const int nb03, const int ne10,
 | ||
|                                    const int ne11, const int ne12,
 | ||
|                                    const int nb10, const int nb11,
 | ||
|                                    const int nb12, const int nb13,
 | ||
|                                    queue_ptr stream) {
 | ||
| 
 | ||
|     GGML_ASSERT(ne % QK4_1 == 0);
 | ||
|     const int num_blocks = ne / QK4_1;
 | ||
|     stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks),
 | ||
|                                            sycl::range<3>(1, 1, 1)),
 | ||
|                          [=](sycl::nd_item<3> item_ct1) {
 | ||
|                              cpy_f32_q<cpy_blck_f32_q4_1, QK4_1>(
 | ||
|                                  cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
 | ||
|                                  nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
 | ||
|                                  item_ct1);
 | ||
|                          });
 | ||
| }
 | ||
| 
 | ||
| static void ggml_cpy_f16_f16_sycl(const char *cx, char *cdst, const int ne,
 | ||
|                                   const int ne00, const int ne01,
 | ||
|                                   const int ne02, const int nb00,
 | ||
|                                   const int nb01, const int nb02,
 | ||
|                                   const int nb03, const int ne10,
 | ||
|                                   const int ne11, const int ne12,
 | ||
|                                   const int nb10, const int nb11,
 | ||
|                                   const int nb12, const int nb13,
 | ||
|                                   queue_ptr stream) {
 | ||
| 
 | ||
|     const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
 | ||
|     {
 | ||
|         dpct::has_capability_or_fail(stream->get_device(),
 | ||
|                                      {sycl::aspect::fp16});
 | ||
| 
 | ||
|         stream->parallel_for(
 | ||
|             sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | ||
|                                   sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
 | ||
|                               sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
 | ||
|             [=](sycl::nd_item<3> item_ct1) {
 | ||
|                 cpy_f32_f16<cpy_1_f16_f16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
 | ||
|                                            nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
 | ||
|                                            item_ct1);
 | ||
|             });
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void ggml_cpy_i16_i16_sycl(const char *cx, char *cdst, const int ne,
 | ||
|                                   const int ne00, const int ne01,
 | ||
|                                   const int ne02, const int nb00,
 | ||
|                                   const int nb01, const int nb02,
 | ||
|                                   const int nb03, const int ne10,
 | ||
|                                   const int ne11, const int ne12,
 | ||
|                                   const int nb10, const int nb11,
 | ||
|                                   const int nb12, const int nb13,
 | ||
|                                   queue_ptr stream) {
 | ||
| 
 | ||
|     const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
 | ||
|     {
 | ||
|         // dpct::has_capability_or_fail(stream->get_device(),
 | ||
|         //                              {sycl::aspect::fp16});
 | ||
| 
 | ||
|         stream->parallel_for(
 | ||
|             sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | ||
|                                   sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
 | ||
|                               sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
 | ||
|             [=](sycl::nd_item<3> item_ct1) {
 | ||
|                 cpy_f32_f16<cpy_1_i16_i16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
 | ||
|                                            nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
 | ||
|                                            item_ct1);
 | ||
|             });
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void ggml_cpy_i32_i32_sycl(const char *cx, char *cdst, const int ne,
 | ||
|                                   const int ne00, const int ne01,
 | ||
|                                   const int ne02, const int nb00,
 | ||
|                                   const int nb01, const int nb02,
 | ||
|                                   const int nb03, const int ne10,
 | ||
|                                   const int ne11, const int ne12,
 | ||
|                                   const int nb10, const int nb11,
 | ||
|                                   const int nb12, const int nb13,
 | ||
|                                   queue_ptr stream) {
 | ||
| 
 | ||
|     const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
 | ||
|     {
 | ||
|         // dpct::has_capability_or_fail(stream->get_device(),
 | ||
|         //                              {sycl::aspect::fp16});
 | ||
| 
 | ||
|         stream->parallel_for(
 | ||
|             sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | ||
|                                   sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
 | ||
|                               sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
 | ||
|             [=](sycl::nd_item<3> item_ct1) {
 | ||
|                 cpy_f32_f16<cpy_1_i32_i32>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
 | ||
|                                            nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
 | ||
|                                            item_ct1);
 | ||
|             });
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void scale_f32_sycl(const float *x, float *dst, const float scale,
 | ||
|                            const int k, queue_ptr stream) {
 | ||
|     const int num_blocks = (k + SYCL_SCALE_BLOCK_SIZE - 1) / SYCL_SCALE_BLOCK_SIZE;
 | ||
|     stream->parallel_for(
 | ||
|         sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | ||
|                               sycl::range<3>(1, 1, SYCL_SCALE_BLOCK_SIZE),
 | ||
|                           sycl::range<3>(1, 1, SYCL_SCALE_BLOCK_SIZE)),
 | ||
|         [=](sycl::nd_item<3> item_ct1) {
 | ||
|             scale_f32(x, dst, scale, k, item_ct1);
 | ||
|         });
 | ||
| }
 | ||
| 
 | ||
| static void clamp_f32_sycl(const float *x, float *dst, const float min,
 | ||
|                            const float max, const int k,
 | ||
|                            queue_ptr stream) {
 | ||
|     const int num_blocks = (k + SYCL_CLAMP_BLOCK_SIZE - 1) / SYCL_CLAMP_BLOCK_SIZE;
 | ||
|     stream->parallel_for(
 | ||
|         sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | ||
|                               sycl::range<3>(1, 1, SYCL_CLAMP_BLOCK_SIZE),
 | ||
|                           sycl::range<3>(1, 1, SYCL_CLAMP_BLOCK_SIZE)),
 | ||
|         [=](sycl::nd_item<3> item_ct1) {
 | ||
|             clamp_f32(x, dst, min, max, k, item_ct1);
 | ||
|         });
 | ||
| }
 | ||
| 
 | ||
| template <typename T>
 | ||
| static void rope_sycl(const T *x, T *dst, int ncols, int nrows,
 | ||
|                       const int32_t *pos, float freq_scale, int p_delta_rows,
 | ||
|                       float freq_base, float ext_factor, float attn_factor,
 | ||
|                       rope_corr_dims corr_dims, queue_ptr stream) {
 | ||
|     GGML_ASSERT(ncols % 2 == 0);
 | ||
|     const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
 | ||
|     const int num_blocks_x = (ncols + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
 | ||
|     const sycl::range<3> block_nums(1, num_blocks_x, nrows);
 | ||
|     if (pos == nullptr) {
 | ||
|         /*
 | ||
|         DPCT1049:40: The work-group size passed to the SYCL kernel may exceed
 | ||
|         the limit. To get the device limit, query
 | ||
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | ||
|         */
 | ||
|         dpct::has_capability_or_fail(stream->get_device(),
 | ||
|                                      {sycl::aspect::fp16});
 | ||
| 
 | ||
|         stream->parallel_for(
 | ||
|             sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | ||
|             [=](sycl::nd_item<3> item_ct1) {
 | ||
|                 rope<T, false>(x, dst, ncols, pos, freq_scale, p_delta_rows,
 | ||
|                                freq_base, ext_factor, attn_factor, corr_dims,
 | ||
|                                item_ct1);
 | ||
|             });
 | ||
|     } else {
 | ||
|         /*
 | ||
|         DPCT1049:41: The work-group size passed to the SYCL kernel may exceed
 | ||
|         the limit. To get the device limit, query
 | ||
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | ||
|         */
 | ||
|         dpct::has_capability_or_fail(stream->get_device(),
 | ||
|                                      {sycl::aspect::fp16});
 | ||
| 
 | ||
|         stream->parallel_for(
 | ||
|             sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | ||
|             [=](sycl::nd_item<3> item_ct1) {
 | ||
|                 rope<T, true>(x, dst, ncols, pos, freq_scale, p_delta_rows,
 | ||
|                               freq_base, ext_factor, attn_factor, corr_dims,
 | ||
|                               item_ct1);
 | ||
|             });
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| template <typename T>
 | ||
| static void rope_neox_sycl(const T *x, T *dst, int ncols, int n_dims, int nrows,
 | ||
|                            const int32_t *pos, float freq_scale,
 | ||
|                            int p_delta_rows, float freq_base, float ext_factor,
 | ||
|                            float attn_factor, rope_corr_dims corr_dims,
 | ||
|                            const float * freq_factors, queue_ptr stream) {
 | ||
|     GGML_ASSERT(ncols % 2 == 0);
 | ||
|     const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
 | ||
|     const int num_blocks_x = (ncols + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
 | ||
|     const sycl::range<3> block_nums(1, num_blocks_x, nrows);
 | ||
| 
 | ||
|     const float theta_scale = powf(freq_base, -2.0f/n_dims);
 | ||
|     const float inv_ndims = -1.0f / n_dims;
 | ||
| 
 | ||
|     if (pos == nullptr) {
 | ||
|         dpct::has_capability_or_fail(stream->get_device(),
 | ||
|                                      {sycl::aspect::fp16});
 | ||
|         if (freq_factors == nullptr) {
 | ||
|             stream->parallel_for(
 | ||
|                 sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | ||
|                 [=](sycl::nd_item<3> item_ct1) {
 | ||
|                     rope_neox<T, false, false>(x, dst, ncols, n_dims, pos, freq_scale,
 | ||
|                                         p_delta_rows, ext_factor, attn_factor,
 | ||
|                                         corr_dims, theta_scale, inv_ndims, freq_factors,
 | ||
|                                         item_ct1);
 | ||
|                 });
 | ||
|         } else {
 | ||
|             stream->parallel_for(
 | ||
|                 sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | ||
|                 [=](sycl::nd_item<3> item_ct1) {
 | ||
|                     rope_neox<T, false, true>(x, dst, ncols, n_dims, pos, freq_scale,
 | ||
|                                         p_delta_rows, ext_factor, attn_factor,
 | ||
|                                         corr_dims, theta_scale, inv_ndims, freq_factors,
 | ||
|                                         item_ct1);
 | ||
|                 });
 | ||
|         }
 | ||
|     } else {
 | ||
|         dpct::has_capability_or_fail(stream->get_device(),
 | ||
|                                      {sycl::aspect::fp16});
 | ||
| 
 | ||
|         if (freq_factors == nullptr) {
 | ||
|             stream->parallel_for(
 | ||
|                 sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | ||
|                 [=](sycl::nd_item<3> item_ct1) {
 | ||
|                     rope_neox<T, true, false>(x, dst, ncols, n_dims, pos, freq_scale,
 | ||
|                                        p_delta_rows, ext_factor, attn_factor,
 | ||
|                                        corr_dims, theta_scale, inv_ndims, freq_factors, item_ct1);
 | ||
|                 });
 | ||
|         } else {
 | ||
|             stream->parallel_for(
 | ||
|                 sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | ||
|                 [=](sycl::nd_item<3> item_ct1) {
 | ||
|                     rope_neox<T, true, true>(x, dst, ncols, n_dims, pos, freq_scale,
 | ||
|                                        p_delta_rows, ext_factor, attn_factor,
 | ||
|                                        corr_dims, theta_scale, inv_ndims, freq_factors, item_ct1);
 | ||
|                 });
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void sum_rows_f32_sycl(const float *x, float *dst, const int ncols,
 | ||
|                               const int nrows, queue_ptr stream) {
 | ||
|     const sycl::range<3> block_dims(1, 1, WARP_SIZE);
 | ||
|     const sycl::range<3> block_nums(1, nrows, 1);
 | ||
|     stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | ||
|                          [=](sycl::nd_item<3> item_ct1)
 | ||
|                              [[intel::reqd_sub_group_size(32)]] {
 | ||
|                                  k_sum_rows_f32(x, dst, ncols, item_ct1);
 | ||
|                              });
 | ||
| }
 | ||
| 
 | ||
| static int next_power_of_2(int x) {
 | ||
|     int n = 1;
 | ||
|     while (n < x) {
 | ||
|         n *= 2;
 | ||
|     }
 | ||
|     return n;
 | ||
| }
 | ||
| 
 | ||
| static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols,
 | ||
|                                  const int nrows, ggml_sort_order order,
 | ||
|                                  queue_ptr stream) {
 | ||
|     // bitonic sort requires ncols to be power of 2
 | ||
|     const int ncols_pad = next_power_of_2(ncols);
 | ||
| 
 | ||
|     const sycl::range<3> block_dims(1, 1, ncols_pad);
 | ||
|     const sycl::range<3> block_nums(1, nrows, 1);
 | ||
|     const size_t shared_mem = ncols_pad * sizeof(int);
 | ||
| 
 | ||
|     if (order == GGML_SORT_ORDER_ASC) {
 | ||
|         stream->submit([&](sycl::handler &cgh) {
 | ||
|             sycl::local_accessor<uint8_t, 1> dpct_local_acc_ct1(
 | ||
|                 sycl::range<1>(shared_mem), cgh);
 | ||
| 
 | ||
|             cgh.parallel_for(
 | ||
|                 sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | ||
|                 [=](sycl::nd_item<3> item_ct1) {
 | ||
|                     k_argsort_f32_i32<GGML_SORT_ORDER_ASC>(
 | ||
|                         x, dst, ncols, ncols_pad, item_ct1,
 | ||
|                         dpct_local_acc_ct1.get_multi_ptr<sycl::access::decorated::no>()
 | ||
|                             .get());
 | ||
|                 });
 | ||
|         });
 | ||
|     } else if (order == GGML_SORT_ORDER_DESC) {
 | ||
|         stream->submit([&](sycl::handler &cgh) {
 | ||
|             sycl::local_accessor<uint8_t, 1> dpct_local_acc_ct1(
 | ||
|                 sycl::range<1>(shared_mem), cgh);
 | ||
| 
 | ||
|             cgh.parallel_for(
 | ||
|                 sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | ||
|                 [=](sycl::nd_item<3> item_ct1) {
 | ||
|                     k_argsort_f32_i32<GGML_SORT_ORDER_DESC>(
 | ||
|                         x, dst, ncols, ncols_pad, item_ct1,
 | ||
|                         dpct_local_acc_ct1.get_multi_ptr<sycl::access::decorated::no>()
 | ||
|                             .get());
 | ||
|                 });
 | ||
|         });
 | ||
|     } else {
 | ||
|         GGML_ASSERT(false);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void diag_mask_inf_f32_sycl(const float *x, float *dst,
 | ||
|                                    const int ncols_x, const int nrows_x,
 | ||
|                                    const int rows_per_channel, const int n_past,
 | ||
|                                    queue_ptr stream) {
 | ||
|     const sycl::range<3> block_dims(1, SYCL_DIAG_MASK_INF_BLOCK_SIZE, 1);
 | ||
|     const int block_num_x = (ncols_x + SYCL_DIAG_MASK_INF_BLOCK_SIZE - 1) / SYCL_DIAG_MASK_INF_BLOCK_SIZE;
 | ||
|     const sycl::range<3> block_nums(1, block_num_x, nrows_x);
 | ||
|     stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | ||
|                          [=](sycl::nd_item<3> item_ct1) {
 | ||
|                              diag_mask_inf_f32(x, dst, ncols_x,
 | ||
|                                                rows_per_channel, n_past,
 | ||
|                                                item_ct1);
 | ||
|                          });
 | ||
| }
 | ||
| 
 | ||
| template <bool vals_smem, int ncols_template, int block_size_template>
 | ||
| static void soft_max_f32_submitter(const float * x, const float * mask, float * dst, const int ncols_par,
 | ||
|                                    const int nrows_y, const float scale, const float max_bias, const float m0,
 | ||
|                                    const float m1, uint32_t n_head_log2, sycl::range<3> block_nums, sycl::range<3> block_dims,
 | ||
|                                    const size_t n_local_scratch, queue_ptr stream) {
 | ||
|     stream->submit([&](sycl::handler &cgh) {
 | ||
|         sycl::local_accessor<float, 1> local_buf_acc(n_local_scratch, cgh);
 | ||
| 
 | ||
|         cgh.parallel_for(
 | ||
|             sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | ||
|             [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
 | ||
|                 soft_max_f32<vals_smem, ncols_template, block_size_template>(x, mask, dst, ncols_par,
 | ||
|                                                                              nrows_y, scale, max_bias, m0,
 | ||
|                                                                              m1, n_head_log2, item_ct1,
 | ||
|                                                                              local_buf_acc.get_pointer());
 | ||
|             });
 | ||
|     });
 | ||
| }
 | ||
| 
 | ||
| static void soft_max_f32_sycl(const float * x, const float * mask,
 | ||
|                               float * dst, const int ncols_x, const int nrows_x,
 | ||
|                               const int nrows_y, const float scale, const float max_bias,
 | ||
|                               queue_ptr stream) {
 | ||
|     int nth = WARP_SIZE;
 | ||
|     int max_block_size = get_work_group_size(stream->get_device());
 | ||
|     while (nth < ncols_x && nth < max_block_size) nth *= 2;
 | ||
|     if (nth>max_block_size) nth = max_block_size;
 | ||
| 
 | ||
|     const sycl::range<3> block_dims(1, 1, nth);
 | ||
|     const sycl::range<3> block_nums(1, 1, nrows_x);
 | ||
|     const size_t n_local_scratch = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE);
 | ||
| 
 | ||
|     const uint32_t n_head_kv   = nrows_x/nrows_y;
 | ||
|     const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
 | ||
| 
 | ||
|     const float m0 = powf(2.0f, -(max_bias       ) / n_head_log2);
 | ||
|     const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
 | ||
| 
 | ||
|     const size_t local_mem_size = stream->get_device().get_info<sycl::info::device::local_mem_size>();
 | ||
|     if (n_local_scratch*sizeof(float) < local_mem_size) {
 | ||
|         if (ncols_x > max_block_size) {
 | ||
|             soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
 | ||
|                                                max_bias, m0, m1, n_head_log2, block_nums,
 | ||
|                                                block_dims, n_local_scratch, stream);
 | ||
|             return;
 | ||
|         }
 | ||
|         switch (ncols_x) {
 | ||
|             case 32:
 | ||
|                 soft_max_f32_submitter<true, 32, 32>(x, mask, dst, ncols_x, nrows_y, scale,
 | ||
|                                                      max_bias, m0, m1, n_head_log2, block_nums,
 | ||
|                                                      block_dims, n_local_scratch, stream);
 | ||
|                 break;
 | ||
|             case 64:
 | ||
|                 soft_max_f32_submitter<true, 64, 64>(x, mask, dst, ncols_x, nrows_y, scale,
 | ||
|                                                      max_bias, m0, m1, n_head_log2, block_nums,
 | ||
|                                                      block_dims, n_local_scratch, stream);
 | ||
|                 break;
 | ||
|             case 128:
 | ||
|                 soft_max_f32_submitter<true, 128, 128>(x, mask, dst, ncols_x, nrows_y, scale,
 | ||
|                                                        max_bias, m0, m1, n_head_log2, block_nums,
 | ||
|                                                        block_dims, n_local_scratch, stream);
 | ||
|                 break;
 | ||
|             case 256:
 | ||
|                 soft_max_f32_submitter<true, 256, 256>(x, mask, dst, ncols_x, nrows_y, scale,
 | ||
|                                                        max_bias, m0, m1, n_head_log2, block_nums,
 | ||
|                                                        block_dims, n_local_scratch, stream);
 | ||
|                 break;
 | ||
|             case 512:
 | ||
|                 soft_max_f32_submitter<true, 512, 512>(x, mask, dst, ncols_x, nrows_y, scale,
 | ||
|                                                        max_bias, m0, m1, n_head_log2, block_nums,
 | ||
|                                                        block_dims, n_local_scratch, stream);
 | ||
|                 break;
 | ||
|             case 1024:
 | ||
|                 soft_max_f32_submitter<true, 1024, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
 | ||
|                                                          max_bias, m0, m1, n_head_log2, block_nums,
 | ||
|                                                          block_dims, n_local_scratch, stream);
 | ||
|                 break;
 | ||
|             case 2048:
 | ||
|                 soft_max_f32_submitter<true, 2048, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
 | ||
|                                                          max_bias, m0, m1, n_head_log2, block_nums,
 | ||
|                                                          block_dims, n_local_scratch, stream);
 | ||
|                 break;
 | ||
|             case 4096:
 | ||
|                 soft_max_f32_submitter<true, 4096, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
 | ||
|                                                          max_bias, m0, m1, n_head_log2, block_nums,
 | ||
|                                                          block_dims, n_local_scratch, stream);
 | ||
|                 break;
 | ||
|             default:
 | ||
|                 soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
 | ||
|                                                    max_bias, m0, m1, n_head_log2, block_nums,
 | ||
|                                                    block_dims, n_local_scratch, stream);
 | ||
|                 break;
 | ||
|         }
 | ||
|     } else {
 | ||
|         soft_max_f32_submitter<false, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
 | ||
|                                             max_bias, m0, m1, n_head_log2, block_nums,
 | ||
|                                             block_dims, WARP_SIZE, stream);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| template <typename T>
 | ||
| static void im2col_sycl(const float *x, T *dst, int IW, int IH,
 | ||
|                                 int OW, int OH, int KW, int KH, int IC,
 | ||
|                                 int offset_delta, int s0, int s1, int p0,
 | ||
|                                 int p1, int d0, int d1,
 | ||
|                                 queue_ptr stream) {
 | ||
|     const int parallel_elements = OW * KW * KH;
 | ||
|     const int num_blocks = (parallel_elements + SYCL_IM2COL_BLOCK_SIZE - 1) / SYCL_IM2COL_BLOCK_SIZE;
 | ||
|     sycl::range<3> block_nums(IC, OH, num_blocks);
 | ||
|     {
 | ||
|         dpct::has_capability_or_fail(stream->get_device(),
 | ||
|                                      {sycl::aspect::fp16});
 | ||
| 
 | ||
|         stream->parallel_for(
 | ||
|             sycl::nd_range<3>(block_nums *
 | ||
|                                   sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE),
 | ||
|                               sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE)),
 | ||
|             [=](sycl::nd_item<3> item_ct1) {
 | ||
|                 im2col_kernel(x, dst, offset_delta, IW, IH, OW, KW, KH,
 | ||
|                                parallel_elements, (IC * KH * KW), s0, s1, p0,
 | ||
|                                p1, d0, d1, item_ct1);
 | ||
|             });
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| static bool g_sycl_loaded = false;
 | ||
| 
 | ||
| bool ggml_sycl_loaded(void) {
 | ||
|     return g_sycl_loaded;
 | ||
| }
 | ||
| 
 | ||
| void print_device_detail(int id, sycl::device &device, std::string device_type) {
 | ||
| 
 | ||
|     dpct::device_info prop;
 | ||
|     SYCL_CHECK(CHECK_TRY_ERROR(
 | ||
|         dpct::get_device_info(prop, device)));
 | ||
| 
 | ||
|     std::string version;
 | ||
|     version += std::to_string(prop.get_major_version());
 | ||
|     version += ".";
 | ||
|     version += std::to_string(prop.get_minor_version());
 | ||
| 
 | ||
|     device_type = std::regex_replace(device_type, std::regex("ext_oneapi_"), "");
 | ||
|     std::string name = std::string(prop.get_name());
 | ||
|     name = std::regex_replace(name, std::regex("\\(R\\)"), "");
 | ||
|     name = std::regex_replace(name, std::regex("\\(TM\\)"), "");
 | ||
| 
 | ||
|     auto global_mem_size = prop.get_global_mem_size()/1000000;
 | ||
| 
 | ||
|     fprintf(stderr, "|%2d|%19s|%39s|%7s|%7d|%8d|%5d|%6luM|%21s|\n", id, device_type.c_str(),
 | ||
|             name.c_str(), version.c_str(), prop.get_max_compute_units(),
 | ||
|             prop.get_max_work_group_size(), prop.get_max_sub_group_size(),
 | ||
|             global_mem_size, device.get_info<sycl::info::device::driver_version>().c_str());
 | ||
| }
 | ||
| 
 | ||
| void ggml_backend_sycl_print_sycl_devices() {
 | ||
|     GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_print_sycl_devices\n");
 | ||
|     int device_count = dpct::dev_mgr::instance().device_count();
 | ||
|     std::map<std::string, size_t> DeviceNums;
 | ||
|     fprintf(stderr, "found %d SYCL devices:\n", device_count);
 | ||
|     fprintf(stderr, "|  |                   |                                       |       |Max    |        |Max  |Global |                     |\n");
 | ||
|     fprintf(stderr, "|  |                   |                                       |       |compute|Max work|sub  |mem    |                     |\n");
 | ||
|     fprintf(stderr, "|ID|        Device Type|                                   Name|Version|units  |group   |group|size   |       Driver version|\n");
 | ||
|     fprintf(stderr, "|--|-------------------|---------------------------------------|-------|-------|--------|-----|-------|---------------------|\n");
 | ||
|     for (int id = 0; id < device_count; ++id) {
 | ||
|         sycl::device device = dpct::dev_mgr::instance().get_device(id);
 | ||
|         sycl::backend backend = device.get_backend();
 | ||
|         std::string backend_type = get_device_backend_and_type(device);
 | ||
|         int type_id=DeviceNums[backend_type]++;
 | ||
|         std::stringstream device_type;
 | ||
|         device_type << "[" <<  backend_type << ":" << std::to_string(type_id) << "]";
 | ||
|         print_device_detail(id, device, device_type.str());
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static inline int get_sycl_env(const char *env_name, int default_val) {
 | ||
|     char *user_device_string = getenv(env_name);
 | ||
|     int user_number = default_val;
 | ||
| 
 | ||
|     unsigned n;
 | ||
|     if (user_device_string != NULL &&
 | ||
|         sscanf(user_device_string, " %u", &n) == 1) {
 | ||
|         user_number = (int)n;
 | ||
|     } else {
 | ||
|         user_number = default_val;
 | ||
|     }
 | ||
|     return user_number;
 | ||
| }
 | ||
| 
 | ||
| static inline int get_work_group_size(const sycl::device& device) {
 | ||
|     dpct::device_info prop;
 | ||
|     dpct::get_device_info(prop, device);
 | ||
|     return prop.get_max_work_group_size();
 | ||
| }
 | ||
| 
 | ||
| static void ggml_check_sycl() try {
 | ||
|     static bool initialized = false;
 | ||
| 
 | ||
|     if (!initialized) {
 | ||
|         fprintf(stderr, "[SYCL] call ggml_check_sycl\n");
 | ||
|         g_ggml_sycl_debug = get_sycl_env("GGML_SYCL_DEBUG", 0);
 | ||
| 
 | ||
|         fprintf(stderr, "%s: GGML_SYCL_DEBUG: %d\n", __func__, g_ggml_sycl_debug);
 | ||
| 
 | ||
| #if defined(GGML_SYCL_F16)
 | ||
|         fprintf(stderr, "%s: GGML_SYCL_F16: yes\n", __func__);
 | ||
| #else
 | ||
|         fprintf(stderr, "%s: GGML_SYCL_F16: no\n", __func__);
 | ||
| #endif
 | ||
| 
 | ||
| /* NOT REMOVE, keep it for next optimize for XMX.
 | ||
| #if defined(SYCL_USE_XMX)
 | ||
|         fprintf(stderr, "%s: SYCL_USE_XMX: yes\n", __func__);
 | ||
| #else
 | ||
|         fprintf(stderr, "%s: SYCL_USE_XMX: no\n", __func__);
 | ||
| #endif
 | ||
| */
 | ||
| 
 | ||
|         if (CHECK_TRY_ERROR(g_all_sycl_device_count =
 | ||
|                             dpct::dev_mgr::instance().device_count()) != 0) {
 | ||
|             initialized = true;
 | ||
|             g_sycl_loaded = false;
 | ||
|             return;
 | ||
|         }
 | ||
|         GGML_ASSERT(g_all_sycl_device_count <= GGML_SYCL_MAX_DEVICES);
 | ||
|         ggml_backend_sycl_print_sycl_devices();
 | ||
|         initialized = true;
 | ||
|         g_sycl_loaded = true;
 | ||
|     }
 | ||
| }
 | ||
| catch (sycl::exception const &exc) {
 | ||
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | ||
|             << ", line:" << __LINE__ << std::endl;
 | ||
|   std::exit(1);
 | ||
| }
 | ||
| 
 | ||
| static ggml_sycl_device_info ggml_sycl_init() {
 | ||
|     ggml_sycl_device_info info = {};
 | ||
| 
 | ||
|     info.device_count = dpct::dev_mgr::instance().device_count();
 | ||
|     if (info.device_count == 0) {
 | ||
|         fprintf(stderr, "%s: failed to initialize " GGML_SYCL_NAME ": %s\n", __func__);
 | ||
|         return info;
 | ||
|     }
 | ||
| 
 | ||
|     GGML_ASSERT(info.device_count <= GGML_SYCL_MAX_DEVICES);
 | ||
| 
 | ||
|     int64_t total_vram = 0;
 | ||
| #if defined(GGML_SYCL_FORCE_MMQ)
 | ||
|     fprintf(stderr, "%s: GGML_SYCL_FORCE_MMQ:   yes\n", __func__);
 | ||
| #else
 | ||
|     fprintf(stderr, "%s: GGML_SYCL_FORCE_MMQ:   no\n", __func__);
 | ||
| #endif
 | ||
| #if defined(SYCL_USE_XMX)
 | ||
|     fprintf(stderr, "%s: SYCL_USE_XMX: yes\n", __func__);
 | ||
| #else
 | ||
|     fprintf(stderr, "%s: SYCL_USE_XMX: no\n", __func__);
 | ||
| #endif
 | ||
|     fprintf(stderr, "%s: found %d " GGML_SYCL_NAME " devices:\n", __func__, info.device_count);
 | ||
| 
 | ||
|     for (int i = 0; i < info.device_count; ++i) {
 | ||
|         info.devices[i].vmm = 0;
 | ||
|         dpct::device_info prop;
 | ||
|         SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
 | ||
|             prop, dpct::dev_mgr::instance().get_device(i))));
 | ||
| 
 | ||
|         info.default_tensor_split[i] = total_vram;
 | ||
|         total_vram += prop.get_global_mem_size();
 | ||
| 
 | ||
|         info.devices[i].cc =
 | ||
|             100 * prop.get_major_version() + 10 * prop.get_minor_version();
 | ||
|     }
 | ||
| 
 | ||
|     for (int id = 0; id < info.device_count; ++id) {
 | ||
|         info.default_tensor_split[id] /= total_vram;
 | ||
|     }
 | ||
|     return info;
 | ||
| }
 | ||
| 
 | ||
| const ggml_sycl_device_info & ggml_sycl_info() {
 | ||
|     static ggml_sycl_device_info info = ggml_sycl_init();
 | ||
|     return info;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
| device_index: device index from 0 to n (continue numbers).
 | ||
|     It is used for device select/set in SYCL backend internal data structure.
 | ||
| */
 | ||
| inline void check_allow_gpu_index(const int device_index) {
 | ||
|   if (device_index >= ggml_sycl_info().device_count) {
 | ||
|     char error_buf[256];
 | ||
|     snprintf(
 | ||
|         error_buf,
 | ||
|         sizeof(error_buf),
 | ||
|         "%s error: device_index:%d is out of range: [0-%d]",
 | ||
|         __func__,
 | ||
|         device_index,
 | ||
|         ggml_sycl_info().device_count - 1);
 | ||
|     fprintf(stderr, "%s\n", error_buf);
 | ||
|     assert(false);
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| // buffer pool for sycl (legacy)
 | ||
| struct ggml_sycl_pool_leg : public ggml_sycl_pool {
 | ||
|     static const int MAX_SYCL_BUFFERS = 256;
 | ||
| 
 | ||
|     int device;
 | ||
|     queue_ptr qptr;
 | ||
|     struct ggml_sycl_buffer {
 | ||
|         void * ptr = nullptr;
 | ||
|         size_t size = 0;
 | ||
|     };
 | ||
| 
 | ||
|     ggml_sycl_buffer buffer_pool[MAX_SYCL_BUFFERS] = {};
 | ||
|     size_t pool_size = 0;
 | ||
| 
 | ||
|     explicit ggml_sycl_pool_leg(queue_ptr qptr_, int device_) :
 | ||
|         qptr(qptr_),
 | ||
|         device(device_) {
 | ||
|     }
 | ||
| 
 | ||
|     ~ggml_sycl_pool_leg() {
 | ||
|         for (int i = 0; i < MAX_SYCL_BUFFERS; ++i) {
 | ||
|             ggml_sycl_buffer & b = buffer_pool[i];
 | ||
|             if (b.ptr != nullptr) {
 | ||
|                 SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(b.ptr, *qptr)));
 | ||
|                 pool_size -= b.size;
 | ||
|             }
 | ||
|         }
 | ||
|         GGML_ASSERT(pool_size == 0);
 | ||
|     }
 | ||
| 
 | ||
|     void * alloc(size_t size, size_t * actual_size) override {
 | ||
| #ifdef DEBUG_sycl_MALLOC
 | ||
|         int nnz = 0;
 | ||
|         size_t max_size = 0;
 | ||
| #endif
 | ||
|         size_t best_diff = 1ull << 36;
 | ||
|         int ibest = -1;
 | ||
|         for (int i = 0; i < MAX_SYCL_BUFFERS; ++i) {
 | ||
|             ggml_sycl_buffer& b = buffer_pool[i];
 | ||
|             if (b.ptr != nullptr) {
 | ||
| #ifdef DEBUG_sycl_MALLOC
 | ||
|                 ++nnz;
 | ||
|                 if (b.size > max_size) max_size = b.size;
 | ||
| #endif
 | ||
|                 if (b.size >= size) {
 | ||
|                     size_t diff = b.size - size;
 | ||
|                     if (diff < best_diff) {
 | ||
|                         best_diff = diff;
 | ||
|                         ibest = i;
 | ||
|                         if (!best_diff) {
 | ||
|                             void * ptr = b.ptr;
 | ||
|                             *actual_size = b.size;
 | ||
|                             b.ptr = nullptr;
 | ||
|                             b.size = 0;
 | ||
|                             return ptr;
 | ||
|                         }
 | ||
|                     }
 | ||
|                 }
 | ||
|             }
 | ||
|         }
 | ||
|         if (ibest >= 0) {
 | ||
|             ggml_sycl_buffer& b = buffer_pool[ibest];
 | ||
|             void * ptr = b.ptr;
 | ||
|             *actual_size = b.size;
 | ||
|             b.ptr = nullptr;
 | ||
|             b.size = 0;
 | ||
|             return ptr;
 | ||
|         }
 | ||
|         void * ptr;
 | ||
|         size_t look_ahead_size = (size_t) (1.05 * size);
 | ||
| 
 | ||
|         SYCL_CHECK(
 | ||
|             CHECK_TRY_ERROR(ptr = (void *)sycl::malloc_device(
 | ||
|                                 look_ahead_size, *qptr)));
 | ||
|         *actual_size = look_ahead_size;
 | ||
|         pool_size += look_ahead_size;
 | ||
| 
 | ||
|     #ifdef DEBUG_SYCL_MALLOC
 | ||
|         fprintf(stderr, "%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, id, nnz,
 | ||
|                 (uint32_t)(max_size/1024/1024), (uint32_t)(g_sycl_pool_size[id]/1024/1024), (uint32_t)(size/1024/1024));
 | ||
|     #endif
 | ||
|         // GGML_SYCL_DEBUG("ggml_sycl_pool_malloc_leg look_ahead_size=%lu, return %p\n", look_ahead_size, ptr);
 | ||
|         return ptr;
 | ||
|     }
 | ||
| 
 | ||
|     void free(void * ptr, size_t size) override {
 | ||
|         for (int i = 0; i < MAX_SYCL_BUFFERS; ++i) {
 | ||
|             ggml_sycl_buffer& b = buffer_pool[i];
 | ||
|             if (b.ptr == nullptr) {
 | ||
|                 b.ptr = ptr;
 | ||
|                 b.size = size;
 | ||
|                 return;
 | ||
|             }
 | ||
|         }
 | ||
|         fprintf(stderr, "WARNING: sycl buffer pool full, increase MAX_sycl_BUFFERS\n");
 | ||
|         SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(ptr, *qptr)));
 | ||
|         pool_size -= size;
 | ||
|     }
 | ||
| };
 | ||
| 
 | ||
| std::unique_ptr<ggml_sycl_pool> ggml_backend_sycl_context::new_pool_for_device(queue_ptr qptr, int device) {
 | ||
|     // TBD: NO VMM support
 | ||
|     // if (ggml_sycl_info().devices[device].vmm) {
 | ||
|     //     return std::unique_ptr<ggml_sycl_pool>(new ggml_sycl_pool_vmm(device));
 | ||
|     // }
 | ||
|    return std::unique_ptr<ggml_sycl_pool>(new ggml_sycl_pool_leg(qptr, device));
 | ||
| }
 | ||
| 
 | ||
| // TBD pool with virtual memory management
 | ||
| // struct ggml_sycl_pool_vmm : public ggml_sycl_pool
 | ||
| 
 | ||
| static dpct::err0 ggml_sycl_cpy_tensor_2d(void *dst,
 | ||
|                                           const struct ggml_tensor *src,
 | ||
|                                           int64_t i3, int64_t i2,
 | ||
|                                           int64_t i1_low, int64_t i1_high,
 | ||
|                                           queue_ptr stream) try {
 | ||
| 
 | ||
|     dpct::memcpy_direction kind;
 | ||
|     char * src_ptr;
 | ||
|     if (src->backend == GGML_BACKEND_TYPE_CPU) {
 | ||
|         kind = dpct::host_to_device;
 | ||
|         src_ptr = (char *) src->data;
 | ||
|         // GGML_SYCL_DEBUG("ggml_sycl_cpy_tensor_2d  GGML_BACKEND_TYPE_CPU src_ptr %p\n", src_ptr);
 | ||
|     } else if (src->backend == GGML_BACKEND_TYPE_GPU || src->backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
 | ||
|         GGML_ASSERT(src->backend != GGML_BACKEND_TYPE_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1]));
 | ||
|         kind = dpct::device_to_device;
 | ||
|         ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
 | ||
|         int id;
 | ||
|         SYCL_CHECK(CHECK_TRY_ERROR(
 | ||
|             id = get_current_device_id()));
 | ||
|         // GGML_SYCL_DEBUG("current device index %d\n", id);
 | ||
|         src_ptr = (char *) extra->data_device[id];
 | ||
|     } else {
 | ||
|         // GGML_SYCL_DEBUG("GGML_ASSERT(false)\n");
 | ||
|         GGML_ASSERT(false);
 | ||
|     }
 | ||
|     char * dst_ptr = (char *) dst;
 | ||
| 
 | ||
|     GGML_TENSOR_LOCALS_1(int64_t, ne, src, ne);
 | ||
|     GGML_TENSOR_LOCALS(int64_t, nb, src, nb);
 | ||
|     const enum ggml_type type = src->type;
 | ||
|     const int64_t ts = ggml_type_size(type);
 | ||
|     const int64_t bs = ggml_blck_size(type);
 | ||
|     int64_t i1_diff = i1_high - i1_low;
 | ||
| 
 | ||
|     const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
 | ||
|     if (nb0 == ts && nb1 == ts*ne0/bs) {
 | ||
|         // GGML_SYCL_DEBUG("stream->memcpy: dst_ptr=%p, x=%p, size=%lu\n", dst_ptr, x, i1_diff * nb1);
 | ||
|         // return CHECK_TRY_ERROR(stream->memcpy(dst_ptr, x, i1_diff * nb1));
 | ||
|         return CHECK_TRY_ERROR(dpct::async_dpct_memcpy(dst_ptr, x, i1_diff * nb1,
 | ||
|                                     kind, *stream));
 | ||
| 
 | ||
|     } else if (nb0 == ts) {
 | ||
|         return CHECK_TRY_ERROR(
 | ||
|             dpct::async_dpct_memcpy(dst_ptr, ts * ne0 / bs, x, nb1,
 | ||
|                                     ts * ne0 / bs, i1_diff, kind, *stream));
 | ||
|     } else {
 | ||
|         for (int64_t i1 = 0; i1 < i1_diff; i1++) {
 | ||
|             const void * rx = (const void *) ((const char *) x + i1*nb1);
 | ||
|             void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
 | ||
|             // pretend the row is a matrix with cols=1
 | ||
|             dpct::err0 r = CHECK_TRY_ERROR(dpct::async_dpct_memcpy(
 | ||
|                 rd, ts / bs, rx, nb0, ts / bs, ne0, kind, *stream));
 | ||
|             /*
 | ||
|             DPCT1001:85: The statement could not be removed.
 | ||
|             */
 | ||
|             /*
 | ||
|             DPCT1000:86: Error handling if-stmt was detected but could not be
 | ||
|             rewritten.
 | ||
|             */
 | ||
|             if (r != 0) return r;
 | ||
|         }
 | ||
|         return 0;
 | ||
|     }
 | ||
| }
 | ||
| catch (sycl::exception const &exc) {
 | ||
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | ||
|             << ", line:" << __LINE__ << std::endl;
 | ||
|   std::exit(1);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_op_get_rows(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
 | ||
|                                   const ggml_tensor *src1, ggml_tensor *dst,
 | ||
|                                   const float *src0_d, const float *src1_d,
 | ||
|                                   float *dst_d, const queue_ptr &stream) {
 | ||
| 
 | ||
|     GGML_ASSERT(src1->type == GGML_TYPE_I32);
 | ||
|     GGML_ASSERT(dst->type == GGML_TYPE_F32);
 | ||
| 
 | ||
|     GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
 | ||
|     GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
 | ||
|     GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
 | ||
| 
 | ||
|     const int32_t * src1_i32 = (const int32_t *) src1_d;
 | ||
| 
 | ||
|     switch (src0->type) {
 | ||
|         case GGML_TYPE_F16:
 | ||
|             get_rows_sycl_float(ctx, src0, src1, dst, (const sycl::half *)src0_d,
 | ||
|                                 src1_i32, dst_d, stream);
 | ||
|             break;
 | ||
|         case GGML_TYPE_F32:
 | ||
|             get_rows_sycl_float(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
 | ||
|             break;
 | ||
|         case GGML_TYPE_Q4_0:
 | ||
|             get_rows_sycl<QK4_0, QR4_0, dequantize_q4_0>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
 | ||
|             break;
 | ||
|         case GGML_TYPE_Q4_1:
 | ||
|             get_rows_sycl<QK4_1, QR4_1, dequantize_q4_1>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
 | ||
|             break;
 | ||
|         case GGML_TYPE_Q5_0:
 | ||
|             get_rows_sycl<QK5_0, QR5_0, dequantize_q5_0>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
 | ||
|             break;
 | ||
|         case GGML_TYPE_Q5_1:
 | ||
|             get_rows_sycl<QK5_1, QR5_1, dequantize_q5_1>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
 | ||
|             break;
 | ||
|         case GGML_TYPE_Q8_0:
 | ||
|             get_rows_sycl<QK8_0, QR8_0, dequantize_q8_0>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
 | ||
|             break;
 | ||
|         default:
 | ||
|             // TODO: k-quants
 | ||
|             fprintf(stderr, "%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
 | ||
|             GGML_ASSERT(false);
 | ||
|             break;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| template <class op>
 | ||
| inline void ggml_sycl_op_bin_bcast(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
 | ||
|                                    const ggml_tensor *src1, ggml_tensor *dst,
 | ||
|                                    const float *src0_dd, const float *src1_dd,
 | ||
|                                    float *dst_dd,
 | ||
|                                    const queue_ptr &main_stream) {
 | ||
| 
 | ||
|     if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
 | ||
|         op()(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
 | ||
|     } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
 | ||
|         op()(ctx, src0, src1, dst, (const sycl::half *)src0_dd, src1_dd,
 | ||
|              (sycl::half *)dst_dd, main_stream);
 | ||
|     } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
 | ||
|         op()(ctx, src0, src1, dst, (const sycl::half *)src0_dd, src1_dd, dst_dd,
 | ||
|              main_stream);
 | ||
|     } else if (src0->type == GGML_TYPE_I32 && dst->type == GGML_TYPE_I32) {
 | ||
|         op()(ctx, src0, src1, dst, (const int32_t *)src0_dd, (const int32_t *)src1_dd, (int32_t *)dst_dd,
 | ||
|              main_stream);
 | ||
|     } else if (src0->type == GGML_TYPE_I16 && dst->type == GGML_TYPE_I16) {
 | ||
|         op()(ctx, src0, src1, dst, (const int16_t *)src0_dd, (const int16_t *)src1_dd, (int16_t *)dst_dd,
 | ||
|              main_stream);
 | ||
|     } else {
 | ||
|         fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
 | ||
|             ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
 | ||
|         GGML_ASSERT(false);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_op_repeat(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
 | ||
|                                 const ggml_tensor *src1, ggml_tensor *dst,
 | ||
|                                 const float *src0_d, const float *src1_d,
 | ||
|                                 float *dst_d,
 | ||
|                                 const queue_ptr &main_stream) {
 | ||
| 
 | ||
|     ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_repeat>>(ctx, dst, src0, dst, nullptr, src0_d, dst_d, main_stream);
 | ||
| 
 | ||
|     (void) src1;
 | ||
|     (void) src1_d;
 | ||
| }
 | ||
| 
 | ||
| inline void ggml_sycl_op_add(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
 | ||
|                              ggml_tensor *dst, const float *src0_dd,
 | ||
|                              const float *src1_dd, float *dst_dd,
 | ||
|                              const queue_ptr &main_stream) {
 | ||
| 
 | ||
|     ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_add>>(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
 | ||
| }
 | ||
| 
 | ||
| inline void ggml_sycl_op_acc(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
 | ||
|                              ggml_tensor *dst, const float *src0_dd,
 | ||
|                              const float *src1_dd, float *dst_dd,
 | ||
|                              const queue_ptr &main_stream) {
 | ||
| 
 | ||
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported
 | ||
| 
 | ||
|     int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
 | ||
|     int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
 | ||
|     // int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
 | ||
|     int offset = dst->op_params[3] / 4; // offset in bytes
 | ||
| 
 | ||
|     acc_f32_sycl(src0_dd, src1_dd, dst_dd, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], nb1, nb2, offset, main_stream);
 | ||
| 
 | ||
|     (void) dst;
 | ||
| }
 | ||
| 
 | ||
| inline void ggml_sycl_op_mul(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
 | ||
|                              ggml_tensor *dst, const float *src0_dd,
 | ||
|                              const float *src1_dd, float *dst_dd,
 | ||
|                              const queue_ptr &main_stream) {
 | ||
| 
 | ||
|     ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_mul>>(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
 | ||
| }
 | ||
| 
 | ||
| inline void ggml_sycl_op_div(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
 | ||
|                              ggml_tensor *dst, const float *src0_dd,
 | ||
|                              const float *src1_dd, float *dst_dd,
 | ||
|                              const queue_ptr &main_stream) {
 | ||
| 
 | ||
|     ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_div>>(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
 | ||
| }
 | ||
| 
 | ||
| inline void ggml_sycl_op_gelu(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
 | ||
|                               ggml_tensor *dst, const float *src0_dd,
 | ||
|                               const float *src1_dd, float *dst_dd,
 | ||
|                               const queue_ptr &main_stream) {
 | ||
| 
 | ||
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | ||
| 
 | ||
|     gelu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
 | ||
| 
 | ||
|     (void) src1;
 | ||
|     (void) dst;
 | ||
|     (void) src1_dd;
 | ||
| }
 | ||
| 
 | ||
| inline void ggml_sycl_op_silu(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
 | ||
|                               ggml_tensor *dst, const float *src0_dd,
 | ||
|                               const float *src1_dd, float *dst_dd,
 | ||
|                               const queue_ptr &main_stream) {
 | ||
| 
 | ||
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | ||
| 
 | ||
|     silu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
 | ||
| 
 | ||
|     (void) src1;
 | ||
|     (void) dst;
 | ||
|     (void) src1_dd;
 | ||
| }
 | ||
| 
 | ||
| inline void ggml_sycl_op_gelu_quick(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
 | ||
|                                     const ggml_tensor *src1, ggml_tensor *dst,
 | ||
|                                     const float *src0_dd, const float *src1_dd,
 | ||
|                                     float *dst_dd,
 | ||
|                                     const queue_ptr &main_stream) {
 | ||
| 
 | ||
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | ||
| 
 | ||
|     gelu_quick_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
 | ||
| 
 | ||
|     (void) src1;
 | ||
|     (void) dst;
 | ||
|     (void) src1_dd;
 | ||
| }
 | ||
| 
 | ||
| inline void ggml_sycl_op_tanh(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
 | ||
|                               ggml_tensor *dst, const float *src0_dd,
 | ||
|                               const float *src1_dd, float *dst_dd,
 | ||
|                               const queue_ptr &main_stream) {
 | ||
| 
 | ||
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | ||
|     tanh_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
 | ||
| 
 | ||
|     (void) src1;
 | ||
|     (void) dst;
 | ||
|     (void) src1_dd;
 | ||
| }
 | ||
| 
 | ||
| inline void ggml_sycl_op_relu(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
 | ||
|                               ggml_tensor *dst, const float *src0_dd,
 | ||
|                               const float *src1_dd, float *dst_dd,
 | ||
|                               const queue_ptr &main_stream) {
 | ||
| 
 | ||
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | ||
| 
 | ||
|     relu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
 | ||
| 
 | ||
|     (void) src1;
 | ||
|     (void) dst;
 | ||
|     (void) src1_dd;
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_op_hardsigmoid(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
 | ||
|                                      const ggml_tensor *src1, ggml_tensor *dst,
 | ||
|                                      const float *src0_dd, const float *src1_dd,
 | ||
|                                      float *dst_dd,
 | ||
|                                      const queue_ptr &main_stream) {
 | ||
| 
 | ||
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | ||
| 
 | ||
|     hardsigmoid_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
 | ||
| 
 | ||
|     (void) src1;
 | ||
|     (void) dst;
 | ||
|     (void) src1_dd;
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_op_hardswish(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
 | ||
|                                    const ggml_tensor *src1, ggml_tensor *dst,
 | ||
|                                    const float *src0_dd, const float *src1_dd,
 | ||
|                                    float *dst_dd, const queue_ptr &main_stream) {
 | ||
| 
 | ||
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | ||
| 
 | ||
|     hardswish_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
 | ||
| 
 | ||
|     (void) src1;
 | ||
|     (void) dst;
 | ||
|     (void) src1_dd;
 | ||
| }
 | ||
| 
 | ||
| inline void ggml_sycl_op_leaky_relu(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
 | ||
|                                     const ggml_tensor *src1, ggml_tensor *dst,
 | ||
|                                     const float *src0_dd, const float *src1_dd,
 | ||
|                                     float *dst_dd,
 | ||
|                                     const queue_ptr &main_stream) {
 | ||
| 
 | ||
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | ||
| 
 | ||
|     float negative_slope;
 | ||
|     memcpy(&negative_slope, dst->op_params, sizeof(float));
 | ||
| 
 | ||
|     leaky_relu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), negative_slope, main_stream);
 | ||
| 
 | ||
|     (void) src1;
 | ||
|     (void) dst;
 | ||
|     (void) src1_dd;
 | ||
| }
 | ||
| 
 | ||
| inline void ggml_sycl_op_sqr(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
 | ||
|                              ggml_tensor *dst, const float *src0_dd,
 | ||
|                              const float *src1_dd, float *dst_dd,
 | ||
|                              const queue_ptr &main_stream) {
 | ||
| 
 | ||
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | ||
| 
 | ||
|     sqr_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
 | ||
| 
 | ||
|     (void) src1;
 | ||
|     (void) dst;
 | ||
|     (void) src1_dd;
 | ||
| }
 | ||
| 
 | ||
| inline void ggml_sycl_op_norm(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
 | ||
|                               ggml_tensor *dst, const float *src0_dd,
 | ||
|                               const float *src1_dd, float *dst_dd,
 | ||
|                               const queue_ptr &main_stream) {
 | ||
| 
 | ||
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | ||
| 
 | ||
|     const int64_t ne00 = src0->ne[0];
 | ||
|     const int64_t nrows = ggml_nrows(src0);
 | ||
| 
 | ||
|     float eps;
 | ||
|     memcpy(&eps, dst->op_params, sizeof(float));
 | ||
| 
 | ||
|     norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
 | ||
| 
 | ||
|     (void) src1;
 | ||
|     (void) dst;
 | ||
|     (void) src1_dd;
 | ||
| }
 | ||
| 
 | ||
| inline void ggml_sycl_op_group_norm(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
 | ||
|                                     const ggml_tensor *src1, ggml_tensor *dst,
 | ||
|                                     const float *src0_dd, const float *src1_dd,
 | ||
|                                     float *dst_dd,
 | ||
|                                     const queue_ptr &main_stream) {
 | ||
| 
 | ||
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | ||
| 
 | ||
|     int num_groups = dst->op_params[0];
 | ||
|     int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
 | ||
|     group_norm_f32_sycl(src0_dd, dst_dd, num_groups, group_size, src0->ne[0] * src0->ne[1] * src0->ne[2], main_stream);
 | ||
| 
 | ||
|     (void) src1;
 | ||
|     (void) dst;
 | ||
|     (void) src1_dd;
 | ||
| }
 | ||
| 
 | ||
| inline void ggml_sycl_op_concat(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
 | ||
|                                 const ggml_tensor *src1, ggml_tensor *dst,
 | ||
|                                 const float *src0_dd, const float *src1_dd,
 | ||
|                                 float *dst_dd,
 | ||
|                                 const queue_ptr &main_stream) {
 | ||
| #pragma message("TODO: generalize concat kernel for dim != 2")
 | ||
| #pragma message("      https://github.com/ggerganov/llama.cpp/pull/7563")
 | ||
|     int dim = dst->op_params[0];
 | ||
|     GGML_ASSERT(dim == 2);
 | ||
| 
 | ||
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT(dst->type == GGML_TYPE_F32);
 | ||
| 
 | ||
|     for (int i3 = 0; i3 < dst->ne[3]; i3++) {
 | ||
|         concat_f32_sycl(src0_dd + i3 * (src0->nb[3] / 4), src1_dd + i3 * (src1->nb[3] / 4), dst_dd + i3 * (dst->nb[3] / 4), dst->ne[0], dst->ne[1], dst->ne[2], src0->ne[2], main_stream);
 | ||
|     }
 | ||
| 
 | ||
|     (void) src1;
 | ||
|     (void) dst;
 | ||
| }
 | ||
| 
 | ||
| inline void ggml_sycl_op_upscale(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
 | ||
|                                  const ggml_tensor *src1, ggml_tensor *dst,
 | ||
|                                  const float *src0_dd, const float *src1_dd,
 | ||
|                                  float *dst_dd,
 | ||
|                                  const queue_ptr &main_stream) {
 | ||
| 
 | ||
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT(dst->type == GGML_TYPE_F32);
 | ||
| 
 | ||
|     const float sf0 = (float)dst->ne[0]/src0->ne[0];
 | ||
|     const float sf1 = (float)dst->ne[1]/src0->ne[1];
 | ||
|     const float sf2 = (float)dst->ne[2]/src0->ne[2];
 | ||
|     const float sf3 = (float)dst->ne[3]/src0->ne[3];
 | ||
| 
 | ||
|     upscale_f32_sycl(src0_dd, dst_dd, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
 | ||
|                      dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], sf0, sf1, sf2, sf3,
 | ||
|                      main_stream);
 | ||
| 
 | ||
|     (void) src1;
 | ||
|     (void) dst;
 | ||
|     (void) src1_dd;
 | ||
| }
 | ||
| 
 | ||
| inline void ggml_sycl_op_pad(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
 | ||
|                              ggml_tensor *dst, const float *src0_dd,
 | ||
|                              const float *src1_dd, float *dst_dd,
 | ||
|                              const queue_ptr &main_stream) {
 | ||
| 
 | ||
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT(dst->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
 | ||
| 
 | ||
|     pad_f32_sycl(src0_dd, dst_dd,
 | ||
|         src0->ne[0], src0->ne[1], src0->ne[2],
 | ||
|         dst->ne[0], dst->ne[1], dst->ne[2], main_stream);
 | ||
| 
 | ||
|     (void) src1;
 | ||
|     (void) dst;
 | ||
|     (void) src1_dd;
 | ||
| }
 | ||
| 
 | ||
| inline void ggml_sycl_op_rms_norm(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
 | ||
|                                   const ggml_tensor *src1, ggml_tensor *dst,
 | ||
|                                   const float *src0_dd, const float *src1_dd,
 | ||
|                                   float *dst_dd,
 | ||
|                                   const queue_ptr &main_stream) {
 | ||
| 
 | ||
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | ||
| 
 | ||
|     const int64_t ne00 = src0->ne[0];
 | ||
|     const int64_t nrows = ggml_nrows(src0);
 | ||
| 
 | ||
|     float eps;
 | ||
|     memcpy(&eps, dst->op_params, sizeof(float));
 | ||
| 
 | ||
|     rms_norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
 | ||
| 
 | ||
|     (void) src1;
 | ||
|     (void) dst;
 | ||
|     (void) src1_dd;
 | ||
| }
 | ||
| 
 | ||
| static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_SYCL_MAX_DEVICES> & tensor_split) {
 | ||
|     int64_t min_compute_capability = INT_MAX;
 | ||
|     int64_t max_compute_capability = INT_MIN;
 | ||
|     for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
 | ||
|         if (tensor_split[i] < (i + 1 < ggml_sycl_info().device_count ? tensor_split[i + 1] : 1.0f)) {
 | ||
|             if (min_compute_capability > ggml_sycl_info().devices[i].cc) {
 | ||
|                 min_compute_capability = ggml_sycl_info().devices[i].cc;
 | ||
|             }
 | ||
|             if (max_compute_capability < ggml_sycl_info().devices[i].cc) {
 | ||
|                 max_compute_capability = ggml_sycl_info().devices[i].cc;
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     switch(type) {
 | ||
|         case GGML_TYPE_Q4_0:
 | ||
|         case GGML_TYPE_Q4_1:
 | ||
|             return max_compute_capability >= VER_GEN9 ? 128 : 64;
 | ||
|         case GGML_TYPE_Q5_0:
 | ||
|         case GGML_TYPE_Q5_1:
 | ||
|         case GGML_TYPE_Q8_0:
 | ||
|             return 64;
 | ||
|         case GGML_TYPE_F16:
 | ||
|         case GGML_TYPE_F32:
 | ||
|             return 1;
 | ||
|         case GGML_TYPE_Q2_K:
 | ||
|         case GGML_TYPE_Q3_K:
 | ||
|         case GGML_TYPE_Q4_K:
 | ||
|         case GGML_TYPE_Q5_K:
 | ||
|         case GGML_TYPE_IQ2_XXS:
 | ||
|         case GGML_TYPE_IQ2_XS:
 | ||
|         case GGML_TYPE_IQ2_S:
 | ||
|         case GGML_TYPE_IQ1_S:
 | ||
|         case GGML_TYPE_IQ1_M:
 | ||
|         case GGML_TYPE_IQ3_XXS:
 | ||
|         case GGML_TYPE_IQ4_XS:
 | ||
|         case GGML_TYPE_IQ4_NL:
 | ||
|             return max_compute_capability >= VER_GEN9 ? 128 : 64;
 | ||
|         case GGML_TYPE_IQ3_S:
 | ||
|             return max_compute_capability >= VER_GEN9 ? 128 : 64;
 | ||
|         case GGML_TYPE_Q6_K:
 | ||
|             return 64;
 | ||
|         default:
 | ||
|             GGML_ASSERT(false);
 | ||
|     }
 | ||
| 
 | ||
| }
 | ||
| 
 | ||
| inline void ggml_sycl_op_mul_mat_sycl(
 | ||
|     ggml_backend_sycl_context & ctx,
 | ||
|     const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
 | ||
|     const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
 | ||
|     float *dst_dd_i, const int64_t row_low, const int64_t row_high,
 | ||
|     const int64_t src1_ncols, const int64_t src1_padded_row_size,
 | ||
|     const queue_ptr &stream) try {
 | ||
| 
 | ||
|     GGML_ASSERT(src0_dd_i  != nullptr);
 | ||
|     GGML_ASSERT(src1_ddf_i != nullptr);
 | ||
|     GGML_ASSERT(dst_dd_i   != nullptr);
 | ||
| 
 | ||
|     const int64_t ne00 = src0->ne[0];
 | ||
|     const int64_t ne10 = src1->ne[0];
 | ||
| 
 | ||
|     const int64_t ne0 = dst->ne[0];
 | ||
| 
 | ||
|     const int64_t row_diff = row_high - row_low;
 | ||
| 
 | ||
|     int id;
 | ||
|     SYCL_CHECK(
 | ||
|         CHECK_TRY_ERROR(id = get_current_device_id()));
 | ||
| 
 | ||
|     // the main device has a larger memory buffer to hold the results from all GPUs
 | ||
|     // ldc == nrows of the matrix that cuBLAS writes into
 | ||
|     int ldc = id == ctx.device ? ne0 : row_diff;
 | ||
| 
 | ||
| #ifdef GGML_SYCL_F16
 | ||
|     bool use_fp16 = true;  // TODO(Yu) SYCL capability check
 | ||
| #else
 | ||
|     bool use_fp16 = false;
 | ||
| #endif
 | ||
|     if ((src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
 | ||
|         use_fp16 && ggml_is_contiguous(src0) && row_diff == src0->ne[1] &&
 | ||
|         dst->op_params[0] == GGML_PREC_DEFAULT) {
 | ||
| 
 | ||
|         // GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat_sycl - fp16 path\n");
 | ||
|         ggml_sycl_pool_alloc<sycl::half> src0_as_f16(ctx.pool());
 | ||
|         if (src0->type != GGML_TYPE_F16) {
 | ||
|             const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src0->type);
 | ||
|             GGML_ASSERT(to_fp16_sycl != nullptr);
 | ||
|             size_t ne = row_diff*ne00;
 | ||
|             src0_as_f16.alloc(ne);
 | ||
|             to_fp16_sycl(src0_dd_i, src0_as_f16.get(), ne, stream);
 | ||
|         }
 | ||
|         const sycl::half *src0_ptr = src0->type == GGML_TYPE_F16
 | ||
|                                          ? (const sycl::half *)src0_dd_i
 | ||
|                                          : src0_as_f16.get();
 | ||
| 
 | ||
|         ggml_sycl_pool_alloc<sycl::half> src1_as_f16(ctx.pool());
 | ||
|         if (src1->type != GGML_TYPE_F16) {
 | ||
|             const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type);
 | ||
|             GGML_ASSERT(to_fp16_sycl != nullptr);
 | ||
|             size_t ne = src1_ncols*ne10;
 | ||
|             src1_as_f16.alloc(ne);
 | ||
|             to_fp16_sycl(src1_ddf_i, src1_as_f16.get(), ne, stream);
 | ||
|         }
 | ||
|         const sycl::half *src1_ptr = src1->type == GGML_TYPE_F16
 | ||
|                 ? (const sycl::half *)src1->data + src1_padded_row_size
 | ||
|                                          : src1_as_f16.get();
 | ||
|         ggml_sycl_pool_alloc<sycl::half> dst_f16(ctx.pool(), row_diff * src1_ncols);
 | ||
| 
 | ||
|         const sycl::half alpha_f16 = 1.0f;
 | ||
|         const sycl::half beta_f16 = 0.0f;
 | ||
|         SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm(
 | ||
|             *stream, oneapi::mkl::transpose::trans,
 | ||
|             oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10,
 | ||
|             &alpha_f16, src0_ptr, dpct::library_data_t::real_half, ne00,
 | ||
|             src1_ptr, dpct::library_data_t::real_half, ne10, &beta_f16,
 | ||
|             dst_f16.get(), dpct::library_data_t::real_half, ldc,
 | ||
|             dpct::library_data_t::real_half)));
 | ||
|         const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
 | ||
|         to_fp32_sycl(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
 | ||
|     }
 | ||
|     else {
 | ||
|         // GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat_sycl - fp32 path\n");
 | ||
|         ggml_sycl_pool_alloc<float> src0_ddq_as_f32(ctx.pool());
 | ||
|         ggml_sycl_pool_alloc<float> src1_ddq_as_f32(ctx.pool());
 | ||
|         if (src0->type != GGML_TYPE_F32) {
 | ||
|             const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(src0->type);
 | ||
|             GGML_ASSERT(to_fp32_sycl != nullptr);
 | ||
|             src0_ddq_as_f32.alloc(row_diff*ne00);
 | ||
|             to_fp32_sycl(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream);
 | ||
|         }
 | ||
|         if (src1->type != GGML_TYPE_F32) {
 | ||
|             const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(src1->type);
 | ||
|             GGML_ASSERT(to_fp32_sycl != nullptr);
 | ||
|             src1_ddq_as_f32.alloc(src1_ncols*ne10);
 | ||
|             to_fp32_sycl(src1_ddf_i, src1_ddq_as_f32.get(), src1_ncols*ne10, stream);
 | ||
|         }
 | ||
|         const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get();
 | ||
|         const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get();
 | ||
| 
 | ||
|         const float alpha = 1.0f;
 | ||
|         const float beta = 0.0f;
 | ||
| 
 | ||
|         SYCL_CHECK(CHECK_TRY_ERROR(oneapi::mkl::blas::column_major::gemm(
 | ||
|             *stream, oneapi::mkl::transpose::trans,
 | ||
|             oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10,
 | ||
|             dpct::get_value(&alpha, *stream), src0_ddf_i, ne00,
 | ||
|             src1_ddf1_i, ne10, dpct::get_value(&beta, *stream),
 | ||
|             dst_dd_i, ldc)));
 | ||
|     }
 | ||
|     (void) dst;
 | ||
|     (void) src1_ddq_i;
 | ||
|     (void) src1_padded_row_size;
 | ||
| }
 | ||
| catch (sycl::exception const &exc) {
 | ||
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | ||
|             << ", line:" << __LINE__ << std::endl;
 | ||
|   std::exit(1);
 | ||
| }
 | ||
| 
 | ||
| inline void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
 | ||
|                               ggml_tensor *dst, const float *src0_dd,
 | ||
|                               const float *src1_dd, float *dst_dd,
 | ||
|                               const queue_ptr &main_stream) {
 | ||
|     const ggml_tensor * src2 = dst->src[2];
 | ||
| 
 | ||
|     GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
 | ||
|     GGML_ASSERT( dst->type == GGML_TYPE_F32 ||  dst->type == GGML_TYPE_F16);
 | ||
|     GGML_ASSERT(src0->type == dst->type);
 | ||
| 
 | ||
|     const int64_t ne00 = src0->ne[0];
 | ||
|     const int64_t ne01 = src0->ne[1];
 | ||
|     const int64_t ne2 = dst->ne[2];
 | ||
|     const int64_t nrows = ggml_nrows(src0);
 | ||
| 
 | ||
|     //const int n_past      = ((int32_t *) dst->op_params)[0];
 | ||
|     const int n_dims      = ((int32_t *) dst->op_params)[1];
 | ||
|     const int mode        = ((int32_t *) dst->op_params)[2];
 | ||
|     //const int n_ctx       = ((int32_t *) dst->op_params)[3];
 | ||
|     const int n_ctx_orig  = ((int32_t *) dst->op_params)[4];
 | ||
| 
 | ||
|     // RoPE alteration for extended context
 | ||
|     float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
 | ||
|     memcpy(&freq_base,   (int32_t *) dst->op_params +  5, sizeof(float));
 | ||
|     memcpy(&freq_scale,  (int32_t *) dst->op_params +  6, sizeof(float));
 | ||
|     memcpy(&ext_factor,  (int32_t *) dst->op_params +  7, sizeof(float));
 | ||
|     memcpy(&attn_factor, (int32_t *) dst->op_params +  8, sizeof(float));
 | ||
|     memcpy(&beta_fast,   (int32_t *) dst->op_params +  9, sizeof(float));
 | ||
|     memcpy(&beta_slow,   (int32_t *) dst->op_params + 10, sizeof(float));
 | ||
| 
 | ||
|     const float * freq_factors = nullptr;
 | ||
|     const int32_t * pos = nullptr;
 | ||
|     if ((mode & 1) == 0) {
 | ||
|         GGML_ASSERT(src1->type == GGML_TYPE_I32);
 | ||
|         GGML_ASSERT(src1->ne[0] == ne2);
 | ||
|         pos = (const int32_t *) src1_dd;
 | ||
|     }
 | ||
| 
 | ||
|     const bool is_neox = mode & 2;
 | ||
| 
 | ||
| #pragma message("TODO: update rope NORM mode to match NEOX mode")
 | ||
| #pragma message("      https://github.com/ggerganov/llama.cpp/pull/7634")
 | ||
| 
 | ||
|     if (is_neox) {
 | ||
|         pos = (const int32_t *) src1_dd;
 | ||
| 
 | ||
|         if (src2 != nullptr) {
 | ||
|             freq_factors = (const float *) src2->data;
 | ||
|         }
 | ||
|     } else {
 | ||
|         GGML_ASSERT(src2 == nullptr && "TODO: freq_factors not implemented for !is_neox");
 | ||
|     }
 | ||
| 
 | ||
|     rope_corr_dims corr_dims;
 | ||
|     ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims.v);
 | ||
| 
 | ||
|     // compute
 | ||
|     if (is_neox) {
 | ||
|         if (src0->type == GGML_TYPE_F32) {
 | ||
|             rope_neox_sycl(
 | ||
|                 (const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
 | ||
|                 attn_factor, corr_dims, freq_factors, main_stream
 | ||
|             );
 | ||
|         } else if (src0->type == GGML_TYPE_F16) {
 | ||
|             rope_neox_sycl((const sycl::half *)src0_dd, (sycl::half *)dst_dd,
 | ||
|                            ne00, n_dims, nrows, pos, freq_scale, ne01,
 | ||
|                            freq_base, ext_factor, attn_factor, corr_dims,
 | ||
|                            freq_factors, main_stream);
 | ||
|         } else {
 | ||
|             GGML_ASSERT(false);
 | ||
|         }
 | ||
|     } else {
 | ||
|         if (src0->type == GGML_TYPE_F32) {
 | ||
|             rope_sycl(
 | ||
|                 (const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
 | ||
|                 attn_factor, corr_dims, main_stream
 | ||
|             );
 | ||
|         } else if (src0->type == GGML_TYPE_F16) {
 | ||
|             rope_sycl((const sycl::half *)src0_dd, (sycl::half *)dst_dd, ne00,
 | ||
|                       nrows, pos, freq_scale, ne01, freq_base, ext_factor,
 | ||
|                       attn_factor, corr_dims, main_stream);
 | ||
|         } else {
 | ||
|             GGML_ASSERT(false);
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     (void) src1;
 | ||
|     (void) dst;
 | ||
|     (void) src1_dd;
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_op_pool2d(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
 | ||
|                                 const ggml_tensor *src1, ggml_tensor *dst,
 | ||
|                                 const float *src0_dd, const float *src1_dd,
 | ||
|                                 float *dst_dd, const queue_ptr &main_stream) {
 | ||
| 
 | ||
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | ||
| 
 | ||
|     const int32_t * opts = (const int32_t *)dst->op_params;
 | ||
|     enum ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
 | ||
|     const int k0 = opts[1];
 | ||
|     const int k1 = opts[2];
 | ||
|     const int s0 = opts[3];
 | ||
|     const int s1 = opts[4];
 | ||
|     const int p0 = opts[5];
 | ||
|     const int p1 = opts[6];
 | ||
| 
 | ||
|     const int64_t IH = src0->ne[1];
 | ||
|     const int64_t IW = src0->ne[0];
 | ||
| 
 | ||
|     const int64_t N = dst->ne[3];
 | ||
|     const int64_t OC = dst->ne[2];
 | ||
|     const int64_t OH = dst->ne[1];
 | ||
|     const int64_t OW = dst->ne[0];
 | ||
| 
 | ||
|     const int parallel_elements = N * OC * OH * OW;
 | ||
|     const int num_blocks = (parallel_elements + SYCL_POOL2D_BLOCK_SIZE - 1) / SYCL_POOL2D_BLOCK_SIZE;
 | ||
|     sycl::range<3> block_nums(1, 1, num_blocks);
 | ||
|     main_stream->parallel_for(
 | ||
|         sycl::nd_range<3>(block_nums *
 | ||
|                               sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE),
 | ||
|                           sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE)),
 | ||
|         [=](sycl::nd_item<3> item_ct1) {
 | ||
|             pool2d_nchw_kernel(IH, IW, OH, OW, k1, k0, s1, s0, p1, p0,
 | ||
|                                parallel_elements, src0_dd, dst_dd, op,
 | ||
|                                item_ct1);
 | ||
|         });
 | ||
| 
 | ||
|     (void) src1;
 | ||
|     (void) src1_dd;
 | ||
| }
 | ||
| 
 | ||
| inline void ggml_sycl_op_im2col(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
 | ||
|                                 const ggml_tensor *src1, ggml_tensor *dst,
 | ||
|                                 const float *src0_dd, const float *src1_dd,
 | ||
|                                 float *dst_dd,
 | ||
|                                 const queue_ptr &main_stream) {
 | ||
| 
 | ||
|     GGML_ASSERT(src0->type == GGML_TYPE_F16);
 | ||
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
 | ||
| 
 | ||
|     const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
 | ||
|     const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
 | ||
|     const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
 | ||
|     const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
 | ||
|     const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
 | ||
|     const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
 | ||
| 
 | ||
|     const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
 | ||
| 
 | ||
|     const int64_t IC = src1->ne[is_2D ? 2 : 1];
 | ||
|     const int64_t IH = is_2D ? src1->ne[1] : 1;
 | ||
|     const int64_t IW =         src1->ne[0];
 | ||
| 
 | ||
|     const int64_t KH = is_2D ? src0->ne[1] : 1;
 | ||
|     const int64_t KW =         src0->ne[0];
 | ||
| 
 | ||
|     const int64_t OH = is_2D ? dst->ne[2] : 1;
 | ||
|     const int64_t OW =         dst->ne[1];
 | ||
| 
 | ||
|     const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
 | ||
| 
 | ||
|     if (dst->type == GGML_TYPE_F16) {
 | ||
|         im2col_sycl(src1_dd, (sycl::half *)dst_dd, IW, IH, OW, OH, KW, KH, IC, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
 | ||
|     } else {
 | ||
|         im2col_sycl(src1_dd, (float *)dst_dd, IW, IH, OW, OH, KW, KH, IC, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
 | ||
|     }
 | ||
| 
 | ||
|     (void) src0;
 | ||
|     (void) src0_dd;
 | ||
| }
 | ||
| 
 | ||
| inline void ggml_sycl_op_sum_rows(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
 | ||
|                                   const ggml_tensor *src1, ggml_tensor *dst,
 | ||
|                                   const float *src0_dd, const float *src1_dd,
 | ||
|                                   float *dst_dd,
 | ||
|                                   const queue_ptr &main_stream) {
 | ||
| 
 | ||
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | ||
| 
 | ||
|     const int64_t ncols = src0->ne[0];
 | ||
|     const int64_t nrows = ggml_nrows(src0);
 | ||
| 
 | ||
|     sum_rows_f32_sycl(src0_dd, dst_dd, ncols, nrows, main_stream);
 | ||
| 
 | ||
|     (void) src1;
 | ||
|     (void) dst;
 | ||
|     (void) src1_dd;
 | ||
| }
 | ||
| 
 | ||
| inline void ggml_sycl_op_argsort(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
 | ||
|                                  const ggml_tensor *src1, ggml_tensor *dst,
 | ||
|                                  const float *src0_dd, const float *src1_dd,
 | ||
|                                  float *dst_dd,
 | ||
|                                  const queue_ptr &main_stream) {
 | ||
| 
 | ||
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT( dst->type == GGML_TYPE_I32);
 | ||
| 
 | ||
|     const int64_t ncols = src0->ne[0];
 | ||
|     const int64_t nrows = ggml_nrows(src0);
 | ||
| 
 | ||
|     enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
 | ||
| 
 | ||
|     argsort_f32_i32_sycl(src0_dd, (int *)dst_dd, ncols, nrows, order, main_stream);
 | ||
| 
 | ||
|     (void) src1;
 | ||
|     (void) dst;
 | ||
|     (void) src1_dd;
 | ||
| }
 | ||
| 
 | ||
| inline void ggml_sycl_op_diag_mask_inf(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
 | ||
|                                        const ggml_tensor *src1,
 | ||
|                                        ggml_tensor *dst, const float *src0_dd,
 | ||
|                                        const float *src1_dd, float *dst_dd,
 | ||
|                                        const queue_ptr &main_stream) {
 | ||
| 
 | ||
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | ||
| 
 | ||
|     const int64_t ne00 = src0->ne[0];
 | ||
|     const int64_t ne01 = src0->ne[1];
 | ||
|     const int nrows0 = ggml_nrows(src0);
 | ||
| 
 | ||
|     const int n_past = ((int32_t *) dst->op_params)[0];
 | ||
| 
 | ||
|     diag_mask_inf_f32_sycl(src0_dd, dst_dd, ne00, nrows0, ne01, n_past, main_stream);
 | ||
| 
 | ||
|     (void) src1;
 | ||
|     (void) dst;
 | ||
|     (void) src1_dd;
 | ||
| }
 | ||
| 
 | ||
| inline void ggml_sycl_op_soft_max(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
 | ||
|                                   const ggml_tensor *src1, ggml_tensor *dst,
 | ||
|                                   const float *src0_dd, const float *src1_dd,
 | ||
|                                   float *dst_dd,
 | ||
|                                   const queue_ptr &main_stream) {
 | ||
| 
 | ||
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | ||
| 
 | ||
| #pragma message("TODO: add ggml_sycl_op_soft_max() F16 src1 support")
 | ||
| #pragma message("ref:  https://github.com/ggerganov/llama.cpp/pull/5021")
 | ||
|     GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
 | ||
| 
 | ||
|     const int64_t ne00 = src0->ne[0];
 | ||
|     const int64_t nrows_x = ggml_nrows(src0);
 | ||
|     const int64_t nrows_y = src0->ne[1];
 | ||
| 
 | ||
|     float scale = 1.0f;
 | ||
|     float max_bias = 0.0f;
 | ||
| 
 | ||
|     memcpy(&scale, dst->op_params + 0, sizeof(float));
 | ||
|     memcpy(&max_bias, dst->op_params + 1, sizeof(float));
 | ||
| 
 | ||
|     soft_max_f32_sycl(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00,
 | ||
|                       nrows_x, nrows_y, scale, max_bias, main_stream);
 | ||
| }
 | ||
| 
 | ||
| inline void ggml_sycl_op_scale(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
 | ||
|                                ggml_tensor *dst, const float *src0_dd,
 | ||
|                                const float *src1_dd, float *dst_dd,
 | ||
|                                const queue_ptr &main_stream) {
 | ||
| 
 | ||
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | ||
| 
 | ||
|     float scale;
 | ||
|     memcpy(&scale, dst->op_params, sizeof(float));
 | ||
| 
 | ||
|     scale_f32_sycl(src0_dd, dst_dd, scale, ggml_nelements(src0), main_stream);
 | ||
|     /*
 | ||
|     DPCT1010:87: SYCL uses exceptions to report errors and does not use the
 | ||
|     error codes. The call was replaced with 0. You need to rewrite this code.
 | ||
|     */
 | ||
|     SYCL_CHECK(0);
 | ||
| 
 | ||
|     (void) src1;
 | ||
|     (void) dst;
 | ||
|     (void) src1_dd;
 | ||
| }
 | ||
| 
 | ||
| inline void ggml_sycl_op_clamp(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
 | ||
|                                ggml_tensor *dst, const float *src0_dd,
 | ||
|                                const float *src1_dd, float *dst_dd,
 | ||
|                                const queue_ptr &main_stream) {
 | ||
| 
 | ||
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | ||
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | ||
| 
 | ||
|     float min;
 | ||
|     float max;
 | ||
|     memcpy(&min, dst->op_params, sizeof(float));
 | ||
|     memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
 | ||
| 
 | ||
|     clamp_f32_sycl(src0_dd, dst_dd, min, max, ggml_nelements(src0), main_stream);
 | ||
|     /*
 | ||
|     DPCT1010:88: SYCL uses exceptions to report errors and does not use the
 | ||
|     error codes. The call was replaced with 0. You need to rewrite this code.
 | ||
|     */
 | ||
|     SYCL_CHECK(0);
 | ||
| 
 | ||
|     (void) src1;
 | ||
|     (void) dst;
 | ||
|     (void) src1_dd;
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_op_flatten(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
 | ||
|                                  const ggml_tensor *src1, ggml_tensor *dst,
 | ||
|                                  const ggml_sycl_op_flatten_t op) try {
 | ||
|     const int64_t nrows0 = ggml_nrows(src0);
 | ||
| 
 | ||
|     const bool use_src1 = src1 != nullptr;
 | ||
|     const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
 | ||
| 
 | ||
|     GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
 | ||
|     GGML_ASSERT(              dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
 | ||
| 
 | ||
|     ggml_tensor_extra_gpu * src0_extra =            (ggml_tensor_extra_gpu *) src0->extra;
 | ||
|     ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
 | ||
|     ggml_tensor_extra_gpu * dst_extra  =            (ggml_tensor_extra_gpu *)  dst->extra;
 | ||
| 
 | ||
|     // dd = data device
 | ||
|     float * src0_ddf = (float *) src0->data;
 | ||
|     float * src1_ddf = use_src1 ? (float *) src1->data : nullptr;
 | ||
|     float *  dst_ddf = (float *) dst->data;
 | ||
| 
 | ||
|     ggml_sycl_pool_alloc<float> src0_f(ctx.pool());
 | ||
|     ggml_sycl_pool_alloc<float> src1_f(ctx.pool());
 | ||
|     ggml_sycl_pool_alloc<float>  dst_f(ctx.pool());
 | ||
| 
 | ||
|     ggml_sycl_set_device(ctx.device);
 | ||
|     queue_ptr main_stream = ctx.stream();
 | ||
|     // GGML_SYCL_DEBUG("ctx.device=%d, main_stream=%p src0_on_device=%d, src1_on_device=%d, dst_on_device=%d\n",
 | ||
|         // ctx.device, main_stream, src0_on_device, src1_on_device, dst_on_device);
 | ||
| 
 | ||
|     // do the computation
 | ||
|     op(ctx, src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
 | ||
|     // print_ggml_tensor("tensor", dst);
 | ||
| }
 | ||
| catch (sycl::exception const &exc) {
 | ||
| 
 | ||
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | ||
|             << ", line:" << __LINE__ << std::endl;
 | ||
|   std::exit(1);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_set_peer_access(const int n_tokens, int main_device) {
 | ||
|     static bool peer_access_enabled = false;
 | ||
| 
 | ||
|     const bool enable_peer_access = n_tokens <= GGML_SYCL_PEER_MAX_BATCH_SIZE;
 | ||
| 
 | ||
|     if (peer_access_enabled == enable_peer_access) {
 | ||
|         return;
 | ||
|     }
 | ||
| 
 | ||
| #ifdef NDEBUG
 | ||
|     for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
 | ||
|         SYCL_CHECK(ggml_sycl_set_device(i));
 | ||
|     }
 | ||
| 
 | ||
|     for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
 | ||
|         SYCL_CHECK(ggml_sycl_set_device(i));
 | ||
| 
 | ||
|         for (int id_other = 0; id_other < ggml_sycl_info().device_count; ++id_other) {
 | ||
|             if (i == id_other) {
 | ||
|                 continue;
 | ||
|             }
 | ||
|             if (i != main_device && id_other != main_device) {
 | ||
|                 continue;
 | ||
|             }
 | ||
| 
 | ||
|             // int can_access_peer;
 | ||
|             // SYCL_CHECK(syclDeviceCanAccessPeer(&can_access_peer, id, id_other));
 | ||
|             // if (can_access_peer) {
 | ||
|             //     if (enable_peer_access) {
 | ||
|             //         SYCL_CHECK(syclDeviceEnablePeerAccess(id_other, 0));
 | ||
|             //     } else {
 | ||
|             //         SYCL_CHECK(syclDeviceDisablePeerAccess(id_other));
 | ||
|             //     }
 | ||
|             // }
 | ||
|         }
 | ||
|     }
 | ||
| #endif // NDEBUG
 | ||
| 
 | ||
|     peer_access_enabled = enable_peer_access;
 | ||
| }
 | ||
| 
 | ||
| struct ggml_backend_sycl_split_buffer_type_context {
 | ||
|     std::array<float, GGML_SYCL_MAX_DEVICES> tensor_split;
 | ||
| };
 | ||
| 
 | ||
| static void ggml_sycl_op_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
 | ||
|                                  const ggml_tensor *src1, ggml_tensor *dst,
 | ||
|                                  ggml_sycl_op_mul_mat_t op,
 | ||
|                                  const bool convert_src1_to_q8_1) try {
 | ||
| 
 | ||
|     GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
 | ||
| 
 | ||
|     GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
 | ||
|     const int64_t nrows1 = ggml_nrows(src1);
 | ||
| 
 | ||
|     GGML_ASSERT(ne03 == ne13);
 | ||
| 
 | ||
|     const int64_t ne0 = dst->ne[0];
 | ||
|     const int64_t ne1 = dst->ne[1];
 | ||
| 
 | ||
|     const int nb2 = dst->nb[2];
 | ||
|     const int nb3 = dst->nb[3];
 | ||
| 
 | ||
|     GGML_ASSERT(dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
 | ||
|     GGML_ASSERT(src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
 | ||
|     GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1));
 | ||
| 
 | ||
|     GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
 | ||
| 
 | ||
|     const int64_t i02_divisor = ne12 / ne02;
 | ||
| 
 | ||
|     const size_t src0_ts = ggml_type_size(src0->type);
 | ||
|     const size_t src0_bs = ggml_blck_size(src0->type);
 | ||
|     const size_t q8_1_ts = sizeof(block_q8_1);
 | ||
|     const size_t q8_1_bs = QK8_1;
 | ||
| 
 | ||
|     ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
 | ||
|     ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
 | ||
|     ggml_tensor_extra_gpu *  dst_extra = (ggml_tensor_extra_gpu *)  dst->extra;
 | ||
| 
 | ||
|     const bool src0_is_contiguous = ggml_is_contiguous(src0);
 | ||
|     const bool src1_is_contiguous = ggml_is_contiguous(src1);
 | ||
| 
 | ||
|     int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
 | ||
| 
 | ||
|     const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
 | ||
|     GGML_ASSERT(!(split && ne02 > 1));
 | ||
|     GGML_ASSERT(!(split && ne03 > 1));
 | ||
|     GGML_ASSERT(!(split && ne02 < ne12));
 | ||
| 
 | ||
|     std::array<float, GGML_SYCL_MAX_DEVICES> tensor_split;
 | ||
|     if (split) {
 | ||
|         // TODO: check that src0->buffer->buft is a split buffer type, replace GGML_BACKEND_TYPE_GPU_SPLIT check
 | ||
|         // GGML_ASSERT(src0->buffer != nullptr && src0->buffer->buft == ...);
 | ||
|         ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *) src0->buffer->buft->context;
 | ||
|         tensor_split = buft_ctx->tensor_split;
 | ||
|     }
 | ||
| 
 | ||
|     struct dev_data {
 | ||
|         ggml_sycl_pool_alloc<char> src0_dd_alloc;
 | ||
|         ggml_sycl_pool_alloc<float> src1_ddf_alloc;
 | ||
|         ggml_sycl_pool_alloc<char> src1_ddq_alloc;
 | ||
|         ggml_sycl_pool_alloc<float> dst_dd_alloc;
 | ||
| 
 | ||
|         char *src0_dd = nullptr;
 | ||
|         float *src1_ddf = nullptr; // float
 | ||
|         char *src1_ddq = nullptr;  // q8_1
 | ||
|         float *dst_dd = nullptr;
 | ||
| 
 | ||
|         int64_t row_low;
 | ||
|         int64_t row_high;
 | ||
|     };
 | ||
| 
 | ||
|     dev_data dev[GGML_SYCL_MAX_DEVICES];
 | ||
| 
 | ||
|     int used_devices = 0;
 | ||
|     queue_ptr main_stream = ctx.stream();
 | ||
| 
 | ||
|     for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
 | ||
|         // by default, use all rows
 | ||
|         dev[i].row_low  = 0;
 | ||
|         dev[i].row_high = ne01;
 | ||
| 
 | ||
|         // for multi GPU, get the row boundaries from tensor split
 | ||
|         // and round to mul_mat_q tile sizes
 | ||
|         if (split) {
 | ||
|             const int64_t rounding = get_row_rounding(src0->type, tensor_split);
 | ||
| 
 | ||
|             if (i != 0) {
 | ||
|                 dev[i].row_low  = ne01*tensor_split[i];
 | ||
|                 if (dev[i].row_low < ne01) {
 | ||
|                     dev[i].row_low -= dev[i].row_low % rounding;
 | ||
|                 }
 | ||
|             }
 | ||
| 
 | ||
|             if (i != ggml_sycl_info().device_count - 1) {
 | ||
|                 dev[i].row_high  = ne01*tensor_split[i + 1];
 | ||
|                 if (dev[i].row_high < ne01) {
 | ||
|                     dev[i].row_high -= dev[i].row_high % rounding;
 | ||
|                 }
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
 | ||
|         if ((!split && i != ctx.device) || dev[i].row_low == dev[i].row_high) {
 | ||
|             continue;
 | ||
|         }
 | ||
| 
 | ||
|         used_devices++;
 | ||
| 
 | ||
|         const bool src1_on_device = i == ctx.device;
 | ||
|         const bool  dst_on_device = i == ctx.device;
 | ||
| 
 | ||
|         ggml_sycl_set_device(i);
 | ||
|         queue_ptr stream = ctx.stream(i, 0);
 | ||
| 
 | ||
|         if (src0_is_contiguous) {
 | ||
|             dev[i].src0_dd = (char *) src0->data;
 | ||
|         } else {
 | ||
|             dev[i].src0_dd = dev[i].src0_dd_alloc.alloc(ctx.pool(i), ggml_nbytes(src0));
 | ||
|         }
 | ||
| 
 | ||
|         if (src1_on_device && src1_is_contiguous) {
 | ||
|             dev[i].src1_ddf = (float *) src1->data;
 | ||
|         } else {
 | ||
|             dev[i].src1_ddf = dev[i].src1_ddf_alloc.alloc(ctx.pool(i), ggml_nelements(src1));
 | ||
|         }
 | ||
| 
 | ||
|         if (convert_src1_to_q8_1) {
 | ||
|             dev[i].src1_ddq = dev[i].src1_ddq_alloc.alloc(ctx.pool(i), nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs);
 | ||
| 
 | ||
|             if (src1_on_device && src1_is_contiguous) {
 | ||
|                 quantize_row_q8_1_sycl(dev[i].src1_ddf, dev[i].src1_ddq, ne10, nrows1, src1_padded_col_size, stream);
 | ||
|                 /*
 | ||
|                 DPCT1010:90: SYCL uses exceptions to report errors and does not
 | ||
|                 use the error codes. The call was replaced with 0. You need to
 | ||
|                 rewrite this code.
 | ||
|                 */
 | ||
|                 SYCL_CHECK(0);
 | ||
|             }
 | ||
|         }
 | ||
| 
 | ||
|         if (dst_on_device) {
 | ||
|             dev[i].dst_dd = (float *) dst->data;
 | ||
|         } else {
 | ||
|             const size_t size_dst_ddf = split ? (dev[i].row_high - dev[i].row_low)*ne1 : ggml_nelements(dst);
 | ||
|             dev[i].dst_dd = dev[i].dst_dd_alloc.alloc(ctx.pool(i), size_dst_ddf);
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     // if multiple devices are used they need to wait for the main device
 | ||
|     // here an event is recorded that signals that the main device has finished calculating the input data
 | ||
|     if (split && used_devices > 1) {
 | ||
|         ggml_sycl_set_device(ctx.device);
 | ||
|         /*
 | ||
|         DPCT1024:91: The original code returned the error code that was further
 | ||
|         consumed by the program logic. This original code was replaced with 0.
 | ||
|         You may need to rewrite the program logic consuming the error code.
 | ||
|         */
 | ||
|         SYCL_CHECK(CHECK_TRY_ERROR(
 | ||
|             *src0_extra->events[ctx.device][0] =
 | ||
|                 ctx.stream()->ext_oneapi_submit_barrier()));
 | ||
|     }
 | ||
| 
 | ||
|     const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11;
 | ||
|     for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) {
 | ||
|         const int64_t is = split ? (src1_col_0/src1_col_stride) % GGML_SYCL_MAX_STREAMS : 0;
 | ||
|         const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride;
 | ||
| 
 | ||
|         for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
 | ||
|             if ((!split && i != ctx.device) || dev[i].row_low == dev[i].row_high) {
 | ||
|                 continue;
 | ||
|             }
 | ||
| 
 | ||
|             const bool src1_on_device = i == ctx.device;
 | ||
|             const bool  dst_on_device = i == ctx.device;
 | ||
|             const int64_t row_diff = dev[i].row_high - dev[i].row_low;
 | ||
| 
 | ||
|             ggml_sycl_set_device(i);
 | ||
|             queue_ptr stream = ctx.stream(i, is);
 | ||
| 
 | ||
|             // wait for main GPU data if necessary
 | ||
|             if (split && (i != ctx.device || is != 0)) {
 | ||
|                 /*
 | ||
|                 DPCT1009:163: SYCL uses exceptions to report errors and does not
 | ||
|                 use the error codes. The original code was commented out and a
 | ||
|                 warning string was inserted. You need to rewrite this code.
 | ||
|                 */
 | ||
|                 SYCL_CHECK(CHECK_TRY_ERROR(stream->ext_oneapi_submit_barrier(
 | ||
|                     {*src0_extra->events[ctx.device][0]})));
 | ||
|             }
 | ||
| 
 | ||
|             for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) {
 | ||
|                 const int64_t i03 = i0 / ne12;
 | ||
|                 const int64_t i02 = i0 % ne12;
 | ||
| 
 | ||
|                 const size_t src1_ddq_i_offset = (i0*ne11 + src1_col_0) * src1_padded_col_size*q8_1_ts/q8_1_bs;
 | ||
| 
 | ||
|                 // for split tensors the data begins at i0 == i0_offset_low
 | ||
|                 char  *  src0_dd_i =  dev[i].src0_dd + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs;
 | ||
|                 float * src1_ddf_i = dev[i].src1_ddf + (i0*ne11 + src1_col_0) * ne10;
 | ||
|                 char  * src1_ddq_i = dev[i].src1_ddq +  src1_ddq_i_offset;
 | ||
|                 float *   dst_dd_i =   dev[i].dst_dd + (i0*ne1  + src1_col_0) * (dst_on_device ? ne0 : row_diff);
 | ||
| 
 | ||
|                 // the main device memory buffer can be on VRAM scratch, with space for all partial results
 | ||
|                 // in that case an offset on dst_ddf_i is needed
 | ||
|                 if (i == ctx.device) {
 | ||
|                     dst_dd_i += dev[i].row_low; // offset is 0 if no tensor split
 | ||
|                 }
 | ||
| 
 | ||
|                 // copy src0, src1 to device if necessary
 | ||
|                 if (src1_is_contiguous) {
 | ||
|                     if (i != ctx.device) {
 | ||
|                         if (convert_src1_to_q8_1) {
 | ||
|                             char * src1_ddq_i_source = dev[ctx.device].src1_ddq + src1_ddq_i_offset;
 | ||
|                           SYCL_CHECK(CHECK_TRY_ERROR(stream->memcpy(
 | ||
|                                 src1_ddq_i, src1_ddq_i_source,
 | ||
|                                 src1_ncols * src1_padded_col_size * q8_1_ts /
 | ||
|                                     q8_1_bs).wait()));
 | ||
|                         } else {
 | ||
| 
 | ||
|                             float * src1_ddf_i_source = (float *) src1_extra->data_device[ctx.device];
 | ||
|                             src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10;
 | ||
| 
 | ||
|                             SYCL_CHECK(CHECK_TRY_ERROR(dev2dev_memcpy(*stream, *main_stream,
 | ||
|                                 src1_ddf_i, src1_ddf_i_source,
 | ||
|                                 src1_ncols * ne10 * sizeof(float))));
 | ||
|                         }
 | ||
|                     }
 | ||
|                 } else if (src1_on_device && !src1_is_contiguous) {
 | ||
|                     SYCL_CHECK(ggml_sycl_cpy_tensor_2d(
 | ||
|                                    src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
 | ||
|                 } else {
 | ||
|                     GGML_ASSERT(false);
 | ||
|                 }
 | ||
| 
 | ||
|                 if (convert_src1_to_q8_1 && !src1_is_contiguous) {
 | ||
|                     quantize_row_q8_1_sycl(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
 | ||
|                     /*
 | ||
|                     DPCT1010:92: SYCL uses exceptions to report errors and does
 | ||
|                     not use the error codes. The call was replaced with 0. You
 | ||
|                     need to rewrite this code.
 | ||
|                     */
 | ||
|                     SYCL_CHECK(0);
 | ||
|                 }
 | ||
| 
 | ||
|                 if (src1_col_0 == 0 && !src0_is_contiguous && i02 % i02_divisor == 0) {
 | ||
|                     SYCL_CHECK(ggml_sycl_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, dev[i].row_low, dev[i].row_high, stream));
 | ||
|                 }
 | ||
|                 if (src1->type == GGML_TYPE_F16) {
 | ||
|                     src1_padded_col_size = (i0 * ne11 + src1_col_0) * ne10;
 | ||
|                 }
 | ||
|                 // do the computation
 | ||
|                 SYCL_CHECK(CHECK_TRY_ERROR(op(ctx, src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i,
 | ||
|                     dev[i].row_low, dev[i].row_high, src1_ncols, src1_padded_col_size, stream)));
 | ||
|                 /*
 | ||
|                 DPCT1010:93: SYCL uses exceptions to report errors and does not
 | ||
|                 use the error codes. The call was replaced with 0. You need to
 | ||
|                 rewrite this code.
 | ||
|                 */
 | ||
|                 SYCL_CHECK(0);
 | ||
| 
 | ||
|                 // copy dst to host or other device if necessary
 | ||
|                 if (!dst_on_device) {
 | ||
|                     void * dst_off_device = dst->data;
 | ||
|                     if (split) {
 | ||
|                         // src0 = weight matrix is saved as a transposed matrix for better memory layout.
 | ||
|                         // dst is NOT transposed.
 | ||
|                         // The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
 | ||
|                         // Instead they need to be copied to the correct slice in ne0 = dst row index.
 | ||
|                         // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
 | ||
|                         float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
 | ||
|                         GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
 | ||
|                         dhf_dst_i += src1_col_0*ne0 + dev[i].row_low;
 | ||
| 
 | ||
|                         SYCL_CHECK(CHECK_TRY_ERROR(dpct::async_dpct_memcpy(
 | ||
|                             dhf_dst_i, ne0 * sizeof(float), dst_dd_i,
 | ||
|                             row_diff * sizeof(float), row_diff * sizeof(float),
 | ||
|                             src1_ncols, dpct::device_to_device, *stream)));
 | ||
|                     } else {
 | ||
|                         float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
 | ||
|                         GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
 | ||
|                         dhf_dst_i += src1_col_0*ne0;
 | ||
|                         SYCL_CHECK(CHECK_TRY_ERROR(
 | ||
|                             stream->memcpy(dhf_dst_i, dst_dd_i,
 | ||
|                                            src1_ncols * ne0 * sizeof(float)).wait()));
 | ||
|                     }
 | ||
|                 }
 | ||
| 
 | ||
|                 // add event for the main device to wait on until other device is done
 | ||
|                 if (split && (i != ctx.device || is != 0)) {
 | ||
|                     /*
 | ||
|                     DPCT1024:94: The original code returned the error code that
 | ||
|                     was further consumed by the program logic. This original
 | ||
|                     code was replaced with 0. You may need to rewrite the
 | ||
|                     program logic consuming the error code.
 | ||
|                     */
 | ||
|                     SYCL_CHECK(CHECK_TRY_ERROR(
 | ||
|                         *src0_extra->events[i][is] =
 | ||
|                             stream->ext_oneapi_submit_barrier()));
 | ||
|                 }
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     // main device waits for all other devices to be finished
 | ||
|     if (split && ggml_sycl_info().device_count > 1) {
 | ||
|         int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE;
 | ||
|         is_max = is_max <= GGML_SYCL_MAX_STREAMS ? is_max : GGML_SYCL_MAX_STREAMS;
 | ||
| 
 | ||
|         ggml_sycl_set_device(ctx.device);
 | ||
|         for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
 | ||
|             if (dev[i].row_low == dev[i].row_high) {
 | ||
|                 continue;
 | ||
|             }
 | ||
|             for (int64_t is = 0; is < is_max; ++is) {
 | ||
|                 SYCL_CHECK(CHECK_TRY_ERROR(
 | ||
|                     ctx.stream()->ext_oneapi_submit_barrier(
 | ||
|                         {*src0_extra->events[i][is]})));
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| catch (sycl::exception const &exc) {
 | ||
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | ||
|             << ", line:" << __LINE__ << std::endl;
 | ||
|   std::exit(1);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| static void ggml_sycl_repeat(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | ||
|     ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_repeat);
 | ||
|     GGML_SYCL_DEBUG("call %s done\n", __func__);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_get_rows(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | ||
|     ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_get_rows);
 | ||
|     GGML_SYCL_DEBUG("call %s done\n", __func__);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_add(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | ||
|     ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_add);
 | ||
|     GGML_SYCL_DEBUG("call %s done\n", __func__);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_acc(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | ||
|     ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_acc);
 | ||
|     GGML_SYCL_DEBUG("call %s done\n", __func__);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_mul(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | ||
|     ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_mul);
 | ||
|     GGML_SYCL_DEBUG("call %s done\n", __func__);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_div(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | ||
|     ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_div);
 | ||
|     GGML_SYCL_DEBUG("call %s done\n", __func__);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_gelu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | ||
|     ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_gelu);
 | ||
|     GGML_SYCL_DEBUG("call %s done\n", __func__);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_silu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | ||
|     ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_silu);
 | ||
|     GGML_SYCL_DEBUG("call %s done\n", __func__);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_gelu_quick(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | ||
|     ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_gelu_quick);
 | ||
|     GGML_SYCL_DEBUG("call %s done\n", __func__);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_tanh(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | ||
|     ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_tanh);
 | ||
|     GGML_SYCL_DEBUG("call %s done\n", __func__);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_relu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | ||
|     ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_relu);
 | ||
|     GGML_SYCL_DEBUG("call %s done\n", __func__);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_hardsigmoid(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | ||
|     ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_hardsigmoid);
 | ||
|     GGML_SYCL_DEBUG("call %s done\n", __func__);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_hardswish(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | ||
|     ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_hardswish);
 | ||
|     GGML_SYCL_DEBUG("call %s done\n", __func__);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_leaky_relu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | ||
|     ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_leaky_relu);
 | ||
|     GGML_SYCL_DEBUG("call %s done\n", __func__);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_sqr(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | ||
|     ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_sqr);
 | ||
|     GGML_SYCL_DEBUG("call %s done\n", __func__);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_norm(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | ||
|     ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_norm);
 | ||
|     GGML_SYCL_DEBUG("call %s done\n", __func__);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_group_norm(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | ||
|     ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_group_norm);
 | ||
|     GGML_SYCL_DEBUG("call %s done\n", __func__);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_concat(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | ||
|     ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_concat);
 | ||
|     GGML_SYCL_DEBUG("call %s done\n", __func__);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_upscale(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | ||
|     ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_upscale);
 | ||
|     GGML_SYCL_DEBUG("call %s done\n", __func__);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_pad(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | ||
|     ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_pad);
 | ||
|     GGML_SYCL_DEBUG("call %s done\n", __func__);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| static void ggml_sycl_rms_norm(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | ||
|     ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_rms_norm);
 | ||
|     GGML_SYCL_DEBUG("call %s done\n", __func__);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_mul_mat_vec_p021(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
 | ||
|                                        const ggml_tensor *src1,
 | ||
|                                        ggml_tensor *dst) try {
 | ||
|     GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
 | ||
|     GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
 | ||
|     GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
 | ||
|     GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
 | ||
|     GGML_ASSERT(src0->type == GGML_TYPE_F16);
 | ||
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | ||
| 
 | ||
|     const int64_t ne00 = src0->ne[0];
 | ||
|     const int64_t ne01 = src0->ne[1];
 | ||
|     const int64_t ne02 = src0->ne[2];
 | ||
| 
 | ||
|     const int64_t ne12 = src1->ne[2];
 | ||
| 
 | ||
|     SYCL_CHECK(ggml_sycl_set_device(ctx.device));
 | ||
|     queue_ptr main_stream = ctx.stream();
 | ||
| 
 | ||
|     void  * src0_ddq = src0->data;
 | ||
|     float * src1_ddf = (float *) src1->data;
 | ||
|     float * dst_ddf  = (float *) dst->data;
 | ||
| 
 | ||
|     ggml_mul_mat_p021_f16_f32_sycl(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
 | ||
| }
 | ||
| catch (sycl::exception const &exc) {
 | ||
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | ||
|             << ", line:" << __LINE__ << std::endl;
 | ||
|   std::exit(1);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_mul_mat_vec_nc(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
 | ||
|                                      const ggml_tensor *src1,
 | ||
|                                      ggml_tensor *dst) try {
 | ||
|     GGML_ASSERT(!ggml_is_transposed(src0));
 | ||
|     GGML_ASSERT(!ggml_is_transposed(src1));
 | ||
|     GGML_ASSERT(!ggml_is_permuted(src0));
 | ||
|     GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
 | ||
|     GGML_ASSERT(src0->type == GGML_TYPE_F16);
 | ||
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | ||
| 
 | ||
|     const int64_t ne00 = src0->ne[0];
 | ||
|     const int64_t ne01 = src0->ne[1];
 | ||
|     const int64_t ne02 = src0->ne[2];
 | ||
| 
 | ||
|     const int64_t nb01 = src0->nb[1];
 | ||
|     const int64_t nb02 = src0->nb[2];
 | ||
| 
 | ||
|     const int64_t ne12 = src1->ne[2];
 | ||
| 
 | ||
|     SYCL_CHECK(ggml_sycl_set_device(ctx.device));
 | ||
|     queue_ptr main_stream = ctx.stream();
 | ||
| 
 | ||
|     void  * src0_ddq = src0->data;
 | ||
|     float * src1_ddf = (float *) src1->data;
 | ||
|     float * dst_ddf  = (float *) dst->data;
 | ||
| 
 | ||
|     const int64_t row_stride_x = nb01 / sizeof(sycl::half);
 | ||
|     const int64_t channel_stride_x = nb02 / sizeof(sycl::half);
 | ||
| 
 | ||
|     ggml_mul_mat_vec_nc_f16_f32_sycl(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
 | ||
| }
 | ||
| catch (sycl::exception const &exc) {
 | ||
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | ||
|             << ", line:" << __LINE__ << std::endl;
 | ||
|   std::exit(1);
 | ||
| }
 | ||
| 
 | ||
| static void k_compute_batched_ptrs(const sycl::half *src0_as_f16,
 | ||
|                                    const sycl::half *src1_as_f16, char *dst,
 | ||
|                                    const void **ptrs_src, void **ptrs_dst,
 | ||
|                                    int64_t ne12, int64_t ne13, int64_t ne23,
 | ||
|                                    size_t nb02, size_t nb03, size_t nb12,
 | ||
|                                    size_t nb13, size_t nbd2, size_t nbd3,
 | ||
|                                    int64_t r2, int64_t r3,
 | ||
|                                    const sycl::nd_item<3> &item_ct1) {
 | ||
|     int64_t i13 = item_ct1.get_group(2) * item_ct1.get_local_range(2) +
 | ||
|                   item_ct1.get_local_id(2);
 | ||
|     int64_t i12 = item_ct1.get_group(1) * item_ct1.get_local_range(1) +
 | ||
|                   item_ct1.get_local_id(1);
 | ||
| 
 | ||
|     if (i13 >= ne13 || i12 >= ne12) {
 | ||
|         return;
 | ||
|     }
 | ||
| 
 | ||
|     int64_t i03 = i13 / r3;
 | ||
|     int64_t i02 = i12 / r2;
 | ||
| 
 | ||
|     ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03;
 | ||
|     ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13;
 | ||
|     ptrs_dst[0*ne23 + i12 + i13*ne12] = (      char *)         dst + i12*nbd2 + i13*nbd3;
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx,
 | ||
|                                              const ggml_tensor *src0,
 | ||
|                                              const ggml_tensor *src1,
 | ||
|                                              ggml_tensor *dst) try {
 | ||
|     GGML_ASSERT(!ggml_is_transposed(src0));
 | ||
|     GGML_ASSERT(!ggml_is_transposed(src1));
 | ||
|     GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
 | ||
|     GGML_ASSERT(src0->type == GGML_TYPE_F16);
 | ||
| 
 | ||
|     GGML_TENSOR_BINARY_OP_LOCALS
 | ||
| 
 | ||
|     const int64_t ne_dst = ggml_nelements(dst);
 | ||
| 
 | ||
|     SYCL_CHECK(ggml_sycl_set_device(ctx.device));
 | ||
|     queue_ptr main_stream = ctx.stream();;
 | ||
| 
 | ||
|     bool no_mixed_dtypes = main_stream->get_backend() == sycl::backend::ext_oneapi_cuda ||
 | ||
|                            main_stream->get_backend() == sycl::backend::ext_oneapi_hip;
 | ||
| 
 | ||
| 
 | ||
|     void * src0_ddq = src0->data;
 | ||
|     sycl::half *src0_as_f16 = (sycl::half *)src0_ddq;
 | ||
|     float * src1_ddf = (float *) src1->data;
 | ||
|     float * dst_ddf = (float *) dst->data;
 | ||
| 
 | ||
|     // convert src1 to fp16
 | ||
|     ggml_sycl_pool_alloc<sycl::half> src1_f16_alloc(ctx.pool());
 | ||
|     if (src1->type != GGML_TYPE_F16) {
 | ||
|         const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type);
 | ||
|         const int64_t ne_src1 = ggml_nelements(src1);
 | ||
|         src1_f16_alloc.alloc(ne_src1);
 | ||
|         GGML_ASSERT(to_fp16_sycl != nullptr);
 | ||
|         to_fp16_sycl(src1_ddf, src1_f16_alloc.get(), ne_src1, main_stream);
 | ||
|     }
 | ||
|     sycl::half *src1_f16 = src1->type == GGML_TYPE_F16 ? (sycl::half *)src1_ddf
 | ||
|                                                        : src1_f16_alloc.get();
 | ||
| 
 | ||
|     ggml_sycl_pool_alloc<sycl::half> dst_f16(ctx.pool());
 | ||
|     char * dst_t;
 | ||
| 
 | ||
|     dpct::library_data_t cu_compute_type = dpct::library_data_t::real_float;
 | ||
|     dpct::library_data_t cu_data_type = dpct::library_data_t::real_float;
 | ||
|     if (no_mixed_dtypes) {
 | ||
|         cu_compute_type = dpct::library_data_t::real_half;
 | ||
|         cu_data_type = dpct::library_data_t::real_half;
 | ||
|     }
 | ||
| 
 | ||
|     // dst strides
 | ||
|     size_t nbd2 = dst->nb[2];
 | ||
|     size_t nbd3 = dst->nb[3];
 | ||
| 
 | ||
|     const float alpha_f32 = 1.0f;
 | ||
|     const float beta_f32 = 0.0f;
 | ||
| 
 | ||
|     const sycl::half alpha_f16 = 1.0f;
 | ||
|     const sycl::half beta_f16 = 0.0f;
 | ||
| 
 | ||
|     const void * alpha = &alpha_f32;
 | ||
|     const void * beta  = &beta_f32;
 | ||
|     if (no_mixed_dtypes) {
 | ||
|         alpha = &alpha_f16;
 | ||
|         beta  = &beta_f16;
 | ||
|     }
 | ||
| 
 | ||
|     // TODO: Renable (dst->op_params[0] =! GGML_PREC_DEFAULT) pathway
 | ||
|     // when oneMKL open source supports half, half, float, float: datatypes
 | ||
| 
 | ||
|     dst_t = (char *) dst_ddf;
 | ||
|     if (no_mixed_dtypes) {
 | ||
|         dst_t = (char *) dst_f16.alloc(ne_dst);
 | ||
| 
 | ||
|         nbd2 /= sizeof(float) / sizeof(sycl::half);
 | ||
|         nbd3 /= sizeof(float) / sizeof(sycl::half);
 | ||
|     }
 | ||
| 
 | ||
|     GGML_ASSERT(ne12 % ne02 == 0);
 | ||
|     GGML_ASSERT(ne13 % ne03 == 0);
 | ||
| 
 | ||
|     // broadcast factors
 | ||
|     const int64_t r2 = ne12/ne02;
 | ||
|     const int64_t r3 = ne13/ne03;
 | ||
| 
 | ||
|     if (r2 == 1 && r3 == 1 && ggml_is_contiguous_2(src0) && ggml_is_contiguous_2(src1)) {
 | ||
|         // there is no broadcast and src0, src1 are contiguous across dims 2, 3
 | ||
|         SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
 | ||
|             *main_stream, oneapi::mkl::transpose::trans,
 | ||
|             oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha,
 | ||
|             (const char *)src0_as_f16, dpct::library_data_t::real_half,
 | ||
|             nb01 / nb00, nb02 / nb00,
 | ||
|             (const char *)src1_f16, dpct::library_data_t::real_half,
 | ||
|             nb11 / nb10, nb12 / nb10, beta,
 | ||
|             (char *)dst_t, cu_data_type, ne01, nb2 / nb0,
 | ||
|             ne12 * ne13, cu_compute_type)));
 | ||
|     } else {
 | ||
|         const int ne23 = ne12*ne13;
 | ||
| 
 | ||
|         ggml_sycl_pool_alloc<const void *> ptrs_src(ctx.pool(), 2*ne23);
 | ||
|         ggml_sycl_pool_alloc<      void *> ptrs_dst(ctx.pool(), 1*ne23);
 | ||
| 
 | ||
|         sycl::range<3> block_dims(1, ne12, ne13);
 | ||
|         /*
 | ||
|         DPCT1049:47: The work-group size passed to the SYCL kernel may exceed
 | ||
|         the limit. To get the device limit, query
 | ||
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | ||
|         */
 | ||
|         {
 | ||
|             dpct::has_capability_or_fail(main_stream->get_device(),
 | ||
|                                          {sycl::aspect::fp16});
 | ||
| 
 | ||
|             main_stream->submit([&](sycl::handler &cgh) {
 | ||
|                 const void **ptrs_src_get = ptrs_src.get();
 | ||
|                 void **ptrs_dst_get = ptrs_dst.get();
 | ||
|                 size_t nb12_scaled = src1->type == GGML_TYPE_F16 ? nb12 : nb12 / 2;
 | ||
|                 size_t nb13_scaled = src1->type == GGML_TYPE_F16 ? nb13 : nb13 / 2;
 | ||
|                 cgh.parallel_for(sycl::nd_range<3>(block_dims, block_dims),
 | ||
|                                  [=](sycl::nd_item<3> item_ct1) {
 | ||
|                                      k_compute_batched_ptrs(
 | ||
|                                          src0_as_f16, src1_f16,
 | ||
|                                          dst_t, ptrs_src_get,
 | ||
|                                          ptrs_dst_get, ne12, ne13, ne23,
 | ||
|                                          nb02, nb03, nb12_scaled, nb13_scaled,
 | ||
|                                          nbd2, nbd3, r2, r3, item_ct1);
 | ||
|                                  });
 | ||
|             });
 | ||
|         }
 | ||
|         SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
 | ||
|             *main_stream, oneapi::mkl::transpose::trans,
 | ||
|             oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha,
 | ||
|             (const void **)(ptrs_src.get() + 0 * ne23),
 | ||
|             dpct::library_data_t::real_half, nb01 / nb00,
 | ||
|             (const void **)(ptrs_src.get() + 1 * ne23),
 | ||
|             dpct::library_data_t::real_half, nb11 / nb10, beta,
 | ||
|             (void **)(ptrs_dst.get() + 0 * ne23), cu_data_type, ne01, ne23,
 | ||
|             cu_compute_type)));
 | ||
|     }
 | ||
| 
 | ||
|     if (no_mixed_dtypes) {
 | ||
|         const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
 | ||
|         to_fp32_sycl(dst_f16.get(), dst_ddf, ne_dst, main_stream);
 | ||
|     }
 | ||
| }
 | ||
| catch (sycl::exception const &exc) {
 | ||
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | ||
|             << ", line:" << __LINE__ << std::endl;
 | ||
|   std::exit(1);
 | ||
| }
 | ||
| 
 | ||
| inline bool ggml_sycl_supports_mmq(enum ggml_type type) {
 | ||
|     // TODO: accuracy issues in MMQ
 | ||
|     return false;
 | ||
| }
 | ||
| 
 | ||
| bool ggml_sycl_supports_dmmv(enum ggml_type type) {
 | ||
|     switch (type) {
 | ||
|         case GGML_TYPE_Q4_0:
 | ||
|         case GGML_TYPE_Q4_1:
 | ||
|         case GGML_TYPE_Q5_0:
 | ||
|         case GGML_TYPE_Q5_1:
 | ||
|         case GGML_TYPE_Q8_0:
 | ||
|         case GGML_TYPE_Q2_K:
 | ||
|         case GGML_TYPE_Q3_K:
 | ||
|         case GGML_TYPE_Q4_K:
 | ||
|         case GGML_TYPE_Q5_K:
 | ||
|         case GGML_TYPE_Q6_K:
 | ||
|         case GGML_TYPE_F16:
 | ||
|             return true;
 | ||
|         default:
 | ||
|             return false;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     const bool split = ggml_backend_buffer_is_sycl_split(src0->buffer);
 | ||
| 
 | ||
|     int64_t min_compute_capability = INT_MAX;
 | ||
| 
 | ||
|     if (split) {
 | ||
|         ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *) src0->buffer->buft->context;
 | ||
|         auto & tensor_split = buft_ctx->tensor_split;
 | ||
|         for (int id = 0; id < ggml_sycl_info().device_count; ++id) {
 | ||
|             // skip devices that are not going to do any work:
 | ||
|             if (tensor_split[id] >= (id + 1 < ggml_sycl_info().device_count ? tensor_split[id + 1] : 1.0f)) {
 | ||
|                 continue;
 | ||
|             }
 | ||
| 
 | ||
|             if (min_compute_capability > ggml_sycl_info().devices[id].cc) {
 | ||
|                 min_compute_capability = ggml_sycl_info().devices[id].cc;
 | ||
|             }
 | ||
|         }
 | ||
|     } else {
 | ||
|         min_compute_capability    = ggml_sycl_info().devices[ctx.device].cc;
 | ||
|     }
 | ||
| 
 | ||
|     // check data types and tensor shapes for custom matrix multiplication kernels:
 | ||
|     bool use_dequantize_mul_mat_vec = ggml_sycl_supports_dmmv(src0->type)
 | ||
|         && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
 | ||
|         && src0->ne[0] % GGML_SYCL_DMMV_X == 0 && src1->ne[1] == 1;
 | ||
| 
 | ||
|     bool use_mul_mat_vec_q =  ggml_is_quantized(src0->type)
 | ||
|         && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
 | ||
|         && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
 | ||
| 
 | ||
|     bool use_mul_mat_q =  ggml_sycl_supports_mmq(src0->type)
 | ||
|         && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
 | ||
| 
 | ||
|     // mmvq and mmq need the __dp4a instruction which is available for gen12+
 | ||
|     // Workaround in https://github.com/ggerganov/llama.cpp/commit/95f84d5ce8b449a9b16009434aca800df504a02e
 | ||
|     use_mul_mat_q = use_mul_mat_q && (src0->type != GGML_TYPE_IQ2_XXS);
 | ||
| #ifdef SYCL_USE_XMX
 | ||
|     use_mul_mat_q = use_mul_mat_q && (src1->ne[1] <= MMQ_MAX_BATCH_SIZE);
 | ||
| #endif // SYCL_USE_XMX
 | ||
| 
 | ||
|     if (!split && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
 | ||
|         // KQ single-batch
 | ||
|         ggml_sycl_mul_mat_vec_p021(ctx, src0, src1, dst);
 | ||
|     } else if (!split && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
 | ||
|         // KQV single-batch
 | ||
|         ggml_sycl_mul_mat_vec_nc(ctx, src0, src1, dst);
 | ||
|     } else if (!split && src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16) && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
 | ||
|         // KQ + KQV multi-batch
 | ||
|         ggml_sycl_mul_mat_batched_sycl(ctx, src0, src1, dst);
 | ||
|     } else if (use_dequantize_mul_mat_vec) {
 | ||
|         ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_dequantize_mul_mat_vec, false);
 | ||
|     } else if (use_mul_mat_vec_q) {
 | ||
|         ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_vec_q, true);
 | ||
|     } else if (use_mul_mat_q) {
 | ||
|         ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_q, true);
 | ||
|     } else {
 | ||
|         ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_sycl, false);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| struct mmid_row_mapping {
 | ||
|     int32_t i1;
 | ||
|     int32_t i2;
 | ||
| };
 | ||
| 
 | ||
| __dpct_inline__ static void k_copy_src1_to_contiguous(
 | ||
|     const char *__restrict__ src1_original, char *__restrict__ src1_contiguous,
 | ||
|     int *__restrict__ cur_src1_row, mmid_row_mapping *__restrict__ row_mapping,
 | ||
|     const char *__restrict ids, int64_t i02, size_t ids_nb1, size_t ids_nb0,
 | ||
|     int64_t ne11, int64_t ne10, size_t nb11, size_t nb12,
 | ||
|     const sycl::nd_item<3> &item_ct1, int &src1_row) {
 | ||
|     int32_t iid1 = item_ct1.get_group(2);
 | ||
|     int32_t id = item_ct1.get_group(1);
 | ||
| 
 | ||
|     const int32_t row_id_i = *(const int32_t *) (ids + iid1*ids_nb1 + id*ids_nb0);
 | ||
| 
 | ||
|     if (row_id_i != i02) {
 | ||
|         return;
 | ||
|     }
 | ||
| 
 | ||
|     const int64_t i11 = id % ne11;
 | ||
|     const int64_t i12 = iid1;
 | ||
| 
 | ||
|     if (item_ct1.get_local_id(2) == 0) {
 | ||
|         src1_row =
 | ||
|             dpct::atomic_fetch_add<sycl::access::address_space::generic_space>(
 | ||
|                 cur_src1_row, 1);
 | ||
|         row_mapping[src1_row] = {id, iid1};
 | ||
|     }
 | ||
|     /*
 | ||
|     DPCT1065:194: Consider replacing sycl::nd_item::barrier() with
 | ||
|     sycl::nd_item::barrier(sycl::access::fence_space::local_space) for better
 | ||
|     performance if there is no access to global memory.
 | ||
|     */
 | ||
|     item_ct1.barrier();
 | ||
| 
 | ||
|     const float * src1_row_original = (const float *)(src1_original + i11*nb11 + i12*nb12);
 | ||
|     float * src1_row_contiguous = (float *)(src1_contiguous + src1_row*nb11);
 | ||
| 
 | ||
| #pragma unroll
 | ||
|     for (int i = item_ct1.get_local_id(2); i < ne10;
 | ||
|          i += item_ct1.get_local_range(2)) {
 | ||
|         src1_row_contiguous[i] = src1_row_original[i];
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| __dpct_inline__ static void k_copy_dst_from_contiguous(
 | ||
|     char *__restrict__ dst_original, const char *__restrict__ dst_contiguous,
 | ||
|     const mmid_row_mapping *__restrict__ row_mapping, int64_t ne0, size_t nb1,
 | ||
|     size_t nb2, const sycl::nd_item<3> &item_ct1) {
 | ||
|     int32_t i = item_ct1.get_group(2);
 | ||
| 
 | ||
|     const int32_t i1 = row_mapping[i].i1;
 | ||
|     const int32_t i2 = row_mapping[i].i2;
 | ||
| 
 | ||
|     const float * dst_row_contiguous = (const float *)(dst_contiguous + i*nb1);
 | ||
|     float * dst_row_original = (float *)(dst_original + i1*nb1 + i2*nb2);
 | ||
| 
 | ||
| #pragma unroll
 | ||
|     for (int j = item_ct1.get_local_id(2); j < ne0;
 | ||
|          j += item_ct1.get_local_range(2)) {
 | ||
|         dst_row_original[j] = dst_row_contiguous[j];
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_mul_mat_id(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
 | ||
|                                  const ggml_tensor *src1,
 | ||
|                                  ggml_tensor *dst) try {
 | ||
|     GGML_ASSERT(!ggml_backend_buffer_is_sycl_split(src0->buffer) && "mul_mat_id does not support split buffers");
 | ||
| 
 | ||
|     const ggml_tensor *ids = dst->src[2];
 | ||
|     GGML_TENSOR_BINARY_OP_LOCALS
 | ||
| 
 | ||
|     const queue_ptr stream = ctx.stream();
 | ||
| 
 | ||
|     const int64_t n_as = ne02;
 | ||
|     const int64_t n_ids = ids->ne[0];
 | ||
| 
 | ||
|     std::vector<char> ids_host(ggml_nbytes(ids));
 | ||
|     const char * ids_dev = (const char *) ids->data;
 | ||
| 
 | ||
|     SYCL_CHECK(CHECK_TRY_ERROR(
 | ||
|         stream->memcpy(ids_host.data(), ids_dev, ggml_nbytes(ids))));
 | ||
|     SYCL_CHECK(CHECK_TRY_ERROR(stream->wait()));
 | ||
| 
 | ||
|     const ggml_tensor_extra_gpu *src0_extra =
 | ||
|         (const ggml_tensor_extra_gpu *)src0->extra;
 | ||
|     const ggml_tensor_extra_gpu *src1_extra =
 | ||
|         (const ggml_tensor_extra_gpu *)src1->extra;
 | ||
|     const ggml_tensor_extra_gpu *dst_extra =
 | ||
|         (const ggml_tensor_extra_gpu *)dst->extra;
 | ||
| 
 | ||
|     ggml_tensor_extra_gpu src0_row_extra;
 | ||
|     ggml_tensor_extra_gpu src1_row_extra;
 | ||
|     ggml_tensor_extra_gpu dst_row_extra;
 | ||
| 
 | ||
|     ggml_tensor src0_row = *src0;
 | ||
|     ggml_tensor src1_row = *src1;
 | ||
|     ggml_tensor dst_row = *dst;
 | ||
| 
 | ||
|     src1_row.backend = GGML_BACKEND_TYPE_GPU;
 | ||
|     dst_row.backend  = GGML_BACKEND_TYPE_GPU;
 | ||
| 
 | ||
|     src0_row.extra = &src0_row_extra;
 | ||
|     src1_row.extra = &src1_row_extra;
 | ||
|     dst_row.extra = &dst_row_extra;
 | ||
| 
 | ||
|     char *src0_original = src1->backend == GGML_BACKEND_TYPE_CPU
 | ||
|                               ? (char *)src0->data
 | ||
|                               : (char *)src0_extra->data_device[ctx.device];
 | ||
|     char *src1_original = src1->backend == GGML_BACKEND_TYPE_CPU
 | ||
|                               ? (char *)src1->data
 | ||
|                               : (char *)src1_extra->data_device[ctx.device];
 | ||
|     char *dst_original = dst->backend == GGML_BACKEND_TYPE_CPU
 | ||
|                              ? (char *)dst->data
 | ||
|                              : (char *)dst_extra->data_device[ctx.device];
 | ||
| 
 | ||
|     src0_row.ne[2] = 1;
 | ||
|     src0_row.ne[3] = 1;
 | ||
|     src0_row.nb[3] = nb02;
 | ||
| 
 | ||
|     src1_row.ne[1] = 1;
 | ||
|     src1_row.ne[2] = 1;
 | ||
|     src1_row.ne[3] = 1;
 | ||
|     src1_row.nb[2] = nb11;
 | ||
|     src1_row.nb[3] = nb11;
 | ||
| 
 | ||
|     dst_row.ne[1] = 1;
 | ||
|     dst_row.ne[2] = 1;
 | ||
|     dst_row.ne[3] = 1;
 | ||
|     dst_row.nb[2] = nb1;
 | ||
|     dst_row.nb[3] = nb1;
 | ||
|     if (ne12 == 1) {
 | ||
|         for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
 | ||
|             for (int64_t id = 0; id < n_ids; id++) {
 | ||
|                 const int32_t i02 = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
 | ||
|                 GGML_ASSERT(i02 >= 0 && i02 < n_as);
 | ||
| 
 | ||
|                 const int64_t i11 = id % ne11;
 | ||
|                 const int64_t i12 = iid1;
 | ||
| 
 | ||
|                 const int64_t i1 = id;
 | ||
|                 const int64_t i2 = i12;
 | ||
| 
 | ||
|             src0_row_extra.data_device[ctx.device] =
 | ||
|                 src0_original + i02*nb02;
 | ||
|             src1_row_extra.data_device[ctx.device] =
 | ||
|                 src1_original + + i11*nb11 + i12*nb12;
 | ||
|             dst_row_extra.data_device[ctx.device] =
 | ||
|                 dst_original + i1*nb1   + i2*nb2;
 | ||
| 
 | ||
|             ggml_sycl_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
 | ||
|             }
 | ||
|         }
 | ||
|     } else {
 | ||
|         ggml_sycl_pool_alloc<char> src1_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(src1));
 | ||
|         ggml_sycl_pool_alloc<char>  dst_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(dst));
 | ||
| 
 | ||
|         src1_row_extra.data_device[ctx.device] = src1_contiguous.get();
 | ||
|         dst_row_extra.data_device[ctx.device]  =  dst_contiguous.get();
 | ||
| 
 | ||
|         for (int64_t i02 = 0; i02 < n_as; i02++) {
 | ||
|             int64_t num_src1_rows = 0;
 | ||
|             for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
 | ||
|                 for (int64_t id = 0; id < n_ids; id++) {
 | ||
|                     const int32_t row_id_i = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
 | ||
| 
 | ||
|                     GGML_ASSERT(row_id_i >= 0 && row_id_i < n_as);
 | ||
| 
 | ||
|                     if (row_id_i != i02) {
 | ||
|                         continue;
 | ||
|                     }
 | ||
| 
 | ||
|                     num_src1_rows++;
 | ||
|                 }
 | ||
|             }
 | ||
| 
 | ||
|             if (num_src1_rows == 0) {
 | ||
|                 continue;
 | ||
|             }
 | ||
| 
 | ||
| 
 | ||
|             ggml_sycl_pool_alloc<int> dev_cur_src1_row(ctx.pool(), 1);
 | ||
|             ggml_sycl_pool_alloc<mmid_row_mapping> dev_row_mapping(ctx.pool(), num_src1_rows);
 | ||
|             SYCL_CHECK(CHECK_TRY_ERROR(
 | ||
|                 stream->memset(dev_cur_src1_row.get(), 0, sizeof(int))));
 | ||
| 
 | ||
|             {
 | ||
|                 sycl::range<3> block_dims(1, 1, std::min((unsigned int)ne10, 768u));
 | ||
|                 sycl::range<3> grid_dims(1, n_ids, ids->ne[1]);
 | ||
|                 stream->submit([&](sycl::handler &cgh) {
 | ||
|                     sycl::local_accessor<int, 0> src1_row_acc(cgh);
 | ||
| 
 | ||
|                     char *__restrict src1_contiguous_get =
 | ||
|                         src1_contiguous.get();
 | ||
|                     int *__restrict dev_cur_src1_row_get =
 | ||
|                         dev_cur_src1_row.get();
 | ||
|                     mmid_row_mapping *__restrict dev_row_mapping_get =
 | ||
|                         dev_row_mapping.get();
 | ||
|                     size_t ids_nb_ct6 = ids->nb[1];
 | ||
|                     size_t ids_nb_ct7 = ids->nb[0];
 | ||
| 
 | ||
|                     cgh.parallel_for(
 | ||
|                         sycl::nd_range<3>(grid_dims * block_dims, block_dims),
 | ||
|                         [=](sycl::nd_item<3> item_ct1) {
 | ||
|                             k_copy_src1_to_contiguous(
 | ||
|                                 src1_original, src1_contiguous_get,
 | ||
|                                 dev_cur_src1_row_get,
 | ||
|                                 dev_row_mapping_get, ids_dev, i02,
 | ||
|                                 ids_nb_ct6, ids_nb_ct7, ne11, ne10, nb11, nb12,
 | ||
|                                 item_ct1, src1_row_acc);
 | ||
|                         });
 | ||
|                 });
 | ||
|             }
 | ||
| 
 | ||
|             src0_row_extra.data_device[ctx.device] = src0_original + i02*nb02;
 | ||
| 
 | ||
|             GGML_ASSERT(nb11 == sizeof(float)*ne10);
 | ||
|             GGML_ASSERT(nb1 == sizeof(float)*ne0);
 | ||
|             src1_row.ne[1] = num_src1_rows;
 | ||
| 
 | ||
|             src1_row.nb[1] = nb11;
 | ||
|             src1_row.nb[2] = num_src1_rows*nb11;
 | ||
|             src1_row.nb[3] = num_src1_rows*nb11;
 | ||
| 
 | ||
|             dst_row.ne[1] = num_src1_rows;
 | ||
|             dst_row.nb[1] = nb1;
 | ||
|             dst_row.nb[2] = num_src1_rows*nb1;
 | ||
|             dst_row.nb[3] = num_src1_rows*nb1;
 | ||
| 
 | ||
|             ggml_sycl_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
 | ||
| 
 | ||
|             {
 | ||
|                 sycl::range<3> block_dims(1, 1, std::min((unsigned int)ne0, 768u));
 | ||
|                 sycl::range<3> grid_dims(1, 1, num_src1_rows);
 | ||
|                 stream->submit([&](sycl::handler &cgh) {
 | ||
|                     const char *__restrict dst_contiguous_get =
 | ||
|                         dst_contiguous.get();
 | ||
|                     const mmid_row_mapping *__restrict dev_row_mapping_get =
 | ||
|                         dev_row_mapping.get();
 | ||
| 
 | ||
|                     cgh.parallel_for(
 | ||
|                         sycl::nd_range<3>(grid_dims * block_dims, block_dims),
 | ||
|                         [=](sycl::nd_item<3> item_ct1) {
 | ||
|                             k_copy_dst_from_contiguous(dst_original,
 | ||
|                                                        dst_contiguous_get,
 | ||
|                                                        dev_row_mapping_get,
 | ||
|                                                        ne0, nb1, nb2, item_ct1);
 | ||
|                         });
 | ||
|                 });
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| catch (sycl::exception const &exc) {
 | ||
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | ||
|             << ", line:" << __LINE__ << std::endl;
 | ||
|   std::exit(1);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_scale(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_scale);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_clamp(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_clamp);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_cpy(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
 | ||
|                           ggml_tensor *dst) try {
 | ||
|     const int64_t ne = ggml_nelements(src0);
 | ||
|     GGML_ASSERT(ne == ggml_nelements(src1));
 | ||
| 
 | ||
|     GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
 | ||
|     GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
 | ||
| 
 | ||
|     GGML_TENSOR_BINARY_OP_LOCALS01;
 | ||
| 
 | ||
|     SYCL_CHECK(ggml_sycl_set_device(ctx.device));
 | ||
|     queue_ptr main_stream = ctx.stream();
 | ||
| 
 | ||
|     char * src0_ddc = (char *) src0->data;
 | ||
|     char * src1_ddc = (char *) src1->data;
 | ||
| 
 | ||
|     if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
 | ||
|         ggml_cpy_f32_f32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
 | ||
|     } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
 | ||
|         ggml_cpy_f32_f16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
 | ||
|     } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
 | ||
|         ggml_cpy_f32_q8_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
 | ||
|     } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
 | ||
|         ggml_cpy_f32_q4_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
 | ||
|     } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
 | ||
|         ggml_cpy_f32_q4_1_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
 | ||
|     } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
 | ||
|         ggml_cpy_f16_f32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
 | ||
|     } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
 | ||
|         ggml_cpy_f16_f16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
 | ||
|     } else if (src0->type == GGML_TYPE_I16 && src1->type == GGML_TYPE_I16) {
 | ||
|         ggml_cpy_i16_i16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
 | ||
|     } else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32) {
 | ||
|         ggml_cpy_i32_i32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
 | ||
|     } else {
 | ||
|         fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
 | ||
|                 ggml_type_name(src0->type), ggml_type_name(src1->type));
 | ||
|         GGML_ASSERT(false);
 | ||
|     }
 | ||
| 
 | ||
|     (void) dst;
 | ||
| }
 | ||
| catch (sycl::exception const &exc) {
 | ||
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | ||
|             << ", line:" << __LINE__ << std::endl;
 | ||
|   std::exit(1);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_dup(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     // TODO: why do we pass dst as src1 here?
 | ||
|     ggml_sycl_cpy(ctx, src0, dst, nullptr);
 | ||
|     (void) src1;
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_diag_mask_inf(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_diag_mask_inf);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_soft_max(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_soft_max);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_rope(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     GGML_ASSERT(ggml_is_contiguous(src0)); // TODO: this restriction is temporary until non-cont support is implemented
 | ||
|     ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_rope);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_pool2d(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_pool2d);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_im2col(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_im2col);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_sum_rows(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     GGML_ASSERT(ggml_is_contiguous(src0));
 | ||
|     ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_sum_rows);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_argsort(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     GGML_ASSERT(ggml_is_contiguous(src0));
 | ||
|     ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_argsort);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_sycl_nop(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | ||
|     (void) src0;
 | ||
|     (void) src1;
 | ||
|     (void) dst;
 | ||
| }
 | ||
| 
 | ||
| static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
 | ||
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | ||
| 
 | ||
|     return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
 | ||
| }
 | ||
| 
 | ||
| void ggml_sycl_set_main_device(const int main_device) try {
 | ||
|     if (dpct::get_current_device_id() == main_device) return;
 | ||
|     check_allow_gpu_index(main_device);
 | ||
|     dpct::select_device(main_device);
 | ||
| 
 | ||
|     if (g_ggml_sycl_debug) {
 | ||
|         dpct::device_info prop;
 | ||
|         SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
 | ||
|             prop, dpct::dev_mgr::instance().get_device(main_device))));
 | ||
|         fprintf(stderr, "Using device %d (%s) as main device\n",
 | ||
|                 main_device, prop.get_name());
 | ||
|     }
 | ||
| }
 | ||
| catch (sycl::exception const &exc) {
 | ||
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | ||
|             << ", line:" << __LINE__ << std::endl;
 | ||
|   std::exit(1);
 | ||
| }
 | ||
| 
 | ||
| bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct ggml_tensor * tensor) {
 | ||
|     if (!g_sycl_loaded) return false;
 | ||
| 
 | ||
|     ggml_sycl_func_t func;
 | ||
| 
 | ||
|     switch (tensor->op) {
 | ||
|         case GGML_OP_REPEAT:
 | ||
|             func = ggml_sycl_repeat;
 | ||
|             break;
 | ||
|         case GGML_OP_GET_ROWS:
 | ||
|             func = ggml_sycl_get_rows;
 | ||
|             break;
 | ||
|         case GGML_OP_DUP:
 | ||
|             func = ggml_sycl_dup;
 | ||
|             break;
 | ||
|         case GGML_OP_ADD:
 | ||
|             func = ggml_sycl_add;
 | ||
|             break;
 | ||
|         case GGML_OP_ACC:
 | ||
|             func = ggml_sycl_acc;
 | ||
|             break;
 | ||
|         case GGML_OP_MUL:
 | ||
|             func = ggml_sycl_mul;
 | ||
|             break;
 | ||
|         case GGML_OP_DIV:
 | ||
|             func = ggml_sycl_div;
 | ||
|             break;
 | ||
|         case GGML_OP_UNARY:
 | ||
|             switch (ggml_get_unary_op(tensor)) {
 | ||
|                 case GGML_UNARY_OP_GELU:
 | ||
|                     func = ggml_sycl_gelu;
 | ||
|                     break;
 | ||
|                 case GGML_UNARY_OP_SILU:
 | ||
|                     func = ggml_sycl_silu;
 | ||
|                     break;
 | ||
|                 case GGML_UNARY_OP_GELU_QUICK:
 | ||
|                     func = ggml_sycl_gelu_quick;
 | ||
|                     break;
 | ||
|                 case GGML_UNARY_OP_TANH:
 | ||
|                     func = ggml_sycl_tanh;
 | ||
|                     break;
 | ||
|                 case GGML_UNARY_OP_RELU:
 | ||
|                     func = ggml_sycl_relu;
 | ||
|                     break;
 | ||
|                 case GGML_UNARY_OP_HARDSIGMOID:
 | ||
|                     func = ggml_sycl_hardsigmoid;
 | ||
|                     break;
 | ||
|                 case GGML_UNARY_OP_HARDSWISH:
 | ||
|                     func = ggml_sycl_hardswish;
 | ||
|                     break;
 | ||
|                 default:
 | ||
|                     return false;
 | ||
|             }
 | ||
|             break;
 | ||
|         case GGML_OP_NORM:
 | ||
|             func = ggml_sycl_norm;
 | ||
|             break;
 | ||
|         case GGML_OP_GROUP_NORM:
 | ||
|             func = ggml_sycl_group_norm;
 | ||
|             break;
 | ||
|         case GGML_OP_CONCAT:
 | ||
|             func = ggml_sycl_concat;
 | ||
|             break;
 | ||
|         case GGML_OP_UPSCALE:
 | ||
|             func = ggml_sycl_upscale;
 | ||
|             break;
 | ||
|         case GGML_OP_PAD:
 | ||
|             func = ggml_sycl_pad;
 | ||
|             break;
 | ||
|         case GGML_OP_LEAKY_RELU:
 | ||
|             func = ggml_sycl_leaky_relu;
 | ||
|             break;
 | ||
|         case GGML_OP_RMS_NORM:
 | ||
|             func = ggml_sycl_rms_norm;
 | ||
|             break;
 | ||
|         case GGML_OP_MUL_MAT:
 | ||
|             if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) {
 | ||
|                 return false;
 | ||
|             }
 | ||
|             func = ggml_sycl_mul_mat;
 | ||
|             break;
 | ||
|         case GGML_OP_MUL_MAT_ID:
 | ||
|             if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) {
 | ||
|                 return false;
 | ||
|             }
 | ||
|             func = ggml_sycl_mul_mat_id;
 | ||
|             break;
 | ||
|         case GGML_OP_SCALE:
 | ||
|             func = ggml_sycl_scale;
 | ||
|             break;
 | ||
|         case GGML_OP_SQR:
 | ||
|             func = ggml_sycl_sqr;
 | ||
|             break;
 | ||
|         case GGML_OP_CLAMP:
 | ||
|             func = ggml_sycl_clamp;
 | ||
|             break;
 | ||
|         case GGML_OP_CPY:
 | ||
|             func = ggml_sycl_cpy;
 | ||
|             break;
 | ||
|         case GGML_OP_CONT:
 | ||
|             func = ggml_sycl_dup;
 | ||
|             break;
 | ||
|         case GGML_OP_NONE:
 | ||
|         case GGML_OP_RESHAPE:
 | ||
|         case GGML_OP_VIEW:
 | ||
|         case GGML_OP_PERMUTE:
 | ||
|         case GGML_OP_TRANSPOSE:
 | ||
|             func = ggml_sycl_nop;
 | ||
|             break;
 | ||
|         case GGML_OP_DIAG_MASK_INF:
 | ||
|             func = ggml_sycl_diag_mask_inf;
 | ||
|             break;
 | ||
|         case GGML_OP_SOFT_MAX:
 | ||
|             func = ggml_sycl_soft_max;
 | ||
|             break;
 | ||
|         case GGML_OP_ROPE:
 | ||
|             func = ggml_sycl_rope;
 | ||
|             break;
 | ||
|         case GGML_OP_IM2COL:
 | ||
|             func = ggml_sycl_im2col;
 | ||
|             break;
 | ||
|         case GGML_OP_POOL_2D:
 | ||
|             func = ggml_sycl_pool2d;
 | ||
|             break;
 | ||
|         case GGML_OP_SUM_ROWS:
 | ||
|             func = ggml_sycl_sum_rows;
 | ||
|             break;
 | ||
|         case GGML_OP_ARGSORT:
 | ||
|             func = ggml_sycl_argsort;
 | ||
|             break;
 | ||
|         default:
 | ||
|             return false;
 | ||
|     }
 | ||
| 
 | ||
|     if (tensor->src[0] != nullptr && ggml_backend_buffer_is_sycl_split(tensor->src[0]->buffer)) {
 | ||
|         ggml_sycl_set_peer_access(tensor->src[1]->ne[1], ctx.device);
 | ||
|     }
 | ||
| 
 | ||
|     func(ctx, tensor->src[0], tensor->src[1], tensor);
 | ||
|     return true;
 | ||
| }
 | ||
| 
 | ||
| GGML_API GGML_CALL void   ggml_sycl_get_gpu_list(int *id_list, int max_len) try {
 | ||
|     GGML_SYCL_DEBUG("[SYCL] call ggml_sycl_get_gpu_list\n");
 | ||
|     for(int i=0;i<max_len;i++) id_list[i] = -1;
 | ||
| 
 | ||
|     for (int i=0;i< ggml_sycl_info().device_count;i++){
 | ||
|         if (i>=max_len) break;
 | ||
|         id_list[i] = i;
 | ||
|     }
 | ||
|     return;
 | ||
| }
 | ||
| catch (sycl::exception const &exc) {
 | ||
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | ||
|             << ", line:" << __LINE__ << std::endl;
 | ||
|   std::exit(1);
 | ||
| }
 | ||
| 
 | ||
| int ggml_sycl_get_device_count() try {
 | ||
|     int device_count;
 | ||
|     if (CHECK_TRY_ERROR(device_count =
 | ||
|                              dpct::dev_mgr::instance().device_count()) != 0) {
 | ||
|         return 0;
 | ||
|     }
 | ||
|     return device_count;
 | ||
| }
 | ||
| catch (sycl::exception const &exc) {
 | ||
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | ||
|             << ", line:" << __LINE__ << std::endl;
 | ||
|   std::exit(1);
 | ||
| }
 | ||
| 
 | ||
| GGML_API GGML_CALL void ggml_sycl_get_device_description(int device, char *description,
 | ||
|                                       size_t description_size) try {
 | ||
|     GGML_SYCL_DEBUG("[SYCL] call ggml_sycl_get_device_description\n");
 | ||
|     dpct::device_info prop;
 | ||
|     SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
 | ||
|         prop, dpct::dev_mgr::instance().get_device(device))));
 | ||
|     snprintf(description, description_size, "%s", prop.get_name());
 | ||
| }
 | ||
| catch (sycl::exception const &exc) {
 | ||
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | ||
|             << ", line:" << __LINE__ << std::endl;
 | ||
|   std::exit(1);
 | ||
| }
 | ||
| 
 | ||
| GGML_CALL void ggml_backend_sycl_get_device_memory(int device, size_t *free,
 | ||
|                                                    size_t *total) try {
 | ||
|     GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_get_device_memory\n");
 | ||
|     ggml_sycl_set_device(device);
 | ||
| 
 | ||
|     /*
 | ||
|     DPCT1009:218: SYCL uses exceptions to report errors and does not use the
 | ||
|     error codes. The original code was commented out and a warning string was
 | ||
|     inserted. You need to rewrite this code.
 | ||
|     */
 | ||
|     /*
 | ||
|     DPCT1106:217: 'cudaMemGetInfo' was migrated with the Intel extensions for
 | ||
|     device information which may not be supported by all compilers or runtimes.
 | ||
|     You may need to adjust the code.
 | ||
|     */
 | ||
|     SYCL_CHECK(CHECK_TRY_ERROR(
 | ||
|         dpct::dev_mgr::instance().get_device(device).get_memory_info(*free, *total)));
 | ||
| }
 | ||
| catch (sycl::exception const &exc) {
 | ||
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | ||
|             << ", line:" << __LINE__ << std::endl;
 | ||
|   std::exit(1);
 | ||
| }
 | ||
| 
 | ||
| ////////////////////////////////////////////////////////////////////////////////
 | ||
| 
 | ||
| // backend interface
 | ||
| 
 | ||
| #define UNUSED GGML_UNUSED
 | ||
| 
 | ||
| // sycl buffer
 | ||
| 
 | ||
| struct ggml_backend_sycl_buffer_context {
 | ||
|     int device;
 | ||
|     void * dev_ptr = nullptr;
 | ||
|     queue_ptr stream;
 | ||
|     std::string name;
 | ||
| 
 | ||
|      ggml_backend_sycl_buffer_context(int device, void * dev_ptr, queue_ptr stream) :
 | ||
|         device(device), dev_ptr(dev_ptr), stream(stream) {
 | ||
|             check_allow_gpu_index(device);
 | ||
|             name = (GGML_SYCL_NAME + std::to_string(device));
 | ||
|         }
 | ||
| 
 | ||
| 
 | ||
|     ~ggml_backend_sycl_buffer_context() {
 | ||
|         if (dev_ptr != nullptr) {
 | ||
|             ggml_sycl_set_device(device);
 | ||
|             SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(dev_ptr, *stream)));
 | ||
|         }
 | ||
|     }
 | ||
| };
 | ||
| 
 | ||
| GGML_CALL static const char * ggml_backend_sycl_buffer_get_name(ggml_backend_buffer_t buffer) {
 | ||
|     ggml_backend_sycl_buffer_context * ctx = (ggml_backend_sycl_buffer_context *)buffer->context;
 | ||
|     return ctx->name.c_str();
 | ||
| }
 | ||
| 
 | ||
| GGML_CALL static bool ggml_backend_buffer_is_sycl(ggml_backend_buffer_t buffer) {
 | ||
|     return buffer->iface.get_name == ggml_backend_sycl_buffer_get_name;
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| ggml_backend_sycl_buffer_free_buffer(ggml_backend_buffer_t buffer) try {
 | ||
|     ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
 | ||
|     ggml_sycl_set_device(ctx->device);
 | ||
| 
 | ||
|     delete ctx;
 | ||
| }
 | ||
| catch (sycl::exception const &exc) {
 | ||
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | ||
|             << ", line:" << __LINE__ << std::endl;
 | ||
|   std::exit(1);
 | ||
| }
 | ||
| 
 | ||
| static void * ggml_backend_sycl_buffer_get_base(ggml_backend_buffer_t buffer) {
 | ||
|     ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
 | ||
|     return ctx->dev_ptr;
 | ||
| }
 | ||
| 
 | ||
| GGML_CALL static void
 | ||
| ggml_backend_sycl_buffer_init_tensor(ggml_backend_buffer_t buffer,
 | ||
|                                      ggml_tensor *tensor) try {
 | ||
|     ggml_backend_sycl_buffer_context * ctx = (ggml_backend_sycl_buffer_context *)buffer->context;
 | ||
| 
 | ||
|     if (tensor->view_src != NULL && tensor->view_offs == 0) {
 | ||
|         assert(tensor->view_src->buffer->buft == buffer->buft);
 | ||
|         tensor->backend = tensor->view_src->backend;
 | ||
|         tensor->extra = tensor->view_src->extra;
 | ||
|         return;
 | ||
|     }
 | ||
| 
 | ||
| 
 | ||
|     if (ggml_is_quantized(tensor->type)) {
 | ||
|         // initialize padding to 0 to avoid possible NaN values
 | ||
|         size_t original_size = ggml_nbytes(tensor);
 | ||
|         size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
 | ||
| 
 | ||
|         if (padded_size > original_size && tensor->view_src == nullptr) {
 | ||
|             SYCL_CHECK(CHECK_TRY_ERROR(ctx->stream->memset(
 | ||
|                 (char *)tensor->data + original_size, 0,
 | ||
|                 padded_size - original_size).wait()));
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| catch (sycl::exception const &exc) {
 | ||
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | ||
|             << ", line:" << __LINE__ << std::endl;
 | ||
|   std::exit(1);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_backend_sycl_buffer_set_tensor(ggml_backend_buffer_t buffer,
 | ||
|                                                 ggml_tensor *tensor,
 | ||
|                                                 const void *data, size_t offset,
 | ||
|                                                 size_t size) try {
 | ||
| 
 | ||
|     ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
 | ||
| 
 | ||
|     ggml_sycl_set_device(ctx->device);
 | ||
|     auto stream = &(dpct::dev_mgr::instance().get_device(ctx->device).default_queue());
 | ||
|     SYCL_CHECK(
 | ||
|         CHECK_TRY_ERROR(dpct::dev_mgr::instance().get_device(ctx->device).queues_wait_and_throw()));
 | ||
|     char* host_buf = (char*)malloc(size);
 | ||
|     memcpy(host_buf, data, size);
 | ||
|     SYCL_CHECK(
 | ||
|         CHECK_TRY_ERROR((*stream).memcpy((char *)tensor->data + offset, host_buf, size)
 | ||
|                              .wait()));
 | ||
|     free(host_buf);
 | ||
| }
 | ||
| catch (sycl::exception const &exc) {
 | ||
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | ||
|             << ", line:" << __LINE__ << std::endl;
 | ||
|   std::exit(1);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_backend_sycl_buffer_get_tensor(ggml_backend_buffer_t buffer,
 | ||
|                                                 const ggml_tensor *tensor,
 | ||
|                                                 void *data, size_t offset,
 | ||
|                                                 size_t size) try {
 | ||
| 
 | ||
|     ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
 | ||
| 
 | ||
|     ggml_sycl_set_device(ctx->device);
 | ||
|     auto stream = dpct::dev_mgr::instance().get_device(ctx->device).default_queue();
 | ||
| 
 | ||
|     SYCL_CHECK(CHECK_TRY_ERROR(
 | ||
|         stream.memcpy(data, (const char *)tensor->data + offset, size)
 | ||
|             .wait()));
 | ||
| }
 | ||
| catch (sycl::exception const &exc) {
 | ||
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | ||
|             << ", line:" << __LINE__ << std::endl;
 | ||
|   std::exit(1);
 | ||
| }
 | ||
| 
 | ||
| GGML_CALL static bool
 | ||
| ggml_backend_sycl_buffer_cpy_tensor(ggml_backend_buffer_t buffer,
 | ||
|                                     const ggml_tensor *src,
 | ||
|                                     ggml_tensor *dst) try {
 | ||
|     if (ggml_backend_buffer_is_sycl(src->buffer)) {
 | ||
|         ggml_backend_sycl_buffer_context * src_ctx = (ggml_backend_sycl_buffer_context *)src->buffer->context;
 | ||
|         ggml_backend_sycl_buffer_context * dst_ctx = (ggml_backend_sycl_buffer_context *)dst->buffer->context;
 | ||
| 
 | ||
|         ggml_sycl_set_device(src_ctx->device);
 | ||
|         /*
 | ||
|         DPCT1009:198: SYCL uses exceptions to report errors and does not use the
 | ||
|         error codes. The original code was commented out and a warning string
 | ||
|         was inserted. You need to rewrite this code.
 | ||
|         */
 | ||
|         SYCL_CHECK(CHECK_TRY_ERROR(
 | ||
|             dpct::dev_mgr::instance().get_device(src_ctx->device).queues_wait_and_throw()));
 | ||
|         ggml_sycl_set_device(dst_ctx->device);
 | ||
|         /*
 | ||
|         DPCT1009:199: SYCL uses exceptions to report errors and does not use the
 | ||
|         error codes. The original code was commented out and a warning string
 | ||
|         was inserted. You need to rewrite this code.
 | ||
|         */
 | ||
|         SYCL_CHECK(CHECK_TRY_ERROR(
 | ||
|             dpct::dev_mgr::instance().get_device(dst_ctx->device).queues_wait_and_throw()));
 | ||
|         /*
 | ||
|         DPCT1009:200: SYCL uses exceptions to report errors and does not use the
 | ||
|         error codes. The original code was commented out and a warning string
 | ||
|         was inserted. You need to rewrite this code.
 | ||
|         */
 | ||
| 
 | ||
|         queue_ptr stream_dst = dst_ctx->stream;
 | ||
|         queue_ptr stream_src = src_ctx->stream;
 | ||
|         size_t size = ggml_nbytes(src);
 | ||
| 
 | ||
|         //todo. it's dirty solutino to walkaroud known issue:device2device cross GPUs.
 | ||
|         dev2dev_memcpy(*stream_dst, *stream_src, dst->data, src->data, size);
 | ||
| 
 | ||
| //todo, it's known issue:error in device2device cross GPUs. reused when the issue is fixed. DON"T remove
 | ||
| #if 0
 | ||
|         SYCL_CHECK(CHECK_TRY_ERROR((*stream).memcpy(
 | ||
|             (char *)dst->data, (const char *)src->data, size).wait()));
 | ||
| 
 | ||
|         /*
 | ||
|         DPCT1009:201: SYCL uses exceptions to report errors and does not use the
 | ||
|         error codes. The original code was commented out and a warning string
 | ||
|         was inserted. You need to rewrite this code.
 | ||
|         */
 | ||
|         SYCL_CHECK(CHECK_TRY_ERROR(
 | ||
|             dpct::dev_mgr::instance().get_device(dst_ctx->device).queues_wait_and_throw()));
 | ||
| #endif
 | ||
|         return true;
 | ||
|     }
 | ||
|     return false;
 | ||
| }
 | ||
| catch (sycl::exception const &exc) {
 | ||
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | ||
|             << ", line:" << __LINE__ << std::endl;
 | ||
|   std::exit(1);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| static void ggml_backend_sycl_buffer_clear(ggml_backend_buffer_t buffer,
 | ||
|                                            uint8_t value) try {
 | ||
|      ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
 | ||
| 
 | ||
|     ggml_sycl_set_device(ctx->device);
 | ||
|     queue_ptr stream = ctx->stream;
 | ||
|     SYCL_CHECK(
 | ||
|         CHECK_TRY_ERROR(dpct::get_current_device().queues_wait_and_throw()));
 | ||
| 
 | ||
|     SYCL_CHECK(CHECK_TRY_ERROR((*stream)
 | ||
|                                     .memset(ctx->dev_ptr, value, buffer->size)
 | ||
|                                     .wait()));
 | ||
| }
 | ||
| catch (sycl::exception const &exc) {
 | ||
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | ||
|             << ", line:" << __LINE__ << std::endl;
 | ||
|   std::exit(1);
 | ||
| }
 | ||
| 
 | ||
| static struct ggml_backend_buffer_i ggml_backend_sycl_buffer_interface = {
 | ||
|     /* .get_name        = */ ggml_backend_sycl_buffer_get_name,
 | ||
|     /* .free_buffer     = */ ggml_backend_sycl_buffer_free_buffer,
 | ||
|     /* .get_base        = */ ggml_backend_sycl_buffer_get_base,
 | ||
|     /* .init_tensor     = */ ggml_backend_sycl_buffer_init_tensor,
 | ||
|     /* .set_tensor      = */ ggml_backend_sycl_buffer_set_tensor,
 | ||
|     /* .get_tensor      = */ ggml_backend_sycl_buffer_get_tensor,
 | ||
|     /* .cpy_tensor      = */ ggml_backend_sycl_buffer_cpy_tensor,
 | ||
|     /* .clear           = */ ggml_backend_sycl_buffer_clear,
 | ||
|     /* .reset           = */ NULL,
 | ||
| };
 | ||
| 
 | ||
| // sycl buffer type
 | ||
| struct ggml_backend_sycl_buffer_type_context {
 | ||
|     int device;
 | ||
|     std::string name;
 | ||
| 
 | ||
|     // each buffer type has its own stream
 | ||
|     queue_ptr stream = nullptr;
 | ||
| };
 | ||
| 
 | ||
| GGML_CALL static const char * ggml_backend_sycl_buffer_type_name(ggml_backend_buffer_type_t buft) {
 | ||
|     ggml_backend_sycl_buffer_type_context * ctx = (ggml_backend_sycl_buffer_type_context *)buft->context;
 | ||
| 
 | ||
|     return ctx->name.c_str();
 | ||
| }
 | ||
| GGML_CALL static ggml_backend_buffer_t
 | ||
| ggml_backend_sycl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft,
 | ||
|                                            size_t size) try {
 | ||
|     ggml_backend_sycl_buffer_type_context * buft_ctx = (ggml_backend_sycl_buffer_type_context *)buft->context;
 | ||
|     ggml_sycl_set_device(buft_ctx->device);
 | ||
|     const queue_ptr stream = buft_ctx->stream;
 | ||
|     size = std::max(size, (size_t)1); // syclMalloc returns null for size 0
 | ||
| 
 | ||
|     void * dev_ptr;
 | ||
|     SYCL_CHECK(CHECK_TRY_ERROR(dev_ptr = (void *)sycl::malloc_device(
 | ||
|                                     size, *stream)));
 | ||
|     ggml_backend_sycl_buffer_context * ctx = new  ggml_backend_sycl_buffer_context(buft_ctx->device, dev_ptr, buft_ctx->stream);
 | ||
|     return ggml_backend_buffer_init(buft, ggml_backend_sycl_buffer_interface, ctx, size);
 | ||
| }
 | ||
| catch (sycl::exception const &exc) {
 | ||
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | ||
|             << ", line:" << __LINE__ << std::endl;
 | ||
|   std::exit(1);
 | ||
| }
 | ||
| 
 | ||
| GGML_CALL static size_t ggml_backend_sycl_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
 | ||
|     return 128;
 | ||
|     UNUSED(buft);
 | ||
| }
 | ||
| 
 | ||
| static size_t ggml_backend_sycl_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
 | ||
|     return dpct::get_current_device().get_max_mem_alloc_size();
 | ||
| 
 | ||
|     UNUSED(buft);
 | ||
| }
 | ||
| 
 | ||
| GGML_CALL static size_t ggml_backend_sycl_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
 | ||
|     size_t size = ggml_nbytes(tensor);
 | ||
|     int64_t ne0 = tensor->ne[0];
 | ||
| 
 | ||
|     if (ggml_is_quantized(tensor->type)) {
 | ||
|         if (ne0 % MATRIX_ROW_PADDING != 0) {
 | ||
|             size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     return size;
 | ||
| 
 | ||
|     UNUSED(buft);
 | ||
| }
 | ||
| 
 | ||
| static ggml_backend_buffer_type_i ggml_backend_sycl_buffer_type_interface = {
 | ||
|     /* .get_name         = */ ggml_backend_sycl_buffer_type_name,
 | ||
|     /* .alloc_buffer     = */ ggml_backend_sycl_buffer_type_alloc_buffer,
 | ||
|     /* .get_alignment    = */ ggml_backend_sycl_buffer_type_get_alignment,
 | ||
|     /* .get_max_size     = */ ggml_backend_sycl_buffer_type_get_max_size,
 | ||
|     /* .get_alloc_size   = */ ggml_backend_sycl_buffer_type_get_alloc_size,
 | ||
|     /* .is_host          = */ nullptr,
 | ||
| };
 | ||
| 
 | ||
| ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device) {
 | ||
|     static std::mutex mutex;
 | ||
|     std::lock_guard<std::mutex> lock(mutex);
 | ||
| 
 | ||
|     GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_buffer_type\n");
 | ||
| 
 | ||
|     if (device>=ggml_sycl_info().device_count or device<0) {
 | ||
|         printf("ggml_backend_sycl_buffer_type error: device_index:%d is out of range [0, %d], miss to call ggml_backend_sycl_set_single_device()\n",
 | ||
|             device, ggml_sycl_info().device_count-1);
 | ||
|         GGML_ASSERT(device<ggml_sycl_info().device_count);
 | ||
|     }
 | ||
|     static struct ggml_backend_buffer_type ggml_backend_sycl_buffer_types[GGML_SYCL_MAX_DEVICES];
 | ||
| 
 | ||
|     static bool ggml_backend_sycl_buffer_type_initialized = false;
 | ||
| 
 | ||
|     if (!ggml_backend_sycl_buffer_type_initialized) {
 | ||
|         for (int i = 0; i < ggml_sycl_info().device_count; i++) {
 | ||
|             auto & device_i = dpct::dev_mgr::instance().get_device(i);
 | ||
|             queue_ptr stream = &(device_i.default_queue());
 | ||
|             ggml_backend_sycl_buffer_types[i] = {
 | ||
|                 /* .iface    = */ ggml_backend_sycl_buffer_type_interface,
 | ||
|                 /* .context  = */ new ggml_backend_sycl_buffer_type_context{i, GGML_SYCL_NAME + std::to_string(i), stream},
 | ||
|             };
 | ||
|         }
 | ||
|         ggml_backend_sycl_buffer_type_initialized = true;
 | ||
|     }
 | ||
|     return &ggml_backend_sycl_buffer_types[device];
 | ||
| }
 | ||
| 
 | ||
| ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(ggml_backend_sycl_context * ctx) {
 | ||
|     GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_buffer_type\n");
 | ||
| 
 | ||
|     int device = ctx->device;
 | ||
|     if (device>=ggml_sycl_info().device_count or device<0) {
 | ||
|         printf("ggml_backend_sycl_buffer_type error: device_index:%d is out of range [0, %d], miss to call ggml_backend_sycl_set_single_device()\n",
 | ||
|             device, ggml_sycl_info().device_count-1);
 | ||
|         GGML_ASSERT(device<ggml_sycl_info().device_count);
 | ||
|     }
 | ||
|     static struct ggml_backend_buffer_type ggml_backend_sycl_buffer_types[GGML_SYCL_MAX_DEVICES];
 | ||
| 
 | ||
|     static bool ggml_backend_sycl_buffer_type_initialized = false;
 | ||
| 
 | ||
|     if (!ggml_backend_sycl_buffer_type_initialized) {
 | ||
|         for (int i = 0; i < ggml_sycl_info().device_count; i++) {
 | ||
|             ggml_backend_sycl_buffer_types[i] = {
 | ||
|                 /* .iface    = */ ggml_backend_sycl_buffer_type_interface,
 | ||
|                 /* .context  = */ new ggml_backend_sycl_buffer_type_context{i, GGML_SYCL_NAME + std::to_string(i), ctx->stream(i, 0)},
 | ||
|             };
 | ||
|         }
 | ||
|         ggml_backend_sycl_buffer_type_initialized = true;
 | ||
|     }
 | ||
|     return &ggml_backend_sycl_buffer_types[device];
 | ||
| }
 | ||
| 
 | ||
| // sycl split buffer type
 | ||
| static void get_row_split(int64_t * row_low, int64_t * row_high, const ggml_tensor * tensor, const std::array<float, GGML_SYCL_MAX_DEVICES> & tensor_split, int id) {
 | ||
|     const int64_t nrows = ggml_nrows(tensor);
 | ||
|     const int64_t rounding = get_row_rounding(tensor->type, tensor_split);
 | ||
| 
 | ||
|     *row_low = id == 0 ? 0 : nrows*tensor_split[id];
 | ||
|     *row_low -= *row_low % rounding;
 | ||
|     if (id == ggml_sycl_info().device_count - 1) {
 | ||
|         *row_high = nrows;
 | ||
|     } else {
 | ||
|         *row_high = nrows*tensor_split[id + 1];
 | ||
|         *row_high -= *row_high % rounding;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| struct ggml_backend_sycl_split_buffer_context {
 | ||
|     ~ggml_backend_sycl_split_buffer_context() try {
 | ||
|         for (ggml_tensor_extra_gpu * extra : tensor_extras) {
 | ||
|             for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
 | ||
|                 for (int64_t is = 0; is < GGML_SYCL_MAX_STREAMS; ++is) {
 | ||
|                     if (extra->events[i][is] != nullptr) {
 | ||
|                         /*
 | ||
|                         DPCT1009:206: SYCL uses exceptions to report errors and
 | ||
|                         does not use the error codes. The original code was
 | ||
|                         commented out and a warning string was inserted. You
 | ||
|                         need to rewrite this code.
 | ||
|                         */
 | ||
|                         SYCL_CHECK(CHECK_TRY_ERROR(
 | ||
|                             dpct::destroy_event(extra->events[i][is])));
 | ||
|                     }
 | ||
|                 }
 | ||
|                 if (extra->data_device[i] != nullptr) {
 | ||
|                     /*
 | ||
|                     DPCT1009:207: SYCL uses exceptions to report errors and does
 | ||
|                     not use the error codes. The original code was commented out
 | ||
|                     and a warning string was inserted. You need to rewrite this
 | ||
|                     code.
 | ||
|                     */
 | ||
|                     ggml_sycl_set_device(i);
 | ||
|                     SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(
 | ||
|                         extra->data_device[i], *(streams[i]))));
 | ||
|                 }
 | ||
|             }
 | ||
|             delete extra;
 | ||
|         }
 | ||
|     }
 | ||
|     catch (sycl::exception const &exc) {
 | ||
|       std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | ||
|                 << ", line:" << __LINE__ << std::endl;
 | ||
|       std::exit(1);
 | ||
|     }
 | ||
| 
 | ||
|     std::vector<ggml_tensor_extra_gpu *> tensor_extras;
 | ||
|     std::vector<queue_ptr> streams;
 | ||
| };
 | ||
| 
 | ||
| GGML_CALL static const char * ggml_backend_sycl_split_buffer_get_name(ggml_backend_buffer_t buffer) {
 | ||
|     return GGML_SYCL_NAME "_Split";
 | ||
| 
 | ||
|     UNUSED(buffer);
 | ||
| }
 | ||
| 
 | ||
| static bool ggml_backend_buffer_is_sycl_split(ggml_backend_buffer_t buffer) {
 | ||
|    return buffer->iface.get_name == ggml_backend_sycl_split_buffer_get_name;
 | ||
| }
 | ||
| 
 | ||
| GGML_CALL static void ggml_backend_sycl_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
 | ||
|     ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context;
 | ||
|     delete ctx;
 | ||
| }
 | ||
| 
 | ||
| GGML_CALL static void * ggml_backend_sycl_split_buffer_get_base(ggml_backend_buffer_t buffer) {
 | ||
|     // the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced
 | ||
|     return (void *)0x1000;
 | ||
| 
 | ||
|     UNUSED(buffer);
 | ||
| }
 | ||
| 
 | ||
| GGML_CALL static void
 | ||
| ggml_backend_sycl_split_buffer_init_tensor(ggml_backend_buffer_t buffer,
 | ||
|                                            ggml_tensor *tensor) try {
 | ||
|     GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
 | ||
| 
 | ||
|     ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context;
 | ||
|     ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *)buffer->buft->context;
 | ||
| 
 | ||
|     const int64_t ne0 = tensor->ne[0];
 | ||
| 
 | ||
|     ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{};
 | ||
| 
 | ||
|     ctx->tensor_extras.push_back(extra);
 | ||
|         ctx->streams.push_back(&(dpct::get_current_device().default_queue()));
 | ||
| 
 | ||
|     for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
 | ||
|         int64_t row_low, row_high;
 | ||
|         get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, i);
 | ||
| 
 | ||
|         int64_t nrows_split = row_high - row_low;
 | ||
|         if (nrows_split == 0) {
 | ||
|             continue;
 | ||
|         }
 | ||
| 
 | ||
|         size_t size = ggml_nbytes_split(tensor, nrows_split);
 | ||
|         const size_t original_size = size;
 | ||
| 
 | ||
|         // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
 | ||
|         if (ne0 % MATRIX_ROW_PADDING != 0) {
 | ||
|             size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
 | ||
|         }
 | ||
| 
 | ||
|         // FIXME: do not crash if cudaMalloc fails
 | ||
|         // currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first
 | ||
|         ggml_sycl_set_device(i);
 | ||
|         const queue_ptr stream = ctx->streams[i];
 | ||
|         char * buf;
 | ||
|         /*
 | ||
|         DPCT1009:208: SYCL uses exceptions to report errors and does not use the
 | ||
|         error codes. The original code was commented out and a warning string
 | ||
|         was inserted. You need to rewrite this code.
 | ||
|         */
 | ||
|         SYCL_CHECK(CHECK_TRY_ERROR(buf = (char *)sycl::malloc_device(
 | ||
|                                         size, *stream)));
 | ||
| 
 | ||
|         // set padding to 0 to avoid possible NaN values
 | ||
|         if (size > original_size) {
 | ||
|             /*
 | ||
|             DPCT1009:209: SYCL uses exceptions to report errors and does not use
 | ||
|             the error codes. The original code was commented out and a warning
 | ||
|             string was inserted. You need to rewrite this code.
 | ||
|             */
 | ||
|             SYCL_CHECK(CHECK_TRY_ERROR(
 | ||
|                 (*stream)
 | ||
|                     .memset(buf + original_size, 0, size - original_size)
 | ||
|                     .wait()));
 | ||
|         }
 | ||
| 
 | ||
|         extra->data_device[i] = buf;
 | ||
| 
 | ||
|         for (int64_t is = 0; is < GGML_SYCL_MAX_STREAMS; ++is) {
 | ||
|             /*
 | ||
|             DPCT1009:210: SYCL uses exceptions to report errors and does not use
 | ||
|             the error codes. The original code was commented out and a warning
 | ||
|             string was inserted. You need to rewrite this code.
 | ||
|             */
 | ||
|             SYCL_CHECK(
 | ||
|                 CHECK_TRY_ERROR(extra->events[i][is] = new sycl::event()));
 | ||
|         }
 | ||
|     }
 | ||
|     tensor->backend = GGML_BACKEND_TYPE_GPU_SPLIT;
 | ||
|     tensor->extra = extra;
 | ||
| }
 | ||
| catch (sycl::exception const &exc) {
 | ||
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | ||
|             << ", line:" << __LINE__ << std::endl;
 | ||
|   std::exit(1);
 | ||
| }
 | ||
| 
 | ||
| GGML_CALL static void
 | ||
| ggml_backend_sycl_split_buffer_set_tensor(ggml_backend_buffer_t buffer,
 | ||
|                                           ggml_tensor *tensor, const void *data,
 | ||
|                                           size_t offset, size_t size) try {
 | ||
|     // split tensors must always be set in their entirety at once
 | ||
|     GGML_ASSERT(offset == 0);
 | ||
|     GGML_ASSERT(size == ggml_nbytes(tensor));
 | ||
| 
 | ||
|     ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context;
 | ||
|     ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *)buffer->buft->context;
 | ||
| 
 | ||
|     const int64_t ne0 = tensor->ne[0];
 | ||
|     const size_t nb1 = tensor->nb[1];
 | ||
|     ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
 | ||
| 
 | ||
|     for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
 | ||
|         int64_t row_low, row_high;
 | ||
|         get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, i);
 | ||
| 
 | ||
|         int64_t nrows_split = row_high - row_low;
 | ||
|         if (nrows_split == 0) {
 | ||
|             continue;
 | ||
|         }
 | ||
| 
 | ||
|         const size_t offset_split = row_low*nb1;
 | ||
|         size_t size = ggml_nbytes_split(tensor, nrows_split);
 | ||
|         const size_t original_size = size;
 | ||
| 
 | ||
|         // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
 | ||
|         if (ne0 % MATRIX_ROW_PADDING != 0) {
 | ||
|             size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
 | ||
|         }
 | ||
| 
 | ||
|         const char * buf_host = (const char *)data + offset_split;
 | ||
|         /*
 | ||
|         DPCT1009:211: SYCL uses exceptions to report errors and does not use the
 | ||
|         error codes. The original code was commented out and a warning string
 | ||
|         was inserted. You need to rewrite this code.
 | ||
|         */
 | ||
|         ggml_sycl_set_device(i);
 | ||
|         const queue_ptr stream = ctx->streams[i];
 | ||
|         SYCL_CHECK(CHECK_TRY_ERROR(
 | ||
|             (*stream)
 | ||
|                 .memcpy(extra->data_device[i], buf_host, original_size)
 | ||
|                 .wait()));
 | ||
|     }
 | ||
| }
 | ||
| catch (sycl::exception const &exc) {
 | ||
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | ||
|             << ", line:" << __LINE__ << std::endl;
 | ||
|   std::exit(1);
 | ||
| }
 | ||
| 
 | ||
| GGML_CALL static void
 | ||
| ggml_backend_sycl_split_buffer_get_tensor(ggml_backend_buffer_t buffer,
 | ||
|                                           const ggml_tensor *tensor, void *data,
 | ||
|                                           size_t offset, size_t size) try {
 | ||
|     // split tensors must always be set in their entirety at once
 | ||
|     GGML_ASSERT(offset == 0);
 | ||
|     GGML_ASSERT(size == ggml_nbytes(tensor));
 | ||
| 
 | ||
|     ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context;
 | ||
|     ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *)buffer->buft->context;
 | ||
| 
 | ||
|     const int64_t ne0 = tensor->ne[0];
 | ||
|     const size_t nb1 = tensor->nb[1];
 | ||
|     ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
 | ||
| 
 | ||
|     for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
 | ||
|         int64_t row_low, row_high;
 | ||
|         get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, i);
 | ||
| 
 | ||
|         int64_t nrows_split = row_high - row_low;
 | ||
|         if (nrows_split == 0) {
 | ||
|             continue;
 | ||
|         }
 | ||
| 
 | ||
|         const size_t offset_split = row_low*nb1;
 | ||
|         size_t size = ggml_nbytes_split(tensor, nrows_split);
 | ||
|         const size_t original_size = size;
 | ||
| 
 | ||
|         // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
 | ||
|         if (ne0 % MATRIX_ROW_PADDING != 0) {
 | ||
|             size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
 | ||
|         }
 | ||
| 
 | ||
|         char * buf_host = (char *)data + offset_split;
 | ||
|         /*
 | ||
|         DPCT1009:212: SYCL uses exceptions to report errors and does not use the
 | ||
|         error codes. The original code was commented out and a warning string
 | ||
|         was inserted. You need to rewrite this code.
 | ||
|         */
 | ||
|         ggml_sycl_set_device(i);
 | ||
|         const queue_ptr stream = ctx->streams[i];
 | ||
|         SYCL_CHECK(CHECK_TRY_ERROR(
 | ||
|             (*stream)
 | ||
|                 .memcpy(buf_host, extra->data_device[i], original_size)
 | ||
|                 .wait()));
 | ||
|     }
 | ||
| }
 | ||
| catch (sycl::exception const &exc) {
 | ||
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | ||
|             << ", line:" << __LINE__ << std::endl;
 | ||
|   std::exit(1);
 | ||
| }
 | ||
| 
 | ||
| GGML_CALL static void ggml_backend_sycl_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
 | ||
|     UNUSED(buffer);
 | ||
|     UNUSED(value);
 | ||
| }
 | ||
| 
 | ||
| static struct ggml_backend_buffer_i ggml_backend_sycl_split_buffer_interface = {
 | ||
|     /* .get_name        = */ ggml_backend_sycl_split_buffer_get_name,
 | ||
|     /* .free_buffer     = */ ggml_backend_sycl_split_buffer_free_buffer,
 | ||
|     /* .get_base        = */ ggml_backend_sycl_split_buffer_get_base,
 | ||
|     /* .init_tensor     = */ ggml_backend_sycl_split_buffer_init_tensor,
 | ||
|     /* .set_tensor      = */ ggml_backend_sycl_split_buffer_set_tensor,
 | ||
|     /* .get_tensor      = */ ggml_backend_sycl_split_buffer_get_tensor,
 | ||
|     /* .cpy_tensor      = */ NULL,
 | ||
|     /* .clear           = */ ggml_backend_sycl_split_buffer_clear,
 | ||
|     /* .reset           = */ NULL,
 | ||
| };
 | ||
| 
 | ||
| GGML_CALL static const char * ggml_backend_sycl_split_buffer_type_name(ggml_backend_buffer_type_t buft) {
 | ||
|     return GGML_SYCL_NAME "_Split";
 | ||
| 
 | ||
|     UNUSED(buft);
 | ||
| }
 | ||
| 
 | ||
| GGML_CALL static ggml_backend_buffer_t ggml_backend_sycl_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
 | ||
|     // since we don't know the exact split after rounding, we cannot allocate the device buffers at this point
 | ||
|     // instead, we allocate them for each tensor separately in init_tensor
 | ||
|     // however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated,
 | ||
|     // as returned by get_alloc_size. this limit is enforced during tensor allocation by ggml-alloc, so it must be correct.
 | ||
|     ggml_backend_sycl_split_buffer_context * ctx = new ggml_backend_sycl_split_buffer_context();
 | ||
| 
 | ||
|     return ggml_backend_buffer_init(buft, ggml_backend_sycl_split_buffer_interface, ctx, size);
 | ||
| }
 | ||
| 
 | ||
| GGML_CALL static size_t ggml_backend_sycl_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
 | ||
|     return 128;
 | ||
|     UNUSED(buft);
 | ||
| }
 | ||
| 
 | ||
| GGML_CALL static size_t ggml_backend_sycl_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
 | ||
|     ggml_backend_sycl_split_buffer_type_context * ctx = (ggml_backend_sycl_split_buffer_type_context *)buft->context;
 | ||
| 
 | ||
|     size_t total_size = 0;
 | ||
| 
 | ||
|     const int64_t ne0 = tensor->ne[0];
 | ||
| 
 | ||
|     for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
 | ||
|         int64_t row_low, row_high;
 | ||
|         get_row_split(&row_low, &row_high, tensor, ctx->tensor_split, i);
 | ||
| 
 | ||
|         int64_t nrows_split = row_high - row_low;
 | ||
|         if (nrows_split == 0) {
 | ||
|             continue;
 | ||
|         }
 | ||
| 
 | ||
|         total_size += ggml_nbytes_split(tensor, nrows_split);
 | ||
| 
 | ||
|         // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
 | ||
|         if (ne0 % MATRIX_ROW_PADDING != 0) {
 | ||
|             total_size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     return total_size;
 | ||
| }
 | ||
| 
 | ||
| GGML_CALL static bool ggml_backend_sycl_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
 | ||
|     return false;
 | ||
| 
 | ||
|     UNUSED(buft);
 | ||
| }
 | ||
| 
 | ||
| static ggml_backend_buffer_type_i ggml_backend_sycl_split_buffer_type_interface = {
 | ||
|     /* .get_name         = */ ggml_backend_sycl_split_buffer_type_name,
 | ||
|     /* .alloc_buffer     = */ ggml_backend_sycl_split_buffer_type_alloc_buffer,
 | ||
|     /* .get_alignment    = */ ggml_backend_sycl_split_buffer_type_get_alignment,
 | ||
|     /* .get_max_size     = */ NULL, // defaults to SIZE_MAX
 | ||
|     /* .get_alloc_size   = */ ggml_backend_sycl_split_buffer_type_get_alloc_size,
 | ||
|     /* .is_host          = */ ggml_backend_sycl_split_buffer_type_is_host,
 | ||
| };
 | ||
| 
 | ||
| GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split) {
 | ||
|     static std::mutex mutex;
 | ||
|     std::lock_guard<std::mutex> lock(mutex);
 | ||
| 
 | ||
|     GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_split_buffer_type\n");
 | ||
|     ggml_check_sycl();
 | ||
|     // FIXME: this is not thread safe
 | ||
|     static std::map<std::array<float, GGML_SYCL_MAX_DEVICES>, struct ggml_backend_buffer_type> buft_map;
 | ||
| 
 | ||
|     std::array<float, GGML_SYCL_MAX_DEVICES> tensor_split_arr = {};
 | ||
| 
 | ||
|     bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + GGML_SYCL_MAX_DEVICES, [](float x) { return x == 0.0f; });
 | ||
|     if (all_zero) {
 | ||
|         tensor_split_arr = ggml_sycl_info().default_tensor_split;
 | ||
|     } else {
 | ||
|         float split_sum = 0.0f;
 | ||
|         for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
 | ||
|             tensor_split_arr[i] = split_sum;
 | ||
|             split_sum += tensor_split[i];
 | ||
|         }
 | ||
|         for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
 | ||
|             tensor_split_arr[i] /= split_sum;
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     auto it = buft_map.find(tensor_split_arr);
 | ||
|     if (it != buft_map.end()) {
 | ||
|         return &it->second;
 | ||
|     }
 | ||
| 
 | ||
|     struct ggml_backend_buffer_type buft {
 | ||
|         /* .iface   = */ ggml_backend_sycl_split_buffer_type_interface,
 | ||
|         /* .context = */ new ggml_backend_sycl_split_buffer_type_context{tensor_split_arr},
 | ||
|     };
 | ||
| 
 | ||
|     auto result = buft_map.emplace(tensor_split_arr, buft);
 | ||
|     return &result.first->second;
 | ||
| }
 | ||
| 
 | ||
| // host buffer type
 | ||
| 
 | ||
| GGML_CALL static const char * ggml_backend_sycl_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
 | ||
|     return GGML_SYCL_NAME "_Host";
 | ||
| 
 | ||
|     UNUSED(buft);
 | ||
| }
 | ||
| 
 | ||
| GGML_CALL static const char * ggml_backend_sycl_host_buffer_name(ggml_backend_buffer_t buffer) {
 | ||
|     return GGML_SYCL_NAME "_Host";
 | ||
| 
 | ||
|     UNUSED(buffer);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_backend_sycl_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
 | ||
|     ggml_sycl_host_free(buffer->context);
 | ||
| }
 | ||
| 
 | ||
| static ggml_backend_buffer_t ggml_backend_sycl_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
 | ||
|     void * ptr = ggml_sycl_host_malloc(size);
 | ||
| 
 | ||
|     if (ptr == nullptr) {
 | ||
|         // fallback to cpu buffer
 | ||
|         return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
 | ||
|     }
 | ||
| 
 | ||
|     // FIXME: this is a hack to avoid having to implement a new buffer type
 | ||
|     ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
 | ||
|     buffer->buft = buft;
 | ||
|     buffer->iface.get_name = ggml_backend_sycl_host_buffer_name;
 | ||
|     buffer->iface.free_buffer = ggml_backend_sycl_host_buffer_free_buffer;
 | ||
| 
 | ||
|     return buffer;
 | ||
| }
 | ||
| 
 | ||
| ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type() {
 | ||
|     GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_host_buffer_type\n");
 | ||
|     static struct ggml_backend_buffer_type ggml_backend_sycl_buffer_type_host = {
 | ||
|         /* .iface    = */ {
 | ||
|             /* .get_name         = */ ggml_backend_sycl_host_buffer_type_name,
 | ||
|             /* .alloc_buffer     = */ ggml_backend_sycl_host_buffer_type_alloc_buffer,
 | ||
|             /* .get_alignment    = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
 | ||
|             /* .get_max_size     = */ NULL, // TODO: return device.maxBufferLength
 | ||
|             /* .get_alloc_size   = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
 | ||
|             /* .is_host          = */ ggml_backend_cpu_buffer_type()->iface.is_host,
 | ||
|         },
 | ||
|         /* .context  = */ nullptr,
 | ||
|     };
 | ||
| 
 | ||
|     return &ggml_backend_sycl_buffer_type_host;
 | ||
| }
 | ||
| 
 | ||
| // backend
 | ||
| 
 | ||
| GGML_CALL static const char * ggml_backend_sycl_name(ggml_backend_t backend) {
 | ||
| 
 | ||
|     ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
 | ||
| 
 | ||
|     return sycl_ctx->name.c_str();
 | ||
| }
 | ||
| 
 | ||
| GGML_CALL static void ggml_backend_sycl_free(ggml_backend_t backend) {
 | ||
|     ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
 | ||
| 
 | ||
|     delete sycl_ctx;
 | ||
|     delete backend;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| GGML_CALL static ggml_backend_buffer_type_t ggml_backend_sycl_get_default_buffer_type(ggml_backend_t backend) {
 | ||
|     ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
 | ||
|     return ggml_backend_sycl_buffer_type(sycl_ctx->device);
 | ||
| }
 | ||
| 
 | ||
| GGML_CALL static void ggml_backend_sycl_set_tensor_async(ggml_backend_t backend,
 | ||
|                                                ggml_tensor *tensor,
 | ||
|                                                const void *data, size_t offset,
 | ||
|                                                size_t size) try {
 | ||
|     ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
 | ||
|     ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
 | ||
| 
 | ||
|     GGML_ASSERT(buf->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && "unsupported buffer type");
 | ||
|     const queue_ptr stream = sycl_ctx->stream(sycl_ctx->device, 0);
 | ||
|     SYCL_CHECK(CHECK_TRY_ERROR((stream)->memcpy(
 | ||
|         (char *)tensor->data + offset, data, size).wait()));
 | ||
| }
 | ||
| catch (sycl::exception const &exc) {
 | ||
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | ||
|             << ", line:" << __LINE__ << std::endl;
 | ||
|   std::exit(1);
 | ||
| }
 | ||
| 
 | ||
| GGML_CALL static void ggml_backend_sycl_get_tensor_async(ggml_backend_t backend,
 | ||
|                                                const ggml_tensor *tensor,
 | ||
|                                                void *data, size_t offset,
 | ||
|                                                size_t size) try {
 | ||
|     ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
 | ||
|     ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
 | ||
| 
 | ||
|     GGML_ASSERT(buf->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && "unsupported buffer type");
 | ||
|     const queue_ptr stream = sycl_ctx->stream(sycl_ctx->device, 0);
 | ||
|     SYCL_CHECK(CHECK_TRY_ERROR((stream)->memcpy(
 | ||
|         data, (const char *)tensor->data + offset, size).wait()));
 | ||
| }
 | ||
| catch (sycl::exception const &exc) {
 | ||
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | ||
|             << ", line:" << __LINE__ << std::endl;
 | ||
|   std::exit(1);
 | ||
| }
 | ||
| 
 | ||
| GGML_CALL static bool ggml_backend_sycl_cpy_tensor_async(ggml_backend_t backend,
 | ||
|                                                          const ggml_tensor *src,
 | ||
|                                                          ggml_tensor *dst) try {
 | ||
|     ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
 | ||
|     if (dst->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && ggml_backend_buffer_is_sycl(src->buffer)) {
 | ||
|         /*
 | ||
|         DPCT1009:215: SYCL uses exceptions to report errors and does not use the
 | ||
|         error codes. The original code was commented out and a warning string
 | ||
|         was inserted. You need to rewrite this code.
 | ||
|         */
 | ||
|         const queue_ptr stream = sycl_ctx->stream(sycl_ctx->device, 0);
 | ||
|         SYCL_CHECK(CHECK_TRY_ERROR((stream)->memcpy(
 | ||
|             dst->data, src->data, ggml_nbytes(dst)).wait()));
 | ||
|         return true;
 | ||
|     }
 | ||
| 
 | ||
|     return false;
 | ||
| }
 | ||
| catch (sycl::exception const &exc) {
 | ||
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | ||
|             << ", line:" << __LINE__ << std::endl;
 | ||
|   std::exit(1);
 | ||
| }
 | ||
| 
 | ||
| static void ggml_backend_sycl_synchronize(ggml_backend_t backend) try {
 | ||
|     ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
 | ||
|     const queue_ptr stream = sycl_ctx->stream(sycl_ctx->device, 0);
 | ||
|     SYCL_CHECK(CHECK_TRY_ERROR((stream)->wait()));
 | ||
| 
 | ||
|     UNUSED(backend);
 | ||
| }
 | ||
| catch (sycl::exception const &exc) {
 | ||
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | ||
|             << ", line:" << __LINE__ << std::endl;
 | ||
|   std::exit(1);
 | ||
| }
 | ||
| 
 | ||
| GGML_CALL static ggml_status ggml_backend_sycl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
 | ||
|     ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
 | ||
|     ggml_sycl_set_main_device(sycl_ctx->device);
 | ||
| 
 | ||
| 
 | ||
|     for (int i = 0; i < cgraph->n_nodes; i++) {
 | ||
|         ggml_tensor * node = cgraph->nodes[i];
 | ||
|         if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
 | ||
|             continue;
 | ||
|         }
 | ||
| #ifndef NDEBUG
 | ||
|         assert(node->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device));
 | ||
|         for (int j = 0; j < GGML_MAX_SRC; j++) {
 | ||
|             if (node->src[j] != nullptr) {
 | ||
|                 assert(node->src[j]->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device));
 | ||
|             }
 | ||
|         }
 | ||
| #endif
 | ||
|         bool ok = ggml_sycl_compute_forward(*sycl_ctx, node);
 | ||
|         if (!ok) {
 | ||
|             fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
 | ||
|         }
 | ||
|         GGML_ASSERT(ok);
 | ||
|     }
 | ||
| 
 | ||
|     return GGML_STATUS_SUCCESS;
 | ||
| }
 | ||
| 
 | ||
| GGML_CALL static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
 | ||
|     switch (op->op) {
 | ||
|         case GGML_OP_UNARY:
 | ||
|             switch (ggml_get_unary_op(op)) {
 | ||
|                 case GGML_UNARY_OP_GELU:
 | ||
|                 case GGML_UNARY_OP_SILU:
 | ||
|                 case GGML_UNARY_OP_RELU:
 | ||
|                 case GGML_UNARY_OP_HARDSIGMOID:
 | ||
|                 case GGML_UNARY_OP_HARDSWISH:
 | ||
|                 case GGML_UNARY_OP_GELU_QUICK:
 | ||
|                 case GGML_UNARY_OP_TANH:
 | ||
|                     return ggml_is_contiguous(op->src[0]);
 | ||
|                 default:
 | ||
|                     return false;
 | ||
|             }
 | ||
|             break;
 | ||
|         case GGML_OP_MUL_MAT:
 | ||
|         case GGML_OP_MUL_MAT_ID:
 | ||
|             {
 | ||
|                 struct ggml_tensor * a;
 | ||
|                 struct ggml_tensor * b;
 | ||
|                 if (op->op == GGML_OP_MUL_MAT) {
 | ||
|                     a = op->src[0];
 | ||
|                     b = op->src[1];
 | ||
|                 } else {
 | ||
|                     a = op->src[2];
 | ||
|                     b = op->src[1];
 | ||
|                 }
 | ||
|                 if (a->ne[3] != b->ne[3]) {
 | ||
|                     return false;
 | ||
|                 }
 | ||
|                 ggml_type a_type = a->type;
 | ||
|                 if (a_type == GGML_TYPE_IQ4_NL  || a_type == GGML_TYPE_IQ4_XS ||
 | ||
|                     a_type == GGML_TYPE_IQ3_XXS || a_type == GGML_TYPE_IQ3_S  ||
 | ||
|                     a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS || a_type == GGML_TYPE_IQ2_S ||
 | ||
|                     a_type == GGML_TYPE_IQ1_S || a_type == GGML_TYPE_IQ1_M
 | ||
|                     ) {
 | ||
|                     if (b->ne[1] == 1 && ggml_nrows(b) > 1) {
 | ||
|                         return false;
 | ||
|                     }
 | ||
|                 }
 | ||
|                 return true;
 | ||
|             } break;
 | ||
|         case GGML_OP_GET_ROWS:
 | ||
|             {
 | ||
|                 switch (op->src[0]->type) {
 | ||
|                     case GGML_TYPE_F16:
 | ||
|                     case GGML_TYPE_F32:
 | ||
|                     case GGML_TYPE_Q4_0:
 | ||
|                     case GGML_TYPE_Q4_1:
 | ||
|                     case GGML_TYPE_Q5_0:
 | ||
|                     case GGML_TYPE_Q5_1:
 | ||
|                     case GGML_TYPE_Q8_0:
 | ||
|                         return true;
 | ||
|                     default:
 | ||
|                         return false;
 | ||
|                 }
 | ||
|             } break;
 | ||
|         case GGML_OP_CPY:
 | ||
|             {
 | ||
|                 ggml_type src0_type = op->src[0]->type;
 | ||
|                 ggml_type src1_type = op->src[1]->type;
 | ||
|                 if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
 | ||
|                     return true;
 | ||
|                 }
 | ||
|                 if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
 | ||
|                     return true;
 | ||
|                 }
 | ||
|                 if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) {
 | ||
|                     return true;
 | ||
|                 }
 | ||
|                 if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_0) {
 | ||
|                     return true;
 | ||
|                 }
 | ||
|                 if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_1) {
 | ||
|                     return true;
 | ||
|                 }
 | ||
|                 if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
 | ||
|                     return true;
 | ||
|                 }
 | ||
|                 if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
 | ||
|                     return true;
 | ||
|                 }
 | ||
|                 return false;
 | ||
|             } break;
 | ||
|         case GGML_OP_CONCAT:
 | ||
|             {
 | ||
|                 ggml_type src0_type = op->src[0]->type;
 | ||
|                 return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
 | ||
|             } break;
 | ||
|         case GGML_OP_DUP:
 | ||
|         case GGML_OP_NONE:
 | ||
|         case GGML_OP_RESHAPE:
 | ||
|         case GGML_OP_REPEAT:
 | ||
|         case GGML_OP_VIEW:
 | ||
|         case GGML_OP_PERMUTE:
 | ||
|         case GGML_OP_TRANSPOSE:
 | ||
|         case GGML_OP_NORM:
 | ||
|         case GGML_OP_ADD:
 | ||
|         case GGML_OP_MUL:
 | ||
|         case GGML_OP_DIV:
 | ||
|         case GGML_OP_RMS_NORM:
 | ||
|         case GGML_OP_SCALE:
 | ||
|         case GGML_OP_SQR:
 | ||
|         case GGML_OP_CLAMP:
 | ||
|         case GGML_OP_CONT:
 | ||
|         case GGML_OP_DIAG_MASK_INF:
 | ||
|         case GGML_OP_SOFT_MAX:
 | ||
|         case GGML_OP_ROPE:
 | ||
|         case GGML_OP_IM2COL:
 | ||
|         case GGML_OP_POOL_2D:
 | ||
|         case GGML_OP_SUM_ROWS:
 | ||
|         case GGML_OP_ARGSORT:
 | ||
|         case GGML_OP_ACC:
 | ||
|         case GGML_OP_GROUP_NORM:
 | ||
|         case GGML_OP_UPSCALE:
 | ||
|         case GGML_OP_PAD:
 | ||
|         case GGML_OP_LEAKY_RELU:
 | ||
|             return true;
 | ||
|         default:
 | ||
|             return false;
 | ||
|     }
 | ||
| 
 | ||
|     UNUSED(backend);
 | ||
| }
 | ||
| 
 | ||
| GGML_CALL static bool ggml_backend_sycl_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
 | ||
|     const int min_batch_size = 32;
 | ||
|     return op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS && op->op != GGML_OP_MUL_MAT_ID;
 | ||
|     GGML_UNUSED(backend);
 | ||
| }
 | ||
| 
 | ||
| GGML_CALL static bool ggml_backend_sycl_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
 | ||
|     if (buft->iface.get_name != ggml_backend_sycl_buffer_type_name) {
 | ||
|         return false;
 | ||
|     }
 | ||
|     ggml_backend_sycl_buffer_type_context * buft_ctx = (ggml_backend_sycl_buffer_type_context *)buft->context;
 | ||
|     ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
 | ||
|     return buft_ctx->device == sycl_ctx->device;
 | ||
| }
 | ||
| 
 | ||
| static ggml_backend_i ggml_backend_sycl_interface = {
 | ||
|     /* .get_name                = */ ggml_backend_sycl_name,
 | ||
|     /* .free                    = */ ggml_backend_sycl_free,
 | ||
|     /* .get_default_buffer_type = */ ggml_backend_sycl_get_default_buffer_type,
 | ||
|     /* .set_tensor_async        = */ ggml_backend_sycl_set_tensor_async,
 | ||
|     /* .get_tensor_async        = */ ggml_backend_sycl_get_tensor_async,
 | ||
|     /* .cpy_tensor_async        = */ NULL, //ggml_backend_sycl_cpy_tensor_async, // TODO: update for the new interface
 | ||
|     /* .synchronize             = */ ggml_backend_sycl_synchronize,
 | ||
|     /* .graph_plan_create       = */ NULL,
 | ||
|     /* .graph_plan_free         = */ NULL,
 | ||
|     /* .graph_plan_update       = */ NULL,
 | ||
|     /* .graph_plan_compute      = */ NULL,
 | ||
|     /* .graph_compute           = */ ggml_backend_sycl_graph_compute,
 | ||
|     /* .supports_op             = */ ggml_backend_sycl_supports_op,
 | ||
|     /* .supports_buft           = */ ggml_backend_sycl_supports_buft,
 | ||
|     /* .offload_op              = */ ggml_backend_sycl_offload_op,
 | ||
|     /* .event_new               = */ NULL,
 | ||
|     /* .event_free              = */ NULL,
 | ||
|     /* .event_record            = */ NULL,
 | ||
|     /* .event_wait              = */ NULL,
 | ||
|     /* .event_synchronize       = */ NULL,
 | ||
| };
 | ||
| 
 | ||
| static ggml_guid_t ggml_backend_sycl_guid() {
 | ||
|     static ggml_guid guid = { 0x58, 0x05, 0x13, 0x8f, 0xcd, 0x3a, 0x61, 0x9d, 0xe7, 0xcd, 0x98, 0xa9, 0x03, 0xfd, 0x7c, 0x53 };
 | ||
|     return &guid;
 | ||
| }
 | ||
| 
 | ||
| GGML_CALL ggml_backend_t ggml_backend_sycl_init(int device) {
 | ||
|     GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_init\n");
 | ||
|     ggml_check_sycl();
 | ||
| 
 | ||
|     check_allow_gpu_index(device);
 | ||
| 
 | ||
|     ggml_backend_sycl_context * ctx = new ggml_backend_sycl_context(device);
 | ||
|     if (ctx == nullptr) {
 | ||
|         fprintf(stderr, "%s: error: failed to allocate context\n", __func__);
 | ||
|         return nullptr;
 | ||
|     };
 | ||
| 
 | ||
|     ggml_backend_t sycl_backend = new ggml_backend {
 | ||
|         /* .guid      = */ ggml_backend_sycl_guid(),
 | ||
|         /* .interface = */ ggml_backend_sycl_interface,
 | ||
|         /* .context   = */ ctx
 | ||
|     };
 | ||
| 
 | ||
|     return sycl_backend;
 | ||
| }
 | ||
| 
 | ||
| bool ggml_backend_is_sycl(ggml_backend_t backend) {
 | ||
|     return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_sycl_guid());
 | ||
| }
 | ||
| 
 | ||
| GGML_CALL int ggml_backend_sycl_get_device_count() {
 | ||
|     GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_get_device_count\n");
 | ||
|     return ggml_sycl_info().device_count;
 | ||
| }
 | ||
| 
 | ||
| GGML_CALL static ggml_backend_t ggml_backend_reg_sycl_init(const char * params, void * user_data) {
 | ||
|     ggml_backend_t sycl_backend = ggml_backend_sycl_init((int) (intptr_t) user_data);
 | ||
|     return sycl_backend;
 | ||
| 
 | ||
|     UNUSED(params);
 | ||
| }
 | ||
| 
 | ||
| extern "C" int ggml_backend_sycl_reg_devices();
 | ||
| 
 | ||
| int ggml_backend_sycl_reg_devices() {
 | ||
|     assert(ggml_sycl_info().device_count>0);
 | ||
|     for (int i = 0; i < ggml_sycl_info().device_count; i++) {
 | ||
|         char name[128];
 | ||
|         snprintf(name, sizeof(name), "%s%d", GGML_SYCL_NAME, i);
 | ||
|         ggml_backend_register(name, ggml_backend_reg_sycl_init, ggml_backend_sycl_buffer_type(i), (void *) (intptr_t) i);
 | ||
|     }
 | ||
|     return ggml_sycl_info().device_count;
 | ||
| }
 | 
