mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			3170 lines
		
	
	
		
			114 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3170 lines
		
	
	
		
			114 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "common.h"
 | |
| #include "llama.h"
 | |
| #include "grammar-parser.h"
 | |
| 
 | |
| #include "../llava/clip.h"
 | |
| 
 | |
| #include "stb_image.h"
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| // crash the server in debug mode, otherwise send an http 500 error
 | |
| #define CPPHTTPLIB_NO_EXCEPTIONS 1
 | |
| #endif
 | |
| // increase max payload length to allow use of larger context size
 | |
| #define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
 | |
| #include "httplib.h"
 | |
| #include "json.hpp"
 | |
| 
 | |
| // auto generated files (update with ./deps.sh)
 | |
| #include "index.html.hpp"
 | |
| #include "index.js.hpp"
 | |
| #include "completion.js.hpp"
 | |
| #include "json-schema-to-grammar.mjs.hpp"
 | |
| 
 | |
| #include <cstddef>
 | |
| #include <thread>
 | |
| #include <mutex>
 | |
| #include <chrono>
 | |
| 
 | |
| #ifndef SERVER_VERBOSE
 | |
| #define SERVER_VERBOSE 1
 | |
| #endif
 | |
| 
 | |
| #define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
 | |
| 
 | |
| using json = nlohmann::json;
 | |
| 
 | |
| struct server_params
 | |
| {
 | |
|     std::string hostname = "127.0.0.1";
 | |
|     std::string api_key;
 | |
|     std::string public_path = "examples/server/public";
 | |
|     int32_t port = 8080;
 | |
|     int32_t read_timeout = 600;
 | |
|     int32_t write_timeout = 600;
 | |
| };
 | |
| 
 | |
| static bool server_verbose = false;
 | |
| 
 | |
| #if SERVER_VERBOSE != 1
 | |
| #define LOG_VERBOSE(MSG, ...)
 | |
| #else
 | |
| #define LOG_VERBOSE(MSG, ...)                                            \
 | |
|     do                                                                   \
 | |
|     {                                                                    \
 | |
|         if (server_verbose)                                              \
 | |
|         {                                                                \
 | |
|             server_log("VERBOSE", __func__, __LINE__, MSG, __VA_ARGS__); \
 | |
|         }                                                                \
 | |
|     } while (0)
 | |
| #endif
 | |
| 
 | |
| #define LOG_ERROR(  MSG, ...) server_log("ERROR",   __func__, __LINE__, MSG, __VA_ARGS__)
 | |
| #define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__)
 | |
| #define LOG_INFO(   MSG, ...) server_log("INFO",    __func__, __LINE__, MSG, __VA_ARGS__)
 | |
| 
 | |
| json oaicompat_completion_params_parse(const json &body);
 | |
| std::string format_chatml(std::vector<json> messages);
 | |
| 
 | |
| 
 | |
| //
 | |
| // base64 utils (TODO: move to common in the future)
 | |
| //
 | |
| 
 | |
| static const std::string base64_chars =
 | |
|              "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 | |
|              "abcdefghijklmnopqrstuvwxyz"
 | |
|              "0123456789+/";
 | |
| 
 | |
| static inline bool is_base64(uint8_t c)
 | |
| {
 | |
|     return (isalnum(c) || (c == '+') || (c == '/'));
 | |
| }
 | |
| 
 | |
| static std::vector<uint8_t> base64_decode(std::string const &encoded_string)
 | |
| {
 | |
|     int i = 0;
 | |
|     int j = 0;
 | |
|     int in_ = 0;
 | |
| 
 | |
|     int in_len = encoded_string.size();
 | |
| 
 | |
|     uint8_t char_array_4[4];
 | |
|     uint8_t char_array_3[3];
 | |
| 
 | |
|     std::vector<uint8_t> ret;
 | |
| 
 | |
|     while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_]))
 | |
|     {
 | |
|         char_array_4[i++] = encoded_string[in_]; in_++;
 | |
|         if (i == 4)
 | |
|         {
 | |
|             for (i = 0; i <4; i++)
 | |
|             {
 | |
|                 char_array_4[i] = base64_chars.find(char_array_4[i]);
 | |
|             }
 | |
| 
 | |
|             char_array_3[0] = ((char_array_4[0]      ) << 2) + ((char_array_4[1] & 0x30) >> 4);
 | |
|             char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
 | |
|             char_array_3[2] = ((char_array_4[2] & 0x3) << 6) +   char_array_4[3];
 | |
| 
 | |
|             for (i = 0; (i < 3); i++)
 | |
|             {
 | |
|                 ret.push_back(char_array_3[i]);
 | |
|             }
 | |
|             i = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (i)
 | |
|     {
 | |
|         for (j = i; j <4; j++)
 | |
|         {
 | |
|             char_array_4[j] = 0;
 | |
|         }
 | |
| 
 | |
|         for (j = 0; j <4; j++)
 | |
|         {
 | |
|             char_array_4[j] = base64_chars.find(char_array_4[j]);
 | |
|         }
 | |
| 
 | |
|         char_array_3[0] = ((char_array_4[0]      ) << 2) + ((char_array_4[1] & 0x30) >> 4);
 | |
|         char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
 | |
|         char_array_3[2] = ((char_array_4[2] & 0x3) << 6) +   char_array_4[3];
 | |
| 
 | |
|         for (j = 0; (j < i - 1); j++)
 | |
|         {
 | |
|             ret.push_back(char_array_3[j]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| //
 | |
| // parallel
 | |
| //
 | |
| 
 | |
| enum task_type {
 | |
|     COMPLETION_TASK,
 | |
|     CANCEL_TASK
 | |
| };
 | |
| 
 | |
| struct task_server {
 | |
|     int id;
 | |
|     int target_id;
 | |
|     task_type type;
 | |
|     json data;
 | |
|     bool infill_mode = false;
 | |
|     bool embedding_mode = false;
 | |
|     int multitask_id = -1;
 | |
| };
 | |
| 
 | |
| struct task_result {
 | |
|     int id;
 | |
|     int multitask_id = -1;
 | |
|     bool stop;
 | |
|     bool error;
 | |
|     json result_json;
 | |
| };
 | |
| 
 | |
| struct task_multi {
 | |
|     int id;
 | |
|     std::set<int> subtasks_remaining{};
 | |
|     std::vector<task_result> results{};
 | |
| };
 | |
| 
 | |
| // TODO: can become bool if we can't find use of more states
 | |
| enum slot_state
 | |
| {
 | |
|     IDLE,
 | |
|     PROCESSING,
 | |
| };
 | |
| 
 | |
| enum slot_command
 | |
| {
 | |
|     NONE,
 | |
|     LOAD_PROMPT,
 | |
|     RELEASE,
 | |
| };
 | |
| 
 | |
| struct slot_params
 | |
| {
 | |
|     bool stream       = true;
 | |
|     bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
 | |
| 
 | |
|     uint32_t seed      = -1; // RNG seed
 | |
|     int32_t  n_keep    =  0; // number of tokens to keep from initial prompt
 | |
|     int32_t  n_predict = -1; // new tokens to predict
 | |
| 
 | |
|     std::vector<std::string> antiprompt;
 | |
| 
 | |
|     json input_prefix;
 | |
|     json input_suffix;
 | |
| };
 | |
| 
 | |
| struct slot_image
 | |
| {
 | |
|     int32_t id;
 | |
| 
 | |
|     bool request_encode_image = false;
 | |
|     float* image_embedding = nullptr;
 | |
|     int32_t image_tokens = 0;
 | |
| 
 | |
|     clip_image_u8 img_data;
 | |
| 
 | |
|     std::string prefix_prompt; // before of this image
 | |
| };
 | |
| 
 | |
| // completion token output with probabilities
 | |
| struct completion_token_output
 | |
| {
 | |
|     struct token_prob
 | |
|     {
 | |
|         llama_token tok;
 | |
|         float prob;
 | |
|     };
 | |
| 
 | |
|     std::vector<token_prob> probs;
 | |
|     llama_token tok;
 | |
|     std::string text_to_send;
 | |
| };
 | |
| 
 | |
| static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b)
 | |
| {
 | |
|     size_t i;
 | |
|     for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++)
 | |
|     {
 | |
|     }
 | |
|     return i;
 | |
| }
 | |
| 
 | |
| enum stop_type
 | |
| {
 | |
|     STOP_FULL,
 | |
|     STOP_PARTIAL,
 | |
| };
 | |
| 
 | |
| static bool ends_with(const std::string &str, const std::string &suffix)
 | |
| {
 | |
|     return str.size() >= suffix.size() &&
 | |
|            0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
 | |
| }
 | |
| 
 | |
| static size_t find_partial_stop_string(const std::string &stop,
 | |
|                                        const std::string &text)
 | |
| {
 | |
|     if (!text.empty() && !stop.empty())
 | |
|     {
 | |
|         const char text_last_char = text.back();
 | |
|         for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--)
 | |
|         {
 | |
|             if (stop[char_index] == text_last_char)
 | |
|             {
 | |
|                 const std::string current_partial = stop.substr(0, char_index + 1);
 | |
|                 if (ends_with(text, current_partial))
 | |
|                 {
 | |
|                     return text.size() - char_index - 1;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return std::string::npos;
 | |
| }
 | |
| 
 | |
| // TODO: reuse llama_detokenize
 | |
| template <class Iter>
 | |
| static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
 | |
| {
 | |
|     std::string ret;
 | |
|     for (; begin != end; ++begin)
 | |
|     {
 | |
|         ret += llama_token_to_piece(ctx, *begin);
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void server_log(const char *level, const char *function, int line,
 | |
|                        const char *message, const nlohmann::ordered_json &extra)
 | |
| {
 | |
|     nlohmann::ordered_json log
 | |
|     {
 | |
|         {"timestamp", time(nullptr)},
 | |
|         {"level",     level},
 | |
|         {"function",  function},
 | |
|         {"line",      line},
 | |
|         {"message",   message},
 | |
|     };
 | |
| 
 | |
|     if (!extra.empty())
 | |
|     {
 | |
|         log.merge_patch(extra);
 | |
|     }
 | |
| 
 | |
|     const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace);
 | |
|     printf("%.*s\n", (int)str.size(), str.data());
 | |
|     fflush(stdout);
 | |
| }
 | |
| 
 | |
| // format incomplete utf-8 multibyte character for output
 | |
| static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token)
 | |
| {
 | |
|     std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token);
 | |
|     // if the size is 1 and first bit is 1, meaning it's a partial character
 | |
|     //   (size > 1 meaning it's already a known token)
 | |
|     if (out.size() == 1 && (out[0] & 0x80) == 0x80)
 | |
|     {
 | |
|         std::stringstream ss;
 | |
|         ss << std::hex << (out[0] & 0xff);
 | |
|         std::string res(ss.str());
 | |
|         out = "byte: \\x" + res;
 | |
|     }
 | |
|     return out;
 | |
| }
 | |
| 
 | |
| // convert a vector of completion_token_output to json
 | |
| static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> &probs)
 | |
| {
 | |
|     json out = json::array();
 | |
|     for (const auto &prob : probs)
 | |
|     {
 | |
|         json probs_for_token = json::array();
 | |
|         for (const auto &p : prob.probs)
 | |
|         {
 | |
|             std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
 | |
|             probs_for_token.push_back(json
 | |
|             {
 | |
|                 {"tok_str", tok_str},
 | |
|                 {"prob",    p.prob},
 | |
|             });
 | |
|         }
 | |
|         std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
 | |
|         out.push_back(json{
 | |
|             {"content", tok_str},
 | |
|             {"probs",   probs_for_token},
 | |
|         });
 | |
|     }
 | |
|     return out;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| static T json_value(const json &body, const std::string &key, const T &default_value)
 | |
| {
 | |
|     // Fallback null to default value
 | |
|     return body.contains(key) && !body.at(key).is_null()
 | |
|         ? body.value(key, default_value)
 | |
|         : default_value;
 | |
| }
 | |
| 
 | |
| struct llama_client_slot
 | |
| {
 | |
|     int id;
 | |
|     int task_id = -1;
 | |
| 
 | |
|     struct slot_params params;
 | |
| 
 | |
|     slot_state state = IDLE;
 | |
|     slot_command command = NONE;
 | |
| 
 | |
|     // used to determine the slot that has been used the longest
 | |
|     int64_t t_last_used = -1;
 | |
| 
 | |
|     // generation props
 | |
|     int32_t n_ctx       = 0;  // context size per slot
 | |
|     int32_t n_past      = 0;
 | |
|     int32_t n_decoded   = 0;
 | |
|     int32_t n_remaining = -1;
 | |
|     int32_t i_batch     = -1;
 | |
| 
 | |
|     int32_t num_prompt_tokens           = 0;
 | |
|     int32_t num_prompt_tokens_processed = 0;
 | |
| 
 | |
|     json prompt;
 | |
|     std::string generated_text;
 | |
|     llama_token sampled;
 | |
|     std::vector<llama_token> cache_tokens;
 | |
|     std::vector<completion_token_output> generated_token_probs;
 | |
| 
 | |
|     bool infill = false;
 | |
|     bool embedding = false;
 | |
|     bool has_next_token = true;
 | |
|     bool truncated = false;
 | |
|     bool stopped_eos = false;
 | |
|     bool stopped_word = false;
 | |
|     bool stopped_limit = false;
 | |
| 
 | |
|     bool oaicompat = false;
 | |
|     std::string oaicompat_model;
 | |
| 
 | |
|     std::string stopping_word;
 | |
| 
 | |
|     // sampling
 | |
|     struct llama_sampling_params sparams;
 | |
|     llama_sampling_context *ctx_sampling = nullptr;
 | |
| 
 | |
|     // multimodal
 | |
|     std::vector<slot_image> images;
 | |
| 
 | |
|     // stats
 | |
|     size_t sent_count = 0;
 | |
|     size_t sent_token_probs_index = 0;
 | |
| 
 | |
|     int64_t t_start_process_prompt;
 | |
|     int64_t t_start_genereration;
 | |
| 
 | |
|     double t_prompt_processing; // ms
 | |
|     double t_token_generation; // ms
 | |
| 
 | |
|     // multitasks
 | |
|     int multitask_id = -1;
 | |
| 
 | |
|     void reset() {
 | |
|         num_prompt_tokens      = 0;
 | |
|         generated_text         = "";
 | |
|         truncated              = false;
 | |
|         stopped_eos            = false;
 | |
|         stopped_word           = false;
 | |
|         stopped_limit          = false;
 | |
|         stopping_word          = "";
 | |
|         n_past                 = 0;
 | |
|         sent_count             = 0;
 | |
|         sent_token_probs_index = 0;
 | |
|         infill                 = false;
 | |
| 
 | |
|         generated_token_probs.clear();
 | |
| 
 | |
|         for (slot_image &img : images)
 | |
|         {
 | |
|             free(img.image_embedding);
 | |
|             delete[] img.img_data.data;
 | |
|             img.prefix_prompt = "";
 | |
|         }
 | |
| 
 | |
|         images.clear();
 | |
|         // llama_set_rng_seed(ctx, params.seed); in batched the seed matter???????
 | |
|     }
 | |
| 
 | |
|     bool has_budget(gpt_params &global_params) {
 | |
|         n_remaining = -1;
 | |
|         if(params.n_predict != -1)
 | |
|         {
 | |
|             n_remaining = params.n_predict - n_decoded;
 | |
|         }
 | |
|         else if (global_params.n_predict != -1)
 | |
|         {
 | |
|             n_remaining = global_params.n_predict - n_decoded;
 | |
|         }
 | |
|         return n_remaining > 0 || n_remaining == -1; // no budget || limitless
 | |
|     }
 | |
| 
 | |
|     bool available() const {
 | |
|         return state == IDLE && command == NONE;
 | |
|     }
 | |
| 
 | |
|     bool is_processing() const {
 | |
|         return (state == IDLE && command == LOAD_PROMPT) || state == PROCESSING;
 | |
|     }
 | |
| 
 | |
|     void add_token_string(const completion_token_output &token) {
 | |
|         if (command == RELEASE)
 | |
|         {
 | |
|             return;
 | |
|         }
 | |
|         cache_tokens.push_back(token.tok);
 | |
|         generated_token_probs.push_back(token);
 | |
|     }
 | |
| 
 | |
|     void release() {
 | |
|         if (state == IDLE || state == PROCESSING)
 | |
|         {
 | |
|             t_token_generation = (ggml_time_us() - t_start_genereration) / 1e3;
 | |
|             command = RELEASE;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     json get_formated_timings() {
 | |
|         return json
 | |
|         {
 | |
|             {"prompt_n",               num_prompt_tokens_processed},
 | |
|             {"prompt_ms",              t_prompt_processing},
 | |
|             {"prompt_per_token_ms",    t_prompt_processing / num_prompt_tokens_processed},
 | |
|             {"prompt_per_second",      1e3 / t_prompt_processing * num_prompt_tokens_processed},
 | |
| 
 | |
|             {"predicted_n",            n_decoded},
 | |
|             {"predicted_ms",           t_token_generation},
 | |
|             {"predicted_per_token_ms", t_token_generation / n_decoded},
 | |
|             {"predicted_per_second",   1e3 / t_token_generation * n_decoded},
 | |
|         };
 | |
|     }
 | |
| 
 | |
|     void print_timings() const {
 | |
|         LOG_TEE("\n");
 | |
|         LOG_TEE("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
 | |
|             __func__, t_prompt_processing, num_prompt_tokens_processed, t_prompt_processing / num_prompt_tokens_processed, 1e3 / t_prompt_processing * num_prompt_tokens_processed);
 | |
|         LOG_TEE("%s:        eval time = %10.2f ms / %5d runs   (%8.2f ms per token, %8.2f tokens per second)\n",
 | |
|             __func__, t_token_generation, n_decoded,t_token_generation / n_decoded, 1e3 / t_token_generation * n_decoded);
 | |
|         LOG_TEE("%s:       total time = %10.2f ms\n", __func__, t_prompt_processing + t_token_generation);
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct llama_server_context
 | |
| {
 | |
|     llama_model *model = nullptr;
 | |
|     llama_context *ctx = nullptr;
 | |
| 
 | |
|     clip_ctx *clp_ctx = nullptr;
 | |
| 
 | |
|     gpt_params params;
 | |
| 
 | |
|     llama_batch batch;
 | |
| 
 | |
|     bool multimodal         = false;
 | |
|     bool clean_kv_cache     = true;
 | |
|     bool all_slots_are_idle = false;
 | |
|     bool add_bos_token      = true;
 | |
| 
 | |
|     int32_t id_gen;
 | |
|     int32_t n_ctx;  // total context for all clients / slots
 | |
| 
 | |
|     // system prompt
 | |
|     bool system_need_update = false;
 | |
| 
 | |
|     std::string              system_prompt;
 | |
|     std::vector<llama_token> system_tokens;
 | |
| 
 | |
|     std::string name_user;      // this should be the antiprompt
 | |
|     std::string name_assistant;
 | |
| 
 | |
|     // slots / clients
 | |
|     std::vector<llama_client_slot> slots;
 | |
| 
 | |
|     std::vector<task_server> queue_tasks;
 | |
|     std::vector<task_result> queue_results;
 | |
|     std::vector<task_multi>  queue_multitasks;
 | |
|     std::mutex mutex_tasks; // also guards id_gen, and queue_multitasks
 | |
|     std::mutex mutex_results;
 | |
| 
 | |
|     ~llama_server_context()
 | |
|     {
 | |
|         if (ctx)
 | |
|         {
 | |
|             llama_free(ctx);
 | |
|             ctx = nullptr;
 | |
|         }
 | |
|         if (model)
 | |
|         {
 | |
|             llama_free_model(model);
 | |
|             model = nullptr;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     bool load_model(const gpt_params ¶ms_)
 | |
|     {
 | |
|         params = params_;
 | |
|         if (!params.mmproj.empty()) {
 | |
|             multimodal = true;
 | |
|             LOG_TEE("Multi Modal Mode Enabled");
 | |
|             clp_ctx = clip_model_load(params.mmproj.c_str(), /*verbosity=*/ 1);
 | |
|             if(clp_ctx == nullptr) {
 | |
|                 LOG_ERROR("unable to load clip model", {{"model", params.mmproj}});
 | |
|                 return false;
 | |
|             }
 | |
| 
 | |
|             if (params.n_ctx < 2048) { // request larger context for the image embedding
 | |
|                 params.n_ctx = 2048;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         std::tie(model, ctx) = llama_init_from_gpt_params(params);
 | |
|         if (model == nullptr)
 | |
|         {
 | |
|             LOG_ERROR("unable to load model", {{"model", params.model}});
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         if (multimodal) {
 | |
|             const int n_embd_clip = clip_n_mmproj_embd(clp_ctx);
 | |
|             const int n_embd_llm  = llama_n_embd(model);
 | |
|             if (n_embd_clip != n_embd_llm) {
 | |
|                 LOG_TEE("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_embd_clip, n_embd_llm);
 | |
|                 llama_free(ctx);
 | |
|                 llama_free_model(model);
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         n_ctx = llama_n_ctx(ctx);
 | |
| 
 | |
|         add_bos_token = llama_should_add_bos_token(model);
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     void initialize() {
 | |
|         id_gen = 0;
 | |
| 
 | |
|         // create slots
 | |
|         all_slots_are_idle = true;
 | |
| 
 | |
|         const int32_t n_ctx_slot = n_ctx / params.n_parallel;
 | |
| 
 | |
|         LOG_TEE("Available slots:\n");
 | |
|         for (int i = 0; i < params.n_parallel; i++)
 | |
|         {
 | |
|             llama_client_slot slot;
 | |
| 
 | |
|             slot.id = i;
 | |
|             slot.n_ctx = n_ctx_slot;
 | |
|             slot.reset();
 | |
| 
 | |
|             LOG_TEE(" -> Slot %i - max context: %i\n", slot.id, n_ctx_slot);
 | |
|             slots.push_back(slot);
 | |
|         }
 | |
| 
 | |
|         batch = llama_batch_init(n_ctx, 0, params.n_parallel);
 | |
| 
 | |
|         // empty system prompt
 | |
|         system_prompt = "";
 | |
|         system_tokens.clear();
 | |
|     }
 | |
| 
 | |
|     std::vector<llama_token> tokenize(const json & json_prompt, bool add_bos) const
 | |
|     {
 | |
|         // TODO: currently, we tokenize using special tokens by default
 | |
|         //       this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216)
 | |
|         //       but it's better compared to completely ignoring ChatML and other chat templates
 | |
|         const bool TMP_FORCE_SPECIAL = true;
 | |
| 
 | |
|         // If `add_bos` is true, we only add BOS, when json_prompt is a string,
 | |
|         // or the first element of the json_prompt array is a string.
 | |
|         std::vector<llama_token> prompt_tokens;
 | |
| 
 | |
|         if (json_prompt.is_array())
 | |
|         {
 | |
|             bool first = true;
 | |
|             for (const auto& p : json_prompt)
 | |
|             {
 | |
|                 if (p.is_string())
 | |
|                 {
 | |
|                     auto s = p.template get<std::string>();
 | |
|                     std::vector<llama_token> p;
 | |
|                     if (first)
 | |
|                     {
 | |
|                         p = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
 | |
|                         first = false;
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
 | |
|                     }
 | |
|                     prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     if (first)
 | |
|                     {
 | |
|                         first = false;
 | |
|                     }
 | |
|                     prompt_tokens.push_back(p.template get<llama_token>());
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             auto s = json_prompt.template get<std::string>();
 | |
|             prompt_tokens = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
 | |
|         }
 | |
| 
 | |
|         return prompt_tokens;
 | |
|     }
 | |
| 
 | |
|     llama_client_slot* get_slot(int id) {
 | |
|         int64_t t_last = ggml_time_us();
 | |
|         llama_client_slot *last_used = nullptr;
 | |
| 
 | |
|         for (llama_client_slot & slot : slots)
 | |
|         {
 | |
|             if (slot.id == id && slot.available())
 | |
|             {
 | |
|                 return &slot;
 | |
|             }
 | |
| 
 | |
|             if (slot.available() && slot.t_last_used < t_last)
 | |
|             {
 | |
|                 last_used = &slot;
 | |
|                 t_last = slot.t_last_used;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return last_used;
 | |
|     }
 | |
| 
 | |
|     bool launch_slot_with_data(llama_client_slot* &slot, json data) {
 | |
|         slot_params default_params;
 | |
|         llama_sampling_params default_sparams;
 | |
| 
 | |
|         if (data.count("__oaicompat") != 0) {
 | |
|             slot->oaicompat = true;
 | |
|             slot->oaicompat_model = json_value(data, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
 | |
|         } else {
 | |
|             slot->oaicompat = false;
 | |
|             slot->oaicompat_model = "";
 | |
|         }
 | |
| 
 | |
|         slot->params.stream           = json_value(data, "stream",            false);
 | |
|         slot->params.cache_prompt     = json_value(data, "cache_prompt",      false);
 | |
|         slot->params.n_predict        = json_value(data, "n_predict",         default_params.n_predict);
 | |
|         slot->sparams.top_k           = json_value(data, "top_k",             default_sparams.top_k);
 | |
|         slot->sparams.top_p           = json_value(data, "top_p",             default_sparams.top_p);
 | |
|         slot->sparams.min_p           = json_value(data, "min_p",             default_sparams.min_p);
 | |
|         slot->sparams.tfs_z           = json_value(data, "tfs_z",             default_sparams.tfs_z);
 | |
|         slot->sparams.typical_p       = json_value(data, "typical_p",         default_sparams.typical_p);
 | |
|         slot->sparams.temp            = json_value(data, "temperature",       default_sparams.temp);
 | |
|         slot->sparams.penalty_last_n  = json_value(data, "repeat_last_n",     default_sparams.penalty_last_n);
 | |
|         slot->sparams.penalty_repeat  = json_value(data, "repeat_penalty",    default_sparams.penalty_repeat);
 | |
|         slot->sparams.penalty_freq    = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
 | |
|         slot->sparams.penalty_present = json_value(data, "presence_penalty",  default_sparams.penalty_present);
 | |
|         slot->sparams.mirostat        = json_value(data, "mirostat",          default_sparams.mirostat);
 | |
|         slot->sparams.mirostat_tau    = json_value(data, "mirostat_tau",      default_sparams.mirostat_tau);
 | |
|         slot->sparams.mirostat_eta    = json_value(data, "mirostat_eta",      default_sparams.mirostat_eta);
 | |
|         slot->sparams.penalize_nl     = json_value(data, "penalize_nl",       default_sparams.penalize_nl);
 | |
|         slot->params.n_keep           = json_value(data, "n_keep",            slot->params.n_keep);
 | |
|         slot->params.seed             = json_value(data, "seed",              default_params.seed);
 | |
|         slot->sparams.grammar         = json_value(data, "grammar",           default_sparams.grammar);
 | |
|         slot->sparams.n_probs         = json_value(data, "n_probs",           default_sparams.n_probs);
 | |
| 
 | |
|         // infill
 | |
|         if (data.count("input_prefix") != 0)
 | |
|         {
 | |
|             slot->params.input_prefix = data["input_prefix"];
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             slot->params.input_prefix = "";
 | |
|         }
 | |
| 
 | |
|         if (data.count("input_suffix") != 0)
 | |
|         {
 | |
|             slot->params.input_suffix = data["input_suffix"];
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             slot->params.input_suffix = "";
 | |
|         }
 | |
| 
 | |
|         if (data.count("prompt") != 0)
 | |
|         {
 | |
|             slot->prompt = data["prompt"];
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             slot->prompt = "";
 | |
|         }
 | |
| 
 | |
|         slot->sparams.penalty_prompt_tokens.clear();
 | |
|         slot->sparams.use_penalty_prompt_tokens = false;
 | |
|         const auto &penalty_prompt = data.find("penalty_prompt");
 | |
|         if (penalty_prompt != data.end())
 | |
|         {
 | |
|             if (penalty_prompt->is_string())
 | |
|             {
 | |
|                 const auto penalty_prompt_string = penalty_prompt->get<std::string>();
 | |
|                 auto penalty_tokens = llama_tokenize(model, penalty_prompt_string, false);
 | |
|                 slot->sparams.penalty_prompt_tokens.swap(penalty_tokens);
 | |
|                 if (slot->params.n_predict > 0)
 | |
|                 {
 | |
|                     slot->sparams.penalty_prompt_tokens.reserve(slot->sparams.penalty_prompt_tokens.size() + slot->params.n_predict);
 | |
|                 }
 | |
|                 slot->sparams.use_penalty_prompt_tokens = true;
 | |
|             }
 | |
|             else if (penalty_prompt->is_array())
 | |
|             {
 | |
|                 const auto n_tokens = penalty_prompt->size();
 | |
|                 slot->sparams.penalty_prompt_tokens.reserve(n_tokens + std::max(0, slot->params.n_predict));
 | |
|                 const int n_vocab = llama_n_vocab(model);
 | |
|                 for (const auto &penalty_token : *penalty_prompt)
 | |
|                 {
 | |
|                     if (penalty_token.is_number_integer())
 | |
|                     {
 | |
|                         const auto tok = penalty_token.get<llama_token>();
 | |
|                         if (tok >= 0 && tok < n_vocab)
 | |
|                         {
 | |
|                             slot->sparams.penalty_prompt_tokens.push_back(tok);
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|                 slot->sparams.use_penalty_prompt_tokens = true;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         slot->sparams.logit_bias.clear();
 | |
| 
 | |
|         if (json_value(data, "ignore_eos", false))
 | |
|         {
 | |
|             slot->sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
 | |
|         }
 | |
| 
 | |
|         const auto &logit_bias = data.find("logit_bias");
 | |
|         if (logit_bias != data.end() && logit_bias->is_array())
 | |
|         {
 | |
|             const int n_vocab = llama_n_vocab(model);
 | |
|             for (const auto &el : *logit_bias)
 | |
|             {
 | |
|                 if (el.is_array() && el.size() == 2 && el[0].is_number_integer())
 | |
|                 {
 | |
|                     llama_token tok = el[0].get<llama_token>();
 | |
|                     if (tok >= 0 && tok < n_vocab)
 | |
|                     {
 | |
|                         if (el[1].is_number())
 | |
|                         {
 | |
|                             slot->sparams.logit_bias[tok] = el[1].get<float>();
 | |
|                         }
 | |
|                         else if (el[1].is_boolean() && !el[1].get<bool>())
 | |
|                         {
 | |
|                             slot->sparams.logit_bias[tok] = -INFINITY;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         slot->params.antiprompt.clear();
 | |
| 
 | |
|         const auto &stop = data.find("stop");
 | |
|         if (stop != data.end() && stop->is_array())
 | |
|         {
 | |
|             for (const auto &word : *stop)
 | |
|             {
 | |
|                 if (!word.empty())
 | |
|                 {
 | |
|                     slot->params.antiprompt.push_back(word);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (multimodal)
 | |
|         {
 | |
|             const auto &images_data = data.find("image_data");
 | |
|             if (images_data != data.end() && images_data->is_array())
 | |
|             {
 | |
|                 for (const auto &img : *images_data)
 | |
|                 {
 | |
|                     std::string data_b64 = img["data"].get<std::string>();
 | |
|                     slot_image img_sl;
 | |
|                     img_sl.id = img.count("id") != 0 ? img["id"].get<int>() : slot->images.size();
 | |
|                     int width, height, channels;
 | |
|                     std::vector<uint8_t> image_buffer = base64_decode(data_b64);
 | |
|                     data_b64.clear();
 | |
|                     auto data = stbi_load_from_memory(image_buffer.data(), image_buffer.size(), &width, &height, &channels, 3);
 | |
|                     if (!data) {
 | |
|                         LOG_TEE("slot %i - failed to load image [id: %i]\n", slot->id, img_sl.id);
 | |
|                         return false;
 | |
|                     }
 | |
|                     LOG_TEE("slot %i - image loaded [id: %i] resolution (%i x %i)\n", slot->id, img_sl.id, width, height);
 | |
|                     img_sl.img_data.nx = width;
 | |
|                     img_sl.img_data.ny = height;
 | |
|                     img_sl.img_data.size = width * height * 3;
 | |
|                     img_sl.img_data.data = new uint8_t[width * height * 3]();
 | |
|                     memcpy(img_sl.img_data.data, data, width * height * 3);
 | |
|                     stbi_image_free(data);
 | |
|                     img_sl.request_encode_image = true;
 | |
|                     slot->images.push_back(img_sl);
 | |
|                 }
 | |
|                 // process prompt
 | |
|                 // example: system prompt [img-102] user [img-103] describe [img-134] -> [{id: 102, prefix: 'system prompt '}, {id: 103, prefix: ' user '}, {id: 134, prefix: ' describe '}]}
 | |
|                 if (slot->images.size() > 0 && !slot->prompt.is_array())
 | |
|                 {
 | |
|                     std::string prompt = slot->prompt.get<std::string>();
 | |
|                     size_t pos = 0, begin_prefix = 0;
 | |
|                     std::string pattern = "[img-";
 | |
|                     while ((pos = prompt.find(pattern, pos)) != std::string::npos) {
 | |
|                         size_t end_prefix = pos;
 | |
|                         pos += pattern.length();
 | |
|                         size_t end_pos = prompt.find("]", pos);
 | |
|                         if (end_pos != std::string::npos)
 | |
|                         {
 | |
|                             std::string image_id = prompt.substr(pos, end_pos - pos);
 | |
|                             try
 | |
|                             {
 | |
|                                 int img_id = std::stoi(image_id);
 | |
|                                 bool found = false;
 | |
|                                 for (slot_image &img : slot->images)
 | |
|                                 {
 | |
|                                     if (img.id == img_id) {
 | |
|                                         found = true;
 | |
|                                         img.prefix_prompt = prompt.substr(begin_prefix, end_prefix - begin_prefix);
 | |
|                                         begin_prefix = end_pos + 1;
 | |
|                                         break;
 | |
|                                     }
 | |
|                                 }
 | |
|                                 if (!found) {
 | |
|                                     LOG_TEE("ERROR: Image with id: %i, not found.\n", img_id);
 | |
|                                     slot->images.clear();
 | |
|                                     return false;
 | |
|                                 }
 | |
|                             } catch (const std::invalid_argument& e) {
 | |
|                                 LOG_TEE("Invalid image number id in prompt\n");
 | |
|                                 slot->images.clear();
 | |
|                                 return false;
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                     slot->prompt = "";
 | |
|                     slot->params.input_suffix = prompt.substr(begin_prefix);
 | |
|                     slot->params.cache_prompt = false; // multimodal doesn't support cache prompt
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (slot->ctx_sampling != nullptr)
 | |
|         {
 | |
|             llama_sampling_free(slot->ctx_sampling);
 | |
|         }
 | |
|         slot->ctx_sampling = llama_sampling_init(slot->sparams);
 | |
|         slot->command = LOAD_PROMPT;
 | |
| 
 | |
|         all_slots_are_idle = false;
 | |
| 
 | |
|         LOG_TEE("slot %i is processing [task id: %i]\n", slot->id, slot->task_id);
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     void kv_cache_clear() {
 | |
|         // clear the entire KV cache
 | |
|         llama_kv_cache_clear(ctx);
 | |
|         clean_kv_cache = false;
 | |
|     }
 | |
| 
 | |
|     void update_system_prompt() {
 | |
|         system_tokens = ::llama_tokenize(ctx, system_prompt, add_bos_token);
 | |
| 
 | |
|         llama_batch_clear(batch);
 | |
| 
 | |
|         kv_cache_clear();
 | |
| 
 | |
|         for (int i = 0; i < (int) system_tokens.size(); ++i)
 | |
|         {
 | |
|             llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
 | |
|         }
 | |
| 
 | |
|         if (llama_decode(ctx, batch) != 0)
 | |
|         {
 | |
|             LOG_TEE("%s: llama_decode() failed\n", __func__);
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         // assign the system KV cache to all parallel sequences
 | |
|         for (int32_t i = 1; i < params.n_parallel; ++i)
 | |
|         {
 | |
|             llama_kv_cache_seq_cp(ctx, 0, i, 0, system_tokens.size());
 | |
|         }
 | |
| 
 | |
|         LOG_TEE("system prompt updated\n");
 | |
|         system_need_update = false;
 | |
|     }
 | |
| 
 | |
|     void notify_system_prompt_changed() {
 | |
|         // release all slots
 | |
|         for (llama_client_slot &slot : slots)
 | |
|         {
 | |
|             slot.release();
 | |
|         }
 | |
| 
 | |
|         system_need_update = true;
 | |
|     }
 | |
| 
 | |
|     void process_system_prompt_data(const json &sys_props) {
 | |
|         system_prompt  = sys_props.value("prompt", "");
 | |
|         name_user      = sys_props.value("anti_prompt", "");
 | |
|         name_assistant = sys_props.value("assistant_name", "");
 | |
| 
 | |
|         if (slots.size() > 0)
 | |
|         {
 | |
|             notify_system_prompt_changed();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     static size_t find_stopping_strings(const std::string &text, const size_t last_token_size,
 | |
|                                         const stop_type type, llama_client_slot &slot)
 | |
|     {
 | |
|         size_t stop_pos = std::string::npos;
 | |
| 
 | |
|         for (const std::string &word : slot.params.antiprompt)
 | |
|         {
 | |
|             size_t pos;
 | |
|             if (type == STOP_FULL)
 | |
|             {
 | |
|                 const size_t tmp = word.size() + last_token_size;
 | |
|                 const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
 | |
|                 pos = text.find(word, from_pos);
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 pos = find_partial_stop_string(word, text);
 | |
|             }
 | |
|             if (pos != std::string::npos &&
 | |
|                 (stop_pos == std::string::npos || pos < stop_pos))
 | |
|             {
 | |
|                 if (type == STOP_FULL)
 | |
|                 {
 | |
|                     slot.stopped_word = true;
 | |
|                     slot.stopping_word = word;
 | |
|                     slot.has_next_token = false;
 | |
|                 }
 | |
|                 stop_pos = pos;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return stop_pos;
 | |
|     }
 | |
| 
 | |
|     bool process_token(completion_token_output &result, llama_client_slot &slot) {
 | |
|         // remember which tokens were sampled - used for repetition penalties during sampling
 | |
|         const std::string token_str = llama_token_to_piece(ctx, result.tok);
 | |
|         slot.sampled = result.tok;
 | |
| 
 | |
|         // search stop word and delete it
 | |
|         slot.generated_text += token_str;
 | |
|         slot.has_next_token = true;
 | |
| 
 | |
|         if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1)
 | |
|         {
 | |
|             // we can change penalty_prompt_tokens because it is always created from scratch each request
 | |
|             slot.ctx_sampling->params.penalty_prompt_tokens.push_back(result.tok);
 | |
|         }
 | |
| 
 | |
|         // check if there is incomplete UTF-8 character at the end
 | |
|         bool incomplete = false;
 | |
|         for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i)
 | |
|         {
 | |
|             unsigned char c = slot.generated_text[slot.generated_text.size() - i];
 | |
|             if ((c & 0xC0) == 0x80)
 | |
|             {
 | |
|                 // continuation byte: 10xxxxxx
 | |
|                 continue;
 | |
|             }
 | |
|             if ((c & 0xE0) == 0xC0)
 | |
|             {
 | |
|                 // 2-byte character: 110xxxxx ...
 | |
|                 incomplete = i < 2;
 | |
|             }
 | |
|             else if ((c & 0xF0) == 0xE0)
 | |
|             {
 | |
|                 // 3-byte character: 1110xxxx ...
 | |
|                 incomplete = i < 3;
 | |
|             }
 | |
|             else if ((c & 0xF8) == 0xF0)
 | |
|             {
 | |
|                 // 4-byte character: 11110xxx ...
 | |
|                 incomplete = i < 4;
 | |
|             }
 | |
|             // else 1-byte character or invalid byte
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (!incomplete)
 | |
|         {
 | |
|             size_t pos = std::min(slot.sent_count, slot.generated_text.size());
 | |
|             const std::string str_test = slot.generated_text.substr(pos);
 | |
|             bool is_stop_full = false;
 | |
|             size_t stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_FULL, slot);
 | |
|             if (stop_pos != std::string::npos)
 | |
|             {
 | |
|                 is_stop_full = true;
 | |
|                 slot.generated_text.erase(
 | |
|                     slot.generated_text.begin() + pos + stop_pos,
 | |
|                     slot.generated_text.end());
 | |
|                 pos = std::min(slot.sent_count, slot.generated_text.size());
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 is_stop_full = false;
 | |
|                 stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_PARTIAL, slot);
 | |
|             }
 | |
| 
 | |
|             // check if there is any token to predict
 | |
|             if (stop_pos == std::string::npos || (!slot.has_next_token && !is_stop_full && stop_pos > 0))
 | |
|             {
 | |
|                 // no send the stop word in the response
 | |
|                 result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
 | |
|                 slot.sent_count += result.text_to_send.size();
 | |
|                 // add the token to slot queue and cache
 | |
|             }
 | |
|             slot.add_token_string(result);
 | |
|             if (slot.params.stream)
 | |
|             {
 | |
|                 send_partial_response(slot, result);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (incomplete)
 | |
|         {
 | |
|             slot.has_next_token = true;
 | |
|         }
 | |
| 
 | |
|         // check the limits
 | |
|         if (slot.n_decoded > 2 && slot.has_next_token && !slot.has_budget(params))
 | |
|         {
 | |
|             slot.stopped_limit = true;
 | |
|             slot.has_next_token = false;
 | |
|         }
 | |
| 
 | |
|         if (!slot.cache_tokens.empty() && result.tok == llama_token_eos(model))
 | |
|         {
 | |
|             slot.stopped_eos = true;
 | |
|             slot.has_next_token = false;
 | |
|             LOG_VERBOSE("eos token found", {});
 | |
|         }
 | |
| 
 | |
|         LOG_VERBOSE("next token", {
 | |
|                                       {"token", result.tok},
 | |
|                                       {"token_text", tokens_to_output_formatted_string(ctx, result.tok)},
 | |
|                                       {"has_next_token", slot.has_next_token},
 | |
|                                       {"n_remain", slot.n_remaining},
 | |
|                                       {"num_tokens_predicted", slot.n_decoded},
 | |
|                                       {"stopped_eos", slot.stopped_eos},
 | |
|                                       {"stopped_word", slot.stopped_word},
 | |
|                                       {"stopped_limit", slot.stopped_limit},
 | |
|                                       {"stopping_word", slot.stopping_word},
 | |
|                                   });
 | |
| 
 | |
|         return slot.has_next_token; // continue
 | |
|     }
 | |
| 
 | |
|     bool process_images(llama_client_slot &slot) const
 | |
|     {
 | |
|         for (slot_image &img : slot.images)
 | |
|         {
 | |
|             if (!img.request_encode_image)
 | |
|             {
 | |
|                 continue;
 | |
|             }
 | |
|             clip_image_f32 img_res;
 | |
|             if (!clip_image_preprocess(clp_ctx, &img.img_data, &img_res, /*pad2square =*/ true))
 | |
|             {
 | |
|                 LOG_TEE("Error processing the given image");
 | |
|                 clip_free(clp_ctx);
 | |
|                 return false;
 | |
|             }
 | |
|             img.image_tokens = clip_n_patches(clp_ctx);
 | |
|             img.image_embedding = (float *)malloc(clip_embd_nbytes(clp_ctx));
 | |
|             if (!img.image_embedding)
 | |
|             {
 | |
|                 LOG_TEE("Unable to allocate memory for image embeddings\n");
 | |
|                 clip_free(clp_ctx);
 | |
|                 return false;
 | |
|             }
 | |
|             LOG_TEE("slot %i - encoding image [id: %i]\n", slot.id, img.id);
 | |
|             if (!clip_image_encode(clp_ctx, params.n_threads, &img_res, img.image_embedding))
 | |
|             {
 | |
|                 LOG_TEE("Unable to encode image\n");
 | |
|                 return false;
 | |
|             }
 | |
|             img.request_encode_image = false;
 | |
|         }
 | |
| 
 | |
|         return slot.images.size() > 0;
 | |
|     }
 | |
| 
 | |
|     void send_error(task_server& task, std::string error)
 | |
|     {
 | |
|         std::lock_guard<std::mutex> lock(mutex_results);
 | |
|         task_result res;
 | |
|         res.id = task.id;
 | |
|         res.multitask_id = task.multitask_id;
 | |
|         res.stop = false;
 | |
|         res.error = true;
 | |
|         res.result_json = { { "content", error } };
 | |
|         queue_results.push_back(res);
 | |
|     }
 | |
| 
 | |
|     void add_multi_task(int id, std::vector<int>& sub_ids)
 | |
|     {
 | |
|         std::lock_guard<std::mutex> lock(mutex_tasks);
 | |
|         task_multi multi;
 | |
|         multi.id = id;
 | |
|         std::copy(sub_ids.begin(), sub_ids.end(), std::inserter(multi.subtasks_remaining, multi.subtasks_remaining.end()));
 | |
|         queue_multitasks.push_back(multi);
 | |
|     }
 | |
| 
 | |
|     void update_multi_task(int multitask_id, int subtask_id, task_result& result)
 | |
|     {
 | |
|         std::lock_guard<std::mutex> lock(mutex_tasks);
 | |
|         for (auto& multitask : queue_multitasks)
 | |
|         {
 | |
|             if (multitask.id == multitask_id)
 | |
|             {
 | |
|                 multitask.subtasks_remaining.erase(subtask_id);
 | |
|                 multitask.results.push_back(result);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     json get_model_props()
 | |
|     {
 | |
|         return get_formated_generation(slots[0]);
 | |
|     }
 | |
| 
 | |
|     json get_formated_generation(llama_client_slot &slot)
 | |
|     {
 | |
|         const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model));
 | |
|         const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() &&
 | |
|                                 eos_bias->second < 0.0f && std::isinf(eos_bias->second);
 | |
|         return json {
 | |
|             {"n_ctx",             slot.n_ctx},
 | |
|             {"model",             params.model_alias},
 | |
|             {"seed",              slot.params.seed},
 | |
|             {"temp",              slot.sparams.temp},
 | |
|             {"top_k",             slot.sparams.top_k},
 | |
|             {"top_p",             slot.sparams.top_p},
 | |
|             {"min_p",             slot.sparams.min_p},
 | |
|             {"tfs_z",             slot.sparams.tfs_z},
 | |
|             {"typical_p",         slot.sparams.typical_p},
 | |
|             {"repeat_last_n",     slot.sparams.penalty_last_n},
 | |
|             {"repeat_penalty",    slot.sparams.penalty_repeat},
 | |
|             {"presence_penalty",  slot.sparams.penalty_present},
 | |
|             {"frequency_penalty", slot.sparams.penalty_freq},
 | |
|             {"penalty_prompt_tokens", slot.sparams.penalty_prompt_tokens},
 | |
|             {"use_penalty_prompt_tokens", slot.sparams.use_penalty_prompt_tokens},
 | |
|             {"mirostat",          slot.sparams.mirostat},
 | |
|             {"mirostat_tau",      slot.sparams.mirostat_tau},
 | |
|             {"mirostat_eta",      slot.sparams.mirostat_eta},
 | |
|             {"penalize_nl",       slot.sparams.penalize_nl},
 | |
|             {"stop",              slot.params.antiprompt},
 | |
|             {"n_predict",         slot.params.n_predict},
 | |
|             {"n_keep",            params.n_keep},
 | |
|             {"ignore_eos",        ignore_eos},
 | |
|             {"stream",            slot.params.stream},
 | |
|             {"logit_bias",        slot.sparams.logit_bias},
 | |
|             {"n_probs",           slot.sparams.n_probs},
 | |
|             {"grammar",           slot.sparams.grammar},
 | |
|         };
 | |
|     }
 | |
| 
 | |
|     void send_partial_response(llama_client_slot &slot, completion_token_output tkn)
 | |
|     {
 | |
|         std::lock_guard<std::mutex> lock(mutex_results);
 | |
|         task_result res;
 | |
|         res.id = slot.task_id;
 | |
|         res.multitask_id = slot.multitask_id;
 | |
|         res.error = false;
 | |
|         res.stop = false;
 | |
| 
 | |
|         res.result_json = json
 | |
|         {
 | |
|             {"content",    tkn.text_to_send},
 | |
|             {"stop",       false},
 | |
|             {"slot_id",    slot.id},
 | |
|             {"multimodal", multimodal}
 | |
|         };
 | |
| 
 | |
|         if (slot.sparams.n_probs > 0)
 | |
|         {
 | |
|             std::vector<completion_token_output> probs_output = {};
 | |
|             const std::vector<llama_token> to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false);
 | |
|             size_t probs_pos = std::min(slot.sent_token_probs_index, slot.generated_token_probs.size());
 | |
|             size_t probs_stop_pos = std::min(slot.sent_token_probs_index + to_send_toks.size(), slot.generated_token_probs.size());
 | |
|             if (probs_pos < probs_stop_pos)
 | |
|             {
 | |
|                 probs_output = std::vector<completion_token_output>(slot.generated_token_probs.begin() + probs_pos, slot.generated_token_probs.begin() + probs_stop_pos);
 | |
|             }
 | |
|             slot.sent_token_probs_index = probs_stop_pos;
 | |
|             res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs_output);
 | |
|         }
 | |
| 
 | |
|         if (slot.oaicompat)
 | |
|         {
 | |
|             res.result_json["oaicompat_token_ctr"] = slot.n_decoded;
 | |
|             res.result_json["model"] = slot.oaicompat_model;
 | |
|         }
 | |
| 
 | |
|         queue_results.push_back(res);
 | |
|     }
 | |
| 
 | |
|     void send_final_response(llama_client_slot &slot)
 | |
|     {
 | |
|         std::lock_guard<std::mutex> lock(mutex_results);
 | |
|         task_result res;
 | |
|         res.id = slot.task_id;
 | |
|         res.multitask_id = slot.multitask_id;
 | |
|         res.error = false;
 | |
|         res.stop = true;
 | |
| 
 | |
|         res.result_json = json
 | |
|         {
 | |
|             {"content",             !slot.params.stream ? slot.generated_text : ""},
 | |
|             {"slot_id",             slot.id},
 | |
|             {"stop",                true},
 | |
|             {"model",               params.model_alias},
 | |
|             {"tokens_predicted",    slot.n_decoded},
 | |
|             {"tokens_evaluated",    slot.num_prompt_tokens},
 | |
|             {"generation_settings", get_formated_generation(slot)},
 | |
|             {"prompt",              slot.prompt},
 | |
|             {"truncated",           slot.truncated},
 | |
|             {"stopped_eos",         slot.stopped_eos},
 | |
|             {"stopped_word",        slot.stopped_word},
 | |
|             {"stopped_limit",       slot.stopped_limit},
 | |
|             {"stopping_word",       slot.stopping_word},
 | |
|             {"tokens_cached",       slot.n_past},
 | |
|             {"timings",             slot.get_formated_timings()}
 | |
|         };
 | |
| 
 | |
|         if (slot.sparams.n_probs > 0)
 | |
|         {
 | |
|             std::vector<completion_token_output> probs = {};
 | |
|             if (!slot.params.stream && slot.stopped_word)
 | |
|             {
 | |
|                 const std::vector<llama_token> stop_word_toks = llama_tokenize(ctx, slot.stopping_word, false);
 | |
|                 probs = std::vector<completion_token_output>(slot.generated_token_probs.begin(), slot.generated_token_probs.end() - stop_word_toks.size());
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 probs = std::vector<completion_token_output>(
 | |
|                                     slot.generated_token_probs.begin(),
 | |
|                                     slot.generated_token_probs.begin() + slot.sent_token_probs_index);
 | |
|             }
 | |
|             res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs);
 | |
|         }
 | |
| 
 | |
|         if (slot.oaicompat)
 | |
|         {
 | |
|             res.result_json["oaicompat_token_ctr"] = slot.n_decoded;
 | |
|             res.result_json["model"] = slot.oaicompat_model;
 | |
|         }
 | |
| 
 | |
|         // parent multitask, if any, needs to be updated
 | |
|         if (slot.multitask_id != -1)
 | |
|         {
 | |
|             update_multi_task(slot.multitask_id, slot.task_id, res);
 | |
|         }
 | |
| 
 | |
|         queue_results.push_back(res);
 | |
|     }
 | |
| 
 | |
|     void send_embedding(llama_client_slot &slot)
 | |
|     {
 | |
|         std::lock_guard<std::mutex> lock(mutex_results);
 | |
|         task_result res;
 | |
|         res.id = slot.task_id;
 | |
|         res.multitask_id = slot.multitask_id;
 | |
|         res.error = false;
 | |
|         res.stop = true;
 | |
| 
 | |
|         const int n_embd = llama_n_embd(model);
 | |
|         if (!params.embedding)
 | |
|         {
 | |
|             LOG_WARNING("embedding disabled", {
 | |
|                                                   {"params.embedding", params.embedding},
 | |
|                                               });
 | |
|             res.result_json = json
 | |
|             {
 | |
|                 {"embedding", std::vector<float>(n_embd, 0.0f)},
 | |
|             };
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             const float *data = llama_get_embeddings(ctx);
 | |
|             std::vector<float> embedding(data, data + n_embd);
 | |
|             res.result_json = json
 | |
|             {
 | |
|                 {"embedding", embedding },
 | |
|             };
 | |
|         }
 | |
|         queue_results.push_back(res);
 | |
|     }
 | |
| 
 | |
|     int request_completion(json data, bool infill, bool embedding, int multitask_id)
 | |
|     {
 | |
|         std::unique_lock<std::mutex> lock(mutex_tasks);
 | |
|         task_server task;
 | |
|         task.id = id_gen++;
 | |
|         task.target_id = 0;
 | |
|         task.data = std::move(data);
 | |
|         task.infill_mode = infill;
 | |
|         task.embedding_mode = embedding;
 | |
|         task.type = COMPLETION_TASK;
 | |
|         task.multitask_id = multitask_id;
 | |
| 
 | |
|         // when a completion task's prompt array is not a singleton, we split it into multiple requests
 | |
|         if (task.data.at("prompt").size() > 1)
 | |
|         {
 | |
|             lock.unlock(); // entering new func scope
 | |
|             return split_multiprompt_task(task);
 | |
|         }
 | |
| 
 | |
|         // otherwise, it's a single-prompt task, we actually queue it
 | |
|         queue_tasks.push_back(task);
 | |
|         return task.id;
 | |
|     }
 | |
| 
 | |
|     task_result next_result(int task_id)
 | |
|     {
 | |
|         while (true)
 | |
|         {
 | |
|             std::this_thread::sleep_for(std::chrono::microseconds(5));
 | |
|             std::lock_guard<std::mutex> lock(mutex_results);
 | |
| 
 | |
|             if (queue_results.empty())
 | |
|             {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             for (int i = 0; i < (int) queue_results.size(); i++)
 | |
|             {
 | |
|                 // for now, tasks that have associated parent multitasks just get erased once multitask picks up the result
 | |
|                 if (queue_results[i].multitask_id == task_id)
 | |
|                 {
 | |
|                     update_multi_task(task_id, queue_results[i].id, queue_results[i]);
 | |
|                     queue_results.erase(queue_results.begin() + i);
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 if (queue_results[i].id == task_id)
 | |
|                 {
 | |
|                     assert(queue_results[i].multitask_id == -1);
 | |
|                     task_result res = queue_results[i];
 | |
|                     queue_results.erase(queue_results.begin() + i);
 | |
|                     return res;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // never reached
 | |
|         //return task_result{-1, false, false, {}};
 | |
|     }
 | |
| 
 | |
|     // for multiple images processing
 | |
|     bool ingest_images(llama_client_slot &slot, int n_batch)
 | |
|     {
 | |
|         int image_idx = 0;
 | |
| 
 | |
|         while (image_idx < (int) slot.images.size())
 | |
|         {
 | |
|             slot_image &img = slot.images[image_idx];
 | |
| 
 | |
|             // process prefix prompt
 | |
|             for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch)
 | |
|             {
 | |
|                 const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
 | |
|                 llama_batch batch_view = {
 | |
|                     n_tokens,
 | |
|                     batch.token    + i,
 | |
|                     nullptr,
 | |
|                     batch.pos      + i,
 | |
|                     batch.n_seq_id + i,
 | |
|                     batch.seq_id   + i,
 | |
|                     batch.logits   + i,
 | |
|                     0, 0, 0, // unused
 | |
|                 };
 | |
|                 if (llama_decode(ctx, batch_view))
 | |
|                 {
 | |
|                     LOG_TEE("%s : failed to eval\n", __func__);
 | |
|                     return false;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // process image with llm
 | |
|             for (int i = 0; i < img.image_tokens; i += n_batch)
 | |
|             {
 | |
|                 int n_eval = img.image_tokens - i;
 | |
|                 if (n_eval > n_batch)
 | |
|                 {
 | |
|                     n_eval = n_batch;
 | |
|                 }
 | |
| 
 | |
|                 const int n_embd = llama_n_embd(model);
 | |
|                 llama_batch batch_img = { n_eval, nullptr, (img.image_embedding + i * n_embd), nullptr, nullptr, nullptr, nullptr, slot.n_past, 1, 0, };
 | |
|                 if (llama_decode(ctx, batch_img))
 | |
|                 {
 | |
|                     LOG_TEE("%s : failed to eval image\n", __func__);
 | |
|                     return false;
 | |
|                 }
 | |
|                 slot.n_past += n_eval;
 | |
|             }
 | |
|             image_idx++;
 | |
| 
 | |
|             llama_batch_clear(batch);
 | |
| 
 | |
|             // append prefix of next image
 | |
|             const auto json_prompt = (image_idx >= (int) slot.images.size()) ?
 | |
|                 slot.params.input_suffix : // no more images, then process suffix prompt
 | |
|                 (json)(slot.images[image_idx].prefix_prompt);
 | |
| 
 | |
|             std::vector<llama_token> append_tokens = tokenize(json_prompt, false); // has next image
 | |
|             for (int i = 0; i < (int) append_tokens.size(); ++i)
 | |
|             {
 | |
|                 llama_batch_add(batch, append_tokens[i], slot.n_past, { slot.id }, true);
 | |
|                 slot.n_past += 1;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     void request_cancel(int task_id)
 | |
|     {
 | |
|         std::lock_guard<std::mutex> lock(mutex_tasks);
 | |
|         task_server task;
 | |
|         task.id = id_gen++;
 | |
|         task.type = CANCEL_TASK;
 | |
|         task.target_id = task_id;
 | |
|         queue_tasks.push_back(task);
 | |
|     }
 | |
| 
 | |
|     int split_multiprompt_task(task_server& multiprompt_task)
 | |
|     {
 | |
|         int prompt_count = multiprompt_task.data.at("prompt").size();
 | |
|         assert(prompt_count > 1);
 | |
| 
 | |
|         int multitask_id = id_gen++;
 | |
|         std::vector<int> subtask_ids(prompt_count);
 | |
|         for (int i = 0; i < prompt_count; i++)
 | |
|         {
 | |
|             json subtask_data = multiprompt_task.data;
 | |
|             subtask_data["prompt"] = subtask_data["prompt"][i];
 | |
| 
 | |
|             // subtasks inherit everything else (infill mode, embedding mode, etc.)
 | |
|             subtask_ids[i] = request_completion(subtask_data, multiprompt_task.infill_mode, multiprompt_task.embedding_mode, multitask_id);
 | |
|         }
 | |
| 
 | |
|         // queue up the multitask so we can track its subtask progression
 | |
|         add_multi_task(multitask_id, subtask_ids);
 | |
|         return multitask_id;
 | |
|     }
 | |
| 
 | |
|     void process_tasks()
 | |
|     {
 | |
|         std::lock_guard<std::mutex> lock(mutex_tasks);
 | |
|         while (!queue_tasks.empty())
 | |
|         {
 | |
|             task_server task = queue_tasks.front();
 | |
|             queue_tasks.erase(queue_tasks.begin());
 | |
|             switch (task.type)
 | |
|             {
 | |
|                 case COMPLETION_TASK: {
 | |
|                     llama_client_slot *slot = get_slot(json_value(task.data, "slot_id", -1));
 | |
|                     if (slot == nullptr)
 | |
|                     {
 | |
|                         LOG_TEE("slot unavailable\n");
 | |
|                         // send error result
 | |
|                         send_error(task, "slot unavailable");
 | |
|                         return;
 | |
|                     }
 | |
| 
 | |
|                     if (task.data.contains("system_prompt"))
 | |
|                     {
 | |
|                         process_system_prompt_data(task.data["system_prompt"]);
 | |
|                     }
 | |
| 
 | |
|                     slot->reset();
 | |
| 
 | |
|                     slot->infill = task.infill_mode;
 | |
|                     slot->embedding = task.embedding_mode;
 | |
|                     slot->task_id = task.id;
 | |
|                     slot->multitask_id = task.multitask_id;
 | |
| 
 | |
|                     if (!launch_slot_with_data(slot, task.data))
 | |
|                     {
 | |
|                         // send error result
 | |
|                         send_error(task, "internal_error");
 | |
|                         break;
 | |
|                     }
 | |
|                 } break;
 | |
|                 case CANCEL_TASK: { // release slot linked with the task id
 | |
|                     for (auto & slot : slots)
 | |
|                     {
 | |
|                         if (slot.task_id == task.target_id)
 | |
|                         {
 | |
|                             slot.release();
 | |
|                             break;
 | |
|                         }
 | |
|                     }
 | |
|                 } break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // remove finished multitasks from the queue of multitasks, and add the corresponding result to the result queue
 | |
|         auto queue_iterator = queue_multitasks.begin();
 | |
|         while (queue_iterator != queue_multitasks.end())
 | |
|         {
 | |
|             if (queue_iterator->subtasks_remaining.empty())
 | |
|             {
 | |
|                 // all subtasks done == multitask is done
 | |
|                 task_result aggregate_result;
 | |
|                 aggregate_result.id = queue_iterator->id;
 | |
|                 aggregate_result.stop = true;
 | |
|                 aggregate_result.error = false;
 | |
| 
 | |
|                 // collect json results into one json result
 | |
|                 std::vector<json> result_jsons;
 | |
|                 for (auto& subres : queue_iterator->results)
 | |
|                 {
 | |
|                     result_jsons.push_back(subres.result_json);
 | |
|                     aggregate_result.error = aggregate_result.error && subres.error;
 | |
|                 }
 | |
|                 aggregate_result.result_json = json{ "results", result_jsons };
 | |
| 
 | |
|                 std::lock_guard<std::mutex> lock(mutex_results);
 | |
|                 queue_results.push_back(aggregate_result);
 | |
| 
 | |
|                 queue_iterator = queue_multitasks.erase(queue_iterator);
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 ++queue_iterator;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     bool update_slots() {
 | |
|         // attend tasks
 | |
|         process_tasks();
 | |
| 
 | |
|         // update the system prompt wait until all slots are idle state
 | |
|         if (system_need_update && all_slots_are_idle)
 | |
|         {
 | |
|             LOG_TEE("updating system prompt\n");
 | |
|             update_system_prompt();
 | |
|         }
 | |
| 
 | |
|         llama_batch_clear(batch);
 | |
| 
 | |
|         if (all_slots_are_idle)
 | |
|         {
 | |
|             if (system_prompt.empty() && clean_kv_cache)
 | |
|             {
 | |
|                 LOG_TEE("all slots are idle and system prompt is empty, clear the KV cache\n");
 | |
|                 kv_cache_clear();
 | |
|             }
 | |
|             // avoid 100% usage of cpu all time
 | |
|             std::this_thread::sleep_for(std::chrono::milliseconds(5));
 | |
|         }
 | |
| 
 | |
|         for (llama_client_slot &slot : slots)
 | |
|         {
 | |
|             if (slot.is_processing() && slot.cache_tokens.size() >= (size_t) slot.n_ctx)
 | |
|             {
 | |
|                 // Shift context
 | |
|                 const int n_left    = slot.n_past - slot.params.n_keep - 1;
 | |
|                 const int n_discard = n_left / 2;
 | |
| 
 | |
|                 LOG_TEE("slot %d: context shift - n_keep = %d, n_left = %d, n_discard = %d\n", slot.id, slot.params.n_keep, n_left, n_discard);
 | |
|                 llama_kv_cache_seq_rm   (ctx, slot.id, slot.params.n_keep + 1            , slot.params.n_keep + n_discard + 1);
 | |
|                 llama_kv_cache_seq_shift(ctx, slot.id, slot.params.n_keep + 1 + n_discard, slot.n_past, -n_discard);
 | |
| 
 | |
|                 for (size_t i = slot.params.n_keep + 1 + n_discard; i < slot.cache_tokens.size(); i++)
 | |
|                 {
 | |
|                     slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
 | |
|                 }
 | |
| 
 | |
|                 slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
 | |
| 
 | |
|                 slot.n_past -= n_discard;
 | |
| 
 | |
|                 slot.truncated = true;
 | |
| 
 | |
|                 LOG_VERBOSE("context shift", {
 | |
|                                                 {"n_ctx",  n_ctx},
 | |
|                                                 {"n_keep", params.n_keep},
 | |
|                                                 {"n_left", n_left},
 | |
|                                             });
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // decode any currently ongoing sequences
 | |
|         for (auto & slot : slots)
 | |
|         {
 | |
|             // release the slot
 | |
|             if (slot.command == RELEASE)
 | |
|             {
 | |
|                 slot.state = IDLE;
 | |
|                 slot.command = NONE;
 | |
|                 slot.t_last_used = ggml_time_us();
 | |
| 
 | |
|                 LOG_TEE("slot %d released (%d tokens in cache)\n", slot.id, (int) slot.cache_tokens.size());
 | |
| 
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             if (slot.state == IDLE)
 | |
|             {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             slot.i_batch = batch.n_tokens;
 | |
| 
 | |
|             llama_batch_add(batch, slot.sampled, system_tokens.size() + slot.n_past, { slot.id }, true);
 | |
| 
 | |
|             slot.n_decoded += 1;
 | |
|             slot.n_past += 1;
 | |
|         }
 | |
| 
 | |
|         // process in chunks of params.n_batch
 | |
|         int32_t n_batch = params.n_batch;
 | |
| 
 | |
|         // assign workload to the slots
 | |
|         if (params.cont_batching || batch.n_tokens == 0)
 | |
|         {
 | |
|             for (auto & slot : slots)
 | |
|             {
 | |
|                 const bool has_prompt = slot.prompt.is_array() || (slot.prompt.is_string() && !slot.prompt.get<std::string>().empty()) || !slot.images.empty();
 | |
| 
 | |
|                 // empty prompt passed -> release the slot and send empty response
 | |
|                 if (slot.state == IDLE && slot.command == LOAD_PROMPT && !has_prompt)
 | |
|                 {
 | |
|                     slot.release();
 | |
|                     slot.print_timings();
 | |
|                     send_final_response(slot);
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 // need process the prompt
 | |
|                 if (slot.state == IDLE && slot.command == LOAD_PROMPT)
 | |
|                 {
 | |
|                     slot.state = PROCESSING;
 | |
|                     slot.command = NONE;
 | |
|                     std::vector<llama_token> prompt_tokens;
 | |
|                     slot.t_start_process_prompt = ggml_time_us();
 | |
|                     slot.t_start_genereration = 0;
 | |
| 
 | |
|                     if (slot.infill)
 | |
|                     {
 | |
|                         bool suff_rm_leading_spc = true;
 | |
|                         if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1)
 | |
|                         {
 | |
|                             params.input_suffix.erase(0, 1);
 | |
|                             suff_rm_leading_spc = false;
 | |
|                         }
 | |
|                         auto prefix_tokens = tokenize(slot.params.input_prefix, false);
 | |
|                         auto suffix_tokens = tokenize(slot.params.input_suffix, false);
 | |
| 
 | |
|                         const int space_token = 29871; // TODO: this should not be hardcoded
 | |
|                         if (suff_rm_leading_spc && !suffix_tokens.empty() && suffix_tokens[0] == space_token) {
 | |
|                             suffix_tokens.erase(suffix_tokens.begin());
 | |
|                         }
 | |
| 
 | |
|                         prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model));
 | |
|                         prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(model)); // always add BOS
 | |
|                         prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(model));
 | |
|                         prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
 | |
|                         prefix_tokens.push_back(llama_token_middle(model));
 | |
|                         prompt_tokens = prefix_tokens;
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         prompt_tokens = tokenize(slot.prompt, system_prompt.empty() && add_bos_token);  // add BOS if there isn't system prompt
 | |
|                     }
 | |
| 
 | |
|                     slot.num_prompt_tokens = prompt_tokens.size();
 | |
| 
 | |
|                     if (slot.params.n_keep < 0)
 | |
|                     {
 | |
|                         slot.params.n_keep = slot.num_prompt_tokens;
 | |
|                     }
 | |
|                     slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
 | |
| 
 | |
|                     // if input prompt is too big, truncate it
 | |
|                     if (slot.num_prompt_tokens >= slot.n_ctx)
 | |
|                     {
 | |
|                         const int n_left = slot.n_ctx - slot.params.n_keep;
 | |
|                         const int n_block_size = n_left / 2;
 | |
|                         const int erased_blocks = (slot.num_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
 | |
| 
 | |
|                         std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + slot.params.n_keep);
 | |
|                         new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size, prompt_tokens.end());
 | |
| 
 | |
|                         LOG_VERBOSE("input truncated", {
 | |
|                             {"n_ctx",  slot.n_ctx},
 | |
|                             {"n_keep", slot.params.n_keep},
 | |
|                             {"n_left", n_left},
 | |
|                             {"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
 | |
|                         });
 | |
|                         slot.truncated = true;
 | |
|                         prompt_tokens = new_tokens;
 | |
| 
 | |
|                         slot.num_prompt_tokens = prompt_tokens.size();
 | |
|                         GGML_ASSERT(slot.num_prompt_tokens < slot.n_ctx);
 | |
|                     }
 | |
| 
 | |
|                     if (!slot.params.cache_prompt)
 | |
|                     {
 | |
|                         llama_sampling_reset(slot.ctx_sampling);
 | |
| 
 | |
|                         slot.n_past = 0;
 | |
|                         slot.num_prompt_tokens_processed = slot.num_prompt_tokens;
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         // push the prompt into the sampling context (do not apply grammar)
 | |
|                         for (auto &token : prompt_tokens)
 | |
|                         {
 | |
|                             llama_sampling_accept(slot.ctx_sampling, ctx, token, false);
 | |
|                         }
 | |
| 
 | |
|                         slot.n_past = common_part(slot.cache_tokens, prompt_tokens);
 | |
|                         slot.num_prompt_tokens_processed = slot.num_prompt_tokens - slot.n_past;
 | |
| 
 | |
|                         LOG_TEE("slot %d : in cache: %i tokens | to process: %i tokens\n", slot.id, slot.n_past, slot.num_prompt_tokens_processed);
 | |
|                     }
 | |
| 
 | |
|                     LOG_TEE("slot %d : kv cache rm - [%d, end)\n", slot.id, (int) system_tokens.size() + slot.n_past);
 | |
| 
 | |
|                     llama_kv_cache_seq_rm(ctx, slot.id, system_tokens.size() + slot.n_past, -1);
 | |
| 
 | |
|                     slot.cache_tokens = prompt_tokens;
 | |
| 
 | |
|                     if (slot.n_past == slot.num_prompt_tokens)
 | |
|                     {
 | |
|                         // we have to evaluate at least 1 token to generate logits.
 | |
|                         LOG_TEE("slot %d : we have to evaluate at least 1 token to generate logits\n", slot.id);
 | |
|                         slot.n_past--;
 | |
|                     }
 | |
| 
 | |
|                     LOG_VERBOSE("prompt ingested", {
 | |
|                                                     {"n_past", slot.n_past},
 | |
|                                                     {"cached", tokens_to_str(ctx, slot.cache_tokens.cbegin(), slot.cache_tokens.cbegin() + slot.n_past)},
 | |
|                                                     {"to_eval", tokens_to_str(ctx, slot.cache_tokens.cbegin() + slot.n_past, slot.cache_tokens.cend())},
 | |
|                                                 });
 | |
| 
 | |
|                     const bool has_images = process_images(slot);
 | |
| 
 | |
|                     // process the prefix of first image
 | |
|                     std::vector<llama_token> prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, add_bos_token) : prompt_tokens;
 | |
|                     for (; slot.n_past < (int) prefix_tokens.size(); ++slot.n_past)
 | |
|                     {
 | |
|                        llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot.n_past, { slot.id }, false);
 | |
|                     }
 | |
| 
 | |
|                     if (has_images && !ingest_images(slot, n_batch))
 | |
|                     {
 | |
|                         LOG_TEE("failed processing images\n");
 | |
|                         return false;
 | |
|                     }
 | |
| 
 | |
|                     // extract the logits only for the last token
 | |
|                     if (batch.n_tokens > 0)
 | |
|                     {
 | |
|                         batch.logits[batch.n_tokens - 1] = true;
 | |
|                     }
 | |
| 
 | |
|                     slot.n_decoded = 0;
 | |
|                     slot.i_batch   = batch.n_tokens - 1;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (batch.n_tokens == 0)
 | |
|         {
 | |
|             all_slots_are_idle = true;
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch)
 | |
|         {
 | |
|             const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
 | |
|             llama_batch batch_view =
 | |
|             {
 | |
|                 n_tokens,
 | |
|                 batch.token    + i,
 | |
|                 nullptr,
 | |
|                 batch.pos      + i,
 | |
|                 batch.n_seq_id + i,
 | |
|                 batch.seq_id   + i,
 | |
|                 batch.logits   + i,
 | |
|                 0, 0, 0, // unused
 | |
|             };
 | |
| 
 | |
|             const int ret = llama_decode(ctx, batch_view);
 | |
|             if (ret != 0)
 | |
|             {
 | |
|                 if (n_batch == 1 || ret < 0)
 | |
|                 {
 | |
|                     // if you get here, it means the KV cache is full - try increasing it via the context size
 | |
|                     LOG_TEE("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret);
 | |
|                     return false;
 | |
|                 }
 | |
| 
 | |
|                 LOG_TEE("%s : failed to find free space in the KV cache, retrying with smaller n_batch = %d\n", __func__, n_batch / 2);
 | |
| 
 | |
|                 // retry with half the batch size to try to find a free slot in the KV cache
 | |
|                 n_batch /= 2;
 | |
|                 i -= n_batch;
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             for (auto & slot : slots)
 | |
|             {
 | |
|                 if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens))
 | |
|                 {
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 // prompt evaluated for embedding
 | |
|                 if (slot.embedding)
 | |
|                 {
 | |
|                     send_embedding(slot);
 | |
|                     slot.release();
 | |
|                     slot.i_batch = -1;
 | |
|                     return true;
 | |
|                 }
 | |
| 
 | |
|                 completion_token_output result;
 | |
|                 const llama_token id = llama_sampling_sample(slot.ctx_sampling, ctx, NULL, slot.i_batch - i);
 | |
| 
 | |
|                 llama_sampling_accept(slot.ctx_sampling, ctx, id, true);
 | |
| 
 | |
|                 if (slot.n_decoded == 1)
 | |
|                 {
 | |
|                     slot.t_start_genereration = ggml_time_us();
 | |
|                     slot.t_prompt_processing = (slot.t_start_genereration - slot.t_start_process_prompt) / 1e3;
 | |
|                 }
 | |
| 
 | |
|                 llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false };
 | |
|                 result.tok = id;
 | |
| 
 | |
|                 const int32_t n_probs = slot.sparams.n_probs;
 | |
|                 if (slot.sparams.temp <= 0 && n_probs > 0)
 | |
|                 {
 | |
|                     // for llama_sample_token_greedy we need to sort candidates
 | |
|                     llama_sample_softmax(ctx, &cur_p);
 | |
|                 }
 | |
| 
 | |
|                 for (size_t i = 0; i < std::min(cur_p.size, (size_t)n_probs); ++i)
 | |
|                 {
 | |
|                     result.probs.push_back({cur_p.data[i].id, cur_p.data[i].p});
 | |
|                 }
 | |
| 
 | |
|                 if (!process_token(result, slot))
 | |
|                 {
 | |
|                     slot.release();
 | |
|                     slot.print_timings();
 | |
|                     send_final_response(slot);
 | |
|                 }
 | |
| 
 | |
|                 slot.i_batch = -1;
 | |
|             }
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| static void server_print_usage(const char *argv0, const gpt_params ¶ms,
 | |
|                                const server_params &sparams)
 | |
| {
 | |
|     printf("usage: %s [options]\n", argv0);
 | |
|     printf("\n");
 | |
|     printf("options:\n");
 | |
|     printf("  -h, --help                show this help message and exit\n");
 | |
|     printf("  -v, --verbose             verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
 | |
|     printf("  -t N, --threads N         number of threads to use during computation (default: %d)\n", params.n_threads);
 | |
|     printf("  -tb N, --threads-batch N  number of threads to use during batch and prompt processing (default: same as --threads)\n");
 | |
|     printf("  -c N, --ctx-size N        size of the prompt context (default: %d)\n", params.n_ctx);
 | |
|     printf("  --rope-scaling {none,linear,yarn}\n");
 | |
|     printf("                            RoPE frequency scaling method, defaults to linear unless specified by the model\n");
 | |
|     printf("  --rope-freq-base N        RoPE base frequency (default: loaded from model)\n");
 | |
|     printf("  --rope-freq-scale N       RoPE frequency scaling factor, expands context by a factor of 1/N\n");
 | |
|     printf("  --yarn-ext-factor N       YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n");
 | |
|     printf("  --yarn-attn-factor N      YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
 | |
|     printf("  --yarn-beta-slow N        YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
 | |
|     printf("  --yarn-beta-fast N        YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
 | |
|     printf("  -b N, --batch-size N      batch size for prompt processing (default: %d)\n", params.n_batch);
 | |
|     printf("  --memory-f32              use f32 instead of f16 for memory key+value (default: disabled)\n");
 | |
|     printf("                            not recommended: doubles context memory required and no measurable increase in quality\n");
 | |
|     if (llama_mlock_supported())
 | |
|     {
 | |
|         printf("  --mlock               force system to keep model in RAM rather than swapping or compressing\n");
 | |
|     }
 | |
|     if (llama_mmap_supported())
 | |
|     {
 | |
|         printf("  --no-mmap             do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
 | |
|     }
 | |
|     printf("  --numa                attempt optimizations that help on some NUMA systems\n");
 | |
| #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
 | |
|     printf("  -ngl N, --n-gpu-layers N\n");
 | |
|     printf("                        number of layers to store in VRAM\n");
 | |
|     printf("  -ts SPLIT --tensor-split SPLIT\n");
 | |
|     printf("                        how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
 | |
|     printf("  -mg i, --main-gpu i   the GPU to use for scratch and small tensors\n");
 | |
|     printf("  -nommq, --no-mul-mat-q\n");
 | |
|     printf("                        use cuBLAS instead of custom mul_mat_q CUDA kernels.\n");
 | |
|     printf("                        Not recommended since this is both slower and uses more VRAM.\n");
 | |
| #endif
 | |
|     printf("  -m FNAME, --model FNAME\n");
 | |
|     printf("                        model path (default: %s)\n", params.model.c_str());
 | |
|     printf("  -a ALIAS, --alias ALIAS\n");
 | |
|     printf("                        set an alias for the model, will be added as `model` field in completion response\n");
 | |
|     printf("  --lora FNAME          apply LoRA adapter (implies --no-mmap)\n");
 | |
|     printf("  --lora-base FNAME     optional model to use as a base for the layers modified by the LoRA adapter\n");
 | |
|     printf("  --host                ip address to listen (default  (default: %s)\n", sparams.hostname.c_str());
 | |
|     printf("  --port PORT           port to listen (default  (default: %d)\n", sparams.port);
 | |
|     printf("  --path PUBLIC_PATH    path from which to serve static files (default %s)\n", sparams.public_path.c_str());
 | |
|     printf("  --api-key API_KEY     optional api key to enhance server security. If set, requests must include this key for access.\n");
 | |
|     printf("  -to N, --timeout N    server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
 | |
|     printf("  --embedding           enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
 | |
|     printf("  -np N, --parallel N   number of slots for process requests (default: %d)\n", params.n_parallel);
 | |
|     printf("  -cb, --cont-batching  enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
 | |
|     printf("    -spf FNAME, --system-prompt-file FNAME\n");
 | |
|     printf("                        Set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n");
 | |
|     printf("  --mmproj MMPROJ_FILE  path to a multimodal projector file for LLaVA.\n");
 | |
|     printf("  --log-disable         disables logging to a file.\n");
 | |
|     printf("\n");
 | |
| }
 | |
| 
 | |
| static void server_params_parse(int argc, char **argv, server_params &sparams,
 | |
|                                 gpt_params ¶ms, llama_server_context& llama)
 | |
| {
 | |
|     gpt_params default_params;
 | |
|     server_params default_sparams;
 | |
|     std::string arg;
 | |
|     bool invalid_param = false;
 | |
| 
 | |
|     for (int i = 1; i < argc; i++)
 | |
|     {
 | |
|         arg = argv[i];
 | |
|         if (arg == "--port")
 | |
|         {
 | |
|             if (++i >= argc)
 | |
|             {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             sparams.port = std::stoi(argv[i]);
 | |
|         }
 | |
|         else if (arg == "--host")
 | |
|         {
 | |
|             if (++i >= argc)
 | |
|             {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             sparams.hostname = argv[i];
 | |
|         }
 | |
|         else if (arg == "--path")
 | |
|         {
 | |
|             if (++i >= argc)
 | |
|             {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             sparams.public_path = argv[i];
 | |
|         }
 | |
|         else if (arg == "--api-key")
 | |
|         {
 | |
|             if (++i >= argc)
 | |
|             {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             sparams.api_key = argv[i];
 | |
|         }
 | |
|         else if (arg == "--timeout" || arg == "-to")
 | |
|         {
 | |
|             if (++i >= argc)
 | |
|             {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             sparams.read_timeout = std::stoi(argv[i]);
 | |
|             sparams.write_timeout = std::stoi(argv[i]);
 | |
|         }
 | |
|         else if (arg == "-m" || arg == "--model")
 | |
|         {
 | |
|             if (++i >= argc)
 | |
|             {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.model = argv[i];
 | |
|         }
 | |
|         else if (arg == "-a" || arg == "--alias")
 | |
|         {
 | |
|             if (++i >= argc)
 | |
|             {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.model_alias = argv[i];
 | |
|         }
 | |
|         else if (arg == "-h" || arg == "--help")
 | |
|         {
 | |
|             server_print_usage(argv[0], default_params, default_sparams);
 | |
|             exit(0);
 | |
|         }
 | |
|         else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size")
 | |
|         {
 | |
|             if (++i >= argc)
 | |
|             {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.n_ctx = std::stoi(argv[i]);
 | |
|         }
 | |
|         else if (arg == "--rope-scaling")
 | |
|         {
 | |
|             if (++i >= argc)
 | |
|             {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             std::string value(argv[i]);
 | |
|             /**/ if (value == "none")   { params.rope_scaling_type = LLAMA_ROPE_SCALING_NONE; }
 | |
|             else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_LINEAR; }
 | |
|             else if (value == "yarn")   { params.rope_scaling_type = LLAMA_ROPE_SCALING_YARN; }
 | |
|             else { invalid_param = true; break; }
 | |
|         }
 | |
|         else if (arg == "--rope-freq-base")
 | |
|         {
 | |
|             if (++i >= argc)
 | |
|             {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.rope_freq_base = std::stof(argv[i]);
 | |
|         }
 | |
|         else if (arg == "--rope-freq-scale")
 | |
|         {
 | |
|             if (++i >= argc)
 | |
|             {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.rope_freq_scale = std::stof(argv[i]);
 | |
|         }
 | |
|         else if (arg == "--yarn-ext-factor")
 | |
|         {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.yarn_ext_factor = std::stof(argv[i]);
 | |
|         }
 | |
|         else if (arg == "--yarn-attn-factor")
 | |
|         {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.yarn_attn_factor = std::stof(argv[i]);
 | |
|         }
 | |
|         else if (arg == "--yarn-beta-fast")
 | |
|         {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.yarn_beta_fast = std::stof(argv[i]);
 | |
|         }
 | |
|         else if (arg == "--yarn-beta-slow")
 | |
|         {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.yarn_beta_slow = std::stof(argv[i]);
 | |
|         }
 | |
|         else if (arg == "--threads" || arg == "-t")
 | |
|         {
 | |
|             if (++i >= argc)
 | |
|             {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.n_threads = std::stoi(argv[i]);
 | |
|         }
 | |
|         else if (arg == "--threads-batch" || arg == "-tb")
 | |
|         {
 | |
|             if (++i >= argc)
 | |
|             {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.n_threads_batch = std::stoi(argv[i]);
 | |
|         }
 | |
|         else if (arg == "-b" || arg == "--batch-size")
 | |
|         {
 | |
|             if (++i >= argc)
 | |
|             {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.n_batch = std::stoi(argv[i]);
 | |
|             params.n_batch = std::min(512, params.n_batch);
 | |
|         }
 | |
|         else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers")
 | |
|         {
 | |
|             if (++i >= argc)
 | |
|             {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
| #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
 | |
|             params.n_gpu_layers = std::stoi(argv[i]);
 | |
| #else
 | |
|             LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
 | |
|                         "See main README.md for information on enabling GPU BLAS support",
 | |
|                         {{"n_gpu_layers", params.n_gpu_layers}});
 | |
| #endif
 | |
|         }
 | |
|         else if (arg == "--tensor-split" || arg == "-ts")
 | |
|         {
 | |
|             if (++i >= argc)
 | |
|             {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
| #ifdef GGML_USE_CUBLAS
 | |
|             std::string arg_next = argv[i];
 | |
| 
 | |
|             // split string by , and /
 | |
|             const std::regex regex{R"([,/]+)"};
 | |
|             std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
 | |
|             std::vector<std::string> split_arg{it, {}};
 | |
|             GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
 | |
| 
 | |
|             for (size_t i_device = 0; i_device < LLAMA_MAX_DEVICES; ++i_device)
 | |
|             {
 | |
|                 if (i_device < split_arg.size())
 | |
|                 {
 | |
|                     params.tensor_split[i_device] = std::stof(split_arg[i_device]);
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     params.tensor_split[i_device] = 0.0f;
 | |
|                 }
 | |
|             }
 | |
| #else
 | |
|             LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n", {});
 | |
| #endif // GGML_USE_CUBLAS
 | |
|         }
 | |
|         else if (arg == "--no-mul-mat-q" || arg == "-nommq")
 | |
|         {
 | |
| #ifdef GGML_USE_CUBLAS
 | |
|             params.mul_mat_q = false;
 | |
| #else
 | |
|             LOG_WARNING("warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n", {});
 | |
| #endif // GGML_USE_CUBLAS
 | |
|         }
 | |
|         else if (arg == "--main-gpu" || arg == "-mg")
 | |
|         {
 | |
|             if (++i >= argc)
 | |
|             {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
| #ifdef GGML_USE_CUBLAS
 | |
|             params.main_gpu = std::stoi(argv[i]);
 | |
| #else
 | |
|             LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {});
 | |
| #endif
 | |
|         }
 | |
|         else if (arg == "--lora")
 | |
|         {
 | |
|             if (++i >= argc)
 | |
|             {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.lora_adapter.push_back(std::make_tuple(argv[i], 1.0f));
 | |
|             params.use_mmap = false;
 | |
|         }
 | |
|         else if (arg == "--lora-scaled")
 | |
|         {
 | |
|             if (++i >= argc)
 | |
|             {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             const char * lora_adapter = argv[i];
 | |
|             if (++i >= argc)
 | |
|             {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.lora_adapter.push_back(std::make_tuple(lora_adapter, std::stof(argv[i])));
 | |
|             params.use_mmap = false;
 | |
|         }
 | |
|         else if (arg == "--lora-base")
 | |
|         {
 | |
|             if (++i >= argc)
 | |
|             {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.lora_base = argv[i];
 | |
|         }
 | |
|         else if (arg == "-v" || arg == "--verbose")
 | |
|         {
 | |
| #if SERVER_VERBOSE != 1
 | |
|             LOG_WARNING("server.cpp is not built with verbose logging.", {});
 | |
| #else
 | |
|             server_verbose = true;
 | |
| #endif
 | |
|         }
 | |
|         else if (arg == "--mlock")
 | |
|         {
 | |
|             params.use_mlock = true;
 | |
|         }
 | |
|         else if (arg == "--no-mmap")
 | |
|         {
 | |
|             params.use_mmap = false;
 | |
|         }
 | |
|         else if (arg == "--numa")
 | |
|         {
 | |
|             params.numa = true;
 | |
|         }
 | |
|         else if (arg == "--embedding")
 | |
|         {
 | |
|             params.embedding = true;
 | |
|         }
 | |
|         else if (arg == "-cb" || arg == "--cont-batching")
 | |
|         {
 | |
|             params.cont_batching = true;
 | |
|         }
 | |
|         else if (arg == "-np" || arg == "--parallel")
 | |
|         {
 | |
|             if (++i >= argc)
 | |
|             {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.n_parallel = std::stoi(argv[i]);
 | |
|         } else if (arg == "-n" || arg == "--n-predict")
 | |
|         {
 | |
|             if (++i >= argc)
 | |
|             {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.n_predict = std::stoi(argv[i]);
 | |
|         } else if (arg == "-spf" || arg == "--system-prompt-file")
 | |
|         {
 | |
|             if (++i >= argc)
 | |
|             {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             std::ifstream file(argv[i]);
 | |
|             if (!file) {
 | |
|                 fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             std::string systm_content;
 | |
|             std::copy(
 | |
|                 std::istreambuf_iterator<char>(file),
 | |
|                 std::istreambuf_iterator<char>(),
 | |
|                 std::back_inserter(systm_content)
 | |
|             );
 | |
|             llama.process_system_prompt_data(json::parse(systm_content));
 | |
|         }
 | |
|         else if(arg == "--mmproj")
 | |
|         {
 | |
|             if (++i >= argc)
 | |
|             {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params.mmproj = argv[i];
 | |
|         }
 | |
|         else if (arg == "--log-disable")
 | |
|         {
 | |
|             log_set_target(stdout);
 | |
|             LOG_INFO("logging to file is disabled.", {});
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
 | |
|             server_print_usage(argv[0], default_params, default_sparams);
 | |
|             exit(1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (invalid_param)
 | |
|     {
 | |
|         fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
 | |
|         server_print_usage(argv[0], default_params, default_sparams);
 | |
|         exit(1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static std::string random_string()
 | |
| {
 | |
|     static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
 | |
| 
 | |
|     std::random_device rd;
 | |
|     std::mt19937 generator(rd());
 | |
| 
 | |
|     std::string result(32, ' ');
 | |
| 
 | |
|     for (int i = 0; i < 32; ++i) {
 | |
|         result[i] = str[generator() % str.size()];
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static std::string gen_chatcmplid()
 | |
| {
 | |
|     std::stringstream chatcmplid;
 | |
|     chatcmplid << "chatcmpl-" << random_string();
 | |
|     return chatcmplid.str();
 | |
| }
 | |
| 
 | |
| std::string format_chatml(std::vector<json> messages)
 | |
| {
 | |
|     std::ostringstream chatml_msgs;
 | |
| 
 | |
|     for (auto it = messages.begin(); it != messages.end(); ++it) {
 | |
|         chatml_msgs << "<|im_start|>"
 | |
|                     << json_value(*it, "role",    std::string("user")) << '\n';
 | |
|         chatml_msgs << json_value(*it, "content", std::string(""))
 | |
|                     << "<|im_end|>\n";
 | |
|     }
 | |
| 
 | |
|     chatml_msgs << "<|im_start|>assistant" << '\n';
 | |
| 
 | |
|     return chatml_msgs.str();
 | |
| }
 | |
| 
 | |
| /* llama.cpp completion api semantics */
 | |
| json oaicompat_completion_params_parse(
 | |
|     const json &body /* openai api json semantics */)
 | |
| {
 | |
|     json llama_params;
 | |
| 
 | |
|     llama_params["__oaicompat"] = true;
 | |
| 
 | |
|     // Map OpenAI parameters to llama.cpp parameters
 | |
|     llama_params["model"]             = json_value(body, "model", std::string("uknown"));
 | |
|     llama_params["prompt"]            = format_chatml(body["messages"]); // OpenAI 'messages' to llama.cpp 'prompt'
 | |
|     llama_params["cache_prompt"]      = json_value(body, "cache_prompt", false);
 | |
|     llama_params["temperature"]       = json_value(body, "temperature", 0.8);
 | |
|     llama_params["top_k"]             = json_value(body, "top_k", 40);
 | |
|     llama_params["top_p"]             = json_value(body, "top_p", 0.95);
 | |
|     llama_params["n_predict"]         = json_value(body, "max_tokens", -1);
 | |
|     llama_params["logit_bias"]        = json_value(body, "logit_bias",json::object());
 | |
|     llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
 | |
|     llama_params["presence_penalty"]  = json_value(body, "presence_penalty", 0.0);
 | |
|     llama_params["seed"]              = json_value(body, "seed", 0);
 | |
|     llama_params["stream"]            = json_value(body, "stream", false);
 | |
|     llama_params["mirostat"]          = json_value(body, "mirostat", false);
 | |
|     llama_params["mirostat_tau"]      = json_value(body, "mirostat_tau", 0.0);
 | |
|     llama_params["mirostat_eta"]      = json_value(body, "mirostat_eta", 0.0);
 | |
|     llama_params["penalize_nl"]       = json_value(body, "penalize_nl", false);
 | |
|     llama_params["typical_p"]         = json_value(body, "typical_p", 0.0);
 | |
|     llama_params["repeat_last_n"]     = json_value(body, "repeat_last_n", 0);
 | |
|     llama_params["ignore_eos"]        = json_value(body, "ignore_eos", false);
 | |
|     llama_params["tfs_z"]             = json_value(body, "tfs_z", 0.0);
 | |
| 
 | |
|     if (body.count("grammar") != 0) {
 | |
|         llama_params["grammar"] = json_value(body, "grammar", json::object());
 | |
|     }
 | |
| 
 | |
|     // Handle 'stop' field
 | |
|     if (body.contains("stop") && body["stop"].is_string()) {
 | |
|         llama_params["stop"] = json::array({body["stop"].get<std::string>()});
 | |
|     } else {
 | |
|         llama_params["stop"] = json_value(body, "stop", json::array());
 | |
|     }
 | |
| 
 | |
|     // Ensure there is ChatML-specific end sequence among stop words
 | |
|     llama_params["stop"].push_back("<|im_end|>");
 | |
| 
 | |
|     return llama_params;
 | |
| }
 | |
| 
 | |
| static json format_final_response_oaicompat(const json &request, const task_result &response, bool streaming = false)
 | |
| {
 | |
|     json result = response.result_json;
 | |
| 
 | |
|     bool stopped_word        = result.count("stopped_word") != 0;
 | |
|     bool stopped_eos         = json_value(result, "stopped_eos", false);
 | |
|     int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
 | |
|     int num_prompt_tokens    = json_value(result, "tokens_evaluated", 0);
 | |
|     std::string content      = json_value(result, "content", std::string(""));
 | |
| 
 | |
|     std::string finish_reason = "length";
 | |
|     if (stopped_word || stopped_eos) {
 | |
|         finish_reason = "stop";
 | |
|     }
 | |
| 
 | |
|     json choices =
 | |
|         streaming ? json::array({json{{"finish_reason", finish_reason},
 | |
|                                         {"index", 0},
 | |
|                                         {"delta", json::object()}}})
 | |
|                   : json::array({json{{"finish_reason", finish_reason},
 | |
|                                         {"index", 0},
 | |
|                                         {"message", json{{"content", content},
 | |
|                                                          {"role", "assistant"}}}}});
 | |
| 
 | |
|     std::time_t t = std::time(0);
 | |
| 
 | |
|     json res =
 | |
|         json{{"choices", choices},
 | |
|             {"created", t},
 | |
|             {"model",
 | |
|                 json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
 | |
|             {"object", streaming ? "chat.completion.chunk" : "chat.completion"},
 | |
|             {"usage",
 | |
|                 json{{"completion_tokens", num_tokens_predicted},
 | |
|                     {"prompt_tokens", num_prompt_tokens},
 | |
|                     {"total_tokens", num_tokens_predicted + num_prompt_tokens}}},
 | |
|             {"id", gen_chatcmplid()}};
 | |
| 
 | |
|     if (server_verbose) {
 | |
|         res["__verbose"] = result;
 | |
|     }
 | |
| 
 | |
|     if (result.contains("completion_probabilities")) {
 | |
|         res["completion_probabilities"] = json_value(result, "completion_probabilities", json::array());
 | |
|     }
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| // return value is vector as there is one case where we might need to generate two responses
 | |
| static std::vector<json> format_partial_response_oaicompat(const task_result &response) {
 | |
|     json result = response.result_json;
 | |
| 
 | |
|     if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) {
 | |
|         return std::vector<json>({response.result_json});
 | |
|     }
 | |
| 
 | |
|     bool first = json_value(result, "oaicompat_token_ctr", 0) == 0;
 | |
|     std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
 | |
| 
 | |
|     bool stopped_word   = json_value(result, "stopped_word", false);
 | |
|     bool stopped_eos    = json_value(result, "stopped_eos", false);
 | |
|     bool stopped_limit  = json_value(result, "stopped_limit", false);
 | |
|     std::string content = json_value(result, "content", std::string(""));
 | |
| 
 | |
|     std::string finish_reason;
 | |
|     if (stopped_word || stopped_eos) {
 | |
|         finish_reason = "stop";
 | |
|     }
 | |
|     if (stopped_limit) {
 | |
|         finish_reason = "length";
 | |
|     }
 | |
| 
 | |
|     std::time_t t = std::time(0);
 | |
| 
 | |
|     json choices;
 | |
| 
 | |
|     if (!finish_reason.empty()) {
 | |
|         choices = json::array({json{{"finish_reason", finish_reason},
 | |
|                                     {"index", 0},
 | |
|                                     {"delta", json::object()}}});
 | |
|     } else {
 | |
|         if (first) {
 | |
|             if (content.empty()) {
 | |
|                 choices = json::array({json{{"finish_reason", nullptr},
 | |
|                                             {"index", 0},
 | |
|                                             {"delta", json{{"role", "assistant"}}}}});
 | |
|             } else {
 | |
|                 // We have to send this as two updates to conform to openai behavior
 | |
|                 json initial_ret = json{{"choices", json::array({json{
 | |
|                                         {"finish_reason", nullptr},
 | |
|                                         {"index", 0},
 | |
|                                         {"delta", json{
 | |
|                                             {"role", "assistant"}
 | |
|                                         }}}})},
 | |
|                             {"created", t},
 | |
|                             {"id", gen_chatcmplid()},
 | |
|                             {"model", modelname},
 | |
|                             {"object", "chat.completion.chunk"}};
 | |
| 
 | |
|                 json second_ret = json{
 | |
|                             {"choices", json::array({json{{"finish_reason", nullptr},
 | |
|                                                             {"index", 0},
 | |
|                                                             {"delta", json{
 | |
|                                                             {"content", content}}}
 | |
|                                                             }})},
 | |
|                             {"created", t},
 | |
|                             {"id", gen_chatcmplid()},
 | |
|                             {"model", modelname},
 | |
|                             {"object", "chat.completion.chunk"}};
 | |
| 
 | |
|                 return std::vector<json>({initial_ret, second_ret});
 | |
|             }
 | |
|         } else {
 | |
|             // Some idiosyncrasy in task processing logic makes several trailing calls
 | |
|             // with empty content, we ignore these at the calee site.
 | |
|             if (content.empty()) {
 | |
|                 return std::vector<json>({json::object()});
 | |
|             }
 | |
| 
 | |
|             choices = json::array({json{
 | |
|                 {"finish_reason", nullptr},
 | |
|                 {"index", 0},
 | |
|                 {"delta",
 | |
|                 json{
 | |
|                     {"content", content},
 | |
|                 }},
 | |
|             }});
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     json ret = json{{"choices", choices},
 | |
|                     {"created", t},
 | |
|                     {"id", gen_chatcmplid()},
 | |
|                     {"model", modelname},
 | |
|                     {"object", "chat.completion.chunk"}};
 | |
| 
 | |
|     return std::vector<json>({ret});
 | |
| }
 | |
| 
 | |
| static json format_partial_response(
 | |
|     llama_server_context &llama, llama_client_slot *slot, const std::string &content, const std::vector<completion_token_output> &probs
 | |
| ) {
 | |
|     json res = json
 | |
|     {
 | |
|         {"content",    content },
 | |
|         {"stop",       false},
 | |
|         {"slot_id",    slot->id },
 | |
|         {"multimodal", llama.multimodal }
 | |
|     };
 | |
| 
 | |
|     if (slot->sparams.n_probs > 0)
 | |
|     {
 | |
|         res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
 | |
|     }
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| static json format_tokenizer_response(const std::vector<llama_token> &tokens)
 | |
| {
 | |
|     return json{
 | |
|         {"tokens", tokens}};
 | |
| }
 | |
| 
 | |
| static json format_detokenized_response(std::string content)
 | |
| {
 | |
|     return json{
 | |
|         {"content", content}};
 | |
| }
 | |
| 
 | |
| 
 | |
| static void log_server_request(const httplib::Request &req, const httplib::Response &res)
 | |
| {
 | |
|     LOG_INFO("request", {
 | |
|                             {"remote_addr", req.remote_addr},
 | |
|                             {"remote_port", req.remote_port},
 | |
|                             {"status", res.status},
 | |
|                             {"method", req.method},
 | |
|                             {"path", req.path},
 | |
|                             {"params", req.params},
 | |
|                         });
 | |
| 
 | |
|     LOG_VERBOSE("request", {
 | |
|                                {"request", req.body},
 | |
|                                {"response", res.body},
 | |
|                            });
 | |
| }
 | |
| 
 | |
| struct token_translator
 | |
| {
 | |
|     llama_context * ctx;
 | |
|     std::string operator()(llama_token tok)                    const { return llama_token_to_piece(ctx, tok); }
 | |
|     std::string operator()(const completion_token_output &cto) const { return (*this)(cto.tok); }
 | |
| };
 | |
| 
 | |
| static void append_to_generated_text_from_generated_token_probs(llama_server_context &llama, llama_client_slot *slot)
 | |
| {
 | |
|     auto & gtps = slot->generated_token_probs;
 | |
|     auto translator = token_translator{llama.ctx};
 | |
|     auto add_strlen = [=](size_t sum, const completion_token_output & cto) { return sum + translator(cto).size(); };
 | |
|     const size_t len = std::accumulate(gtps.begin(), gtps.end(), size_t(0), add_strlen);
 | |
|     if (slot->generated_text.capacity() < slot->generated_text.size() + len)
 | |
|     {
 | |
|         slot->generated_text.reserve(slot->generated_text.size() + len);
 | |
|     }
 | |
|     for (const completion_token_output & cto : gtps)
 | |
|     {
 | |
|         slot->generated_text += translator(cto);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int main(int argc, char **argv)
 | |
| {
 | |
| #if SERVER_VERBOSE != 1
 | |
|     log_disable();
 | |
| #endif
 | |
|     // own arguments required by this example
 | |
|     gpt_params params;
 | |
|     server_params sparams;
 | |
| 
 | |
|     // struct that contains llama context and inference
 | |
|     llama_server_context llama;
 | |
| 
 | |
|     server_params_parse(argc, argv, sparams, params, llama);
 | |
| 
 | |
|     if (params.model_alias == "unknown")
 | |
|     {
 | |
|         params.model_alias = params.model;
 | |
|     }
 | |
| 
 | |
|     llama_backend_init(params.numa);
 | |
| 
 | |
|     LOG_INFO("build info", {{"build", LLAMA_BUILD_NUMBER},
 | |
|                             {"commit", LLAMA_COMMIT}});
 | |
| 
 | |
|     LOG_INFO("system info", {
 | |
|                                 {"n_threads", params.n_threads},
 | |
|                                 {"n_threads_batch", params.n_threads_batch},
 | |
|                                 {"total_threads", std::thread::hardware_concurrency()},
 | |
|                                 {"system_info", llama_print_system_info()},
 | |
|                             });
 | |
| 
 | |
|     // load the model
 | |
|     if (!llama.load_model(params))
 | |
|     {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     llama.initialize();
 | |
| 
 | |
|     httplib::Server svr;
 | |
| 
 | |
|     // Middleware for API key validation
 | |
|     auto validate_api_key = [&sparams](const httplib::Request &req, httplib::Response &res) -> bool {
 | |
|         // If API key is not set, skip validation
 | |
|         if (sparams.api_key.empty()) {
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         // Check for API key in the header
 | |
|         auto auth_header = req.get_header_value("Authorization");
 | |
|         std::string prefix = "Bearer ";
 | |
|         if (auth_header.substr(0, prefix.size()) == prefix) {
 | |
|             std::string received_api_key = auth_header.substr(prefix.size());
 | |
|             if (received_api_key == sparams.api_key) {
 | |
|                 return true; // API key is valid
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // API key is invalid or not provided
 | |
|         res.set_content("Unauthorized: Invalid API Key", "text/plain; charset=utf-8");
 | |
|         res.status = 401; // Unauthorized
 | |
| 
 | |
|         LOG_WARNING("Unauthorized: Invalid API Key", {});
 | |
| 
 | |
|         return false;
 | |
|     };
 | |
| 
 | |
|     svr.set_default_headers({{"Server", "llama.cpp"},
 | |
|                              {"Access-Control-Allow-Origin", "*"},
 | |
|                              {"Access-Control-Allow-Headers", "content-type"}});
 | |
| 
 | |
|     // this is only called if no index.html is found in the public --path
 | |
|     svr.Get("/", [](const httplib::Request &, httplib::Response &res)
 | |
|             {
 | |
|                 res.set_content(reinterpret_cast<const char*>(&index_html), index_html_len, "text/html; charset=utf-8");
 | |
|                 return false;
 | |
|             });
 | |
| 
 | |
|     // this is only called if no index.js is found in the public --path
 | |
|     svr.Get("/index.js", [](const httplib::Request &, httplib::Response &res)
 | |
|             {
 | |
|                 res.set_content(reinterpret_cast<const char *>(&index_js), index_js_len, "text/javascript; charset=utf-8");
 | |
|                 return false;
 | |
|             });
 | |
| 
 | |
|     // this is only called if no index.html is found in the public --path
 | |
|     svr.Get("/completion.js", [](const httplib::Request &, httplib::Response &res)
 | |
|             {
 | |
|                 res.set_content(reinterpret_cast<const char*>(&completion_js), completion_js_len, "application/javascript; charset=utf-8");
 | |
|                 return false;
 | |
|             });
 | |
| 
 | |
|     // this is only called if no index.html is found in the public --path
 | |
|     svr.Get("/json-schema-to-grammar.mjs", [](const httplib::Request &, httplib::Response &res)
 | |
|             {
 | |
|                 res.set_content(reinterpret_cast<const char*>(&json_schema_to_grammar_mjs), json_schema_to_grammar_mjs_len, "application/javascript; charset=utf-8");
 | |
|                 return false;
 | |
|             });
 | |
| 
 | |
|     svr.Get("/props", [&llama](const httplib::Request & /*req*/, httplib::Response &res)
 | |
|             {
 | |
|                 res.set_header("Access-Control-Allow-Origin", "*");
 | |
|                 json data = {
 | |
|                     { "user_name",      llama.name_user.c_str() },
 | |
|                     { "assistant_name", llama.name_assistant.c_str() }
 | |
|                 };
 | |
|                 res.set_content(data.dump(), "application/json; charset=utf-8");
 | |
|             });
 | |
| 
 | |
|     svr.Post("/completion", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
 | |
|             {
 | |
|                 if (!validate_api_key(req, res)) {
 | |
|                     return;
 | |
|                 }
 | |
|                 json data = json::parse(req.body);
 | |
|                 const int task_id = llama.request_completion(data, false, false, -1);
 | |
|                 if (!json_value(data, "stream", false)) {
 | |
|                     std::string completion_text;
 | |
|                     task_result result = llama.next_result(task_id);
 | |
|                     if (!result.error && result.stop) {
 | |
|                         res.set_content(result.result_json.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         res.status = 404;
 | |
|                         res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
 | |
|                         return;
 | |
|                     }
 | |
|                 } else {
 | |
|                     const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink & sink)
 | |
|                     {
 | |
|                         while (true)
 | |
|                         {
 | |
|                             task_result result = llama.next_result(task_id);
 | |
|                             if (!result.error) {
 | |
|                                 const std::string str =
 | |
|                                     "data: " +
 | |
|                                     result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
 | |
|                                     "\n\n";
 | |
|                                 LOG_VERBOSE("data stream", {
 | |
|                                     { "to_send", str }
 | |
|                                 });
 | |
|                                 if (!sink.write(str.c_str(), str.size()))
 | |
|                                 {
 | |
|                                     return false;
 | |
|                                 }
 | |
|                                 if (result.stop) {
 | |
|                                     break;
 | |
|                                 }
 | |
|                             } else {
 | |
|                                 const std::string str =
 | |
|                                     "error: " +
 | |
|                                     result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
 | |
|                                     "\n\n";
 | |
|                                 LOG_VERBOSE("data stream", {
 | |
|                                     { "to_send", str }
 | |
|                                 });
 | |
|                                 if (!sink.write(str.c_str(), str.size()))
 | |
|                                 {
 | |
|                                     return false;
 | |
|                                 }
 | |
|                                 break;
 | |
|                             }
 | |
|                         }
 | |
|                         sink.done();
 | |
|                         return true;
 | |
|                     };
 | |
| 
 | |
|                     auto on_complete = [task_id, &llama] (bool)
 | |
|                     {
 | |
|                         // cancel
 | |
|                         llama.request_cancel(task_id);
 | |
|                     };
 | |
| 
 | |
|                     res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
 | |
|                 }
 | |
|             });
 | |
| 
 | |
| 
 | |
| 
 | |
|     svr.Get("/v1/models", [¶ms](const httplib::Request&, httplib::Response& res)
 | |
|             {
 | |
|                 std::time_t t = std::time(0);
 | |
| 
 | |
|                 json models = {
 | |
|                     {"object", "list"},
 | |
|                     {"data", {
 | |
|                         {
 | |
|                             {"id", params.model_alias},
 | |
|                             {"object", "model"},
 | |
|                             {"created", t},
 | |
|                             {"owned_by", "llamacpp"}
 | |
|                         },
 | |
|                     }}
 | |
|                 };
 | |
| 
 | |
|                 res.set_content(models.dump(), "application/json; charset=utf-8");
 | |
|             });
 | |
| 
 | |
|     // TODO: add mount point without "/v1" prefix -- how?
 | |
|     svr.Post("/v1/chat/completions", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
 | |
|             {
 | |
|                 if (!validate_api_key(req, res)) {
 | |
|                     return;
 | |
|                 }
 | |
|                 json data = oaicompat_completion_params_parse(json::parse(req.body));
 | |
| 
 | |
|                 const int task_id = llama.request_completion(data, false, false, -1);
 | |
| 
 | |
|                 if (!json_value(data, "stream", false)) {
 | |
|                     std::string completion_text;
 | |
|                     task_result result = llama.next_result(task_id);
 | |
| 
 | |
|                     if (!result.error && result.stop) {
 | |
|                         json oaicompat_result = format_final_response_oaicompat(data, result);
 | |
| 
 | |
|                         res.set_content(oaicompat_result.dump(-1, ' ', false,
 | |
|                                             json::error_handler_t::replace),
 | |
|                                             "application/json; charset=utf-8");
 | |
|                     } else {
 | |
|                         res.status = 500;
 | |
|                         res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
 | |
|                         return;
 | |
|                     }
 | |
|                 } else {
 | |
|                     const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink &sink) {
 | |
|                         while (true) {
 | |
|                             task_result llama_result = llama.next_result(task_id);
 | |
|                             if (!llama_result.error) {
 | |
|                                 std::vector<json> result_array = format_partial_response_oaicompat( llama_result);
 | |
| 
 | |
|                                 for (auto it = result_array.begin(); it != result_array.end(); ++it)
 | |
|                                 {
 | |
|                                     if (!it->empty()) {
 | |
|                                         const std::string str =
 | |
|                                             "data: " +
 | |
|                                             it->dump(-1, ' ', false, json::error_handler_t::replace) +
 | |
|                                             "\n\n";
 | |
|                                         LOG_VERBOSE("data stream", {{"to_send", str}});
 | |
|                                         if (!sink.write(str.c_str(), str.size())) {
 | |
|                                             return false;
 | |
|                                         }
 | |
|                                     }
 | |
|                                 }
 | |
|                                 if (llama_result.stop) {
 | |
|                                     break;
 | |
|                                 }
 | |
|                             } else {
 | |
|                                 const std::string str =
 | |
|                                     "error: " +
 | |
|                                     llama_result.result_json.dump(-1, ' ', false,
 | |
|                                             json::error_handler_t::replace) +
 | |
|                                     "\n\n";
 | |
|                                 LOG_VERBOSE("data stream", {{"to_send", str}});
 | |
|                                 if (!sink.write(str.c_str(), str.size())) {
 | |
|                                     return false;
 | |
|                                 }
 | |
|                                 break;
 | |
|                             }
 | |
|                         }
 | |
|                         sink.done();
 | |
|                         return true;
 | |
|                     };
 | |
| 
 | |
|                     auto on_complete = [task_id, &llama](bool) {
 | |
|                         // cancel request
 | |
|                         llama.request_cancel(task_id);
 | |
|                     };
 | |
| 
 | |
|                     res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
 | |
|                 }
 | |
|             });
 | |
| 
 | |
|     svr.Post("/infill", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
 | |
|             {
 | |
|                 if (!validate_api_key(req, res)) {
 | |
|                     return;
 | |
|                 }
 | |
|                 json data = json::parse(req.body);
 | |
|                 const int task_id = llama.request_completion(data, true, false, -1);
 | |
|                 if (!json_value(data, "stream", false)) {
 | |
|                     std::string completion_text;
 | |
|                     task_result result = llama.next_result(task_id);
 | |
|                     if (!result.error && result.stop)
 | |
|                     {
 | |
|                         res.set_content(result.result_json.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         res.status = 404;
 | |
|                         res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
 | |
|                         return;
 | |
|                     }
 | |
|                 } else {
 | |
|                     const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink & sink) {
 | |
|                         while (true)
 | |
|                         {
 | |
|                             task_result result = llama.next_result(task_id);
 | |
|                             if (!result.error) {
 | |
|                                 const std::string str =
 | |
|                                 "data: " +
 | |
|                                 result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
 | |
|                                 "\n\n";
 | |
|                                 LOG_VERBOSE("data stream", {
 | |
|                                     { "to_send", str }
 | |
|                                 });
 | |
|                                 if (!sink.write(str.c_str(), str.size()))
 | |
|                                 {
 | |
|                                     return false;
 | |
|                                 }
 | |
|                                 if (result.stop)
 | |
|                                 {
 | |
|                                     break;
 | |
|                                 }
 | |
|                             }
 | |
|                             else
 | |
|                             {
 | |
|                                 break;
 | |
|                             }
 | |
|                         }
 | |
| 
 | |
|                         sink.done();
 | |
| 
 | |
|                         return true;
 | |
|                     };
 | |
| 
 | |
|                     auto on_complete = [task_id, &llama] (bool)
 | |
|                     {
 | |
|                         // cancel
 | |
|                         llama.request_cancel(task_id);
 | |
|                     };
 | |
| 
 | |
|                     res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
 | |
|                 }
 | |
|             });
 | |
| 
 | |
|     svr.Get("/model.json", [&llama](const httplib::Request &, httplib::Response &res)
 | |
|             {
 | |
|                 const json data = llama.get_model_props();
 | |
|                 return res.set_content(data.dump(), "application/json; charset=utf-8");
 | |
|             });
 | |
| 
 | |
|     svr.Options(R"(/.*)", [](const httplib::Request &, httplib::Response &res)
 | |
|                 { return res.set_content("", "application/json; charset=utf-8"); });
 | |
| 
 | |
|     svr.Post("/tokenize", [&llama](const httplib::Request &req, httplib::Response &res)
 | |
|             {
 | |
|                 const json body = json::parse(req.body);
 | |
|                 std::vector<llama_token> tokens;
 | |
|                 if (body.count("content") != 0)
 | |
|                 {
 | |
|                     tokens = llama.tokenize(body["content"], false);
 | |
|                 }
 | |
|                 const json data = format_tokenizer_response(tokens);
 | |
|                 return res.set_content(data.dump(), "application/json; charset=utf-8");
 | |
|             });
 | |
| 
 | |
|     svr.Post("/detokenize", [&llama](const httplib::Request &req, httplib::Response &res)
 | |
|             {
 | |
|                 const json body = json::parse(req.body);
 | |
|                 std::string content;
 | |
|                 if (body.count("tokens") != 0)
 | |
|                 {
 | |
|                     const std::vector<llama_token> tokens = body["tokens"];
 | |
|                     content = tokens_to_str(llama.ctx, tokens.cbegin(), tokens.cend());
 | |
|                 }
 | |
| 
 | |
|                 const json data = format_detokenized_response(content);
 | |
|                 return res.set_content(data.dump(), "application/json; charset=utf-8");
 | |
|             });
 | |
| 
 | |
|     svr.Post("/embedding", [&llama](const httplib::Request &req, httplib::Response &res)
 | |
|             {
 | |
|                 const json body = json::parse(req.body);
 | |
|                 json prompt;
 | |
|                 if (body.count("content") != 0)
 | |
|                 {
 | |
|                     prompt = body["content"];
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     prompt = "";
 | |
|                 }
 | |
|                 const int task_id = llama.request_completion({ {"prompt", prompt}, { "n_predict", 0} }, false, true, -1);
 | |
|                 task_result result = llama.next_result(task_id);
 | |
|                 return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
 | |
|             });
 | |
| 
 | |
|     svr.set_logger(log_server_request);
 | |
| 
 | |
|     svr.set_exception_handler([](const httplib::Request &, httplib::Response &res, std::exception_ptr ep)
 | |
|             {
 | |
|                 const char fmt[] = "500 Internal Server Error\n%s";
 | |
|                 char buf[BUFSIZ];
 | |
|                 try
 | |
|                 {
 | |
|                     std::rethrow_exception(std::move(ep));
 | |
|                 }
 | |
|                 catch (std::exception &e)
 | |
|                 {
 | |
|                     snprintf(buf, sizeof(buf), fmt, e.what());
 | |
|                 }
 | |
|                 catch (...)
 | |
|                 {
 | |
|                     snprintf(buf, sizeof(buf), fmt, "Unknown Exception");
 | |
|                 }
 | |
|                 res.set_content(buf, "text/plain; charset=utf-8");
 | |
|                 res.status = 500;
 | |
|             });
 | |
| 
 | |
|     svr.set_error_handler([](const httplib::Request &, httplib::Response &res)
 | |
|             {
 | |
|                 if (res.status == 401)
 | |
|                 {
 | |
|                     res.set_content("Unauthorized", "text/plain; charset=utf-8");
 | |
|                 }
 | |
|                 if (res.status == 400)
 | |
|                 {
 | |
|                     res.set_content("Invalid request", "text/plain; charset=utf-8");
 | |
|                 }
 | |
|                 else if (res.status == 404)
 | |
|                 {
 | |
|                     res.set_content("File Not Found", "text/plain; charset=utf-8");
 | |
|                     res.status = 404;
 | |
|                 }
 | |
|             });
 | |
| 
 | |
|     // set timeouts and change hostname and port
 | |
|     svr.set_read_timeout (sparams.read_timeout);
 | |
|     svr.set_write_timeout(sparams.write_timeout);
 | |
| 
 | |
|     if (!svr.bind_to_port(sparams.hostname, sparams.port))
 | |
|     {
 | |
|         fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // Set the base directory for serving static files
 | |
|     svr.set_base_dir(sparams.public_path);
 | |
| 
 | |
|     // to make it ctrl+clickable:
 | |
|     LOG_TEE("\nllama server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port);
 | |
| 
 | |
|     std::unordered_map<std::string, std::string> log_data;
 | |
|     log_data["hostname"] = sparams.hostname;
 | |
|     log_data["port"] = std::to_string(sparams.port);
 | |
| 
 | |
|     if (!sparams.api_key.empty()) {
 | |
|         log_data["api_key"] = "api_key: ****" + sparams.api_key.substr(sparams.api_key.length() - 4);
 | |
|     }
 | |
| 
 | |
|     LOG_INFO("HTTP server listening", log_data);
 | |
|     // run the HTTP server in a thread - see comment below
 | |
|     std::thread t([&]()
 | |
|             {
 | |
|                 if (!svr.listen_after_bind())
 | |
|                 {
 | |
|                     return 1;
 | |
|                 }
 | |
| 
 | |
|                 return 0;
 | |
|             });
 | |
| 
 | |
|     // GG: if I put the main loop inside a thread, it crashes on the first request when build in Debug!?
 | |
|     //     "Bus error: 10" - this is on macOS, it does not crash on Linux
 | |
|     //std::thread t2([&]()
 | |
|     {
 | |
|         bool running = true;
 | |
|         while (running)
 | |
|         {
 | |
|             running = llama.update_slots();
 | |
|         }
 | |
|     }
 | |
|     //);
 | |
| 
 | |
|     t.join();
 | |
| 
 | |
|     llama_backend_free();
 | |
|     return 0;
 | |
| }
 | 
