mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	 2002bc96bf
			
		
	
	2002bc96bf
	
	
	
		
			
			* server : refactoring (wip) * server : remove llava/clip objects from build * server : fix empty prompt handling + all slots idle logic * server : normalize id vars * server : code style * server : simplify model chat template validation * server : code style * server : minor * llama : llama_chat_apply_template support null buf * server : do not process embedding requests when disabled * server : reorganize structs and enums + naming fixes * server : merge oai.hpp in utils.hpp * server : refactor system prompt update at start * server : disable cached prompts with self-extend * server : do not process more than n_batch tokens per iter * server: tests: embeddings use a real embeddings model (#5908) * server, tests : bump batch to fit 1 embedding prompt * server: tests: embeddings fix build type Debug is randomly failing (#5911) * server: tests: embeddings, use different KV Cache size * server: tests: embeddings, fixed prompt do not exceed n_batch, increase embedding timeout, reduce number of concurrent embeddings * server: tests: embeddings, no need to wait for server idle as it can timout * server: refactor: clean up http code (#5912) * server : avoid n_available var ggml-ci * server: refactor: better http codes * server : simplify json parsing + add comment about t_last * server : rename server structs * server : allow to override FQDN in tests ggml-ci * server : add comments --------- Co-authored-by: Pierrick Hymbert <pierrick.hymbert@gmail.com>
		
			
				
	
	
		
			545 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			545 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #pragma once
 | |
| 
 | |
| #include "llama.h"
 | |
| #include "common.h"
 | |
| 
 | |
| #include "json.hpp"
 | |
| 
 | |
| #include <string>
 | |
| #include <vector>
 | |
| #include <sstream>
 | |
| #include <random>
 | |
| 
 | |
| #define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
 | |
| 
 | |
| using json = nlohmann::json;
 | |
| 
 | |
| extern bool server_verbose;
 | |
| extern bool server_log_json;
 | |
| 
 | |
| #ifndef SERVER_VERBOSE
 | |
| #define SERVER_VERBOSE 1
 | |
| #endif
 | |
| 
 | |
| #if SERVER_VERBOSE != 1
 | |
| #define LOG_VERBOSE(MSG, ...)
 | |
| #else
 | |
| #define LOG_VERBOSE(MSG, ...)                                            \
 | |
|     do                                                                   \
 | |
|     {                                                                    \
 | |
|         if (server_verbose)                                              \
 | |
|         {                                                                \
 | |
|             server_log("VERB", __func__, __LINE__, MSG, __VA_ARGS__); \
 | |
|         }                                                                \
 | |
|     } while (0)
 | |
| #endif
 | |
| 
 | |
| #define LOG_ERROR(  MSG, ...) server_log("ERR",  __func__, __LINE__, MSG, __VA_ARGS__)
 | |
| #define LOG_WARNING(MSG, ...) server_log("WARN", __func__, __LINE__, MSG, __VA_ARGS__)
 | |
| #define LOG_INFO(   MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
 | |
| 
 | |
| template <typename T>
 | |
| static T json_value(const json &body, const std::string &key, const T &default_value) {
 | |
|     // Fallback null to default value
 | |
|     return body.contains(key) && !body.at(key).is_null()
 | |
|         ? body.value(key, default_value)
 | |
|         : default_value;
 | |
| }
 | |
| 
 | |
| static inline void server_log(const char *level, const char *function, int line, const char *message, const nlohmann::ordered_json &extra) {
 | |
|     std::stringstream ss_tid;
 | |
|     ss_tid << std::this_thread::get_id();
 | |
|     json log = nlohmann::ordered_json{
 | |
|         {"tid",       ss_tid.str()},
 | |
|         {"timestamp", time(nullptr)},
 | |
|     };
 | |
| 
 | |
|     if (server_log_json) {
 | |
|         log.merge_patch( {
 | |
|             {"level",    level},
 | |
|             {"function", function},
 | |
|             {"line",     line},
 | |
|             {"msg",      message},
 | |
|         });
 | |
| 
 | |
|         if (!extra.empty()) {
 | |
|             log.merge_patch(extra);
 | |
|         }
 | |
| 
 | |
|         printf("%s\n", log.dump(-1, ' ', false, json::error_handler_t::replace).c_str());
 | |
|     } else {
 | |
|         char buf[1024];
 | |
|         snprintf(buf, 1024, "%4s [%24s] %s", level, function, message);
 | |
| 
 | |
|         if (!extra.empty()) {
 | |
|             log.merge_patch(extra);
 | |
|         }
 | |
|         std::stringstream ss;
 | |
|         ss << buf << " |";
 | |
|         for (const auto& el : log.items())
 | |
|         {
 | |
|             const std::string value = el.value().dump(-1, ' ', false, json::error_handler_t::replace);
 | |
|             ss << " " << el.key() << "=" << value;
 | |
|         }
 | |
| 
 | |
|         const std::string str = ss.str();
 | |
|         printf("%.*s\n", (int)str.size(), str.data());
 | |
|         fflush(stdout);
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // chat template utils
 | |
| //
 | |
| 
 | |
| // Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
 | |
| inline bool verify_custom_template(const std::string & tmpl) {
 | |
|     llama_chat_message chat[] = {{"user", "test"}};
 | |
|     int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, nullptr, 0);
 | |
|     return res >= 0;
 | |
| }
 | |
| 
 | |
| // Format given chat. If tmpl is empty, we take the template from model metadata
 | |
| inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector<json> & messages) {
 | |
|     size_t alloc_size = 0;
 | |
|     // vector holding all allocated string to be passed to llama_chat_apply_template
 | |
|     std::vector<std::string> str(messages.size() * 2);
 | |
|     std::vector<llama_chat_message> chat(messages.size());
 | |
| 
 | |
|     for (size_t i = 0; i < messages.size(); ++i) {
 | |
|         const auto & curr_msg = messages[i];
 | |
|         str[i*2 + 0]    = json_value(curr_msg, "role",    std::string(""));
 | |
|         str[i*2 + 1]    = json_value(curr_msg, "content", std::string(""));
 | |
|         alloc_size     += str[i*2 + 1].length();
 | |
|         chat[i].role    = str[i*2 + 0].c_str();
 | |
|         chat[i].content = str[i*2 + 1].c_str();
 | |
|     }
 | |
| 
 | |
|     const char * ptr_tmpl = tmpl.empty() ? nullptr : tmpl.c_str();
 | |
|     std::vector<char> buf(alloc_size * 2);
 | |
| 
 | |
|     // run the first time to get the total output length
 | |
|     int32_t res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), true, buf.data(), buf.size());
 | |
| 
 | |
|     // if it turns out that our buffer is too small, we resize it
 | |
|     if ((size_t) res > buf.size()) {
 | |
|         buf.resize(res);
 | |
|         res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), true, buf.data(), buf.size());
 | |
|     }
 | |
| 
 | |
|     const std::string formatted_chat(buf.data(), res);
 | |
| 
 | |
|     LOG_VERBOSE("formatted_chat", {{"text", formatted_chat.c_str()}});
 | |
| 
 | |
|     return formatted_chat;
 | |
| }
 | |
| 
 | |
| //
 | |
| // base64 utils (TODO: move to common in the future)
 | |
| //
 | |
| 
 | |
| static const std::string base64_chars =
 | |
|              "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 | |
|              "abcdefghijklmnopqrstuvwxyz"
 | |
|              "0123456789+/";
 | |
| 
 | |
| static inline bool is_base64(uint8_t c) {
 | |
|     return (isalnum(c) || (c == '+') || (c == '/'));
 | |
| }
 | |
| 
 | |
| static inline std::vector<uint8_t> base64_decode(const std::string & encoded_string) {
 | |
|     int i = 0;
 | |
|     int j = 0;
 | |
|     int in_ = 0;
 | |
| 
 | |
|     int in_len = encoded_string.size();
 | |
| 
 | |
|     uint8_t char_array_4[4];
 | |
|     uint8_t char_array_3[3];
 | |
| 
 | |
|     std::vector<uint8_t> ret;
 | |
| 
 | |
|     while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_])) {
 | |
|         char_array_4[i++] = encoded_string[in_]; in_++;
 | |
|         if (i == 4) {
 | |
|             for (i = 0; i < 4; i++) {
 | |
|                 char_array_4[i] = base64_chars.find(char_array_4[i]);
 | |
|             }
 | |
| 
 | |
|             char_array_3[0] = ((char_array_4[0]      ) << 2) + ((char_array_4[1] & 0x30) >> 4);
 | |
|             char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
 | |
|             char_array_3[2] = ((char_array_4[2] & 0x3) << 6) +   char_array_4[3];
 | |
| 
 | |
|             for (i = 0; (i < 3); i++) {
 | |
|                 ret.push_back(char_array_3[i]);
 | |
|             }
 | |
| 
 | |
|             i = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (i) {
 | |
|         for (j = i; j < 4; j++) {
 | |
|             char_array_4[j] = 0;
 | |
|         }
 | |
| 
 | |
|         for (j = 0; j < 4; j++) {
 | |
|             char_array_4[j] = base64_chars.find(char_array_4[j]);
 | |
|         }
 | |
| 
 | |
|         char_array_3[0] = ((char_array_4[0]      ) << 2) + ((char_array_4[1] & 0x30) >> 4);
 | |
|         char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
 | |
|         char_array_3[2] = ((char_array_4[2] & 0x3) << 6) +   char_array_4[3];
 | |
| 
 | |
|         for (j = 0; j < i - 1; j++) {
 | |
|             ret.push_back(char_array_3[j]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| //
 | |
| // random string / id
 | |
| //
 | |
| 
 | |
| static std::string random_string() {
 | |
|     static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
 | |
| 
 | |
|     std::random_device rd;
 | |
|     std::mt19937 generator(rd());
 | |
| 
 | |
|     std::string result(32, ' ');
 | |
| 
 | |
|     for (int i = 0; i < 32; ++i) {
 | |
|         result[i] = str[generator() % str.size()];
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static std::string gen_chatcmplid() {
 | |
|     std::stringstream chatcmplid;
 | |
|     chatcmplid << "chatcmpl-" << random_string();
 | |
| 
 | |
|     return chatcmplid.str();
 | |
| }
 | |
| 
 | |
| //
 | |
| // other common utils
 | |
| //
 | |
| 
 | |
| static size_t common_part(const std::vector<llama_token> & a, const std::vector<llama_token> & b) {
 | |
|     size_t i;
 | |
|     for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {}
 | |
| 
 | |
|     return i;
 | |
| }
 | |
| 
 | |
| static bool ends_with(const std::string & str, const std::string & suffix) {
 | |
|     return str.size() >= suffix.size() && 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
 | |
| }
 | |
| 
 | |
| static size_t find_partial_stop_string(const std::string &stop, const std::string &text) {
 | |
|     if (!text.empty() && !stop.empty()) {
 | |
|         const char text_last_char = text.back();
 | |
|         for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) {
 | |
|             if (stop[char_index] == text_last_char) {
 | |
|                 const std::string current_partial = stop.substr(0, char_index + 1);
 | |
|                 if (ends_with(text, current_partial)) {
 | |
|                     return text.size() - char_index - 1;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return std::string::npos;
 | |
| }
 | |
| 
 | |
| // TODO: reuse llama_detokenize
 | |
| template <class Iter>
 | |
| static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
 | |
|     std::string ret;
 | |
|     for (; begin != end; ++begin) {
 | |
|         ret += llama_token_to_piece(ctx, *begin);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| // format incomplete utf-8 multibyte character for output
 | |
| static std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) {
 | |
|     std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token);
 | |
| 
 | |
|     // if the size is 1 and first bit is 1, meaning it's a partial character
 | |
|     //   (size > 1 meaning it's already a known token)
 | |
|     if (out.size() == 1 && (out[0] & 0x80) == 0x80) {
 | |
|         std::stringstream ss;
 | |
|         ss << std::hex << (out[0] & 0xff);
 | |
|         std::string res(ss.str());
 | |
|         out = "byte: \\x" + res;
 | |
|     }
 | |
| 
 | |
|     return out;
 | |
| }
 | |
| 
 | |
| struct completion_token_output {
 | |
|     llama_token tok;
 | |
|     std::string text_to_send;
 | |
| 
 | |
|     struct token_prob {
 | |
|         llama_token tok;
 | |
|         float prob;
 | |
|     };
 | |
| 
 | |
|     std::vector<token_prob> probs;
 | |
| };
 | |
| 
 | |
| // convert a vector of completion_token_output to json
 | |
| static json probs_vector_to_json(const llama_context * ctx, const std::vector<completion_token_output> & probs) {
 | |
|     json out = json::array();
 | |
| 
 | |
|     for (const auto & prob : probs) {
 | |
|         json probs_for_token = json::array();
 | |
| 
 | |
|         for (const auto & p : prob.probs) {
 | |
|             const std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
 | |
|             probs_for_token.push_back(json {
 | |
|                 {"tok_str", tok_str},
 | |
|                 {"prob",    p.prob},
 | |
|             });
 | |
|         }
 | |
| 
 | |
|         const std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
 | |
|         out.push_back(json {
 | |
|             {"content", tok_str},
 | |
|             {"probs",   probs_for_token},
 | |
|         });
 | |
|     }
 | |
| 
 | |
|     return out;
 | |
| }
 | |
| 
 | |
| //
 | |
| // OAI utils
 | |
| //
 | |
| 
 | |
| static json oaicompat_completion_params_parse(
 | |
|     const struct llama_model * model,
 | |
|     const json & body, /* openai api json semantics */
 | |
|     const std::string & chat_template) {
 | |
|     json llama_params;
 | |
| 
 | |
|     llama_params["__oaicompat"] = true;
 | |
| 
 | |
|     // Map OpenAI parameters to llama.cpp parameters
 | |
|     //
 | |
|     // For parameters that are defined by the OpenAI documentation (e.g.
 | |
|     // temperature), we explicitly specify OpenAI's intended default; we
 | |
|     // need to do that because sometimes OpenAI disagrees with llama.cpp
 | |
|     //
 | |
|     // https://platform.openai.com/docs/api-reference/chat/create
 | |
|     llama_sampling_params default_sparams;
 | |
|     llama_params["model"]             = json_value(body,   "model",             std::string("unknown"));
 | |
|     llama_params["prompt"]            = format_chat(model, chat_template,       body["messages"]);
 | |
|     llama_params["cache_prompt"]      = json_value(body,   "cache_prompt",      false);
 | |
|     llama_params["temperature"]       = json_value(body,   "temperature",       0.0);
 | |
|     llama_params["top_k"]             = json_value(body,   "top_k",             default_sparams.top_k);
 | |
|     llama_params["top_p"]             = json_value(body,   "top_p",             1.0);
 | |
|     llama_params["n_predict"]         = json_value(body,   "max_tokens",        -1);
 | |
|     llama_params["logit_bias"]        = json_value(body,   "logit_bias",        json::object());
 | |
|     llama_params["frequency_penalty"] = json_value(body,   "frequency_penalty", 0.0);
 | |
|     llama_params["presence_penalty"]  = json_value(body,   "presence_penalty",  0.0);
 | |
|     llama_params["seed"]              = json_value(body,   "seed",              LLAMA_DEFAULT_SEED);
 | |
|     llama_params["stream"]            = json_value(body,   "stream",            false);
 | |
|     llama_params["mirostat"]          = json_value(body,   "mirostat",          default_sparams.mirostat);
 | |
|     llama_params["mirostat_tau"]      = json_value(body,   "mirostat_tau",      default_sparams.mirostat_tau);
 | |
|     llama_params["mirostat_eta"]      = json_value(body,   "mirostat_eta",      default_sparams.mirostat_eta);
 | |
|     llama_params["penalize_nl"]       = json_value(body,   "penalize_nl",       default_sparams.penalize_nl);
 | |
|     llama_params["typical_p"]         = json_value(body,   "typical_p",         default_sparams.typical_p);
 | |
|     llama_params["repeat_last_n"]     = json_value(body,   "repeat_last_n",     default_sparams.penalty_last_n);
 | |
|     llama_params["ignore_eos"]        = json_value(body,   "ignore_eos",        false);
 | |
|     llama_params["tfs_z"]             = json_value(body,   "tfs_z",             default_sparams.tfs_z);
 | |
| 
 | |
|     if (body.count("grammar") != 0) {
 | |
|         llama_params["grammar"] = json_value(body, "grammar", json::object());
 | |
|     }
 | |
| 
 | |
|     // Handle 'stop' field
 | |
|     if (body.contains("stop") && body["stop"].is_string()) {
 | |
|         llama_params["stop"] = json::array({body["stop"].get<std::string>()});
 | |
|     } else {
 | |
|         llama_params["stop"] = json_value(body, "stop", json::array());
 | |
|     }
 | |
| 
 | |
|     // Ensure there is ChatML-specific end sequence among stop words
 | |
|     llama_params["stop"].push_back("<|im_end|>");
 | |
| 
 | |
|     return llama_params;
 | |
| }
 | |
| 
 | |
| static json format_final_response_oaicompat(const json & request, json result, bool streaming = false) {
 | |
|     bool stopped_word        = result.count("stopped_word") != 0;
 | |
|     bool stopped_eos         = json_value(result, "stopped_eos", false);
 | |
|     int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
 | |
|     int num_prompt_tokens    = json_value(result, "tokens_evaluated", 0);
 | |
|     std::string content      = json_value(result, "content", std::string(""));
 | |
| 
 | |
|     std::string finish_reason = "length";
 | |
|     if (stopped_word || stopped_eos) {
 | |
|         finish_reason = "stop";
 | |
|     }
 | |
| 
 | |
|     json choices =
 | |
|         streaming ? json::array({json{{"finish_reason", finish_reason},
 | |
|                                         {"index", 0},
 | |
|                                         {"delta", json::object()}}})
 | |
|                   : json::array({json{{"finish_reason", finish_reason},
 | |
|                                         {"index", 0},
 | |
|                                         {"message", json{{"content", content},
 | |
|                                                          {"role", "assistant"}}}}});
 | |
| 
 | |
|     std::time_t t = std::time(0);
 | |
| 
 | |
|     json res = json {
 | |
|         {"choices", choices},
 | |
|         {"created", t},
 | |
|         {"model",
 | |
|             json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
 | |
|         {"object", streaming ? "chat.completion.chunk" : "chat.completion"},
 | |
|         {"usage", json {
 | |
|             {"completion_tokens", num_tokens_predicted},
 | |
|             {"prompt_tokens",     num_prompt_tokens},
 | |
|             {"total_tokens",      num_tokens_predicted + num_prompt_tokens}
 | |
|         }},
 | |
|         {"id", gen_chatcmplid()}
 | |
|     };
 | |
| 
 | |
|     if (server_verbose) {
 | |
|         res["__verbose"] = result;
 | |
|     }
 | |
| 
 | |
|     if (result.contains("completion_probabilities")) {
 | |
|         res["completion_probabilities"] = json_value(result, "completion_probabilities", json::array());
 | |
|     }
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| // return value is vector as there is one case where we might need to generate two responses
 | |
| static std::vector<json> format_partial_response_oaicompat(json result) {
 | |
|     if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) {
 | |
|         return std::vector<json>({result});
 | |
|     }
 | |
| 
 | |
|     bool first = json_value(result, "oaicompat_token_ctr", 0) == 0;
 | |
|     std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
 | |
| 
 | |
|     bool stopped_word   = json_value(result, "stopped_word",  false);
 | |
|     bool stopped_eos    = json_value(result, "stopped_eos",   false);
 | |
|     bool stopped_limit  = json_value(result, "stopped_limit", false);
 | |
|     std::string content = json_value(result, "content",       std::string(""));
 | |
| 
 | |
|     std::string finish_reason;
 | |
|     if (stopped_word || stopped_eos) {
 | |
|         finish_reason = "stop";
 | |
|     }
 | |
|     if (stopped_limit) {
 | |
|         finish_reason = "length";
 | |
|     }
 | |
| 
 | |
|     std::time_t t = std::time(0);
 | |
| 
 | |
|     json choices;
 | |
| 
 | |
|     if (!finish_reason.empty()) {
 | |
|         choices = json::array({json{{"finish_reason", finish_reason},
 | |
|                                     {"index", 0},
 | |
|                                     {"delta", json::object()}}});
 | |
|     } else {
 | |
|         if (first) {
 | |
|             if (content.empty()) {
 | |
|                 choices = json::array({json{{"finish_reason", nullptr},
 | |
|                                             {"index", 0},
 | |
|                                             {"delta", json{{"role", "assistant"}}}}});
 | |
|             } else {
 | |
|                 // We have to send this as two updates to conform to openai behavior
 | |
|                 json initial_ret = json{{"choices", json::array({json{
 | |
|                                         {"finish_reason", nullptr},
 | |
|                                         {"index", 0},
 | |
|                                         {"delta", json{
 | |
|                                             {"role", "assistant"}
 | |
|                                         }}}})},
 | |
|                             {"created", t},
 | |
|                             {"id", gen_chatcmplid()},
 | |
|                             {"model", modelname},
 | |
|                             {"object", "chat.completion.chunk"}};
 | |
| 
 | |
|                 json second_ret = json{
 | |
|                             {"choices", json::array({json{{"finish_reason", nullptr},
 | |
|                                                             {"index", 0},
 | |
|                                                             {"delta", json{
 | |
|                                                             {"content", content}}}
 | |
|                                                             }})},
 | |
|                             {"created", t},
 | |
|                             {"id", gen_chatcmplid()},
 | |
|                             {"model", modelname},
 | |
|                             {"object", "chat.completion.chunk"}};
 | |
| 
 | |
|                 return std::vector<json>({initial_ret, second_ret});
 | |
|             }
 | |
|         } else {
 | |
|             // Some idiosyncrasy in task processing logic makes several trailing calls
 | |
|             // with empty content, we ignore these at the calee site.
 | |
|             if (content.empty()) {
 | |
|                 return std::vector<json>({json::object()});
 | |
|             }
 | |
| 
 | |
|             choices = json::array({json{
 | |
|                 {"finish_reason", nullptr},
 | |
|                 {"index", 0},
 | |
|                 {"delta",
 | |
|                 json{
 | |
|                     {"content", content},
 | |
|                 }},
 | |
|             }});
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     json ret = json {
 | |
|         {"choices", choices},
 | |
|         {"created", t},
 | |
|         {"id",      gen_chatcmplid()},
 | |
|         {"model",   modelname},
 | |
|         {"object",  "chat.completion.chunk"}
 | |
|     };
 | |
| 
 | |
|     return std::vector<json>({ret});
 | |
| }
 | |
| 
 | |
| static json format_embeddings_response_oaicompat(const json & request, const json & embeddings) {
 | |
|     json res = json {
 | |
|         {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
 | |
|         {"object", "list"},
 | |
|         {"usage", json {
 | |
|             {"prompt_tokens", 0},
 | |
|             {"total_tokens", 0}
 | |
|         }},
 | |
|         {"data", embeddings}
 | |
|     };
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| static json format_tokenizer_response(const std::vector<llama_token> & tokens) {
 | |
|     return json {
 | |
|         {"tokens", tokens}
 | |
|     };
 | |
| }
 | |
| 
 | |
| static json format_detokenized_response(const std::string & content) {
 | |
|     return json {
 | |
|         {"content", content}
 | |
|     };
 | |
| }
 |