mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	 f486f6e1e5
			
		
	
	f486f6e1e5
	
	
	
		
			
			* Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
		
			
				
	
	
		
			184 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			184 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "common.h"
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <cmath>
 | |
| #include <cstdio>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     gpt_params params;
 | |
| 
 | |
|     if (argc == 1 || argv[1][0] == '-') {
 | |
|         printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]);
 | |
|         return 1 ;
 | |
|     }
 | |
| 
 | |
|     if (argc >= 2) {
 | |
|         params.model = argv[1];
 | |
|     }
 | |
| 
 | |
|     if (argc >= 3) {
 | |
|         params.prompt = argv[2];
 | |
|     }
 | |
| 
 | |
|     if (params.prompt.empty()) {
 | |
|         params.prompt = "Hello my name is";
 | |
|     }
 | |
| 
 | |
|     // total length of the sequence including the prompt
 | |
|     const int n_len = 32;
 | |
| 
 | |
|     // init LLM
 | |
| 
 | |
|     llama_backend_init();
 | |
|     llama_numa_init(params.numa);
 | |
| 
 | |
|     // initialize the model
 | |
| 
 | |
|     llama_model_params model_params = llama_model_default_params();
 | |
| 
 | |
|     // model_params.n_gpu_layers = 99; // offload all layers to the GPU
 | |
| 
 | |
|     llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
 | |
| 
 | |
|     if (model == NULL) {
 | |
|         fprintf(stderr , "%s: error: unable to load model\n" , __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // initialize the context
 | |
| 
 | |
|     llama_context_params ctx_params = llama_context_default_params();
 | |
| 
 | |
|     ctx_params.seed  = 1234;
 | |
|     ctx_params.n_ctx = 2048;
 | |
|     ctx_params.n_threads = params.n_threads;
 | |
|     ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
 | |
| 
 | |
|     llama_context * ctx = llama_new_context_with_model(model, ctx_params);
 | |
| 
 | |
|     if (ctx == NULL) {
 | |
|         fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // tokenize the prompt
 | |
| 
 | |
|     std::vector<llama_token> tokens_list;
 | |
|     tokens_list = ::llama_tokenize(ctx, params.prompt, true);
 | |
| 
 | |
|     const int n_ctx    = llama_n_ctx(ctx);
 | |
|     const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size());
 | |
| 
 | |
|     LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, n_kv_req);
 | |
| 
 | |
|     // make sure the KV cache is big enough to hold all the prompt and generated tokens
 | |
|     if (n_kv_req > n_ctx) {
 | |
|         LOG_TEE("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__);
 | |
|         LOG_TEE("%s:        either reduce n_len or increase n_ctx\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // print the prompt token-by-token
 | |
| 
 | |
|     fprintf(stderr, "\n");
 | |
| 
 | |
|     for (auto id : tokens_list) {
 | |
|         fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
 | |
|     }
 | |
| 
 | |
|     fflush(stderr);
 | |
| 
 | |
|     // create a llama_batch with size 512
 | |
|     // we use this object to submit token data for decoding
 | |
| 
 | |
|     llama_batch batch = llama_batch_init(512, 0, 1);
 | |
| 
 | |
|     // evaluate the initial prompt
 | |
|     for (size_t i = 0; i < tokens_list.size(); i++) {
 | |
|         llama_batch_add(batch, tokens_list[i], i, { 0 }, false);
 | |
|     }
 | |
| 
 | |
|     // llama_decode will output logits only for the last token of the prompt
 | |
|     batch.logits[batch.n_tokens - 1] = true;
 | |
| 
 | |
|     if (llama_decode(ctx, batch) != 0) {
 | |
|         LOG_TEE("%s: llama_decode() failed\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // main loop
 | |
| 
 | |
|     int n_cur    = batch.n_tokens;
 | |
|     int n_decode = 0;
 | |
| 
 | |
|     const auto t_main_start = ggml_time_us();
 | |
| 
 | |
|     while (n_cur <= n_len) {
 | |
|         // sample the next token
 | |
|         {
 | |
|             auto   n_vocab = llama_n_vocab(model);
 | |
|             auto * logits  = llama_get_logits_ith(ctx, batch.n_tokens - 1);
 | |
| 
 | |
|             std::vector<llama_token_data> candidates;
 | |
|             candidates.reserve(n_vocab);
 | |
| 
 | |
|             for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
 | |
|                 candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
 | |
|             }
 | |
| 
 | |
|             llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
 | |
| 
 | |
|             // sample the most likely token
 | |
|             const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
 | |
| 
 | |
|             // is it an end of stream?
 | |
|             if (new_token_id == llama_token_eos(model) || n_cur == n_len) {
 | |
|                 LOG_TEE("\n");
 | |
| 
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
 | |
|             fflush(stdout);
 | |
| 
 | |
|             // prepare the next batch
 | |
|             llama_batch_clear(batch);
 | |
| 
 | |
|             // push this new token for next evaluation
 | |
|             llama_batch_add(batch, new_token_id, n_cur, { 0 }, true);
 | |
| 
 | |
|             n_decode += 1;
 | |
|         }
 | |
| 
 | |
|         n_cur += 1;
 | |
| 
 | |
|         // evaluate the current batch with the transformer model
 | |
|         if (llama_decode(ctx, batch)) {
 | |
|             fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     LOG_TEE("\n");
 | |
| 
 | |
|     const auto t_main_end = ggml_time_us();
 | |
| 
 | |
|     LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
 | |
|             __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
 | |
| 
 | |
|     llama_print_timings(ctx);
 | |
| 
 | |
|     fprintf(stderr, "\n");
 | |
| 
 | |
|     llama_batch_free(batch);
 | |
| 
 | |
|     llama_free(ctx);
 | |
|     llama_free_model(model);
 | |
| 
 | |
|     llama_backend_free();
 | |
| 
 | |
|     return 0;
 | |
| }
 |