mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			232 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			232 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Quick and dirty HF llama --> gguf conversion, GQA/70b wont work
 | 
						|
 | 
						|
import gguf
 | 
						|
import sys
 | 
						|
import struct
 | 
						|
import json
 | 
						|
import numpy as np
 | 
						|
from typing import List
 | 
						|
from pathlib import Path
 | 
						|
from transformers import AutoModelForCausalLM
 | 
						|
from sentencepiece import SentencePieceProcessor
 | 
						|
 | 
						|
 | 
						|
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
 | 
						|
def permute(weights: NDArray, n_head: int) -> NDArray:
 | 
						|
    return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
 | 
						|
                   .swapaxes(1, 2)
 | 
						|
                   .reshape(weights.shape))
 | 
						|
 | 
						|
if len(sys.argv) < 3:
 | 
						|
    print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
 | 
						|
    print("  ftype == 0 -> float32")
 | 
						|
    print("  ftype == 1 -> float16")
 | 
						|
    sys.exit(1)
 | 
						|
 | 
						|
 | 
						|
# output in the same directory as the model
 | 
						|
dir_model = sys.argv[1]
 | 
						|
fname_out = sys.argv[1] + "/ggml-model.bin"
 | 
						|
 | 
						|
 | 
						|
# possible tensor data types
 | 
						|
#   ftype == 0 -> float32
 | 
						|
#   ftype == 1 -> float16
 | 
						|
#
 | 
						|
# map from ftype to string
 | 
						|
ftype_str = ["f32", "f16"]
 | 
						|
 | 
						|
ftype = 1
 | 
						|
if len(sys.argv) > 2:
 | 
						|
    ftype = int(sys.argv[2])
 | 
						|
    if ftype < 0 or ftype > 1:
 | 
						|
        print("Invalid ftype: " + str(ftype))
 | 
						|
        sys.exit(1)
 | 
						|
    fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
 | 
						|
 | 
						|
 | 
						|
model = AutoModelForCausalLM.from_pretrained( dir_model, low_cpu_mem_usage=True, trust_remote_code=True )
 | 
						|
list_vars = model.state_dict()
 | 
						|
 | 
						|
# count tensors to be converted
 | 
						|
tensor_count = 0
 | 
						|
for name in list_vars.keys():
 | 
						|
    # we don't need these
 | 
						|
    if name.endswith(".rotary_emb.inv_freq"):
 | 
						|
        continue
 | 
						|
    tensor_count += 1
 | 
						|
 | 
						|
#fout = open(fname_out, "wb")
 | 
						|
gguf_writer = gguf.GGUFWriter.open(fname_out)
 | 
						|
 | 
						|
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
 | 
						|
    hparams = json.load(f)
 | 
						|
 | 
						|
# This mmust be changed when adding/deleting kv
 | 
						|
kv_count = 13
 | 
						|
 | 
						|
print("tensors " + str(tensor_count) + " kv " + str(kv_count) )
 | 
						|
 | 
						|
print("write gguf header")
 | 
						|
 | 
						|
gguf_writer.write_header(tensor_count, kv_count)
 | 
						|
 | 
						|
print("write gguf hparams")
 | 
						|
 | 
						|
llm_arch = "llama"
 | 
						|
 | 
						|
gguf_writer.write_name("llama2-7b")
 | 
						|
gguf_writer.write_description("gguf test model")
 | 
						|
gguf_writer.write_architecture(llm_arch)
 | 
						|
gguf_writer.write_context_length(llm_arch, hparams["max_position_embeddings"])
 | 
						|
gguf_writer.write_embedding_length(llm_arch, hparams["hidden_size"])
 | 
						|
gguf_writer.write_layer_count(llm_arch, hparams["num_hidden_layers"])
 | 
						|
gguf_writer.write_feed_forward_length(llm_arch, hparams["intermediate_size"])
 | 
						|
gguf_writer.write_rope_dimension_count(llm_arch, hparams["hidden_size"] // hparams["num_attention_heads"])
 | 
						|
gguf_writer.write_head_count(llm_arch, hparams["num_attention_heads"])
 | 
						|
gguf_writer.write_float32(llm_arch + ".attention.layer_norm_rms_epsilon", hparams["rms_norm_eps"])
 | 
						|
 | 
						|
 | 
						|
# TOKENIZATION
 | 
						|
 | 
						|
tokens: List[str] = []
 | 
						|
scores: List[float] = []
 | 
						|
 | 
						|
if Path( dir_model + "/tokenizer.model").is_file():
 | 
						|
    # vocab type SPIECE
 | 
						|
    print( "Adding sentencepiece tokenizer vocab." )
 | 
						|
    tokenizer = SentencePieceProcessor( dir_model + "/tokenizer.model" )
 | 
						|
 | 
						|
    # output vocab_size followed by all piece/score pairs
 | 
						|
    outbytes: bytes
 | 
						|
    outbytes = b""
 | 
						|
    outbytes += struct.pack("I", tokenizer.vocab_size())
 | 
						|
 | 
						|
    for i in range(tokenizer.vocab_size()):
 | 
						|
        text: bytes
 | 
						|
        if tokenizer.is_unknown(i):
 | 
						|
            text = " \u2047 ".encode("utf-8")
 | 
						|
        elif tokenizer.is_control(i):
 | 
						|
            text = b""
 | 
						|
        if tokenizer.is_byte(i):
 | 
						|
            piece = tokenizer.id_to_piece(i)
 | 
						|
            if len(piece) != 6:
 | 
						|
                raise Exception(f"Invalid token: {piece}")
 | 
						|
            byte_value = int(piece[3:-1], 16)
 | 
						|
            text = struct.pack("B", byte_value)
 | 
						|
        else:
 | 
						|
            text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
 | 
						|
        score: float = tokenizer.get_score(i)
 | 
						|
 | 
						|
        tokens.append( str(text) );
 | 
						|
        scores.append( score );
 | 
						|
 | 
						|
print("write gguf tokens")
 | 
						|
 | 
						|
gguf_writer.write_string("tokenizer.ggml.model", "llama")
 | 
						|
gguf_writer.write_array("tokenizer.ggml.tokens",tokens)
 | 
						|
gguf_writer.write_array("tokenizer.ggml.scores",scores)
 | 
						|
 | 
						|
# TENSORS
 | 
						|
 | 
						|
 | 
						|
# tensor info
 | 
						|
print("write gguf tensor info")
 | 
						|
 | 
						|
for name in list_vars.keys():
 | 
						|
    data = list_vars[name].squeeze().numpy()
 | 
						|
 | 
						|
    # we don't need these
 | 
						|
    if name.endswith(".rotary_emb.inv_freq"):
 | 
						|
        continue
 | 
						|
 | 
						|
    # permute these
 | 
						|
    if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
 | 
						|
        data = permute( data, hparams["num_attention_heads"] )
 | 
						|
 | 
						|
    # chnage tensor name
 | 
						|
 | 
						|
    if name == "model.embed_tokens.weight":
 | 
						|
        name = "tok_embeddings.weight"
 | 
						|
    elif name == "model.norm.weight":
 | 
						|
        name = "norm.weight"
 | 
						|
    elif name == "lm_head.weight":
 | 
						|
        name = "output.weight"
 | 
						|
    else:
 | 
						|
        for i in range(80):  # maximum number of layers
 | 
						|
            if name == "model.layers." + str(i) + ".input_layernorm.weight":
 | 
						|
                name = "layers." + str(i) + ".attention_norm.weight"
 | 
						|
                break
 | 
						|
            if name == "model.layers." + str(i) + ".self_attn.q_proj.weight":
 | 
						|
                name = "layers." + str(i) + ".attention.wq.weight"
 | 
						|
                break
 | 
						|
            if name == "model.layers." + str(i) + ".self_attn.k_proj.weight":
 | 
						|
                name = "layers." + str(i) + ".attention.wk.weight"
 | 
						|
                break
 | 
						|
            if name == "model.layers." + str(i) + ".self_attn.v_proj.weight":
 | 
						|
                name = "layers." + str(i) + ".attention.wv.weight"
 | 
						|
                break
 | 
						|
            if name == "model.layers." + str(i) + ".self_attn.o_proj.weight":
 | 
						|
                name = "layers." + str(i) + ".attention.wo.weight"
 | 
						|
                break
 | 
						|
            if name == "model.layers." + str(i) + ".post_attention_layernorm.weight":
 | 
						|
                name = "layers." + str(i) + ".ffn_norm.weight"
 | 
						|
                break
 | 
						|
            if name == "model.layers." + str(i) + ".mlp.gate_proj.weight":
 | 
						|
                name = "layers." + str(i) + ".feed_forward.w1.weight"
 | 
						|
                break
 | 
						|
            if name == "model.layers." + str(i) + ".mlp.down_proj.weight":
 | 
						|
                name = "layers." + str(i) + ".feed_forward.w2.weight"
 | 
						|
                break
 | 
						|
            if name == "model.layers." + str(i) + ".mlp.up_proj.weight":
 | 
						|
                name = "layers." + str(i) + ".feed_forward.w3.weight"
 | 
						|
                break
 | 
						|
 | 
						|
    gguf_writer.write_tensor_info(name, data)
 | 
						|
 | 
						|
 | 
						|
# tensor data
 | 
						|
print("write gguf tensor data")
 | 
						|
 | 
						|
for name in list_vars.keys():
 | 
						|
    data = list_vars[name].squeeze().numpy()
 | 
						|
    print("Process tensor: " + name + " with shape: ", data.shape)
 | 
						|
 | 
						|
    # we don't need these
 | 
						|
    if name.endswith(".rotary_emb.inv_freq"):
 | 
						|
        print("  Skip tensor: " + name)
 | 
						|
        continue
 | 
						|
 | 
						|
    ## permute these
 | 
						|
    if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
 | 
						|
        print("  Permute tensor: " + name)
 | 
						|
        data = permute( data, hparams["num_attention_heads"] )
 | 
						|
 | 
						|
    n_dims = len(data.shape)
 | 
						|
 | 
						|
    # ftype == 0 -> float32, ftype == 1 -> float16
 | 
						|
    ftype_cur = 0
 | 
						|
    if ftype != 0:
 | 
						|
        if name.endswith(".weight") and n_dims == 2:
 | 
						|
            print("  Converting to float16")
 | 
						|
            data = data.astype(np.float16)
 | 
						|
            ftype_cur = 1
 | 
						|
        else:
 | 
						|
            print("  Converting to float32")
 | 
						|
            data = data.astype(np.float32)
 | 
						|
            ftype_cur = 0
 | 
						|
    else:
 | 
						|
        if data.dtype != np.float32:
 | 
						|
            print("  Converting to float32")
 | 
						|
            data = data.astype(np.float32)
 | 
						|
            ftype_cur = 0
 | 
						|
 | 
						|
    gguf_writer.write_tensor_padding()
 | 
						|
    gguf_writer.write_tensor(data)
 | 
						|
 | 
						|
gguf_writer.close()
 | 
						|
 | 
						|
 | 
						|
print("Done. Output file: " + fname_out)
 | 
						|
print("")
 |