mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			254 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			254 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "sampling.h"
 | 
						|
#include "log.h"
 | 
						|
 | 
						|
#ifdef LLAMA_USE_LLGUIDANCE
 | 
						|
 | 
						|
#    include "llguidance.h"
 | 
						|
#    include <cmath>
 | 
						|
 | 
						|
struct llama_sampler_llg {
 | 
						|
    const llama_vocab * vocab;
 | 
						|
    std::string         grammar_kind;
 | 
						|
    std::string         grammar_data;
 | 
						|
    LlgTokenizer *      tokenizer;
 | 
						|
    LlgMatcher *        grammar;
 | 
						|
};
 | 
						|
 | 
						|
static LlgMatcher * llama_sampler_llg_new(LlgTokenizer * tokenizer, const char * grammar_kind,
 | 
						|
                                          const char * grammar_data) {
 | 
						|
    LlgConstraintInit cinit;
 | 
						|
    llg_constraint_init_set_defaults(&cinit, tokenizer);
 | 
						|
    const char * log_level = getenv("LLGUIDANCE_LOG_LEVEL");
 | 
						|
    if (log_level && *log_level) {
 | 
						|
        cinit.log_stderr_level = atoi(log_level);
 | 
						|
    }
 | 
						|
    auto c = llg_new_matcher(&cinit, grammar_kind, grammar_data);
 | 
						|
    if (llg_matcher_get_error(c)) {
 | 
						|
        LOG_ERR("llg error: %s\n", llg_matcher_get_error(c));
 | 
						|
        llg_free_matcher(c);
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    return c;
 | 
						|
}
 | 
						|
 | 
						|
static const char * llama_sampler_llg_name(const llama_sampler * /*smpl*/) {
 | 
						|
    return "llguidance";
 | 
						|
}
 | 
						|
 | 
						|
static void llama_sampler_llg_accept_impl(llama_sampler * smpl, llama_token token) {
 | 
						|
    auto * ctx = (llama_sampler_llg *) smpl->ctx;
 | 
						|
    if (ctx->grammar) {
 | 
						|
        llg_matcher_consume_token(ctx->grammar, token);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void llama_sampler_llg_apply(llama_sampler * smpl, llama_token_data_array * cur_p) {
 | 
						|
    auto * ctx = (llama_sampler_llg *) smpl->ctx;
 | 
						|
    if (ctx->grammar) {
 | 
						|
        const uint32_t * mask = llg_matcher_get_mask(ctx->grammar);
 | 
						|
        if (mask == nullptr) {
 | 
						|
            if (llg_matcher_compute_mask(ctx->grammar) == 0) {
 | 
						|
                mask = llg_matcher_get_mask(ctx->grammar);
 | 
						|
            } else {
 | 
						|
                LOG_ERR("llg error: %s\n", llg_matcher_get_error(ctx->grammar));
 | 
						|
                llg_free_matcher(ctx->grammar);
 | 
						|
                ctx->grammar = nullptr;
 | 
						|
                return;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        for (size_t i = 0; i < cur_p->size; ++i) {
 | 
						|
            auto token = cur_p->data[i].id;
 | 
						|
            if ((mask[token / 32] & (1 << (token % 32))) == 0) {
 | 
						|
                cur_p->data[i].logit = -INFINITY;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void llama_sampler_llg_reset(llama_sampler * smpl) {
 | 
						|
    auto * ctx = (llama_sampler_llg *) smpl->ctx;
 | 
						|
    if (ctx->grammar) {
 | 
						|
        llg_matcher_reset(ctx->grammar);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static llama_sampler * llama_sampler_llg_clone(const llama_sampler * smpl) {
 | 
						|
    const auto * ctx = (const llama_sampler_llg *) smpl->ctx;
 | 
						|
 | 
						|
    auto * result = llama_sampler_init_llg(ctx->vocab, nullptr, nullptr);
 | 
						|
 | 
						|
    // copy the state
 | 
						|
    {
 | 
						|
        auto * result_ctx = (llama_sampler_llg *) result->ctx;
 | 
						|
 | 
						|
        if (ctx->grammar) {
 | 
						|
            result_ctx->grammar_kind = ctx->grammar_kind;
 | 
						|
            result_ctx->grammar_data = ctx->grammar_data;
 | 
						|
            result_ctx->grammar      = llg_clone_matcher(ctx->grammar);
 | 
						|
            result_ctx->tokenizer    = llg_clone_tokenizer(ctx->tokenizer);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
static void llama_sampler_llg_free(llama_sampler * smpl) {
 | 
						|
    const auto * ctx = (llama_sampler_llg *) smpl->ctx;
 | 
						|
 | 
						|
    if (ctx->grammar) {
 | 
						|
        llg_free_matcher(ctx->grammar);
 | 
						|
        llg_free_tokenizer(ctx->tokenizer);
 | 
						|
    }
 | 
						|
 | 
						|
    delete ctx;
 | 
						|
}
 | 
						|
 | 
						|
static llama_sampler_i llama_sampler_llg_i = {
 | 
						|
    /* .name   = */ llama_sampler_llg_name,
 | 
						|
    /* .accept = */ llama_sampler_llg_accept_impl,
 | 
						|
    /* .apply  = */ llama_sampler_llg_apply,
 | 
						|
    /* .reset  = */ llama_sampler_llg_reset,
 | 
						|
    /* .clone  = */ llama_sampler_llg_clone,
 | 
						|
    /* .free   = */ llama_sampler_llg_free,
 | 
						|
};
 | 
						|
 | 
						|
static size_t llama_sampler_llg_tokenize_fn(const void * user_data, const uint8_t * bytes, size_t bytes_len,
 | 
						|
                                            uint32_t * output_tokens, size_t output_tokens_len) {
 | 
						|
    const llama_vocab * vocab = (const llama_vocab *) user_data;
 | 
						|
    int                 r     = 0;
 | 
						|
    try {
 | 
						|
        r = llama_tokenize(vocab, (const char *) bytes, bytes_len, (int32_t *) output_tokens, output_tokens_len, false,
 | 
						|
                           true);
 | 
						|
    } catch (const std::exception & e) {
 | 
						|
        GGML_ABORT("llama_tokenize failed: %s\n", e.what());
 | 
						|
    }
 | 
						|
    if (r < 0) {
 | 
						|
        return -r;
 | 
						|
    }
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
static LlgTokenizer * llama_sampler_llg_new_tokenizer(const llama_vocab * vocab) {
 | 
						|
    // TODO store the tokenizer in the vocab somehow
 | 
						|
    static const llama_vocab * vocab_cache;
 | 
						|
    static LlgTokenizer *      tokenizer_cache;
 | 
						|
 | 
						|
    if (vocab_cache == vocab) {
 | 
						|
        return llg_clone_tokenizer(tokenizer_cache);
 | 
						|
    }
 | 
						|
 | 
						|
    auto tok_eos = llama_vocab_eot(vocab);
 | 
						|
    if (tok_eos == LLAMA_TOKEN_NULL) {
 | 
						|
        tok_eos = llama_vocab_eos(vocab);
 | 
						|
    }
 | 
						|
 | 
						|
    size_t vocab_size = llama_vocab_n_tokens(vocab);
 | 
						|
 | 
						|
    auto token_lens       = new uint32_t[vocab_size];
 | 
						|
    // we typically have ~7 bytes per token; let's go on the safe side here
 | 
						|
    auto token_bytes_size = vocab_size * 16 + 1024 * 1024;
 | 
						|
    auto token_bytes      = new uint8_t[token_bytes_size];
 | 
						|
 | 
						|
    size_t offset = 0;
 | 
						|
    for (size_t i = 0; i < vocab_size; i++) {
 | 
						|
        size_t max_token = 1024;
 | 
						|
        if (token_bytes_size - offset < max_token) {
 | 
						|
            GGML_ABORT("token_bytes buffer too small\n");
 | 
						|
        }
 | 
						|
 | 
						|
        llama_token token = i;
 | 
						|
        auto        dp    = (char *) token_bytes + offset;
 | 
						|
        auto        size  = llama_detokenize(vocab, &token, 1, dp, max_token, false, false);
 | 
						|
        if (size < 0) {
 | 
						|
            GGML_ABORT("llama_detokenize failed\n");
 | 
						|
        }
 | 
						|
        if (size == 0) {
 | 
						|
            size = llama_detokenize(vocab, &token, 1, dp + 1, max_token - 1, false, true);
 | 
						|
            if (size < 0) {
 | 
						|
                GGML_ABORT("llama_detokenize failed\n");
 | 
						|
            }
 | 
						|
            if (size != 0) {
 | 
						|
                *dp = '\xff';  // special token prefix marker
 | 
						|
                size += 1;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        token_lens[i] = size;
 | 
						|
        offset += size;
 | 
						|
    }
 | 
						|
 | 
						|
    LlgTokenizerInit tinit = {
 | 
						|
        /* .vocab_size                         = */ (uint32_t) vocab_size,
 | 
						|
        /* .tok_eos                            = */ (uint32_t) tok_eos,
 | 
						|
        /* .token_lens                         = */ token_lens,
 | 
						|
        /* .token_bytes                        = */ token_bytes,
 | 
						|
        /* .tokenizer_json                     = */ nullptr,
 | 
						|
        /* .tokenize_assumes_string            = */ true,
 | 
						|
        /* .tokenize_fn                        = */ llama_sampler_llg_tokenize_fn,
 | 
						|
        /* .use_approximate_greedy_tokenize_fn = */ false,
 | 
						|
        /* .tokenize_user_data                 = */ vocab,
 | 
						|
    };
 | 
						|
 | 
						|
    char           error_buffer[1024];
 | 
						|
    LlgTokenizer * tokenizer = llg_new_tokenizer(&tinit, error_buffer, sizeof(error_buffer));
 | 
						|
 | 
						|
    delete[] token_bytes;
 | 
						|
    delete[] token_lens;
 | 
						|
 | 
						|
    if (tokenizer == nullptr) {
 | 
						|
        LOG_ERR("llg tokenizer error: %s\n", error_buffer);
 | 
						|
        return tokenizer;
 | 
						|
    }
 | 
						|
 | 
						|
    if (tokenizer_cache) {
 | 
						|
        llg_free_tokenizer(tokenizer_cache);
 | 
						|
    }
 | 
						|
    vocab_cache     = vocab;
 | 
						|
    tokenizer_cache = tokenizer;
 | 
						|
 | 
						|
    return llg_clone_tokenizer(tokenizer_cache);
 | 
						|
}
 | 
						|
 | 
						|
llama_sampler * llama_sampler_init_llg(const llama_vocab * vocab, const char * grammar_kind,
 | 
						|
                                       const char * grammar_data) {
 | 
						|
    auto * ctx = new llama_sampler_llg;
 | 
						|
 | 
						|
    if (grammar_kind != nullptr && grammar_kind[0] != '\0') {
 | 
						|
        auto tokenizer = llama_sampler_llg_new_tokenizer(vocab);
 | 
						|
        *ctx           = {
 | 
						|
            /* .vocab        = */ vocab,
 | 
						|
            /* .grammar_kind = */ grammar_kind,
 | 
						|
            /* .grammar_data = */ grammar_data,
 | 
						|
            /* .tokenizer    = */ tokenizer,
 | 
						|
            /* .grammar      = */ llama_sampler_llg_new(tokenizer, grammar_kind, grammar_data),
 | 
						|
        };
 | 
						|
        if (ctx->grammar) {
 | 
						|
            GGML_ASSERT(((size_t) llama_vocab_n_tokens(vocab) + 31) / 32 * 4 ==
 | 
						|
                        llg_matcher_get_mask_byte_size(ctx->grammar));
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        *ctx = {
 | 
						|
            /* .vocab        = */ vocab,
 | 
						|
            /* .grammar_kind = */ {},
 | 
						|
            /* .grammar_data = */ {},
 | 
						|
            /* .tokenizer    = */ nullptr,
 | 
						|
            /* .grammar      = */ nullptr,
 | 
						|
        };
 | 
						|
    }
 | 
						|
 | 
						|
    return llama_sampler_init(
 | 
						|
        /* .iface = */ &llama_sampler_llg_i,
 | 
						|
        /* .ctx   = */ ctx);
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
llama_sampler * llama_sampler_init_llg(const llama_vocab *, const char *, const char *) {
 | 
						|
    LOG_WRN("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
 | 
						|
    return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
#endif  // LLAMA_USE_LLGUIDANCE
 |