mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			17805 lines
		
	
	
		
			706 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			17805 lines
		
	
	
		
			706 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #define LLAMA_API_INTERNAL
 | |
| #include "llama.h"
 | |
| 
 | |
| #include "unicode.h"
 | |
| 
 | |
| #include "ggml.h"
 | |
| #include "ggml-alloc.h"
 | |
| #include "ggml-backend.h"
 | |
| 
 | |
| #ifdef GGML_USE_CUDA
 | |
| #  include "ggml-cuda.h"
 | |
| #elif defined(GGML_USE_CLBLAST)
 | |
| #  include "ggml-opencl.h"
 | |
| #elif defined(GGML_USE_VULKAN)
 | |
| #  include "ggml-vulkan.h"
 | |
| #elif defined(GGML_USE_SYCL)
 | |
| #  include "ggml-sycl.h"
 | |
| #elif defined(GGML_USE_KOMPUTE)
 | |
| #   include "ggml-kompute.h"
 | |
| #endif
 | |
| 
 | |
| #ifdef GGML_USE_METAL
 | |
| #  include "ggml-metal.h"
 | |
| #endif
 | |
| #ifdef GGML_USE_MPI
 | |
| #  include "ggml-mpi.h"
 | |
| #endif
 | |
| #ifndef QK_K
 | |
| #  ifdef GGML_QKK_64
 | |
| #    define QK_K 64
 | |
| #  else
 | |
| #    define QK_K 256
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
| #ifdef __has_include
 | |
|     #if __has_include(<unistd.h>)
 | |
|         #include <unistd.h>
 | |
|         #if defined(_POSIX_MAPPED_FILES)
 | |
|             #include <sys/mman.h>
 | |
|             #include <fcntl.h>
 | |
|         #endif
 | |
|         #if defined(_POSIX_MEMLOCK_RANGE)
 | |
|             #include <sys/resource.h>
 | |
|         #endif
 | |
|     #endif
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN32)
 | |
|     #define WIN32_LEAN_AND_MEAN
 | |
|     #ifndef NOMINMAX
 | |
|         #define NOMINMAX
 | |
|     #endif
 | |
|     #include <windows.h>
 | |
|     #ifndef PATH_MAX
 | |
|         #define PATH_MAX MAX_PATH
 | |
|     #endif
 | |
|     #include <io.h>
 | |
| #endif
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <array>
 | |
| #include <cassert>
 | |
| #include <cctype>
 | |
| #include <cfloat>
 | |
| #include <cinttypes>
 | |
| #include <climits>
 | |
| #include <cmath>
 | |
| #include <cstdarg>
 | |
| #include <cstddef>
 | |
| #include <cstdint>
 | |
| #include <cstdio>
 | |
| #include <cstring>
 | |
| #include <ctime>
 | |
| #include <forward_list>
 | |
| #include <fstream>
 | |
| #include <functional>
 | |
| #include <future>
 | |
| #include <initializer_list>
 | |
| #include <locale>
 | |
| #include <map>
 | |
| #include <memory>
 | |
| #include <mutex>
 | |
| #include <numeric>
 | |
| #include <queue>
 | |
| #include <random>
 | |
| #include <regex>
 | |
| #include <set>
 | |
| #include <sstream>
 | |
| #include <thread>
 | |
| #include <type_traits>
 | |
| #include <unordered_map>
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #pragma warning(disable: 4244 4267) // possible loss of data
 | |
| #endif
 | |
| 
 | |
| #ifdef __GNUC__
 | |
| #ifdef __MINGW32__
 | |
| #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
 | |
| #else
 | |
| #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
 | |
| #endif
 | |
| #else
 | |
| #define LLAMA_ATTRIBUTE_FORMAT(...)
 | |
| #endif
 | |
| 
 | |
| #define LLAMA_MAX_NODES   8192
 | |
| #define LLAMA_MAX_EXPERTS 60
 | |
| 
 | |
| 
 | |
| //
 | |
| // logging
 | |
| //
 | |
| 
 | |
| LLAMA_ATTRIBUTE_FORMAT(2, 3)
 | |
| static void llama_log_internal        (ggml_log_level level, const char* format, ...);
 | |
| static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
 | |
| 
 | |
| #define LLAMA_LOG_INFO(...)  llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
 | |
| #define LLAMA_LOG_WARN(...)  llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
 | |
| #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
 | |
| 
 | |
| //
 | |
| // helpers
 | |
| //
 | |
| 
 | |
| static size_t utf8_len(char src) {
 | |
|     const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
 | |
|     uint8_t highbits = static_cast<uint8_t>(src) >> 4;
 | |
|     return lookup[highbits];
 | |
| }
 | |
| 
 | |
| static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
 | |
|     std::string result;
 | |
|     for (size_t pos = 0; ; pos += search.length()) {
 | |
|         auto new_pos = s.find(search, pos);
 | |
|         if (new_pos == std::string::npos) {
 | |
|             result += s.substr(pos, s.size() - pos);
 | |
|             break;
 | |
|         }
 | |
|         result += s.substr(pos, new_pos - pos) + replace;
 | |
|         pos = new_pos;
 | |
|     }
 | |
|     s = std::move(result);
 | |
| }
 | |
| 
 | |
| static bool is_float_close(float a, float b, float abs_tol) {
 | |
|     // Check for non-negative tolerance
 | |
|     if (abs_tol < 0.0) {
 | |
|         throw std::invalid_argument("Tolerance must be non-negative");
 | |
|     }
 | |
| 
 | |
|     // Exact equality check
 | |
|     if (a == b) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     // Check for infinities
 | |
|     if (std::isinf(a) || std::isinf(b)) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Regular comparison using the provided absolute tolerance
 | |
|     return std::fabs(b - a) <= abs_tol;
 | |
| }
 | |
| 
 | |
| static void zeros(std::ofstream & file, size_t n) {
 | |
|     char zero = 0;
 | |
|     for (size_t i = 0; i < n; ++i) {
 | |
|         file.write(&zero, 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| LLAMA_ATTRIBUTE_FORMAT(1, 2)
 | |
| static std::string format(const char * fmt, ...) {
 | |
|     va_list ap;
 | |
|     va_list ap2;
 | |
|     va_start(ap, fmt);
 | |
|     va_copy(ap2, ap);
 | |
|     int size = vsnprintf(NULL, 0, fmt, ap);
 | |
|     GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
 | |
|     std::vector<char> buf(size + 1);
 | |
|     int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
 | |
|     GGML_ASSERT(size2 == size);
 | |
|     va_end(ap2);
 | |
|     va_end(ap);
 | |
|     return std::string(buf.data(), size);
 | |
| }
 | |
| 
 | |
| //
 | |
| // gguf constants (sync with gguf.py)
 | |
| //
 | |
| 
 | |
| enum llm_arch {
 | |
|     LLM_ARCH_LLAMA,
 | |
|     LLM_ARCH_FALCON,
 | |
|     LLM_ARCH_BAICHUAN,
 | |
|     LLM_ARCH_GROK,
 | |
|     LLM_ARCH_GPT2,
 | |
|     LLM_ARCH_GPTJ,
 | |
|     LLM_ARCH_GPTNEOX,
 | |
|     LLM_ARCH_MPT,
 | |
|     LLM_ARCH_STARCODER,
 | |
|     LLM_ARCH_PERSIMMON,
 | |
|     LLM_ARCH_REFACT,
 | |
|     LLM_ARCH_BERT,
 | |
|     LLM_ARCH_NOMIC_BERT,
 | |
|     LLM_ARCH_BLOOM,
 | |
|     LLM_ARCH_STABLELM,
 | |
|     LLM_ARCH_QWEN,
 | |
|     LLM_ARCH_QWEN2,
 | |
|     LLM_ARCH_QWEN2MOE,
 | |
|     LLM_ARCH_PHI2,
 | |
|     LLM_ARCH_PHI3,
 | |
|     LLM_ARCH_PLAMO,
 | |
|     LLM_ARCH_CODESHELL,
 | |
|     LLM_ARCH_ORION,
 | |
|     LLM_ARCH_INTERNLM2,
 | |
|     LLM_ARCH_MINICPM,
 | |
|     LLM_ARCH_GEMMA,
 | |
|     LLM_ARCH_STARCODER2,
 | |
|     LLM_ARCH_MAMBA,
 | |
|     LLM_ARCH_XVERSE,
 | |
|     LLM_ARCH_COMMAND_R,
 | |
|     LLM_ARCH_DBRX,
 | |
|     LLM_ARCH_OLMO,
 | |
|     LLM_ARCH_UNKNOWN,
 | |
| };
 | |
| 
 | |
| static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
 | |
|     { LLM_ARCH_LLAMA,           "llama"      },
 | |
|     { LLM_ARCH_FALCON,          "falcon"     },
 | |
|     { LLM_ARCH_GROK,            "grok"       },
 | |
|     { LLM_ARCH_GPT2,            "gpt2"       },
 | |
|     { LLM_ARCH_GPTJ,            "gptj"       },
 | |
|     { LLM_ARCH_GPTNEOX,         "gptneox"    },
 | |
|     { LLM_ARCH_MPT,             "mpt"        },
 | |
|     { LLM_ARCH_BAICHUAN,        "baichuan"   },
 | |
|     { LLM_ARCH_STARCODER,       "starcoder"  },
 | |
|     { LLM_ARCH_PERSIMMON,       "persimmon"  },
 | |
|     { LLM_ARCH_REFACT,          "refact"     },
 | |
|     { LLM_ARCH_BERT,            "bert"       },
 | |
|     { LLM_ARCH_NOMIC_BERT,      "nomic-bert" },
 | |
|     { LLM_ARCH_BLOOM,           "bloom"      },
 | |
|     { LLM_ARCH_STABLELM,        "stablelm"   },
 | |
|     { LLM_ARCH_QWEN,            "qwen"       },
 | |
|     { LLM_ARCH_QWEN2,           "qwen2"      },
 | |
|     { LLM_ARCH_QWEN2MOE,        "qwen2moe"   },
 | |
|     { LLM_ARCH_PHI2,            "phi2"       },
 | |
|     { LLM_ARCH_PHI3,            "phi3"       },
 | |
|     { LLM_ARCH_PLAMO,           "plamo"      },
 | |
|     { LLM_ARCH_CODESHELL,       "codeshell"  },
 | |
|     { LLM_ARCH_ORION,           "orion"      },
 | |
|     { LLM_ARCH_INTERNLM2,       "internlm2"  },
 | |
|     { LLM_ARCH_MINICPM,         "minicpm"    },
 | |
|     { LLM_ARCH_GEMMA,           "gemma"      },
 | |
|     { LLM_ARCH_STARCODER2,      "starcoder2" },
 | |
|     { LLM_ARCH_MAMBA,           "mamba"      },
 | |
|     { LLM_ARCH_XVERSE,          "xverse"     },
 | |
|     { LLM_ARCH_COMMAND_R,       "command-r"  },
 | |
|     { LLM_ARCH_DBRX,            "dbrx"       },
 | |
|     { LLM_ARCH_OLMO,            "olmo"       },
 | |
|     { LLM_ARCH_UNKNOWN,         "(unknown)"  },
 | |
| };
 | |
| 
 | |
| enum llm_kv {
 | |
|     LLM_KV_GENERAL_ARCHITECTURE,
 | |
|     LLM_KV_GENERAL_QUANTIZATION_VERSION,
 | |
|     LLM_KV_GENERAL_ALIGNMENT,
 | |
|     LLM_KV_GENERAL_NAME,
 | |
|     LLM_KV_GENERAL_AUTHOR,
 | |
|     LLM_KV_GENERAL_VERSION,
 | |
|     LLM_KV_GENERAL_URL,
 | |
|     LLM_KV_GENERAL_DESCRIPTION,
 | |
|     LLM_KV_GENERAL_LICENSE,
 | |
|     LLM_KV_GENERAL_SOURCE_URL,
 | |
|     LLM_KV_GENERAL_SOURCE_HF_REPO,
 | |
| 
 | |
|     LLM_KV_VOCAB_SIZE,
 | |
|     LLM_KV_CONTEXT_LENGTH,
 | |
|     LLM_KV_EMBEDDING_LENGTH,
 | |
|     LLM_KV_BLOCK_COUNT,
 | |
|     LLM_KV_FEED_FORWARD_LENGTH,
 | |
|     LLM_KV_USE_PARALLEL_RESIDUAL,
 | |
|     LLM_KV_TENSOR_DATA_LAYOUT,
 | |
|     LLM_KV_EXPERT_COUNT,
 | |
|     LLM_KV_EXPERT_USED_COUNT,
 | |
|     LLM_KV_POOLING_TYPE,
 | |
|     LLM_KV_LOGIT_SCALE,
 | |
| 
 | |
|     LLM_KV_ATTENTION_HEAD_COUNT,
 | |
|     LLM_KV_ATTENTION_HEAD_COUNT_KV,
 | |
|     LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
 | |
|     LLM_KV_ATTENTION_CLAMP_KQV,
 | |
|     LLM_KV_ATTENTION_KEY_LENGTH,
 | |
|     LLM_KV_ATTENTION_VALUE_LENGTH,
 | |
|     LLM_KV_ATTENTION_LAYERNORM_EPS,
 | |
|     LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
 | |
|     LLM_KV_ATTENTION_CAUSAL,
 | |
| 
 | |
|     LLM_KV_ROPE_DIMENSION_COUNT,
 | |
|     LLM_KV_ROPE_FREQ_BASE,
 | |
|     LLM_KV_ROPE_SCALE_LINEAR,
 | |
|     LLM_KV_ROPE_SCALING_TYPE,
 | |
|     LLM_KV_ROPE_SCALING_FACTOR,
 | |
|     LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
 | |
|     LLM_KV_ROPE_SCALING_FINETUNED,
 | |
| 
 | |
|     LLM_KV_SPLIT_NO,
 | |
|     LLM_KV_SPLIT_COUNT,
 | |
|     LLM_KV_SPLIT_TENSORS_COUNT,
 | |
| 
 | |
|     LLM_KV_SSM_INNER_SIZE,
 | |
|     LLM_KV_SSM_CONV_KERNEL,
 | |
|     LLM_KV_SSM_STATE_SIZE,
 | |
|     LLM_KV_SSM_TIME_STEP_RANK,
 | |
| 
 | |
|     LLM_KV_TOKENIZER_MODEL,
 | |
|     LLM_KV_TOKENIZER_LIST,
 | |
|     LLM_KV_TOKENIZER_TOKEN_TYPE,
 | |
|     LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
 | |
|     LLM_KV_TOKENIZER_SCORES,
 | |
|     LLM_KV_TOKENIZER_MERGES,
 | |
|     LLM_KV_TOKENIZER_BOS_ID,
 | |
|     LLM_KV_TOKENIZER_EOS_ID,
 | |
|     LLM_KV_TOKENIZER_UNK_ID,
 | |
|     LLM_KV_TOKENIZER_SEP_ID,
 | |
|     LLM_KV_TOKENIZER_PAD_ID,
 | |
|     LLM_KV_TOKENIZER_CLS_ID,
 | |
|     LLM_KV_TOKENIZER_MASK_ID,
 | |
|     LLM_KV_TOKENIZER_ADD_BOS,
 | |
|     LLM_KV_TOKENIZER_ADD_EOS,
 | |
|     LLM_KV_TOKENIZER_ADD_PREFIX,
 | |
|     LLM_KV_TOKENIZER_HF_JSON,
 | |
|     LLM_KV_TOKENIZER_RWKV,
 | |
|     LLM_KV_TOKENIZER_PREFIX_ID,
 | |
|     LLM_KV_TOKENIZER_SUFFIX_ID,
 | |
|     LLM_KV_TOKENIZER_MIDDLE_ID,
 | |
|     LLM_KV_TOKENIZER_EOT_ID,
 | |
| };
 | |
| 
 | |
| static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
 | |
|     { LLM_KV_GENERAL_ARCHITECTURE,          "general.architecture"                  },
 | |
|     { LLM_KV_GENERAL_QUANTIZATION_VERSION,  "general.quantization_version"          },
 | |
|     { LLM_KV_GENERAL_ALIGNMENT,             "general.alignment"                     },
 | |
|     { LLM_KV_GENERAL_NAME,                  "general.name"                          },
 | |
|     { LLM_KV_GENERAL_AUTHOR,                "general.author"                        },
 | |
|     { LLM_KV_GENERAL_VERSION,               "general.version"                       },
 | |
|     { LLM_KV_GENERAL_URL,                   "general.url"                           },
 | |
|     { LLM_KV_GENERAL_DESCRIPTION,           "general.description"                   },
 | |
|     { LLM_KV_GENERAL_LICENSE,               "general.license"                       },
 | |
|     { LLM_KV_GENERAL_SOURCE_URL,            "general.source.url"                    },
 | |
|     { LLM_KV_GENERAL_SOURCE_HF_REPO,        "general.source.huggingface.repository" },
 | |
| 
 | |
|     { LLM_KV_VOCAB_SIZE,                    "%s.vocab_size"            },
 | |
|     { LLM_KV_CONTEXT_LENGTH,                "%s.context_length"        },
 | |
|     { LLM_KV_EMBEDDING_LENGTH,              "%s.embedding_length"      },
 | |
|     { LLM_KV_BLOCK_COUNT,                   "%s.block_count"           },
 | |
|     { LLM_KV_FEED_FORWARD_LENGTH,           "%s.feed_forward_length"   },
 | |
|     { LLM_KV_USE_PARALLEL_RESIDUAL,         "%s.use_parallel_residual" },
 | |
|     { LLM_KV_TENSOR_DATA_LAYOUT,            "%s.tensor_data_layout"    },
 | |
|     { LLM_KV_EXPERT_COUNT,                  "%s.expert_count"          },
 | |
|     { LLM_KV_EXPERT_USED_COUNT,             "%s.expert_used_count"     },
 | |
|     { LLM_KV_POOLING_TYPE ,                 "%s.pooling_type"          },
 | |
|     { LLM_KV_LOGIT_SCALE,                   "%s.logit_scale"           },
 | |
| 
 | |
|     { LLM_KV_ATTENTION_HEAD_COUNT,          "%s.attention.head_count"             },
 | |
|     { LLM_KV_ATTENTION_HEAD_COUNT_KV,       "%s.attention.head_count_kv"          },
 | |
|     { LLM_KV_ATTENTION_MAX_ALIBI_BIAS,      "%s.attention.max_alibi_bias"         },
 | |
|     { LLM_KV_ATTENTION_CLAMP_KQV,           "%s.attention.clamp_kqv"              },
 | |
|     { LLM_KV_ATTENTION_KEY_LENGTH,          "%s.attention.key_length"             },
 | |
|     { LLM_KV_ATTENTION_VALUE_LENGTH,        "%s.attention.value_length"           },
 | |
|     { LLM_KV_ATTENTION_LAYERNORM_EPS,       "%s.attention.layer_norm_epsilon"     },
 | |
|     { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,   "%s.attention.layer_norm_rms_epsilon" },
 | |
|     { LLM_KV_ATTENTION_CAUSAL,              "%s.attention.causal"                 },
 | |
| 
 | |
|     { LLM_KV_ROPE_DIMENSION_COUNT,          "%s.rope.dimension_count"                 },
 | |
|     { LLM_KV_ROPE_FREQ_BASE,                "%s.rope.freq_base"                       },
 | |
|     { LLM_KV_ROPE_SCALE_LINEAR,             "%s.rope.scale_linear"                    },
 | |
|     { LLM_KV_ROPE_SCALING_TYPE,             "%s.rope.scaling.type"                    },
 | |
|     { LLM_KV_ROPE_SCALING_FACTOR,           "%s.rope.scaling.factor"                  },
 | |
|     { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,     "%s.rope.scaling.original_context_length" },
 | |
|     { LLM_KV_ROPE_SCALING_FINETUNED,        "%s.rope.scaling.finetuned"               },
 | |
| 
 | |
|     { LLM_KV_SPLIT_NO,                      "split.no"            },
 | |
|     { LLM_KV_SPLIT_COUNT,                   "split.count"         },
 | |
|     { LLM_KV_SPLIT_TENSORS_COUNT,           "split.tensors.count" },
 | |
| 
 | |
|     { LLM_KV_SSM_CONV_KERNEL,               "%s.ssm.conv_kernel"    },
 | |
|     { LLM_KV_SSM_INNER_SIZE,                "%s.ssm.inner_size"     },
 | |
|     { LLM_KV_SSM_STATE_SIZE,                "%s.ssm.state_size"     },
 | |
|     { LLM_KV_SSM_TIME_STEP_RANK,            "%s.ssm.time_step_rank" },
 | |
| 
 | |
|     { LLM_KV_TOKENIZER_MODEL,               "tokenizer.ggml.model"              },
 | |
|     { LLM_KV_TOKENIZER_LIST,                "tokenizer.ggml.tokens"             },
 | |
|     { LLM_KV_TOKENIZER_TOKEN_TYPE,          "tokenizer.ggml.token_type"         },
 | |
|     { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,    "tokenizer.ggml.token_type_count"   },
 | |
|     { LLM_KV_TOKENIZER_SCORES,              "tokenizer.ggml.scores"             },
 | |
|     { LLM_KV_TOKENIZER_MERGES,              "tokenizer.ggml.merges"             },
 | |
|     { LLM_KV_TOKENIZER_BOS_ID,              "tokenizer.ggml.bos_token_id"       },
 | |
|     { LLM_KV_TOKENIZER_EOS_ID,              "tokenizer.ggml.eos_token_id"       },
 | |
|     { LLM_KV_TOKENIZER_UNK_ID,              "tokenizer.ggml.unknown_token_id"   },
 | |
|     { LLM_KV_TOKENIZER_SEP_ID,              "tokenizer.ggml.seperator_token_id" },
 | |
|     { LLM_KV_TOKENIZER_PAD_ID,              "tokenizer.ggml.padding_token_id"   },
 | |
|     { LLM_KV_TOKENIZER_CLS_ID,              "tokenizer.ggml.cls_token_id"       },
 | |
|     { LLM_KV_TOKENIZER_MASK_ID,             "tokenizer.ggml.mask_token_id"      },
 | |
|     { LLM_KV_TOKENIZER_ADD_BOS,             "tokenizer.ggml.add_bos_token"      },
 | |
|     { LLM_KV_TOKENIZER_ADD_EOS,             "tokenizer.ggml.add_eos_token"      },
 | |
|     { LLM_KV_TOKENIZER_ADD_PREFIX,          "tokenizer.ggml.add_space_prefix"   },
 | |
|     { LLM_KV_TOKENIZER_HF_JSON,             "tokenizer.huggingface.json"        },
 | |
|     { LLM_KV_TOKENIZER_RWKV,                "tokenizer.rwkv.world"              },
 | |
|     { LLM_KV_TOKENIZER_PREFIX_ID,           "tokenizer.ggml.prefix_token_id"    },
 | |
|     { LLM_KV_TOKENIZER_SUFFIX_ID,           "tokenizer.ggml.suffix_token_id"    },
 | |
|     { LLM_KV_TOKENIZER_MIDDLE_ID,           "tokenizer.ggml.middle_token_id"    },
 | |
|     { LLM_KV_TOKENIZER_EOT_ID,              "tokenizer.ggml.eot_token_id"       },
 | |
| };
 | |
| 
 | |
| struct LLM_KV {
 | |
|     LLM_KV(llm_arch arch) : arch(arch) {}
 | |
| 
 | |
|     llm_arch arch;
 | |
| 
 | |
|     std::string operator()(llm_kv kv) const {
 | |
|         return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
 | |
|     }
 | |
| };
 | |
| 
 | |
| enum llm_tensor {
 | |
|     LLM_TENSOR_TOKEN_EMBD,
 | |
|     LLM_TENSOR_TOKEN_EMBD_NORM,
 | |
|     LLM_TENSOR_TOKEN_TYPES,
 | |
|     LLM_TENSOR_POS_EMBD,
 | |
|     LLM_TENSOR_OUTPUT,
 | |
|     LLM_TENSOR_OUTPUT_NORM,
 | |
|     LLM_TENSOR_ROPE_FREQS,
 | |
|     LLM_TENSOR_ATTN_Q,
 | |
|     LLM_TENSOR_ATTN_K,
 | |
|     LLM_TENSOR_ATTN_V,
 | |
|     LLM_TENSOR_ATTN_QKV,
 | |
|     LLM_TENSOR_ATTN_OUT,
 | |
|     LLM_TENSOR_ATTN_NORM,
 | |
|     LLM_TENSOR_ATTN_NORM_2,
 | |
|     LLM_TENSOR_ATTN_OUT_NORM,
 | |
|     LLM_TENSOR_ATTN_ROT_EMBD,
 | |
|     LLM_TENSOR_FFN_GATE_INP,
 | |
|     LLM_TENSOR_FFN_GATE_INP_SHEXP,
 | |
|     LLM_TENSOR_FFN_NORM,
 | |
|     LLM_TENSOR_FFN_GATE,
 | |
|     LLM_TENSOR_FFN_DOWN,
 | |
|     LLM_TENSOR_FFN_UP,
 | |
|     LLM_TENSOR_FFN_ACT,
 | |
|     LLM_TENSOR_FFN_DOWN_EXP,  // split experts for backward compatibility
 | |
|     LLM_TENSOR_FFN_GATE_EXP,
 | |
|     LLM_TENSOR_FFN_UP_EXP,
 | |
|     LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
 | |
|     LLM_TENSOR_FFN_GATE_EXPS,
 | |
|     LLM_TENSOR_FFN_UP_EXPS,
 | |
|     LLM_TENSOR_FFN_DOWN_SHEXP,
 | |
|     LLM_TENSOR_FFN_GATE_SHEXP,
 | |
|     LLM_TENSOR_FFN_UP_SHEXP,
 | |
|     LLM_TENSOR_ATTN_Q_NORM,
 | |
|     LLM_TENSOR_ATTN_K_NORM,
 | |
|     LLM_TENSOR_LAYER_OUT_NORM,
 | |
|     LLM_TENSOR_SSM_IN,
 | |
|     LLM_TENSOR_SSM_CONV1D,
 | |
|     LLM_TENSOR_SSM_X,
 | |
|     LLM_TENSOR_SSM_DT,
 | |
|     LLM_TENSOR_SSM_A,
 | |
|     LLM_TENSOR_SSM_D,
 | |
|     LLM_TENSOR_SSM_OUT,
 | |
| };
 | |
| 
 | |
| static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
 | |
|     {
 | |
|         LLM_ARCH_LLAMA,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
 | |
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
 | |
|             { LLM_TENSOR_OUTPUT,          "output" },
 | |
|             { LLM_TENSOR_ROPE_FREQS,      "rope_freqs" },
 | |
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
 | |
|             { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
 | |
|             { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
 | |
|             { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
 | |
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
 | |
|             { LLM_TENSOR_ATTN_ROT_EMBD,   "blk.%d.attn_rot_embd" },
 | |
|             { LLM_TENSOR_FFN_GATE_INP,    "blk.%d.ffn_gate_inp" },
 | |
|             { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
 | |
|             { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
 | |
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
 | |
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
 | |
|             { LLM_TENSOR_FFN_GATE_EXP,    "blk.%d.ffn_gate.%d" },
 | |
|             { LLM_TENSOR_FFN_DOWN_EXP,    "blk.%d.ffn_down.%d" },
 | |
|             { LLM_TENSOR_FFN_UP_EXP,      "blk.%d.ffn_up.%d" },
 | |
|             { LLM_TENSOR_FFN_GATE_EXPS,   "blk.%d.ffn_gate_exps" },
 | |
|             { LLM_TENSOR_FFN_DOWN_EXPS,   "blk.%d.ffn_down_exps" },
 | |
|             { LLM_TENSOR_FFN_UP_EXPS,     "blk.%d.ffn_up_exps" },
 | |
|         },
 | |
|     },
 | |
|     {
 | |
|         LLM_ARCH_BAICHUAN,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
 | |
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
 | |
|             { LLM_TENSOR_OUTPUT,          "output" },
 | |
|             { LLM_TENSOR_ROPE_FREQS,      "rope_freqs" },
 | |
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
 | |
|             { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
 | |
|             { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
 | |
|             { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
 | |
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
 | |
|             { LLM_TENSOR_ATTN_ROT_EMBD,   "blk.%d.attn_rot_embd" },
 | |
|             { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
 | |
|             { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
 | |
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
 | |
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
 | |
|         },
 | |
|     },
 | |
|     {
 | |
|         LLM_ARCH_FALCON,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
 | |
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
 | |
|             { LLM_TENSOR_OUTPUT,          "output" },
 | |
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
 | |
|             { LLM_TENSOR_ATTN_NORM_2,     "blk.%d.attn_norm_2" },
 | |
|             { LLM_TENSOR_ATTN_QKV,        "blk.%d.attn_qkv" },
 | |
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
 | |
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
 | |
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
 | |
|         },
 | |
|     },
 | |
|     {
 | |
|         LLM_ARCH_GROK,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
 | |
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
 | |
|             { LLM_TENSOR_OUTPUT,          "output" },
 | |
|             { LLM_TENSOR_ROPE_FREQS,      "rope_freqs" },
 | |
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
 | |
|             { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
 | |
|             { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
 | |
|             { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
 | |
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
 | |
|             { LLM_TENSOR_ATTN_ROT_EMBD,   "blk.%d.attn_rot_embd" },
 | |
|             { LLM_TENSOR_FFN_GATE_INP,    "blk.%d.ffn_gate_inp" },
 | |
|             { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
 | |
|             { LLM_TENSOR_FFN_GATE_EXP,    "blk.%d.ffn_gate.%d" },
 | |
|             { LLM_TENSOR_FFN_DOWN_EXP,    "blk.%d.ffn_down.%d" },
 | |
|             { LLM_TENSOR_FFN_UP_EXP,      "blk.%d.ffn_up.%d" },
 | |
|             { LLM_TENSOR_FFN_GATE_EXPS,   "blk.%d.ffn_gate_exps" },
 | |
|             { LLM_TENSOR_FFN_DOWN_EXPS,   "blk.%d.ffn_down_exps" },
 | |
|             { LLM_TENSOR_FFN_UP_EXPS,     "blk.%d.ffn_up_exps" },
 | |
|             { LLM_TENSOR_LAYER_OUT_NORM,  "blk.%d.layer_output_norm" },
 | |
|             { LLM_TENSOR_ATTN_OUT_NORM,   "blk.%d.attn_output_norm" },
 | |
|         },
 | |
|     },
 | |
|     {
 | |
|         LLM_ARCH_GPT2,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
 | |
|             { LLM_TENSOR_POS_EMBD,        "position_embd" },
 | |
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
 | |
|             { LLM_TENSOR_OUTPUT,          "output" },
 | |
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
 | |
|             { LLM_TENSOR_ATTN_QKV,        "blk.%d.attn_qkv" },
 | |
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
 | |
|             { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
 | |
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
 | |
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
 | |
|         },
 | |
|     },
 | |
|     {
 | |
|         LLM_ARCH_GPTJ,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
 | |
|         },
 | |
|     },
 | |
|     {
 | |
|         LLM_ARCH_GPTNEOX,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
 | |
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
 | |
|             { LLM_TENSOR_OUTPUT,          "output" },
 | |
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
 | |
|             { LLM_TENSOR_ATTN_QKV,        "blk.%d.attn_qkv" },
 | |
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
 | |
|             { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
 | |
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
 | |
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
 | |
|         },
 | |
|     },
 | |
|     {
 | |
|         LLM_ARCH_PERSIMMON,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd"},
 | |
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm"},
 | |
|             { LLM_TENSOR_OUTPUT,          "output"},
 | |
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm"},
 | |
|             { LLM_TENSOR_ATTN_QKV,        "blk.%d.attn_qkv"},
 | |
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output"},
 | |
|             { LLM_TENSOR_ATTN_Q_NORM,     "blk.%d.attn_q_norm"},
 | |
|             { LLM_TENSOR_ATTN_K_NORM,     "blk.%d.attn_k_norm"},
 | |
|             { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm"},
 | |
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down"},
 | |
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up"},
 | |
|             { LLM_TENSOR_ATTN_ROT_EMBD,   "blk.%d.attn_rot_embd"},
 | |
|         },
 | |
|     },
 | |
|     {
 | |
|         LLM_ARCH_MPT,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
 | |
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
 | |
|             { LLM_TENSOR_OUTPUT,          "output"},
 | |
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
 | |
|             { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
 | |
|             { LLM_TENSOR_ATTN_QKV,        "blk.%d.attn_qkv" },
 | |
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
 | |
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
 | |
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
 | |
|             { LLM_TENSOR_FFN_ACT,         "blk.%d.ffn.act" },
 | |
|             { LLM_TENSOR_POS_EMBD,        "position_embd" },
 | |
|             { LLM_TENSOR_ATTN_Q_NORM,     "blk.%d.attn_q_norm"},
 | |
|             { LLM_TENSOR_ATTN_K_NORM,     "blk.%d.attn_k_norm"},
 | |
|         },
 | |
|     },
 | |
|     {
 | |
|         LLM_ARCH_STARCODER,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
 | |
|             { LLM_TENSOR_POS_EMBD,        "position_embd" },
 | |
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
 | |
|             { LLM_TENSOR_OUTPUT,          "output" },
 | |
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
 | |
|             { LLM_TENSOR_ATTN_QKV,        "blk.%d.attn_qkv" },
 | |
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
 | |
|             { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
 | |
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
 | |
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
 | |
|         },
 | |
|     },
 | |
|     {
 | |
|         LLM_ARCH_REFACT,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
 | |
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
 | |
|             { LLM_TENSOR_OUTPUT,          "output" },
 | |
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
 | |
|             { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
 | |
|             { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
 | |
|             { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
 | |
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
 | |
|             { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
 | |
|             { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
 | |
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
 | |
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
 | |
|         },
 | |
|     },
 | |
|     {
 | |
|         LLM_ARCH_BERT,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
 | |
|             { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
 | |
|             { LLM_TENSOR_TOKEN_TYPES,     "token_types" },
 | |
|             { LLM_TENSOR_POS_EMBD,        "position_embd" },
 | |
|             { LLM_TENSOR_ATTN_OUT_NORM,   "blk.%d.attn_output_norm" },
 | |
|             { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
 | |
|             { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
 | |
|             { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
 | |
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
 | |
|             { LLM_TENSOR_LAYER_OUT_NORM,  "blk.%d.layer_output_norm" },
 | |
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
 | |
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
 | |
|         },
 | |
|     },
 | |
|     {
 | |
|         LLM_ARCH_NOMIC_BERT,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
 | |
|             { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
 | |
|             { LLM_TENSOR_TOKEN_TYPES,     "token_types" },
 | |
|             { LLM_TENSOR_ATTN_OUT_NORM,   "blk.%d.attn_output_norm" },
 | |
|             { LLM_TENSOR_ATTN_QKV,        "blk.%d.attn_qkv" },
 | |
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
 | |
|             { LLM_TENSOR_LAYER_OUT_NORM,  "blk.%d.layer_output_norm" },
 | |
|             { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
 | |
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
 | |
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
 | |
|         },
 | |
|     },
 | |
|     {
 | |
|         LLM_ARCH_BLOOM,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
 | |
|             { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
 | |
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
 | |
|             { LLM_TENSOR_OUTPUT,          "output" },
 | |
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
 | |
|             { LLM_TENSOR_ATTN_QKV,        "blk.%d.attn_qkv" },
 | |
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
 | |
|             { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
 | |
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
 | |
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
 | |
|         },
 | |
|     },
 | |
|     {
 | |
|         LLM_ARCH_STABLELM,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
 | |
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
 | |
|             { LLM_TENSOR_OUTPUT,          "output" },
 | |
|             { LLM_TENSOR_ROPE_FREQS,      "rope_freqs" },
 | |
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
 | |
|             { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
 | |
|             { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
 | |
|             { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
 | |
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
 | |
|             { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
 | |
|             { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
 | |
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
 | |
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
 | |
|             { LLM_TENSOR_ATTN_Q_NORM,     "blk.%d.attn_q_norm" },
 | |
|             { LLM_TENSOR_ATTN_K_NORM,     "blk.%d.attn_k_norm" },
 | |
|         },
 | |
|     },
 | |
|     {
 | |
|         LLM_ARCH_QWEN,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
 | |
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
 | |
|             { LLM_TENSOR_OUTPUT,          "output" },
 | |
|             { LLM_TENSOR_ROPE_FREQS,      "rope_freqs" },
 | |
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
 | |
|             { LLM_TENSOR_ATTN_QKV,        "blk.%d.attn_qkv" },
 | |
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
 | |
|             { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
 | |
|             { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
 | |
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
 | |
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
 | |
|         },
 | |
|     },
 | |
|     {
 | |
|         LLM_ARCH_QWEN2,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
 | |
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
 | |
|             { LLM_TENSOR_OUTPUT,          "output" },
 | |
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
 | |
|             { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
 | |
|             { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
 | |
|             { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
 | |
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
 | |
|             { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
 | |
|             { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
 | |
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
 | |
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
 | |
|         },
 | |
|     },
 | |
|     {
 | |
|         LLM_ARCH_QWEN2MOE,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,         "token_embd" },
 | |
|             { LLM_TENSOR_OUTPUT_NORM,        "output_norm" },
 | |
|             { LLM_TENSOR_OUTPUT,             "output" },
 | |
|             { LLM_TENSOR_ATTN_NORM,          "blk.%d.attn_norm" },
 | |
|             { LLM_TENSOR_ATTN_Q,             "blk.%d.attn_q" },
 | |
|             { LLM_TENSOR_ATTN_K,             "blk.%d.attn_k" },
 | |
|             { LLM_TENSOR_ATTN_V,             "blk.%d.attn_v" },
 | |
|             { LLM_TENSOR_ATTN_OUT,           "blk.%d.attn_output" },
 | |
|             { LLM_TENSOR_FFN_NORM,           "blk.%d.ffn_norm" },
 | |
|             { LLM_TENSOR_FFN_GATE_INP,       "blk.%d.ffn_gate_inp" },
 | |
|             { LLM_TENSOR_FFN_GATE_EXPS,      "blk.%d.ffn_gate_exps" },
 | |
|             { LLM_TENSOR_FFN_DOWN_EXPS,      "blk.%d.ffn_down_exps" },
 | |
|             { LLM_TENSOR_FFN_UP_EXPS,        "blk.%d.ffn_up_exps" },
 | |
|             { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
 | |
|             { LLM_TENSOR_FFN_GATE_SHEXP,     "blk.%d.ffn_gate_shexp" },
 | |
|             { LLM_TENSOR_FFN_DOWN_SHEXP,     "blk.%d.ffn_down_shexp" },
 | |
|             { LLM_TENSOR_FFN_UP_SHEXP,       "blk.%d.ffn_up_shexp" },
 | |
|         },
 | |
|     },
 | |
|     {
 | |
|         LLM_ARCH_PHI2,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
 | |
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
 | |
|             { LLM_TENSOR_OUTPUT,          "output" },
 | |
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
 | |
|             { LLM_TENSOR_ATTN_QKV,        "blk.%d.attn_qkv" },
 | |
|             { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
 | |
|             { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
 | |
|             { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
 | |
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
 | |
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
 | |
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
 | |
|         },
 | |
|     },
 | |
|     {
 | |
|         LLM_ARCH_PHI3,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
 | |
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
 | |
|             { LLM_TENSOR_OUTPUT,          "output" },
 | |
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
 | |
|             { LLM_TENSOR_ATTN_QKV,        "blk.%d.attn_qkv" },
 | |
|             { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
 | |
|             { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
 | |
|             { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
 | |
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
 | |
|             { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
 | |
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
 | |
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
 | |
|         },
 | |
|     },
 | |
|     {
 | |
|         LLM_ARCH_PLAMO,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
 | |
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
 | |
|             { LLM_TENSOR_OUTPUT,          "output" },
 | |
|             { LLM_TENSOR_ROPE_FREQS,      "rope_freqs" },
 | |
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
 | |
|             { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
 | |
|             { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
 | |
|             { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
 | |
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
 | |
|             { LLM_TENSOR_ATTN_ROT_EMBD,   "blk.%d.attn_rot_embd" },
 | |
|             { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
 | |
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
 | |
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
 | |
|         },
 | |
|     },
 | |
|     {
 | |
|         LLM_ARCH_CODESHELL,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
 | |
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
 | |
|             { LLM_TENSOR_OUTPUT,          "output" },
 | |
|             { LLM_TENSOR_ROPE_FREQS,      "rope_freqs" },
 | |
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
 | |
|             { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
 | |
|             { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
 | |
|             { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
 | |
|             { LLM_TENSOR_ATTN_QKV,        "blk.%d.attn_qkv" },
 | |
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
 | |
|             { LLM_TENSOR_ATTN_ROT_EMBD,   "blk.%d.attn_rot_embd" },
 | |
|             { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
 | |
|             { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
 | |
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
 | |
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
 | |
|         },
 | |
|     },
 | |
|     {
 | |
|         LLM_ARCH_ORION,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
 | |
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
 | |
|             { LLM_TENSOR_OUTPUT,          "output" },
 | |
|             { LLM_TENSOR_ROPE_FREQS,      "rope_freqs" },
 | |
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
 | |
|             { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
 | |
|             { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
 | |
|             { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
 | |
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
 | |
|             { LLM_TENSOR_ATTN_ROT_EMBD,   "blk.%d.attn_rot_embd" },
 | |
|             { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
 | |
|             { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
 | |
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
 | |
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
 | |
|         },
 | |
|     },
 | |
|     {
 | |
|         LLM_ARCH_INTERNLM2,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
 | |
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
 | |
|             { LLM_TENSOR_OUTPUT,          "output" },
 | |
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
 | |
|             { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
 | |
|             { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
 | |
|             { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
 | |
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
 | |
|             { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
 | |
|             { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
 | |
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
 | |
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
 | |
|         },
 | |
|     },
 | |
|     {
 | |
|         LLM_ARCH_MINICPM,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
 | |
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
 | |
|             { LLM_TENSOR_OUTPUT,          "output" },
 | |
|             { LLM_TENSOR_ROPE_FREQS,      "rope_freqs" },
 | |
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
 | |
|             { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
 | |
|             { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
 | |
|             { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
 | |
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
 | |
|             { LLM_TENSOR_ATTN_ROT_EMBD,   "blk.%d.attn_rot_embd" },
 | |
|             { LLM_TENSOR_FFN_GATE_INP,    "blk.%d.ffn_gate_inp" },
 | |
|             { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
 | |
|             { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
 | |
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
 | |
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
 | |
|             { LLM_TENSOR_FFN_GATE_EXP,    "blk.%d.ffn_gate.%d" },
 | |
|             { LLM_TENSOR_FFN_DOWN_EXP,    "blk.%d.ffn_down.%d" },
 | |
|             { LLM_TENSOR_FFN_UP_EXP,      "blk.%d.ffn_up.%d" },
 | |
|         },
 | |
|     },
 | |
|     {
 | |
|         LLM_ARCH_GEMMA,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
 | |
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
 | |
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
 | |
|             { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
 | |
|             { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
 | |
|             { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
 | |
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
 | |
|             { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
 | |
|             { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
 | |
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
 | |
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
 | |
|         },
 | |
|     },
 | |
|     {
 | |
|         LLM_ARCH_STARCODER2,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
 | |
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
 | |
|             { LLM_TENSOR_OUTPUT,          "output" },
 | |
|             { LLM_TENSOR_ROPE_FREQS,      "rope_freqs" },
 | |
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
 | |
|             { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
 | |
|             { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
 | |
|             { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
 | |
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
 | |
|             { LLM_TENSOR_ATTN_ROT_EMBD,   "blk.%d.attn_rot_embd" },
 | |
|             { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
 | |
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
 | |
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
 | |
|         },
 | |
|     },
 | |
|     {
 | |
|         LLM_ARCH_MAMBA,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
 | |
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
 | |
|             { LLM_TENSOR_OUTPUT,          "output" },
 | |
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
 | |
|             { LLM_TENSOR_SSM_IN,          "blk.%d.ssm_in" },
 | |
|             { LLM_TENSOR_SSM_CONV1D,      "blk.%d.ssm_conv1d" },
 | |
|             { LLM_TENSOR_SSM_X,           "blk.%d.ssm_x" },
 | |
|             { LLM_TENSOR_SSM_DT,          "blk.%d.ssm_dt" },
 | |
|             { LLM_TENSOR_SSM_A,           "blk.%d.ssm_a" },
 | |
|             { LLM_TENSOR_SSM_D,           "blk.%d.ssm_d" },
 | |
|             { LLM_TENSOR_SSM_OUT,         "blk.%d.ssm_out" },
 | |
|         },
 | |
|     },
 | |
|     {
 | |
|         LLM_ARCH_XVERSE,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
 | |
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
 | |
|             { LLM_TENSOR_OUTPUT,          "output" },
 | |
|             { LLM_TENSOR_ROPE_FREQS,      "rope_freqs" },
 | |
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
 | |
|             { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
 | |
|             { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
 | |
|             { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
 | |
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
 | |
|             { LLM_TENSOR_ATTN_ROT_EMBD,   "blk.%d.attn_rot_embd" },
 | |
|             { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
 | |
|             { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
 | |
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
 | |
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
 | |
|         },
 | |
|     },
 | |
|     {
 | |
|         LLM_ARCH_COMMAND_R,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
 | |
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
 | |
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
 | |
|             { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
 | |
|             { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
 | |
|             { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
 | |
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
 | |
|             { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
 | |
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
 | |
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
 | |
|             { LLM_TENSOR_ATTN_Q_NORM,     "blk.%d.attn_q_norm" },
 | |
|             { LLM_TENSOR_ATTN_K_NORM,     "blk.%d.attn_k_norm" },
 | |
|         },
 | |
|     },
 | |
|     {
 | |
|         LLM_ARCH_DBRX,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
 | |
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
 | |
|             { LLM_TENSOR_OUTPUT,          "output" },
 | |
|             { LLM_TENSOR_ATTN_QKV,        "blk.%d.attn_qkv" },
 | |
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
 | |
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
 | |
|             { LLM_TENSOR_ATTN_OUT_NORM,   "blk.%d.attn_output_norm" },
 | |
|             { LLM_TENSOR_FFN_GATE_INP,    "blk.%d.ffn_gate_inp" },
 | |
|             { LLM_TENSOR_FFN_GATE_EXPS,   "blk.%d.ffn_gate_exps" },
 | |
|             { LLM_TENSOR_FFN_DOWN_EXPS,   "blk.%d.ffn_down_exps" },
 | |
|             { LLM_TENSOR_FFN_UP_EXPS,     "blk.%d.ffn_up_exps" },
 | |
|         },
 | |
|     },
 | |
|     {
 | |
|         LLM_ARCH_OLMO,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
 | |
|             { LLM_TENSOR_OUTPUT,          "output" },
 | |
|             { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
 | |
|             { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
 | |
|             { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
 | |
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
 | |
|             { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
 | |
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
 | |
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
 | |
|         },
 | |
|     },
 | |
|     {
 | |
|         LLM_ARCH_UNKNOWN,
 | |
|         {
 | |
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
 | |
|         },
 | |
|     },
 | |
| };
 | |
| 
 | |
| static llm_arch llm_arch_from_string(const std::string & name) {
 | |
|     for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
 | |
|         if (kv.second == name) {
 | |
|             return kv.first;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return LLM_ARCH_UNKNOWN;
 | |
| }
 | |
| 
 | |
| // helper to handle gguf constants
 | |
| // usage:
 | |
| //
 | |
| //   const auto tn = LLM_TN(LLM_ARCH_LLAMA);
 | |
| //
 | |
| //   std::string name = tn(LLM_TENSOR_OUTPUT);                     -> "output"
 | |
| //   std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias");         -> "token_embd.bias"
 | |
| //   std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3);     -> "blk.3.attn_norm.weight"
 | |
| //
 | |
| struct LLM_TN {
 | |
|     LLM_TN(llm_arch arch) : arch(arch) {}
 | |
| 
 | |
|     llm_arch arch;
 | |
| 
 | |
|     std::string operator()(llm_tensor tensor) const {
 | |
|         if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
 | |
|             return "__missing__";
 | |
|         }
 | |
|         return LLM_TENSOR_NAMES.at(arch).at(tensor);
 | |
|     }
 | |
| 
 | |
|     std::string operator()(llm_tensor tensor, const std::string & suffix) const {
 | |
|         if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
 | |
|             return "__missing__";
 | |
|         }
 | |
|         return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
 | |
|     }
 | |
| 
 | |
|     std::string operator()(llm_tensor tensor, int bid) const {
 | |
|         if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
 | |
|             return "__missing__";
 | |
|         }
 | |
|         return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
 | |
|     }
 | |
| 
 | |
|     std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
 | |
|         if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
 | |
|             return "__missing__";
 | |
|         }
 | |
|         return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
 | |
|     }
 | |
| 
 | |
|     std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
 | |
|         if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
 | |
|             return "__missing__";
 | |
|         }
 | |
|         return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
 | |
|     }
 | |
| };
 | |
| 
 | |
| //
 | |
| // gguf helpers
 | |
| //
 | |
| 
 | |
| static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
 | |
|     { LLAMA_ROPE_SCALING_TYPE_NONE,   "none"   },
 | |
|     { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
 | |
|     { LLAMA_ROPE_SCALING_TYPE_YARN,   "yarn"   },
 | |
| };
 | |
| 
 | |
| static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
 | |
|     for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
 | |
|         if (kv.second == name) {
 | |
|             return (llama_rope_scaling_type) kv.first;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
 | |
| }
 | |
| 
 | |
| static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
 | |
|     switch (type) {
 | |
|         case GGUF_TYPE_UINT8:   return std::to_string(((const uint8_t  *)data)[i]);
 | |
|         case GGUF_TYPE_INT8:    return std::to_string(((const int8_t   *)data)[i]);
 | |
|         case GGUF_TYPE_UINT16:  return std::to_string(((const uint16_t *)data)[i]);
 | |
|         case GGUF_TYPE_INT16:   return std::to_string(((const int16_t  *)data)[i]);
 | |
|         case GGUF_TYPE_UINT32:  return std::to_string(((const uint32_t *)data)[i]);
 | |
|         case GGUF_TYPE_INT32:   return std::to_string(((const int32_t  *)data)[i]);
 | |
|         case GGUF_TYPE_UINT64:  return std::to_string(((const uint64_t *)data)[i]);
 | |
|         case GGUF_TYPE_INT64:   return std::to_string(((const int64_t  *)data)[i]);
 | |
|         case GGUF_TYPE_FLOAT32: return std::to_string(((const float    *)data)[i]);
 | |
|         case GGUF_TYPE_FLOAT64: return std::to_string(((const double   *)data)[i]);
 | |
|         case GGUF_TYPE_BOOL:    return ((const bool *)data)[i] ? "true" : "false";
 | |
|         default:                return format("unknown type %d", type);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
 | |
|     const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
 | |
| 
 | |
|     switch (type) {
 | |
|         case GGUF_TYPE_STRING:
 | |
|             return gguf_get_val_str(ctx_gguf, i);
 | |
|         case GGUF_TYPE_ARRAY:
 | |
|             {
 | |
|                 const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
 | |
|                 int arr_n = gguf_get_arr_n(ctx_gguf, i);
 | |
|                 const void * data = gguf_get_arr_data(ctx_gguf, i);
 | |
|                 std::stringstream ss;
 | |
|                 ss << "[";
 | |
|                 for (int j = 0; j < arr_n; j++) {
 | |
|                     if (arr_type == GGUF_TYPE_STRING) {
 | |
|                         std::string val = gguf_get_arr_str(ctx_gguf, i, j);
 | |
|                         // escape quotes
 | |
|                         replace_all(val, "\\", "\\\\");
 | |
|                         replace_all(val, "\"", "\\\"");
 | |
|                         ss << '"' << val << '"';
 | |
|                     } else if (arr_type == GGUF_TYPE_ARRAY) {
 | |
|                         ss << "???";
 | |
|                     } else {
 | |
|                         ss << gguf_data_to_str(arr_type, data, j);
 | |
|                     }
 | |
|                     if (j < arr_n - 1) {
 | |
|                         ss << ", ";
 | |
|                     }
 | |
|                 }
 | |
|                 ss << "]";
 | |
|                 return ss.str();
 | |
|             }
 | |
|         default:
 | |
|             return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // llama helpers
 | |
| //
 | |
| 
 | |
| #if defined(_WIN32)
 | |
| static std::string llama_format_win_err(DWORD err) {
 | |
|     LPSTR buf;
 | |
|     size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
 | |
|                                  NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
 | |
|     if (!size) {
 | |
|         return "FormatMessageA failed";
 | |
|     }
 | |
|     std::string ret(buf, size);
 | |
|     LocalFree(buf);
 | |
|     return ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| template <typename T>
 | |
| struct no_init {
 | |
|     T value;
 | |
|     no_init() { /* do nothing */ }
 | |
| };
 | |
| 
 | |
| struct llama_file {
 | |
|     // use FILE * so we don't have to re-open the file to mmap
 | |
|     FILE * fp;
 | |
|     size_t size;
 | |
| 
 | |
|     llama_file(const char * fname, const char * mode) {
 | |
|         fp = ggml_fopen(fname, mode);
 | |
|         if (fp == NULL) {
 | |
|             throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
 | |
|         }
 | |
|         seek(0, SEEK_END);
 | |
|         size = tell();
 | |
|         seek(0, SEEK_SET);
 | |
|     }
 | |
| 
 | |
|     size_t tell() const {
 | |
| #ifdef _WIN32
 | |
|         __int64 ret = _ftelli64(fp);
 | |
| #else
 | |
|         long ret = std::ftell(fp);
 | |
| #endif
 | |
|         GGML_ASSERT(ret != -1); // this really shouldn't fail
 | |
|         return (size_t) ret;
 | |
|     }
 | |
| 
 | |
|     void seek(size_t offset, int whence) const {
 | |
| #ifdef _WIN32
 | |
|         int ret = _fseeki64(fp, (__int64) offset, whence);
 | |
| #else
 | |
|         int ret = std::fseek(fp, (long) offset, whence);
 | |
| #endif
 | |
|         GGML_ASSERT(ret == 0); // same
 | |
|     }
 | |
| 
 | |
|     void read_raw(void * ptr, size_t len) const {
 | |
|         if (len == 0) {
 | |
|             return;
 | |
|         }
 | |
|         errno = 0;
 | |
|         std::size_t ret = std::fread(ptr, len, 1, fp);
 | |
|         if (ferror(fp)) {
 | |
|             throw std::runtime_error(format("read error: %s", strerror(errno)));
 | |
|         }
 | |
|         if (ret != 1) {
 | |
|             throw std::runtime_error("unexpectedly reached end of file");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     uint32_t read_u32() const {
 | |
|         uint32_t ret;
 | |
|         read_raw(&ret, sizeof(ret));
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     void write_raw(const void * ptr, size_t len) const {
 | |
|         if (len == 0) {
 | |
|             return;
 | |
|         }
 | |
|         errno = 0;
 | |
|         size_t ret = std::fwrite(ptr, len, 1, fp);
 | |
|         if (ret != 1) {
 | |
|             throw std::runtime_error(format("write error: %s", strerror(errno)));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void write_u32(std::uint32_t val) const {
 | |
|         write_raw(&val, sizeof(val));
 | |
|     }
 | |
| 
 | |
|     ~llama_file() {
 | |
|         if (fp) {
 | |
|             std::fclose(fp);
 | |
|         }
 | |
|     }
 | |
| };
 | |
| using llama_files = std::vector<std::unique_ptr<llama_file>>;
 | |
| 
 | |
| struct llama_mmap {
 | |
|     void * addr;
 | |
|     size_t size;
 | |
| 
 | |
|     llama_mmap(const llama_mmap &) = delete;
 | |
| 
 | |
| #ifdef _POSIX_MAPPED_FILES
 | |
|     static constexpr bool SUPPORTED = true;
 | |
| 
 | |
|     // list of mapped fragments (first_offset, last_offset)
 | |
|     std::vector<std::pair<size_t, size_t>> mapped_fragments;
 | |
| 
 | |
|     llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
 | |
|         size = file->size;
 | |
|         int fd = fileno(file->fp);
 | |
|         int flags = MAP_SHARED;
 | |
|         // prefetch/readahead impairs performance on NUMA systems
 | |
|         if (numa)  { prefetch = 0; }
 | |
| #ifdef __linux__
 | |
|         // advise the kernel to read the file sequentially (increases readahead)
 | |
|         if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
 | |
|             LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
 | |
|                     strerror(errno));
 | |
|         }
 | |
|         if (prefetch) { flags |= MAP_POPULATE; }
 | |
| #endif
 | |
|         addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
 | |
|         if (addr == MAP_FAILED) { // NOLINT
 | |
|             throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
 | |
|         }
 | |
| 
 | |
|         if (prefetch > 0) {
 | |
|             // advise the kernel to preload the mapped memory
 | |
|             if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
 | |
|                 LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
 | |
|                         strerror(errno));
 | |
|             }
 | |
|         }
 | |
|         if (numa) {
 | |
|             // advise the kernel not to use readahead
 | |
|             // (because the next page might not belong on the same node)
 | |
|             if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
 | |
|                 LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
 | |
|                         strerror(errno));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // initialize list of mapped_fragments
 | |
|         mapped_fragments.emplace_back(0, file->size);
 | |
|     }
 | |
| 
 | |
|     static void align_range(size_t * first, size_t * last, size_t page_size) {
 | |
|         // align first to the next page
 | |
|         size_t offset_in_page = *first & (page_size - 1);
 | |
|         size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
 | |
|         *first += offset_to_page;
 | |
| 
 | |
|         // align last to the previous page
 | |
|         *last = *last & ~(page_size - 1);
 | |
| 
 | |
|         if (*last <= *first) {
 | |
|             *last = *first;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // partially unmap the file in the range [first, last)
 | |
|     void unmap_fragment(size_t first, size_t last) {
 | |
|         // note: this function must not be called multiple times with overlapping ranges
 | |
|         // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
 | |
|         int page_size = sysconf(_SC_PAGESIZE);
 | |
|         align_range(&first, &last, page_size);
 | |
|         size_t len = last - first;
 | |
| 
 | |
|         if (len == 0) {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         GGML_ASSERT(first % page_size == 0);
 | |
|         GGML_ASSERT(last % page_size == 0);
 | |
|         GGML_ASSERT(last > first);
 | |
| 
 | |
|         void * next_page_start = (uint8_t *) addr + first;
 | |
| 
 | |
|         // unmap the range
 | |
|         if (munmap(next_page_start, len)) {
 | |
|             LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
 | |
|         }
 | |
| 
 | |
|         // update the list of mapped fragments to avoid unmapping the same range again in the destructor
 | |
|         std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
 | |
|         for (const auto & frag : mapped_fragments) {
 | |
|             if (frag.first < first && frag.second > last) {
 | |
|                 // the range is in the middle of the fragment, split it
 | |
|                 new_mapped_fragments.emplace_back(frag.first, first);
 | |
|                 new_mapped_fragments.emplace_back(last, frag.second);
 | |
|             } else if (frag.first < first && frag.second > first) {
 | |
|                 // the range starts in the middle of the fragment
 | |
|                 new_mapped_fragments.emplace_back(frag.first, first);
 | |
|             } else if (frag.first < last && frag.second > last) {
 | |
|                 // the range ends in the middle of the fragment
 | |
|                 new_mapped_fragments.emplace_back(last, frag.second);
 | |
|             } else if (frag.first >= first && frag.second <= last) {
 | |
|                 // the range covers the entire fragment
 | |
|             } else {
 | |
|                 // the range is outside the fragment
 | |
|                 new_mapped_fragments.push_back(frag);
 | |
|             }
 | |
|         }
 | |
|         mapped_fragments = std::move(new_mapped_fragments);
 | |
|     }
 | |
| 
 | |
|     ~llama_mmap() {
 | |
|         for (const auto & frag : mapped_fragments) {
 | |
|             if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
 | |
|                 LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| #elif defined(_WIN32)
 | |
|     static constexpr bool SUPPORTED = true;
 | |
| 
 | |
|     llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
 | |
|         GGML_UNUSED(numa);
 | |
| 
 | |
|         size = file->size;
 | |
| 
 | |
|         HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
 | |
| 
 | |
|         HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
 | |
| 
 | |
|         if (hMapping == NULL) {
 | |
|             DWORD error = GetLastError();
 | |
|             throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
 | |
|         }
 | |
| 
 | |
|         addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
 | |
|         DWORD error = GetLastError();
 | |
|         CloseHandle(hMapping);
 | |
| 
 | |
|         if (addr == NULL) {
 | |
|             throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
 | |
|         }
 | |
| 
 | |
|         if (prefetch > 0) {
 | |
| #if _WIN32_WINNT >= 0x602
 | |
|             // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
 | |
|             BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
 | |
|             HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
 | |
| 
 | |
|             // may fail on pre-Windows 8 systems
 | |
|             pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
 | |
| 
 | |
|             if (pPrefetchVirtualMemory) {
 | |
|                 // advise the kernel to preload the mapped memory
 | |
|                 WIN32_MEMORY_RANGE_ENTRY range;
 | |
|                 range.VirtualAddress = addr;
 | |
|                 range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
 | |
|                 if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
 | |
|                     LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
 | |
|                             llama_format_win_err(GetLastError()).c_str());
 | |
|                 }
 | |
|             }
 | |
| #else
 | |
|             throw std::runtime_error("PrefetchVirtualMemory unavailable");
 | |
| #endif
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void unmap_fragment(size_t first, size_t last) {
 | |
|         // not supported
 | |
|         GGML_UNUSED(first);
 | |
|         GGML_UNUSED(last);
 | |
|     }
 | |
| 
 | |
|     ~llama_mmap() {
 | |
|         if (!UnmapViewOfFile(addr)) {
 | |
|             LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
 | |
|                     llama_format_win_err(GetLastError()).c_str());
 | |
|         }
 | |
|     }
 | |
| #else
 | |
|     static constexpr bool SUPPORTED = false;
 | |
| 
 | |
|     llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
 | |
|         GGML_UNUSED(file);
 | |
|         GGML_UNUSED(prefetch);
 | |
|         GGML_UNUSED(numa);
 | |
| 
 | |
|         throw std::runtime_error("mmap not supported");
 | |
|     }
 | |
| 
 | |
|     void unmap_fragment(size_t first, size_t last) {
 | |
|         GGML_UNUSED(first);
 | |
|         GGML_UNUSED(last);
 | |
| 
 | |
|         throw std::runtime_error("mmap not supported");
 | |
|     }
 | |
| #endif
 | |
| };
 | |
| using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
 | |
| 
 | |
| // Represents some region of memory being locked using mlock or VirtualLock;
 | |
| // will automatically unlock on destruction.
 | |
| struct llama_mlock {
 | |
|     void * addr = NULL;
 | |
|     size_t size = 0;
 | |
| 
 | |
|     bool failed_already = false;
 | |
| 
 | |
|     llama_mlock() {}
 | |
|     llama_mlock(const llama_mlock &) = delete;
 | |
| 
 | |
|     ~llama_mlock() {
 | |
|         if (size) {
 | |
|             raw_unlock(addr, size);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void init(void * ptr) {
 | |
|         GGML_ASSERT(addr == NULL && size == 0); // NOLINT
 | |
|         addr = ptr;
 | |
|     }
 | |
| 
 | |
|     void grow_to(size_t target_size) {
 | |
|         GGML_ASSERT(addr);
 | |
|         if (failed_already) {
 | |
|             return;
 | |
|         }
 | |
|         size_t granularity = lock_granularity();
 | |
|         target_size = (target_size + granularity - 1) & ~(granularity - 1);
 | |
|         if (target_size > size) {
 | |
|             if (raw_lock((uint8_t *) addr + size, target_size - size)) {
 | |
|                 size = target_size;
 | |
|             } else {
 | |
|                 failed_already = true;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #ifdef _POSIX_MEMLOCK_RANGE
 | |
|     static constexpr bool SUPPORTED = true;
 | |
| 
 | |
|     static size_t lock_granularity() {
 | |
|         return (size_t) sysconf(_SC_PAGESIZE);
 | |
|     }
 | |
| 
 | |
|     #ifdef __APPLE__
 | |
|         #define MLOCK_SUGGESTION \
 | |
|             "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
 | |
|             "decreasing 'vm.global_no_user_wire_amount'.  Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
 | |
|     #else
 | |
|         #define MLOCK_SUGGESTION \
 | |
|             "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
 | |
|     #endif
 | |
| 
 | |
|     bool raw_lock(const void * addr, size_t size) const {
 | |
|         if (!mlock(addr, size)) {
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         char* errmsg = std::strerror(errno);
 | |
|         bool suggest = (errno == ENOMEM);
 | |
| 
 | |
|         // Check if the resource limit is fine after all
 | |
|         struct rlimit lock_limit;
 | |
|         if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
 | |
|             suggest = false;
 | |
|         }
 | |
|         if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
 | |
|             suggest = false;
 | |
|         }
 | |
| 
 | |
|         LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
 | |
|                 size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     #undef MLOCK_SUGGESTION
 | |
| 
 | |
|     static void raw_unlock(void * addr, size_t size) {
 | |
|         if (munlock(addr, size)) {
 | |
|             LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
 | |
|         }
 | |
|     }
 | |
| #elif defined(_WIN32)
 | |
|     static constexpr bool SUPPORTED = true;
 | |
| 
 | |
|     static size_t lock_granularity() {
 | |
|         SYSTEM_INFO si;
 | |
|         GetSystemInfo(&si);
 | |
|         return (size_t) si.dwPageSize;
 | |
|     }
 | |
| 
 | |
|     bool raw_lock(void * ptr, size_t len) const {
 | |
|         for (int tries = 1; ; tries++) {
 | |
|             if (VirtualLock(ptr, len)) {
 | |
|                 return true;
 | |
|             }
 | |
|             if (tries == 2) {
 | |
|                 LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
 | |
|                     len, size, llama_format_win_err(GetLastError()).c_str());
 | |
|                 return false;
 | |
|             }
 | |
| 
 | |
|             // It failed but this was only the first try; increase the working
 | |
|             // set size and try again.
 | |
|             SIZE_T min_ws_size, max_ws_size;
 | |
|             if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
 | |
|                 LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
 | |
|                         llama_format_win_err(GetLastError()).c_str());
 | |
|                 return false;
 | |
|             }
 | |
|             // Per MSDN: "The maximum number of pages that a process can lock
 | |
|             // is equal to the number of pages in its minimum working set minus
 | |
|             // a small overhead."
 | |
|             // Hopefully a megabyte is enough overhead:
 | |
|             size_t increment = len + 1048576;
 | |
|             // The minimum must be <= the maximum, so we need to increase both:
 | |
|             min_ws_size += increment;
 | |
|             max_ws_size += increment;
 | |
|             if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
 | |
|                 LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
 | |
|                         llama_format_win_err(GetLastError()).c_str());
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     static void raw_unlock(void * ptr, size_t len) {
 | |
|         if (!VirtualUnlock(ptr, len)) {
 | |
|             LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
 | |
|                     llama_format_win_err(GetLastError()).c_str());
 | |
|         }
 | |
|     }
 | |
| #else
 | |
|     static constexpr bool SUPPORTED = false;
 | |
| 
 | |
|     static size_t lock_granularity() {
 | |
|         return (size_t) 65536;
 | |
|     }
 | |
| 
 | |
|     bool raw_lock(const void * addr, size_t len) const {
 | |
|         LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     static void raw_unlock(const void * addr, size_t len) {}
 | |
| #endif
 | |
| };
 | |
| using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
 | |
| 
 | |
| static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
 | |
|     std::vector<char> result(8, 0);
 | |
|     const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
 | |
|     if (n_tokens < 0) {
 | |
|         result.resize(-n_tokens);
 | |
|         int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
 | |
|         GGML_ASSERT(check == -n_tokens);
 | |
|     }
 | |
|     else {
 | |
|         result.resize(n_tokens);
 | |
|     }
 | |
| 
 | |
|     return std::string(result.data(), result.size());
 | |
| }
 | |
| 
 | |
| static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
 | |
|     ggml_backend_buffer_type_t buft = nullptr;
 | |
| 
 | |
| #if defined(GGML_USE_CUDA)
 | |
|     // host buffers should only be used when data is expected to be copied to/from the GPU
 | |
|     if (host_buffer) {
 | |
|         buft = ggml_backend_cuda_host_buffer_type();
 | |
|     }
 | |
| #elif defined(GGML_USE_SYCL)
 | |
|     if (host_buffer) {
 | |
|         buft = ggml_backend_sycl_host_buffer_type();
 | |
|     }
 | |
| #elif defined(GGML_USE_CPU_HBM)
 | |
|     buft = ggml_backend_cpu_hbm_buffer_type();
 | |
| #elif defined(GGML_USE_VULKAN)
 | |
|     if (host_buffer) {
 | |
|         buft = ggml_backend_vk_host_buffer_type();
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (buft == nullptr) {
 | |
|         buft = ggml_backend_cpu_buffer_type();
 | |
|     }
 | |
|     return buft;
 | |
| 
 | |
|     GGML_UNUSED(host_buffer);
 | |
| }
 | |
| 
 | |
| static ggml_backend_buffer_type_t llama_default_buffer_type_offload(int gpu) {
 | |
|     ggml_backend_buffer_type_t buft = nullptr;
 | |
| 
 | |
| #ifdef GGML_USE_METAL
 | |
|     buft = ggml_backend_metal_buffer_type();
 | |
| #elif defined(GGML_USE_CUDA)
 | |
|     buft = ggml_backend_cuda_buffer_type(gpu);
 | |
| #elif defined(GGML_USE_VULKAN)
 | |
|     buft = ggml_backend_vk_buffer_type(gpu);
 | |
| #elif defined(GGML_USE_SYCL)
 | |
|     buft = ggml_backend_sycl_buffer_type(gpu);
 | |
| #elif defined(GGML_USE_CLBLAST)
 | |
|     buft = ggml_backend_opencl_buffer_type();
 | |
| #elif defined(GGML_USE_KOMPUTE)
 | |
|     buft = ggml_backend_kompute_buffer_type(gpu);
 | |
|     if (buft == nullptr) {
 | |
|         LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (buft == nullptr) {
 | |
|         buft = llama_default_buffer_type_cpu(true);
 | |
|     }
 | |
|     return buft;
 | |
| 
 | |
|     GGML_UNUSED(gpu);
 | |
| }
 | |
| 
 | |
| static ggml_backend_buffer_type_t llama_default_buffer_type_split(int fallback_gpu, const float * tensor_split) {
 | |
|     ggml_backend_buffer_type_t buft = nullptr;
 | |
| 
 | |
| #ifdef GGML_USE_CUDA
 | |
|     if (ggml_backend_cuda_get_device_count() > 1) {
 | |
|         buft = ggml_backend_cuda_split_buffer_type(tensor_split);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #ifdef GGML_USE_SYCL
 | |
|     if (ggml_backend_sycl_get_device_count() > 1) {
 | |
|         buft = ggml_backend_sycl_split_buffer_type(tensor_split);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (buft == nullptr) {
 | |
|         buft = llama_default_buffer_type_offload(fallback_gpu);
 | |
|     }
 | |
|     return buft;
 | |
| 
 | |
|     GGML_UNUSED(tensor_split);
 | |
| }
 | |
| 
 | |
| static size_t llama_get_device_count() {
 | |
| #if defined(GGML_USE_CUDA)
 | |
|     return ggml_backend_cuda_get_device_count();
 | |
| #elif defined(GGML_USE_SYCL)
 | |
|     return ggml_backend_sycl_get_device_count();
 | |
| #elif defined(GGML_USE_VULKAN)
 | |
|     return ggml_backend_vk_get_device_count();
 | |
| #else
 | |
|     return 1;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static size_t llama_get_device_memory(int device) {
 | |
| #if defined(GGML_USE_CUDA)
 | |
|     size_t total;
 | |
|     size_t free;
 | |
|     ggml_backend_cuda_get_device_memory(device, &free, &total);
 | |
|     return free;
 | |
| #elif defined(GGML_USE_SYCL)
 | |
|     size_t total;
 | |
|     size_t free;
 | |
|     ggml_backend_sycl_get_device_memory(device, &free, &total);
 | |
|     return free;
 | |
| #elif defined(GGML_USE_VULKAN)
 | |
|     size_t total;
 | |
|     size_t free;
 | |
|     ggml_backend_vk_get_device_memory(device, &free, &total);
 | |
|     return free;
 | |
| #else
 | |
|     return 1;
 | |
|     GGML_UNUSED(device);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //
 | |
| // globals
 | |
| //
 | |
| 
 | |
| struct llama_state {
 | |
|     llama_state() {
 | |
| #ifdef GGML_USE_METAL
 | |
|         ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     // We save the log callback globally
 | |
|     ggml_log_callback log_callback = llama_log_callback_default;
 | |
|     void * log_callback_user_data = nullptr;
 | |
| };
 | |
| 
 | |
| static llama_state g_state;
 | |
| 
 | |
| // available llama models
 | |
| enum e_model {
 | |
|     MODEL_UNKNOWN,
 | |
|     MODEL_17M,
 | |
|     MODEL_22M,
 | |
|     MODEL_33M,
 | |
|     MODEL_109M,
 | |
|     MODEL_137M,
 | |
|     MODEL_335M,
 | |
|     MODEL_0_5B,
 | |
|     MODEL_1B,
 | |
|     MODEL_2B,
 | |
|     MODEL_3B,
 | |
|     MODEL_4B,
 | |
|     MODEL_7B,
 | |
|     MODEL_8B,
 | |
|     MODEL_12B,
 | |
|     MODEL_13B,
 | |
|     MODEL_14B,
 | |
|     MODEL_15B,
 | |
|     MODEL_20B,
 | |
|     MODEL_30B,
 | |
|     MODEL_34B,
 | |
|     MODEL_35B,
 | |
|     MODEL_40B,
 | |
|     MODEL_65B,
 | |
|     MODEL_70B,
 | |
|     MODEL_314B,
 | |
|     MODEL_SMALL,
 | |
|     MODEL_MEDIUM,
 | |
|     MODEL_LARGE,
 | |
|     MODEL_XL,
 | |
|     MODEL_A2_7B,
 | |
|     MODEL_8x7B,
 | |
|     MODEL_8x22B,
 | |
|     MODEL_16x12B,
 | |
| };
 | |
| 
 | |
| static const size_t kiB = 1024;
 | |
| static const size_t MiB = 1024*kiB;
 | |
| static const size_t GiB = 1024*MiB;
 | |
| 
 | |
| struct llama_hparams {
 | |
|     bool vocab_only;
 | |
|     bool rope_finetuned;
 | |
| 
 | |
|     uint32_t n_vocab;
 | |
|     uint32_t n_ctx_train; // context size the model was trained on
 | |
|     uint32_t n_embd;
 | |
|     uint32_t n_head;
 | |
|     uint32_t n_head_kv;
 | |
|     uint32_t n_layer;
 | |
|     uint32_t n_rot;
 | |
|     uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
 | |
|     uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
 | |
|     uint32_t n_ff;
 | |
|     uint32_t n_expert = 0;
 | |
|     uint32_t n_expert_used = 0;
 | |
|     uint32_t n_vocab_type = 0; // for BERT-style token types
 | |
| 
 | |
|     float f_norm_eps;
 | |
|     float f_norm_rms_eps;
 | |
| 
 | |
|     float    rope_freq_base_train;
 | |
|     float    rope_freq_scale_train;
 | |
|     uint32_t n_yarn_orig_ctx;
 | |
| 
 | |
|     // for State Space Models
 | |
|     uint32_t ssm_d_conv  = 0;
 | |
|     uint32_t ssm_d_inner = 0;
 | |
|     uint32_t ssm_d_state = 0;
 | |
|     uint32_t ssm_dt_rank = 0;
 | |
| 
 | |
|     float f_clamp_kqv      = 0.0f;
 | |
|     float f_max_alibi_bias = 0.0f;
 | |
|     float f_logit_scale    = 0.0f;
 | |
| 
 | |
|     bool causal_attn = true;
 | |
|     bool need_kq_pos = false;
 | |
| 
 | |
|     enum llama_pooling_type      pooling_type            = LLAMA_POOLING_TYPE_NONE;
 | |
|     enum llama_rope_type         rope_type               = LLAMA_ROPE_TYPE_NONE;
 | |
|     enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
 | |
| 
 | |
|     bool operator!=(const llama_hparams & other) const {
 | |
|         if (this->vocab_only    != other.vocab_only)    return true;
 | |
|         if (this->n_vocab       != other.n_vocab)       return true;
 | |
|         if (this->n_ctx_train   != other.n_ctx_train)   return true;
 | |
|         if (this->n_embd        != other.n_embd)        return true;
 | |
|         if (this->n_head        != other.n_head)        return true;
 | |
|         if (this->n_head_kv     != other.n_head_kv)     return true;
 | |
|         if (this->n_layer       != other.n_layer)       return true;
 | |
|         if (this->n_rot         != other.n_rot)         return true;
 | |
|         if (this->n_embd_head_k != other.n_embd_head_k) return true;
 | |
|         if (this->n_embd_head_v != other.n_embd_head_v) return true;
 | |
|         if (this->n_ff          != other.n_ff)          return true;
 | |
|         if (this->n_expert      != other.n_expert)      return true;
 | |
|         if (this->n_expert_used != other.n_expert_used) return true;
 | |
| 
 | |
|         if (this->rope_finetuned  != other.rope_finetuned)  return true;
 | |
|         if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true;
 | |
| 
 | |
|         if (this->ssm_d_conv  != other.ssm_d_conv)  return true;
 | |
|         if (this->ssm_d_inner != other.ssm_d_inner) return true;
 | |
|         if (this->ssm_d_state != other.ssm_d_state) return true;
 | |
|         if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
 | |
| 
 | |
|         const float EPSILON = 1e-9f;
 | |
| 
 | |
|         if (!is_float_close(this->f_norm_eps,            other.f_norm_eps,            EPSILON)) return true;
 | |
|         if (!is_float_close(this->f_norm_rms_eps,        other.f_norm_rms_eps,        EPSILON)) return true;
 | |
|         if (!is_float_close(this->rope_freq_base_train,  other.rope_freq_base_train,  EPSILON)) return true;
 | |
|         if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
 | |
| 
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     uint32_t n_gqa() const {
 | |
|         if (n_head_kv == 0) {
 | |
|             return 0;
 | |
|         }
 | |
|         return n_head/n_head_kv;
 | |
|     }
 | |
| 
 | |
|     uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
 | |
|         return n_embd_head_k * n_head_kv;
 | |
|     }
 | |
| 
 | |
|     uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
 | |
|         return n_embd_head_v * n_head_kv;
 | |
|     }
 | |
| 
 | |
|     uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
 | |
|         // corresponds to Mamba's conv_states size
 | |
|         // TODO: maybe support other convolution strides than 1
 | |
|         // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
 | |
|         return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
 | |
|     }
 | |
| 
 | |
|     uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
 | |
|         // corresponds to Mamba's ssm_states size
 | |
|         return ssm_d_state * ssm_d_inner;
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct llama_cparams {
 | |
|     uint32_t n_ctx;           // context size used during inference
 | |
|     uint32_t n_batch;
 | |
|     uint32_t n_ubatch;
 | |
|     uint32_t n_seq_max;
 | |
|     uint32_t n_threads;       // number of threads to use for generation
 | |
|     uint32_t n_threads_batch; // number of threads to use for batch processing
 | |
| 
 | |
|     float rope_freq_base;
 | |
|     float rope_freq_scale;
 | |
| 
 | |
|     uint32_t n_yarn_orig_ctx;
 | |
|     // These hyperparameters are not exposed in GGUF, because all
 | |
|     // existing YaRN models use the same values for them.
 | |
|     float yarn_ext_factor;
 | |
|     float yarn_attn_factor;
 | |
|     float yarn_beta_fast;
 | |
|     float yarn_beta_slow;
 | |
|     float defrag_thold;
 | |
| 
 | |
|     bool embeddings;
 | |
|     bool causal_attn;
 | |
|     bool offload_kqv;
 | |
| 
 | |
|     enum llama_pooling_type pooling_type;
 | |
| 
 | |
|     ggml_backend_sched_eval_callback cb_eval;
 | |
|     void * cb_eval_user_data;
 | |
| };
 | |
| 
 | |
| struct llama_layer {
 | |
|     // normalization
 | |
|     struct ggml_tensor * attn_norm;
 | |
|     struct ggml_tensor * attn_norm_b;
 | |
|     struct ggml_tensor * attn_norm_2;
 | |
|     struct ggml_tensor * attn_norm_2_b;
 | |
|     struct ggml_tensor * attn_q_norm;
 | |
|     struct ggml_tensor * attn_q_norm_b;
 | |
|     struct ggml_tensor * attn_k_norm;
 | |
|     struct ggml_tensor * attn_k_norm_b;
 | |
|     struct ggml_tensor * attn_out_norm;
 | |
|     struct ggml_tensor * attn_out_norm_b;
 | |
| 
 | |
|     // attention
 | |
|     struct ggml_tensor * wq;
 | |
|     struct ggml_tensor * wk;
 | |
|     struct ggml_tensor * wv;
 | |
|     struct ggml_tensor * wo;
 | |
|     struct ggml_tensor * wqkv;
 | |
| 
 | |
|     // attention bias
 | |
|     struct ggml_tensor * bq;
 | |
|     struct ggml_tensor * bk;
 | |
|     struct ggml_tensor * bv;
 | |
|     struct ggml_tensor * bo;
 | |
|     struct ggml_tensor * bqkv;
 | |
| 
 | |
|     // normalization
 | |
|     struct ggml_tensor * ffn_norm;
 | |
|     struct ggml_tensor * ffn_norm_b;
 | |
|     struct ggml_tensor * layer_out_norm;
 | |
|     struct ggml_tensor * layer_out_norm_b;
 | |
| 
 | |
|     // ff
 | |
|     struct ggml_tensor * ffn_gate; // w1
 | |
|     struct ggml_tensor * ffn_down; // w2
 | |
|     struct ggml_tensor * ffn_up;   // w3
 | |
| 
 | |
|     // ff MoE
 | |
|     struct ggml_tensor * ffn_gate_inp;
 | |
|     struct ggml_tensor * ffn_gate_exps;
 | |
|     struct ggml_tensor * ffn_down_exps;
 | |
|     struct ggml_tensor * ffn_up_exps ;
 | |
| 
 | |
|     // ff shared expert (shexp)
 | |
|     struct ggml_tensor * ffn_gate_inp_shexp;
 | |
|     struct ggml_tensor * ffn_gate_shexp;
 | |
|     struct ggml_tensor * ffn_down_shexp;
 | |
|     struct ggml_tensor * ffn_up_shexp;
 | |
| 
 | |
|     // ff bias
 | |
|     struct ggml_tensor * ffn_down_b; // b2
 | |
|     struct ggml_tensor * ffn_up_b;   // b3
 | |
|     struct ggml_tensor * ffn_act;
 | |
| 
 | |
|     // mamba proj
 | |
|     struct ggml_tensor * ssm_in;
 | |
|     struct ggml_tensor * ssm_x;
 | |
|     struct ggml_tensor * ssm_dt;
 | |
|     struct ggml_tensor * ssm_out;
 | |
| 
 | |
|     // mamba
 | |
|     struct ggml_tensor * ssm_conv1d;
 | |
|     struct ggml_tensor * ssm_a;
 | |
|     struct ggml_tensor * ssm_d;
 | |
| 
 | |
|     // mamba bias
 | |
|     struct ggml_tensor * ssm_conv1d_b;
 | |
|     struct ggml_tensor * ssm_dt_b;
 | |
| };
 | |
| 
 | |
| struct llama_kv_cell {
 | |
|     llama_pos pos   = -1;
 | |
|     llama_pos delta = 0;
 | |
|     int32_t   src   = 0; // used by recurrent state models to copy states
 | |
| 
 | |
|     std::set<llama_seq_id> seq_id;
 | |
| 
 | |
|     bool has_seq_id(const llama_seq_id & id) const {
 | |
|         return seq_id.find(id) != seq_id.end();
 | |
|     }
 | |
| 
 | |
|     bool is_empty() const {
 | |
|         return seq_id.empty();
 | |
|     }
 | |
| 
 | |
|     bool is_same_seq(const llama_kv_cell & other) const {
 | |
|         return seq_id == other.seq_id;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // ring-buffer of cached KV data
 | |
| struct llama_kv_cache {
 | |
|     bool has_shift = false;
 | |
|     bool do_defrag = false;
 | |
|     bool do_copy   = false;
 | |
|     // with recurrent state models, a cell can hold the state for more than one past token
 | |
|     bool recurrent = false;
 | |
| 
 | |
|     // Note: The value of head isn't only used to optimize searching
 | |
|     // for a free KV slot. llama_decode_internal also uses it, so it
 | |
|     // cannot be freely changed after a slot has been allocated.
 | |
|     uint32_t head = 0;
 | |
|     uint32_t size = 0;
 | |
|     uint32_t used = 0; // used cells (i.e. at least one seq_id)
 | |
| 
 | |
|     // computed before each graph build
 | |
|     uint32_t n = 0;
 | |
| 
 | |
|     ggml_type type_k = GGML_TYPE_F16;
 | |
|     ggml_type type_v = GGML_TYPE_F16;
 | |
| 
 | |
|     std::vector<llama_kv_cell> cells;
 | |
| 
 | |
|     std::vector<struct ggml_tensor *> k_l; // per layer
 | |
|     std::vector<struct ggml_tensor *> v_l;
 | |
| 
 | |
|     std::vector<struct ggml_context *> ctxs;
 | |
|     std::vector<ggml_backend_buffer_t> bufs;
 | |
| 
 | |
|     size_t total_size() const {
 | |
|         size_t size = 0;
 | |
|         for (ggml_backend_buffer_t buf : bufs) {
 | |
|             size += ggml_backend_buffer_get_size(buf);
 | |
|         }
 | |
|         return size;
 | |
|     }
 | |
| 
 | |
|     ~llama_kv_cache() {
 | |
|         for (struct ggml_context * ctx : ctxs) {
 | |
|             ggml_free(ctx);
 | |
|         }
 | |
|         for (ggml_backend_buffer_t buf : bufs) {
 | |
|             ggml_backend_buffer_free(buf);
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct llama_control_vector {
 | |
|     std::vector<struct ggml_tensor *> tensors; // per layer
 | |
|     std::vector<struct ggml_context *> ctxs;
 | |
|     std::vector<ggml_backend_buffer_t> bufs;
 | |
| 
 | |
|     int32_t layer_start = -1;
 | |
|     int32_t layer_end   = -1;
 | |
| 
 | |
|     ggml_tensor * tensor_for(int il) const {
 | |
|         if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
 | |
|             return nullptr;
 | |
|         }
 | |
|         return tensors[il];
 | |
|     }
 | |
| 
 | |
|     ~llama_control_vector() {
 | |
|         for (struct ggml_context * ctx : ctxs) {
 | |
|             ggml_free(ctx);
 | |
|         }
 | |
|         for (ggml_backend_buffer_t buf : bufs) {
 | |
|             ggml_backend_buffer_free(buf);
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct llama_vocab {
 | |
|     using id    = int32_t;
 | |
|     using token = std::string;
 | |
|     using ttype = llama_token_type;
 | |
| 
 | |
|     struct token_data {
 | |
|         token text;
 | |
|         float score;
 | |
|         ttype type;
 | |
|     };
 | |
| 
 | |
|     enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
 | |
| 
 | |
|     std::unordered_map<token, id> token_to_id;
 | |
|     std::vector<token_data>       id_to_token;
 | |
| 
 | |
|     std::unordered_map<token, id> special_tokens_cache;
 | |
| 
 | |
|     std::map<std::pair<std::string, std::string>, int> bpe_ranks;
 | |
| 
 | |
|     // default LLaMA special tokens
 | |
|     id special_bos_id  = 1;
 | |
|     id special_eos_id  = 2;
 | |
|     id special_unk_id  = 0;
 | |
|     id special_sep_id  = -1;
 | |
|     id special_pad_id  = -1;
 | |
|     id special_cls_id  = -1;
 | |
|     id special_mask_id = -1;
 | |
| 
 | |
|     int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
 | |
|     int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
 | |
| 
 | |
|     id linefeed_id       = 13;
 | |
|     id special_prefix_id = -1;
 | |
|     id special_suffix_id = -1;
 | |
|     id special_middle_id = -1;
 | |
|     id special_eot_id    = -1; // TODO: move above after "eos_id", and here add "file separator" token
 | |
| 
 | |
|     bool add_space_prefix = true;
 | |
| 
 | |
|     int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
 | |
|         GGML_ASSERT(token_left.find(' ') == std::string::npos);
 | |
|         GGML_ASSERT(token_left.find('\n') == std::string::npos);
 | |
|         GGML_ASSERT(token_right.find(' ') == std::string::npos);
 | |
|         GGML_ASSERT(token_right.find('\n') == std::string::npos);
 | |
| 
 | |
|         auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
 | |
|         if (it == bpe_ranks.end()) {
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         return it->second;
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct llama_model {
 | |
|     e_model     type  = MODEL_UNKNOWN;
 | |
|     llm_arch    arch  = LLM_ARCH_UNKNOWN;
 | |
|     llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
 | |
| 
 | |
|     std::string name = "n/a";
 | |
| 
 | |
|     llama_hparams hparams = {};
 | |
|     llama_vocab   vocab;
 | |
| 
 | |
|     struct ggml_tensor * tok_embd;
 | |
|     struct ggml_tensor * type_embd;
 | |
|     struct ggml_tensor * pos_embd;
 | |
|     struct ggml_tensor * tok_norm;
 | |
|     struct ggml_tensor * tok_norm_b;
 | |
| 
 | |
|     struct ggml_tensor * output_norm;
 | |
|     struct ggml_tensor * output_norm_b;
 | |
|     struct ggml_tensor * output;
 | |
|     struct ggml_tensor * output_b;
 | |
| 
 | |
|     std::vector<llama_layer> layers;
 | |
| 
 | |
|     llama_split_mode split_mode;
 | |
|     int main_gpu;
 | |
|     int n_gpu_layers;
 | |
| 
 | |
|     // gguf metadata
 | |
|     std::unordered_map<std::string, std::string> gguf_kv;
 | |
| 
 | |
|     // layer -> buffer type mapping
 | |
|     struct layer_buft {
 | |
|         layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
 | |
|         layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
 | |
|         layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
 | |
| 
 | |
|         ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
 | |
|         ggml_backend_buffer_type_t buft;        // everything else
 | |
|     };
 | |
| 
 | |
|     layer_buft buft_input;
 | |
|     layer_buft buft_output;
 | |
|     std::vector<layer_buft> buft_layer;
 | |
| 
 | |
|     // contexts where the model tensors metadata is stored
 | |
|     std::vector<struct ggml_context *> ctxs;
 | |
| 
 | |
|     // the model memory buffers for the tensor data
 | |
|     std::vector<ggml_backend_buffer_t> bufs;
 | |
| 
 | |
|     // model memory mapped files
 | |
|     llama_mmaps mappings;
 | |
| 
 | |
|     // objects representing data potentially being locked in memory
 | |
|     llama_mlocks mlock_bufs;
 | |
|     llama_mlocks mlock_mmaps;
 | |
| 
 | |
|     // for quantize-stats only
 | |
|     std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
 | |
| 
 | |
|     int64_t t_load_us = 0;
 | |
|     int64_t t_start_us = 0;
 | |
| 
 | |
|     ~llama_model() {
 | |
|         for (struct ggml_context * ctx : ctxs) {
 | |
|             ggml_free(ctx);
 | |
|         }
 | |
|         for (ggml_backend_buffer_t buf : bufs) {
 | |
| #ifdef GGML_USE_CUDA
 | |
|             if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
 | |
|                 ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
 | |
|             }
 | |
| #endif
 | |
|             ggml_backend_buffer_free(buf);
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct llama_context {
 | |
|     llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
 | |
|     ~llama_context() {
 | |
|         ggml_backend_sched_free(sched);
 | |
| 
 | |
|         for (ggml_backend_t backend : backends) {
 | |
|             ggml_backend_free(backend);
 | |
|         }
 | |
| 
 | |
|         ggml_backend_buffer_free(buf_output);
 | |
|     }
 | |
| 
 | |
|     llama_cparams cparams;
 | |
| 
 | |
|     std::vector<ggml_backend_t> backends;
 | |
| #ifdef GGML_USE_METAL
 | |
|     ggml_backend_t backend_metal = nullptr;
 | |
| #endif
 | |
|     ggml_backend_t backend_cpu = nullptr;
 | |
| 
 | |
|     const llama_model & model;
 | |
| 
 | |
|     // key + value cache for the self attention
 | |
|     struct llama_kv_cache kv_self;
 | |
| 
 | |
|     std::mt19937 rng;
 | |
| 
 | |
|     bool has_evaluated_once = false;
 | |
| 
 | |
|     int64_t t_start_us;
 | |
|     int64_t t_load_us;
 | |
|     int64_t t_sample_us = 0;
 | |
|     int64_t t_p_eval_us = 0;
 | |
|     int64_t t_eval_us   = 0;
 | |
| 
 | |
|     int64_t t_compute_start_us = 0;
 | |
|     int64_t n_queued_tokens = 0;
 | |
| 
 | |
|     int32_t n_sample = 0; // number of tokens sampled
 | |
|     int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
 | |
|     int32_t n_eval   = 0; // number of eval calls
 | |
| 
 | |
|     // host buffer for the model output (logits and embeddings)
 | |
|     ggml_backend_buffer_t buf_output = nullptr;
 | |
| 
 | |
|     // decode output (2-dimensional array: [n_outputs][n_vocab])
 | |
|     size_t  logits_size = 0; // capacity (of floats) for logits
 | |
|     float * logits      = nullptr;
 | |
| 
 | |
|     std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
 | |
|     size_t  output_size = 0; // capacity (of tokens positions) for the output buffers
 | |
|     int32_t n_outputs   = 0; // number of actually-used outputs in the current ubatch or last logical batch
 | |
| 
 | |
|     bool logits_all = false;
 | |
| 
 | |
|     // embeddings output (2-dimensional array: [n_outputs][n_embd])
 | |
|     // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
 | |
|     size_t  embd_size = 0; // capacity (of floats) for embeddings
 | |
|     float * embd      = nullptr;
 | |
| 
 | |
|     // sequence embeddings output (map of [n_embd] vectors)
 | |
|     // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
 | |
|     std::map<llama_seq_id, std::vector<float>> embd_seq;
 | |
| 
 | |
|     // memory buffers used to evaluate the model
 | |
|     std::vector<uint8_t> buf_compute_meta;
 | |
|     ggml_backend_sched_t sched = nullptr;
 | |
| 
 | |
|     ggml_abort_callback abort_callback      = nullptr;
 | |
|     void *              abort_callback_data = nullptr;
 | |
| 
 | |
|     // input tensors
 | |
|     struct ggml_tensor * inp_tokens;    // I32 [n_batch]
 | |
|     struct ggml_tensor * inp_embd;      // F32 [n_embd, n_batch]
 | |
|     struct ggml_tensor * inp_pos;       // I32 [n_batch]
 | |
|     struct ggml_tensor * inp_out_ids;   // I32 [n_outputs]
 | |
|     struct ggml_tensor * inp_KQ_mask;   // F32 [kv_size, n_batch]
 | |
|     struct ggml_tensor * inp_KQ_pos;    // F32 [n_kv]
 | |
|     struct ggml_tensor * inp_K_shift;   // I32 [kv_size]
 | |
|     struct ggml_tensor * inp_mean;      // F32 [n_batch, n_batch]
 | |
|     struct ggml_tensor * inp_cls;       // I32 [n_batch]
 | |
|     struct ggml_tensor * inp_s_copy;    // I32 [kv_size]
 | |
|     struct ggml_tensor * inp_s_mask;    // F32 [1, n_kv]
 | |
|     struct ggml_tensor * inp_s_seq;     // I32 [n_kv, n_batch]
 | |
| 
 | |
|     // control vectors
 | |
|     struct llama_control_vector cvec;
 | |
| 
 | |
| #ifdef GGML_USE_MPI
 | |
|     ggml_mpi_context * ctx_mpi = NULL;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| //
 | |
| // kv cache helpers
 | |
| //
 | |
| 
 | |
| static bool llama_kv_cache_init(
 | |
|              struct llama_kv_cache & cache,
 | |
|                  const llama_model & model,
 | |
|                          ggml_type   type_k,
 | |
|                          ggml_type   type_v,
 | |
|                           uint32_t   kv_size,
 | |
|                               bool   offload) {
 | |
|     const struct llama_hparams & hparams = model.hparams;
 | |
| 
 | |
|     const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
 | |
|     const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
 | |
|     const int64_t  n_layer      = hparams.n_layer;
 | |
| 
 | |
|     cache.has_shift = false;
 | |
| 
 | |
|     // TODO: find a nicer way to add other recurrent model architectures
 | |
|     cache.recurrent = model.arch == LLM_ARCH_MAMBA;
 | |
| 
 | |
|     // TODO: support mixed reccurent Transformer architectues
 | |
|     // NOTE: (!a || b) is a logical implication (a -> b)
 | |
|     GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s());
 | |
|     GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s());
 | |
|     GGML_ASSERT( cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_gqa());
 | |
|     GGML_ASSERT( cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_gqa());
 | |
| 
 | |
|     cache.head = 0;
 | |
|     cache.size = kv_size;
 | |
|     cache.used = 0;
 | |
| 
 | |
|     cache.type_k = type_k;
 | |
|     cache.type_v = type_v;
 | |
| 
 | |
|     cache.cells.clear();
 | |
|     cache.cells.resize(kv_size);
 | |
| 
 | |
|     if (cache.recurrent) {
 | |
|         // init state copy sources
 | |
|         for (uint32_t i = 0; i < cache.size; ++i) {
 | |
|             cache.cells[i].src = i;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #ifdef GGML_USE_CLBLAST
 | |
|     offload = false;
 | |
| #endif
 | |
| 
 | |
|     // count used buffer types
 | |
|     std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
 | |
|     if (offload) {
 | |
|         for (int64_t i = 0; i < n_layer; ++i) {
 | |
|             buft_layer_count[model.buft_layer[i].buft]++;
 | |
|         }
 | |
|     } else {
 | |
|         buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
 | |
|     }
 | |
| 
 | |
|     // create a context for each buffer type
 | |
|     std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
 | |
|     for (auto & it : buft_layer_count) {
 | |
|         int n_layers = it.second;
 | |
|         struct ggml_init_params params = {
 | |
|             /*.mem_size   =*/ 2u*n_layers*ggml_tensor_overhead(),
 | |
|             /*.mem_buffer =*/ NULL,
 | |
|             /*.no_alloc   =*/ true,
 | |
|         };
 | |
|         ggml_context * ctx = ggml_init(params);
 | |
|         if (!ctx) {
 | |
|             LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
 | |
|             return false;
 | |
|         }
 | |
|         ctx_map[it.first] = ctx;
 | |
|         cache.ctxs.push_back(ctx);
 | |
|     }
 | |
| 
 | |
|     cache.k_l.reserve(n_layer);
 | |
|     cache.v_l.reserve(n_layer);
 | |
| 
 | |
|     for (int i = 0; i < (int) n_layer; i++) {
 | |
|         struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
 | |
|         ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
 | |
|         ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
 | |
|         ggml_format_name(k, "cache_k_l%d", i);
 | |
|         ggml_format_name(v, "cache_v_l%d", i);
 | |
|         cache.k_l.push_back(k);
 | |
|         cache.v_l.push_back(v);
 | |
|     }
 | |
| 
 | |
|     // allocate tensors and initialize the buffers to avoid NaNs in the padding
 | |
|     for (auto it : ctx_map) {
 | |
|         ggml_backend_buffer_type_t buft = it.first;
 | |
|         ggml_context * ctx = it.second;
 | |
|         ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
 | |
|         if (!buf) {
 | |
|             LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
 | |
|             return false;
 | |
|         }
 | |
|         ggml_backend_buffer_clear(buf, 0);
 | |
|         LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
 | |
|         cache.bufs.push_back(buf);
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| // find an empty slot of size "n_tokens" in the cache
 | |
| // updates the cache head
 | |
| // Note: On success, it's important that cache.head points
 | |
| // to the first cell of the slot.
 | |
| static bool llama_kv_cache_find_slot(
 | |
|            struct llama_kv_cache & cache,
 | |
|         const struct llama_batch & batch) {
 | |
|     const uint32_t n_ctx    = cache.size;
 | |
|     const uint32_t n_tokens = batch.n_tokens;
 | |
| 
 | |
|     if (cache.recurrent) {
 | |
|         // For recurrent state architectures (like Mamba),
 | |
|         // each KV cache cell can store the state for a whole sequence.
 | |
| 
 | |
|         llama_seq_id min = cache.size - 1;
 | |
|         llama_seq_id max = 0;
 | |
| 
 | |
|         for (uint32_t i = 0; i < n_tokens; ++i) {
 | |
|             for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) {
 | |
|                 llama_seq_id seq_id = batch.seq_id[i][j];
 | |
|                 // make sure it's a valid seq_id
 | |
|                 if ((uint32_t) seq_id < cache.size) {
 | |
|                     if (seq_id > max) {
 | |
|                         max = seq_id;
 | |
|                     }
 | |
|                     if (seq_id < min) {
 | |
|                         min = seq_id;
 | |
|                     }
 | |
|                     // Assuming the tokens are in-order
 | |
|                     if (batch.pos[i] != cache.cells[seq_id].pos + 1) {
 | |
|                         // What should happen when the pos backtracks or skips a value?
 | |
|                         // Clearing the state mid-batch would require special-casing which isn't done.
 | |
|                         LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n",
 | |
|                             __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id);
 | |
|                     }
 | |
|                     if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) {
 | |
|                         cache.used += 1;
 | |
|                     }
 | |
|                     cache.cells[seq_id].pos = batch.pos[i];
 | |
|                     // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set
 | |
|                 } else {
 | |
|                     // too big seq_id
 | |
|                     // TODO: would it be possible to resize the KV cache size instead?
 | |
|                     LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
 | |
|                     return false;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // allow getting the range of used cells, from head to head + n
 | |
|         cache.head = min;
 | |
|         cache.n    = max - min + 1;
 | |
| 
 | |
|         // sanity check
 | |
|         return max >= min;
 | |
|     }
 | |
|     // otherwise, one cell per token.
 | |
| 
 | |
|     if (n_tokens > n_ctx) {
 | |
|         LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx);
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     uint32_t n_tested = 0;
 | |
| 
 | |
|     while (true) {
 | |
|         if (cache.head + n_tokens > n_ctx) {
 | |
|             n_tested += n_ctx - cache.head;
 | |
|             cache.head = 0;
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         bool found = true;
 | |
|         for (uint32_t i = 0; i < n_tokens; i++) {
 | |
|             if (cache.cells[cache.head + i].pos >= 0) {
 | |
|                 found = false;
 | |
|                 cache.head += i + 1;
 | |
|                 n_tested   += i + 1;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (found) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (n_tested >= n_ctx) {
 | |
|             //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (uint32_t i = 0; i < n_tokens; i++) {
 | |
|         cache.cells[cache.head + i].pos = batch.pos[i];
 | |
| 
 | |
|         for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
 | |
|             cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     cache.used += n_tokens;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| // find how many cells are currently in use
 | |
| static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
 | |
|     for (uint32_t i = cache.size; i > 0; --i) {
 | |
|         const llama_kv_cell & cell = cache.cells[i - 1];
 | |
| 
 | |
|         if (cell.pos >= 0 && !cell.is_empty()) {
 | |
|             return i;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
 | |
|     for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
 | |
|         cache.cells[i].pos = -1;
 | |
|         cache.cells[i].seq_id.clear();
 | |
|     }
 | |
|     cache.head = 0;
 | |
|     cache.used = 0;
 | |
| }
 | |
| 
 | |
| static bool llama_kv_cache_seq_rm(
 | |
|         struct llama_kv_cache & cache,
 | |
|                  llama_seq_id   seq_id,
 | |
|                     llama_pos   p0,
 | |
|                     llama_pos   p1) {
 | |
|     uint32_t new_head = cache.size;
 | |
| 
 | |
|     if (p0 < 0) p0 = 0;
 | |
|     if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
 | |
| 
 | |
|     // models like Mamba can't have a state partially erased
 | |
|     if (cache.recurrent) {
 | |
|         if (seq_id >= (int64_t) cache.size) {
 | |
|             // could be fatal
 | |
|             return false;
 | |
|         }
 | |
|         if (0 <= seq_id) {
 | |
|             // partial intersection is invalid
 | |
|             if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) {
 | |
|                 return false;
 | |
|             }
 | |
|         } else {
 | |
|             // seq_id is negative, then the range should include everything or nothing
 | |
|             if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (uint32_t i = 0; i < cache.size; ++i) {
 | |
|         if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
 | |
|             if (seq_id < 0) {
 | |
|                 cache.cells[i].seq_id.clear();
 | |
|             } else if (cache.cells[i].has_seq_id(seq_id)) {
 | |
|                 cache.cells[i].seq_id.erase(seq_id);
 | |
|             } else {
 | |
|                 continue;
 | |
|             }
 | |
|             if (cache.cells[i].is_empty()) {
 | |
|                 // keep count of the number of used cells
 | |
|                 if (cache.cells[i].pos >= 0) cache.used--;
 | |
| 
 | |
|                 cache.cells[i].pos = -1;
 | |
|                 if (new_head == cache.size) new_head = i;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // If we freed up a slot, set head to it so searching can start there.
 | |
|     if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static void llama_kv_cache_seq_cp(
 | |
|         struct llama_kv_cache & cache,
 | |
|                  llama_seq_id   seq_id_src,
 | |
|                  llama_seq_id   seq_id_dst,
 | |
|                     llama_pos   p0,
 | |
|                     llama_pos   p1) {
 | |
|     if (p0 < 0) p0 = 0;
 | |
|     if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
 | |
| 
 | |
|     if (cache.recurrent) {
 | |
|         if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
 | |
|             seq_id_src = cache.cells[seq_id_src].src;
 | |
|             GGML_ASSERT((uint32_t) seq_id_src < cache.size);
 | |
|             // intent to "copy from"
 | |
|             // supports copy chains thanks to taking the source of the source
 | |
|             cache.cells[seq_id_dst].src = seq_id_src;
 | |
| 
 | |
|             // preserve the "keep or clear" status of the copied sequence
 | |
|             if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) {
 | |
|                 cache.cells[seq_id_dst].seq_id.insert(seq_id_dst);
 | |
|             } else {
 | |
|                 cache.cells[seq_id_dst].seq_id.erase(seq_id_dst);
 | |
|             }
 | |
| 
 | |
|             cache.do_copy = true;
 | |
| 
 | |
|             cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos;
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
|     // otherwise, this is the KV cache of a Transformer-like model
 | |
| 
 | |
|     cache.head = 0;
 | |
| 
 | |
|     for (uint32_t i = 0; i < cache.size; ++i) {
 | |
|         if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
 | |
|             cache.cells[i].seq_id.insert(seq_id_dst);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
 | |
|     uint32_t new_head = cache.size;
 | |
| 
 | |
|     for (uint32_t i = 0; i < cache.size; ++i) {
 | |
|         if (!cache.cells[i].has_seq_id(seq_id)) {
 | |
|             if (cache.cells[i].pos >= 0) cache.used--;
 | |
|             cache.cells[i].pos = -1;
 | |
|             cache.cells[i].seq_id.clear();
 | |
|             if (new_head == cache.size) new_head = i;
 | |
|         } else {
 | |
|             cache.cells[i].seq_id.clear();
 | |
|             cache.cells[i].seq_id.insert(seq_id);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // If we freed up a slot, set head to it so searching can start there.
 | |
|     if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
 | |
| }
 | |
| 
 | |
| static void llama_kv_cache_seq_add(
 | |
|         struct llama_kv_cache & cache,
 | |
|                  llama_seq_id   seq_id,
 | |
|                     llama_pos   p0,
 | |
|                     llama_pos   p1,
 | |
|                     llama_pos   delta) {
 | |
|     uint32_t new_head = cache.size;
 | |
| 
 | |
|     if (p0 < 0) p0 = 0;
 | |
|     if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
 | |
| 
 | |
|     if (cache.recurrent) {
 | |
|         // for Mamba-like models, only the pos needs to be shifted
 | |
|         if (0 <= seq_id && seq_id < (int64_t) cache.size) {
 | |
|             llama_kv_cell & cell = cache.cells[seq_id];
 | |
|             if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
 | |
|                 cell.pos += delta;
 | |
|             }
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     for (uint32_t i = 0; i < cache.size; ++i) {
 | |
|         if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
 | |
|             cache.has_shift = true;
 | |
|             cache.cells[i].pos   += delta;
 | |
|             cache.cells[i].delta += delta;
 | |
| 
 | |
|             if (cache.cells[i].pos < 0) {
 | |
|                 if (!cache.cells[i].is_empty()) {
 | |
|                     cache.used--;
 | |
|                 }
 | |
|                 cache.cells[i].pos = -1;
 | |
|                 cache.cells[i].seq_id.clear();
 | |
|                 if (new_head == cache.size) {
 | |
|                     new_head = i;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // If we freed up a slot, set head to it so searching can start there.
 | |
|     // Otherwise we just start the next search from the beginning.
 | |
|     cache.head = new_head != cache.size ? new_head : 0;
 | |
| }
 | |
| 
 | |
| static void llama_kv_cache_seq_div(
 | |
|         struct llama_kv_cache & cache,
 | |
|                  llama_seq_id   seq_id,
 | |
|                     llama_pos   p0,
 | |
|                     llama_pos   p1,
 | |
|                           int   d) {
 | |
|     if (p0 < 0) p0 = 0;
 | |
|     if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
 | |
| 
 | |
|     if (cache.recurrent) {
 | |
|         // for Mamba-like models, only the pos needs to be changed
 | |
|         if (0 <= seq_id && seq_id < (int64_t) cache.size) {
 | |
|             llama_kv_cell & cell = cache.cells[seq_id];
 | |
|             if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
 | |
|                 cell.pos /= d;
 | |
|             }
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     for (uint32_t i = 0; i < cache.size; ++i) {
 | |
|         if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
 | |
|             cache.has_shift = true;
 | |
| 
 | |
|             {
 | |
|                 llama_pos p_old = cache.cells[i].pos;
 | |
|                 cache.cells[i].pos   /= d;
 | |
|                 cache.cells[i].delta += cache.cells[i].pos - p_old;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
 | |
|     llama_pos result = 0;
 | |
| 
 | |
|     for (uint32_t i = 0; i < cache.size; ++i) {
 | |
|         if (cache.cells[i].has_seq_id(seq_id)) {
 | |
|             result = std::max(result, cache.cells[i].pos);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
 | |
|     cache.do_defrag = true;
 | |
| }
 | |
| 
 | |
| //
 | |
| // model loading and saving
 | |
| //
 | |
| 
 | |
| enum llama_fver {
 | |
|     GGUF_FILE_VERSION_V1 = 1,
 | |
|     GGUF_FILE_VERSION_V2 = 2,
 | |
|     GGUF_FILE_VERSION_V3 = 3,
 | |
| };
 | |
| 
 | |
| static const char * llama_file_version_name(llama_fver version) {
 | |
|     switch (version) {
 | |
|         case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
 | |
|         case GGUF_FILE_VERSION_V2: return "GGUF V2";
 | |
|         case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
 | |
|     }
 | |
| 
 | |
|     return "unknown";
 | |
| }
 | |
| 
 | |
| static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
 | |
|     char buf[256];
 | |
|     snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
 | |
|     for (size_t i = 1; i < ne.size(); i++) {
 | |
|         snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
 | |
|     }
 | |
|     return buf;
 | |
| }
 | |
| 
 | |
| static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
 | |
|     char buf[256];
 | |
|     snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
 | |
|     for (int i = 1; i < GGML_MAX_DIMS; i++) {
 | |
|         snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
 | |
|     }
 | |
|     return buf;
 | |
| }
 | |
| 
 | |
| namespace GGUFMeta {
 | |
|     template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
 | |
|     struct GKV_Base_Type {
 | |
|         static constexpr gguf_type gt = gt_;
 | |
| 
 | |
|         static T getter(const gguf_context * ctx, const int kid) {
 | |
|             return gfun(ctx, kid);
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     template<typename T> struct GKV_Base;
 | |
| 
 | |
|     template<> struct GKV_Base<bool        >: GKV_Base_Type<bool,         GGUF_TYPE_BOOL,    gguf_get_val_bool> {};
 | |
|     template<> struct GKV_Base<uint8_t     >: GKV_Base_Type<uint8_t,      GGUF_TYPE_UINT8,   gguf_get_val_u8  > {};
 | |
|     template<> struct GKV_Base<uint16_t    >: GKV_Base_Type<uint16_t,     GGUF_TYPE_UINT16,  gguf_get_val_u16 > {};
 | |
|     template<> struct GKV_Base<uint32_t    >: GKV_Base_Type<uint32_t,     GGUF_TYPE_UINT32,  gguf_get_val_u32 > {};
 | |
|     template<> struct GKV_Base<uint64_t    >: GKV_Base_Type<uint64_t,     GGUF_TYPE_UINT64,  gguf_get_val_u64 > {};
 | |
|     template<> struct GKV_Base<int8_t      >: GKV_Base_Type<int8_t,       GGUF_TYPE_INT8,    gguf_get_val_i8  > {};
 | |
|     template<> struct GKV_Base<int16_t     >: GKV_Base_Type<int16_t,      GGUF_TYPE_INT16,   gguf_get_val_i16 > {};
 | |
|     template<> struct GKV_Base<int32_t     >: GKV_Base_Type<int32_t,      GGUF_TYPE_INT32,   gguf_get_val_i32 > {};
 | |
|     template<> struct GKV_Base<int64_t     >: GKV_Base_Type<int64_t,      GGUF_TYPE_INT64,   gguf_get_val_i64 > {};
 | |
|     template<> struct GKV_Base<float       >: GKV_Base_Type<float,        GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
 | |
|     template<> struct GKV_Base<double      >: GKV_Base_Type<double,       GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
 | |
|     template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING,  gguf_get_val_str > {};
 | |
| 
 | |
|     template<> struct GKV_Base<std::string> {
 | |
|         static constexpr gguf_type gt = GGUF_TYPE_STRING;
 | |
| 
 | |
|         static std::string getter(const gguf_context * ctx, const int kid) {
 | |
|             return gguf_get_val_str(ctx, kid);
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     struct ArrayInfo {
 | |
|         const gguf_type gt;
 | |
|         const size_t length;
 | |
|         const void * data;
 | |
|     };
 | |
| 
 | |
|     template<> struct GKV_Base<ArrayInfo> {
 | |
|         public:
 | |
|         static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
 | |
|         static ArrayInfo getter(const gguf_context *ctx, const int k) {
 | |
|             return ArrayInfo {
 | |
|                 gguf_get_arr_type(ctx, k),
 | |
|                 size_t(gguf_get_arr_n(ctx, k)),
 | |
|                 gguf_get_arr_data(ctx, k),
 | |
|             };
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     template<typename T>
 | |
|     class GKV : public GKV_Base<T> {
 | |
|         GKV() = delete;
 | |
| 
 | |
|         public:
 | |
|         static T get_kv(const gguf_context * ctx, const int k) {
 | |
|             const enum gguf_type kt = gguf_get_kv_type(ctx, k);
 | |
| 
 | |
|             if (kt != GKV::gt) {
 | |
|                 throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
 | |
|                     gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
 | |
|             }
 | |
|             return GKV::getter(ctx, k);
 | |
|         }
 | |
| 
 | |
|         static const char * override_type_to_str(const llama_model_kv_override_type ty) {
 | |
|             switch (ty) {
 | |
|                 case LLAMA_KV_OVERRIDE_TYPE_BOOL:  return "bool";
 | |
|                 case LLAMA_KV_OVERRIDE_TYPE_INT:   return "int";
 | |
|                 case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
 | |
|                 case LLAMA_KV_OVERRIDE_TYPE_STR:   return "str";
 | |
|             }
 | |
|             return "unknown";
 | |
|         }
 | |
| 
 | |
|         static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
 | |
|             if (!ovrd) { return false; }
 | |
|             if (ovrd->tag == expected_type) {
 | |
|                 LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
 | |
|                     __func__, override_type_to_str(ovrd->tag), ovrd->key);
 | |
|                 switch (ovrd->tag) {
 | |
|                     case LLAMA_KV_OVERRIDE_TYPE_BOOL:  {
 | |
|                         LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false");
 | |
|                     } break;
 | |
|                     case LLAMA_KV_OVERRIDE_TYPE_INT:   {
 | |
|                         LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64);
 | |
|                     } break;
 | |
|                     case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
 | |
|                         LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64);
 | |
|                     } break;
 | |
|                     case LLAMA_KV_OVERRIDE_TYPE_STR: {
 | |
|                         LLAMA_LOG_INFO("%s\n", ovrd->val_str);
 | |
|                     } break;
 | |
|                     default:
 | |
|                         // Shouldn't be possible to end up here, but just in case...
 | |
|                         throw std::runtime_error(
 | |
|                             format("Unsupported attempt to override %s type for metadata key %s\n",
 | |
|                                 override_type_to_str(ovrd->tag), ovrd->key));
 | |
|                 }
 | |
|                 return true;
 | |
|             }
 | |
|             LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
 | |
|                 __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         template<typename OT>
 | |
|         static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
 | |
|         try_override(OT & target, const struct llama_model_kv_override * ovrd) {
 | |
|             if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
 | |
|                 target = ovrd->val_bool;
 | |
|                 return true;
 | |
|             }
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         template<typename OT>
 | |
|         static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
 | |
|         try_override(OT & target, const struct llama_model_kv_override * ovrd) {
 | |
|             if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
 | |
|                 target = ovrd->val_i64;
 | |
|                 return true;
 | |
|             }
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         template<typename OT>
 | |
|         static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
 | |
|         try_override(T & target, const struct llama_model_kv_override * ovrd) {
 | |
|             if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
 | |
|                 target = ovrd->val_f64;
 | |
|                 return true;
 | |
|             }
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         template<typename OT>
 | |
|         static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
 | |
|         try_override(T & target, const struct llama_model_kv_override * ovrd) {
 | |
|             if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) {
 | |
|                 target = ovrd->val_str;
 | |
|                 return true;
 | |
|             }
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
 | |
|             if (try_override<T>(target, ovrd)) {
 | |
|                 return true;
 | |
|             }
 | |
|             if (k < 0) { return false; }
 | |
|             target = get_kv(ctx, k);
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
 | |
|             return set(ctx, gguf_find_key(ctx, key), target, ovrd);
 | |
|         }
 | |
| 
 | |
|         static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
 | |
|             return set(ctx, key.c_str(), target, ovrd);
 | |
|         }
 | |
|     };
 | |
| }
 | |
| 
 | |
| using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
 | |
| 
 | |
| struct llama_model_loader {
 | |
|     int n_kv      = 0;
 | |
|     int n_tensors = 0;
 | |
|     int n_created = 0;
 | |
| 
 | |
|     int64_t n_elements = 0;
 | |
|     size_t  n_bytes    = 0;
 | |
| 
 | |
|     bool use_mmap = false;
 | |
|     bool check_tensors;
 | |
| 
 | |
|     llama_files files;
 | |
|     llama_ftype ftype;
 | |
|     llama_fver  fver;
 | |
| 
 | |
|     llama_mmaps mappings;
 | |
| 
 | |
|     // Holds information on a model weight
 | |
|     struct llama_tensor_weight {
 | |
|         uint16_t  idx; // source file index
 | |
|         size_t   offs; // tensor data offset in the original file
 | |
| 
 | |
|         ggml_tensor * tensor;
 | |
| 
 | |
|         llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
 | |
|             const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
 | |
|             offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
 | |
| 
 | |
|             if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) {
 | |
|                 throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name));
 | |
|             }
 | |
|         }
 | |
|     };
 | |
|     std::vector<llama_tensor_weight> weights;
 | |
| 
 | |
|     std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
 | |
| 
 | |
|     struct gguf_context * meta = NULL;
 | |
|     std::vector<ggml_context *> contexts;
 | |
| 
 | |
|     std::string arch_name;
 | |
|     LLM_KV      llm_kv    = LLM_KV(LLM_ARCH_UNKNOWN);
 | |
| 
 | |
|     llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
 | |
|         int trace = 0;
 | |
|         if (getenv("LLAMA_TRACE")) {
 | |
|             trace = atoi(getenv("LLAMA_TRACE"));
 | |
|         }
 | |
| 
 | |
|         if (param_overrides_p != nullptr) {
 | |
|             for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
 | |
|                 kv_overrides.insert({std::string(p->key), *p});
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         struct ggml_context * ctx = NULL;
 | |
|         struct gguf_init_params params = {
 | |
|             /*.no_alloc = */ true,
 | |
|             /*.ctx      = */ &ctx,
 | |
|         };
 | |
| 
 | |
|         meta = gguf_init_from_file(fname.c_str(), params);
 | |
|         if (!meta) {
 | |
|             throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
 | |
|         }
 | |
| 
 | |
|         get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
 | |
|         llm_kv = LLM_KV(llm_arch_from_string(arch_name));
 | |
| 
 | |
|         files.emplace_back(new llama_file(fname.c_str(), "rb"));
 | |
|         contexts.emplace_back(ctx);
 | |
| 
 | |
|         // Save tensors data offset of the main file.
 | |
|         // For subsidiary files, `meta` tensor data offset must not be used,
 | |
|         // so we build a unified tensors index for weights.
 | |
|         for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
 | |
|             weights.emplace_back(files.back().get(), 0, cur->name, meta, cur);
 | |
|         }
 | |
|         uint16_t n_split = 0;
 | |
|         get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
 | |
| 
 | |
|         // Load additional GGML contexts
 | |
|         if (n_split > 1) {
 | |
|             uint16_t idx = 0;
 | |
|             get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
 | |
|             if (idx != 0) {
 | |
|                 throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
 | |
|             }
 | |
| 
 | |
|             char split_prefix[PATH_MAX] = {0};
 | |
|             if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
 | |
|                 throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
 | |
|             }
 | |
| 
 | |
|             if (trace > 0) {
 | |
|                 LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
 | |
|             }
 | |
| 
 | |
|             char split_path[PATH_MAX] = {0};
 | |
|             for (idx = 1; idx < n_split; idx++) {
 | |
|                 llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
 | |
| 
 | |
|                 struct gguf_init_params split_params = {
 | |
|                     /*.no_alloc = */ true,
 | |
|                     /*.ctx      = */ &ctx,
 | |
|                 };
 | |
|                 struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
 | |
|                 if (!ctx_gguf) {
 | |
|                     throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
 | |
|                 }
 | |
| 
 | |
|                 files.emplace_back(new llama_file(split_path, "rb"));
 | |
|                 contexts.emplace_back(ctx);
 | |
| 
 | |
|                 // Save tensors data offset info of the shard.
 | |
|                 for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
 | |
|                     weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur);
 | |
|                 }
 | |
| 
 | |
|                 gguf_free(ctx_gguf);
 | |
|             }
 | |
| 
 | |
|             get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
 | |
| 
 | |
|             // sanity check
 | |
|             {
 | |
|                 const int n_tensors_loaded = (int) weights.size();
 | |
|                 if (n_tensors != n_tensors_loaded) {
 | |
|                     throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n",  __func__, n_split - 1);
 | |
|         }
 | |
| 
 | |
|         n_kv      = gguf_get_n_kv(meta);
 | |
|         n_tensors = weights.size();
 | |
| 
 | |
|         fver = (enum llama_fver) gguf_get_version(meta);
 | |
| 
 | |
|         for (auto & w : weights) {
 | |
|             n_elements += ggml_nelements(w.tensor);
 | |
|             n_bytes    += ggml_nbytes(w.tensor);
 | |
|         }
 | |
| 
 | |
|         LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
 | |
|                 __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
 | |
| 
 | |
|         // determine file type based on the number of tensors for each quantization and print meta data
 | |
|         // TODO: make optional
 | |
|         {
 | |
|             std::map<enum ggml_type, uint32_t> n_type;
 | |
| 
 | |
|             uint32_t n_type_max = 0;
 | |
|             enum ggml_type type_max = GGML_TYPE_F32;
 | |
| 
 | |
|             for (int i = 0; i < n_tensors; i++) {
 | |
|                 const ggml_tensor * tensor = weights.at(i).tensor;
 | |
|                 enum ggml_type type = tensor->type;
 | |
| 
 | |
|                 n_type[type]++;
 | |
| 
 | |
|                 if (n_type_max < n_type[type]) {
 | |
|                     n_type_max = n_type[type];
 | |
|                     type_max   = type;
 | |
|                 }
 | |
| 
 | |
|                 if (trace > 0) {
 | |
|                     const uint16_t sid = weights.at(i).idx;
 | |
|                     LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             switch (type_max) {
 | |
|                 case GGML_TYPE_F32:     ftype = LLAMA_FTYPE_ALL_F32;        break;
 | |
|                 case GGML_TYPE_F16:     ftype = LLAMA_FTYPE_MOSTLY_F16;     break;
 | |
|                 case GGML_TYPE_Q4_0:    ftype = LLAMA_FTYPE_MOSTLY_Q4_0;    break;
 | |
|                 case GGML_TYPE_Q4_1:    ftype = LLAMA_FTYPE_MOSTLY_Q4_1;    break;
 | |
|                 case GGML_TYPE_Q5_0:    ftype = LLAMA_FTYPE_MOSTLY_Q5_0;    break;
 | |
|                 case GGML_TYPE_Q5_1:    ftype = LLAMA_FTYPE_MOSTLY_Q5_1;    break;
 | |
|                 case GGML_TYPE_Q8_0:    ftype = LLAMA_FTYPE_MOSTLY_Q8_0;    break;
 | |
|                 case GGML_TYPE_Q2_K:    ftype = LLAMA_FTYPE_MOSTLY_Q2_K;    break;
 | |
|                 case GGML_TYPE_Q3_K:    ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M;  break;
 | |
|                 case GGML_TYPE_Q4_K:    ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M;  break;
 | |
|                 case GGML_TYPE_Q5_K:    ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M;  break;
 | |
|                 case GGML_TYPE_Q6_K:    ftype = LLAMA_FTYPE_MOSTLY_Q6_K;    break;
 | |
|                 case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
 | |
|                 case GGML_TYPE_IQ2_XS:  ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS;  break;
 | |
|                 case GGML_TYPE_IQ2_S:   ftype = LLAMA_FTYPE_MOSTLY_IQ2_S;   break;
 | |
|                 case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
 | |
|                 case GGML_TYPE_IQ1_S:   ftype = LLAMA_FTYPE_MOSTLY_IQ1_S;   break;
 | |
|                 case GGML_TYPE_IQ1_M:   ftype = LLAMA_FTYPE_MOSTLY_IQ1_M;   break;
 | |
|                 case GGML_TYPE_IQ4_NL:  ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL;  break;
 | |
|                 case GGML_TYPE_IQ4_XS:  ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS;  break;
 | |
|                 case GGML_TYPE_IQ3_S:   ftype = LLAMA_FTYPE_MOSTLY_IQ3_S;   break;
 | |
|                 default:
 | |
|                     {
 | |
|                         LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
 | |
|                         ftype = LLAMA_FTYPE_ALL_F32;
 | |
|                     } break;
 | |
|             }
 | |
| 
 | |
|             // this is a way to mark that we have "guessed" the file type
 | |
|             ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
 | |
| 
 | |
|             {
 | |
|                 const int kid = gguf_find_key(meta, "general.file_type");
 | |
|                 if (kid >= 0) {
 | |
|                     ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
 | |
| 
 | |
|             for (int i = 0; i < n_kv; i++) {
 | |
|                 const char * name           = gguf_get_key(meta, i);
 | |
|                 const enum gguf_type type   = gguf_get_kv_type(meta, i);
 | |
|                 const std::string type_name =
 | |
|                     type == GGUF_TYPE_ARRAY
 | |
|                     ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
 | |
|                     : gguf_type_name(type);
 | |
| 
 | |
|                 std::string value          = gguf_kv_to_str(meta, i);
 | |
|                 const size_t MAX_VALUE_LEN = 40;
 | |
|                 if (value.size() > MAX_VALUE_LEN) {
 | |
|                     value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
 | |
|                 }
 | |
|                 replace_all(value, "\n", "\\n");
 | |
| 
 | |
|                 LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
 | |
|             }
 | |
| 
 | |
|             // print type counts
 | |
|             for (auto & kv : n_type) {
 | |
|                 if (kv.second == 0) {
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (!llama_mmap::SUPPORTED) {
 | |
|             LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
 | |
|             use_mmap = false;
 | |
|         }
 | |
| 
 | |
|         this->use_mmap = use_mmap;
 | |
|         this->check_tensors = check_tensors;
 | |
|     }
 | |
| 
 | |
|     ~llama_model_loader() {
 | |
|         if (meta) {
 | |
|             gguf_free(meta);
 | |
|         }
 | |
|         for (auto * ctx : contexts) {
 | |
|             ggml_free(ctx);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     template<typename T>
 | |
|     typename std::enable_if<std::is_integral<T>::value, bool>::type
 | |
|     get_arr_n(const std::string & key, T & result, const bool required = true) {
 | |
|         const int kid = gguf_find_key(meta, key.c_str());
 | |
| 
 | |
|         if (kid < 0) {
 | |
|             if (required) {
 | |
|                 throw std::runtime_error(format("key not found in model: %s", key.c_str()));
 | |
|             }
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         struct GGUFMeta::ArrayInfo arr_info =
 | |
|             GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
 | |
| 
 | |
| 
 | |
|         result = arr_info.length;
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     template<typename T>
 | |
|     typename std::enable_if<std::is_integral<T>::value, bool>::type
 | |
|     get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
 | |
|         return get_arr_n(llm_kv(kid), result, required);
 | |
|     }
 | |
| 
 | |
|     template<typename T>
 | |
|     bool get_key(const std::string & key, T & result, const bool required = true) {
 | |
|         auto it = kv_overrides.find(key);
 | |
| 
 | |
|         const struct llama_model_kv_override * override =
 | |
|             it != kv_overrides.end() ? &it->second : nullptr;
 | |
| 
 | |
|         const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
 | |
| 
 | |
|         if (required && !found) {
 | |
|             throw std::runtime_error(format("key not found in model: %s", key.c_str()));
 | |
|         }
 | |
| 
 | |
|         return found;
 | |
|     }
 | |
| 
 | |
|     template<typename T>
 | |
|     bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
 | |
|         return get_key(llm_kv(kid), result, required);
 | |
|     }
 | |
| 
 | |
|     std::string get_arch_name() const {
 | |
|         return arch_name;
 | |
|     }
 | |
| 
 | |
|     enum llm_arch get_arch() const {
 | |
|         return llm_kv.arch;
 | |
|     }
 | |
| 
 | |
|     const char * get_tensor_name(int i) const {
 | |
|         return weights.at(i).tensor->name;
 | |
|     }
 | |
| 
 | |
|     const llama_tensor_weight * get_weight(const char * name) const {
 | |
|         for (const auto & weight : weights) {
 | |
|             if (strcmp(name, weight.tensor->name) == 0) {
 | |
|                 return &weight;
 | |
|             }
 | |
|         }
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     const llama_tensor_weight * get_weight(int i) const {
 | |
|         return get_weight(get_tensor_name(i));
 | |
|     }
 | |
| 
 | |
|     const llama_tensor_weight & require_weight(const char * name) const {
 | |
|         const llama_tensor_weight * weight = get_weight(name);
 | |
|         if (!weight) {
 | |
|             throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
 | |
|         }
 | |
|         return *weight;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * get_tensor_meta(const char * name) const {
 | |
|         const auto * weight = get_weight(name);
 | |
|         if (!weight) {
 | |
|             return nullptr;
 | |
|         }
 | |
|         return weight->tensor;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * require_tensor_meta(const char * name) const {
 | |
|         struct ggml_tensor * tensor = get_tensor_meta(name);
 | |
|         if (!tensor) {
 | |
|             throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
 | |
|         }
 | |
|         return tensor;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * get_tensor_meta(int i) const {
 | |
|         return get_tensor_meta(get_tensor_name(i));
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur) {
 | |
|         struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
 | |
|         ggml_set_name(tensor, ggml_get_name(cur));
 | |
| 
 | |
|         n_created++;
 | |
| 
 | |
|         return tensor;
 | |
|     }
 | |
| 
 | |
|     const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
 | |
|         const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
 | |
| 
 | |
|         if (cur == NULL) {
 | |
|             if (!required) {
 | |
|                 return NULL;
 | |
|             }
 | |
|             throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
 | |
|         }
 | |
| 
 | |
|         {
 | |
|             bool is_ok = true;
 | |
|             for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
 | |
|                 if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
 | |
|                     is_ok = false;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             if (!is_ok) {
 | |
|                 throw std::runtime_error(
 | |
|                         format("%s: tensor '%s' has wrong shape; expected %s, got %s",
 | |
|                             __func__, name.c_str(),
 | |
|                             llama_format_tensor_shape(ne).c_str(),
 | |
|                             llama_format_tensor_shape(cur).c_str()));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return cur;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, bool required = true) {
 | |
|         const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
 | |
| 
 | |
|         if (cur == NULL) {
 | |
|             return NULL;
 | |
|         }
 | |
| 
 | |
|         return create_tensor_for(ctx, cur);
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
 | |
|         const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
 | |
| 
 | |
|         if (cur == NULL) {
 | |
|             return NULL;
 | |
|         }
 | |
| 
 | |
|         if (cur->type != base->type) {
 | |
|             throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
 | |
|         }
 | |
| 
 | |
|         std::array<int64_t, GGML_MAX_DIMS> dims;
 | |
|         for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
 | |
|             dims[i] = i < ne.size() ? ne[i] : 1;
 | |
|         }
 | |
| 
 | |
|         struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
 | |
|                                         dims[0], dims[1], dims[2], dims[3],
 | |
|                                         cur->nb[1], cur->nb[2], cur->nb[3],
 | |
|                                         offset);
 | |
| 
 | |
|         ggml_set_name(tensor, name.c_str());
 | |
| 
 | |
|         n_created++;
 | |
| 
 | |
|         return tensor;
 | |
|     }
 | |
| 
 | |
|     void done_getting_tensors() const {
 | |
|         if (n_created != n_tensors) {
 | |
|             throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
 | |
|         if (use_mmap) {
 | |
|             mappings.reserve(files.size());
 | |
|             mmaps_used.reserve(files.size());
 | |
|             for (const auto & file : files) {
 | |
|                 std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
 | |
|                 mmaps_used.emplace_back(mapping->size, 0);
 | |
|                 if (mlock_mmaps) {
 | |
|                     std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
 | |
|                     mlock_mmap->init(mapping->addr);
 | |
|                     mlock_mmaps->emplace_back(std::move(mlock_mmap));
 | |
|                 }
 | |
|                 mappings.emplace_back(std::move(mapping));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // compute the total size of all tensors for progress reporting
 | |
|         for (auto & w : weights) {
 | |
|             size_data += ggml_nbytes(w.tensor);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
 | |
|         GGML_ASSERT(!mappings.empty());
 | |
|         const auto & mapping = mappings.at(idx);
 | |
| 
 | |
|         *first = mapping->size;
 | |
|         *last  = 0;
 | |
|         *addr = mapping->addr;
 | |
|         for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
 | |
|             try {
 | |
|                 const auto * weight = get_weight(ggml_get_name(tensor));
 | |
|                 if (!weight) {
 | |
|                     continue;
 | |
|                 }
 | |
|                 if (weight->idx != idx) {
 | |
|                     continue;
 | |
|                 }
 | |
|                 *first = std::min(*first, weight->offs);
 | |
|                 *last  = std::max(*last,  weight->offs + ggml_nbytes(tensor));
 | |
|             } catch(...) {
 | |
|                 // the tensor is not in the model
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // for backwards compatibility, does not support ggml-backend
 | |
|     void load_data_for(struct ggml_tensor * cur) const {
 | |
|         const auto & w = require_weight(ggml_get_name(cur));
 | |
| 
 | |
|         if (use_mmap) {
 | |
|             const auto & mapping = mappings.at(w.idx);
 | |
|             if (cur->data == nullptr) {
 | |
|                 cur->data = (uint8_t *)mapping->addr + w.offs;
 | |
|             } else {
 | |
|                 memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
 | |
|             }
 | |
|         } else {
 | |
|             GGML_ASSERT(cur->data != nullptr);
 | |
|             GGML_ASSERT(w.idx < files.size());
 | |
|             const auto & file = files.at(w.idx);
 | |
|             file->seek(w.offs, SEEK_SET);
 | |
|             file->read_raw(cur->data, ggml_nbytes(cur));
 | |
|         }
 | |
| 
 | |
|         if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) {
 | |
|             throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     size_t size_done = 0;
 | |
|     size_t size_data = 0;
 | |
|     std::vector<std::pair<size_t, size_t>> mmaps_used;
 | |
| 
 | |
|     // Returns false if cancelled by progress_callback
 | |
|     bool load_all_data(
 | |
|             struct ggml_context * ctx,
 | |
|             llama_buf_map & bufs_mmap,
 | |
|             llama_mlocks * lmlocks,
 | |
|             llama_progress_callback progress_callback,
 | |
|             void * progress_callback_user_data) {
 | |
|         GGML_ASSERT(size_data != 0 && "call init_mappings() first");
 | |
| 
 | |
|         std::vector<no_init<uint8_t>> read_buf;
 | |
|         std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
 | |
| 
 | |
|         for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
 | |
|             const auto * weight = get_weight(ggml_get_name(cur));
 | |
|             if (weight == nullptr) {
 | |
|                 // this can happen with split experts models
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             if (progress_callback) {
 | |
|                 if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
 | |
|                     return false;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             size_t n_size = ggml_nbytes(cur);
 | |
| 
 | |
|             if (use_mmap) {
 | |
|                 const auto & mapping = mappings.at(weight->idx);
 | |
|                 ggml_backend_buffer_t buf_mmap = nullptr;
 | |
|                 if (bufs_mmap.count(weight->idx)) {
 | |
|                     buf_mmap = bufs_mmap.at(weight->idx);
 | |
|                 }
 | |
|                 uint8_t * data = (uint8_t *) mapping->addr + weight->offs;
 | |
| 
 | |
|                 if (check_tensors) {
 | |
|                     validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
 | |
|                         return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size));
 | |
|                     }));
 | |
|                 }
 | |
| 
 | |
|                 GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
 | |
|                 if (buf_mmap && cur->data == nullptr) {
 | |
|                     ggml_backend_tensor_alloc(buf_mmap, cur, data);
 | |
|                     if (lmlocks) {
 | |
|                         const auto & lmlock = lmlocks->at(weight->idx);
 | |
|                         lmlock->grow_to(weight->offs + n_size);
 | |
|                     }
 | |
| 
 | |
|                     auto & mmap_used = mmaps_used[weight->idx];
 | |
|                     mmap_used.first  = std::min(mmap_used.first,  weight->offs);
 | |
|                     mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
 | |
|                 } else {
 | |
|                     ggml_backend_tensor_set(cur, data, 0, n_size);
 | |
|                 }
 | |
|             } else {
 | |
|                 GGML_ASSERT(weight->idx < files.size());
 | |
|                 const auto & file = files.at(weight->idx);
 | |
|                 if (ggml_backend_buffer_is_host(cur->buffer)) {
 | |
|                     file->seek(weight->offs, SEEK_SET);
 | |
|                     file->read_raw(cur->data, n_size);
 | |
|                     if (check_tensors) {
 | |
|                         validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
 | |
|                             return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
 | |
|                         }));
 | |
|                     }
 | |
|                 } else {
 | |
|                     read_buf.resize(n_size);
 | |
|                     file->seek(weight->offs, SEEK_SET);
 | |
|                     file->read_raw(read_buf.data(), n_size);
 | |
|                     ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
 | |
|                     if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
 | |
|                         throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             size_done += n_size;
 | |
|         }
 | |
| 
 | |
|         // check validation results
 | |
|         bool validation_failed = false;
 | |
|         for (auto & future : validation_result) {
 | |
|             auto result = future.get();
 | |
|             if (!result.second) {
 | |
|                 LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first));
 | |
|                 validation_failed = true;
 | |
|             }
 | |
|         }
 | |
|         if (validation_failed) {
 | |
|             throw std::runtime_error("found tensors with invalid data");
 | |
|         }
 | |
| 
 | |
|         // check if this is the last call and do final cleanup
 | |
|         if (size_done >= size_data) {
 | |
|             // unmap offloaded tensors and metadata
 | |
|             if (use_mmap) {
 | |
|                 for (uint32_t idx = 0; idx < mappings.size(); idx++) {
 | |
|                     const auto & mmap_used = mmaps_used.at(idx);
 | |
|                     auto & mapping = mappings.at(idx);
 | |
|                     mapping->unmap_fragment(0, mmap_used.first);
 | |
|                     if (mmap_used.second != 0) {
 | |
|                         mapping->unmap_fragment(mmap_used.second, mapping->size);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             if (progress_callback) {
 | |
|                 // Even though the model is done loading, we still honor
 | |
|                 // cancellation since we need to free allocations.
 | |
|                 return progress_callback(1.0f, progress_callback_user_data);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| template<>
 | |
| bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
 | |
|     uint32_t tmp;
 | |
|     const bool found = get_key(kid, tmp, required);
 | |
|     if (found) {
 | |
|         result = (enum llama_pooling_type) tmp;
 | |
|     } else {
 | |
|         result = LLAMA_POOLING_TYPE_UNSPECIFIED;
 | |
|     }
 | |
|     return found;
 | |
| }
 | |
| 
 | |
| 
 | |
| //
 | |
| // load LLaMA models
 | |
| //
 | |
| 
 | |
| static const char * llama_model_arch_name(llm_arch arch) {
 | |
|     auto it = LLM_ARCH_NAMES.find(arch);
 | |
|     if (it == LLM_ARCH_NAMES.end()) {
 | |
|         return "unknown";
 | |
|     }
 | |
|     return it->second;
 | |
| }
 | |
| 
 | |
| static std::string llama_model_ftype_name(llama_ftype ftype) {
 | |
|     if (ftype & LLAMA_FTYPE_GUESSED) {
 | |
|         return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
 | |
|     }
 | |
| 
 | |
|     switch (ftype) {
 | |
|         case LLAMA_FTYPE_ALL_F32:     return "all F32";
 | |
|         case LLAMA_FTYPE_MOSTLY_F16:  return "F16";
 | |
|         case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
 | |
|         case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
 | |
|         case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
 | |
|                                       return "Q4_1, some F16";
 | |
|         case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
 | |
|         case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
 | |
|         case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
 | |
| 
 | |
|         // K-quants
 | |
|         case LLAMA_FTYPE_MOSTLY_Q2_K:   return "Q2_K - Medium";
 | |
|         case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
 | |
|         case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
 | |
|         case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
 | |
|         case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
 | |
|         case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
 | |
|         case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
 | |
|         case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
 | |
|         case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
 | |
|         case LLAMA_FTYPE_MOSTLY_Q6_K:   return "Q6_K";
 | |
|         case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw";
 | |
|         case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
 | |
|         case LLAMA_FTYPE_MOSTLY_IQ2_S:  return "IQ2_S - 2.5 bpw";
 | |
|         case LLAMA_FTYPE_MOSTLY_IQ2_M:  return "IQ2_M - 2.7 bpw";
 | |
|         case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
 | |
|         case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
 | |
|         case LLAMA_FTYPE_MOSTLY_IQ1_S  :return "IQ1_S - 1.5625 bpw";
 | |
|         case LLAMA_FTYPE_MOSTLY_IQ1_M  :return "IQ1_M - 1.75 bpw";
 | |
|         case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
 | |
|         case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
 | |
|         case LLAMA_FTYPE_MOSTLY_IQ3_S:  return "IQ3_S - 3.4375 bpw";
 | |
|         case LLAMA_FTYPE_MOSTLY_IQ3_M:  return "IQ3_S mix - 3.66 bpw";
 | |
| 
 | |
|         default: return "unknown, may not work";
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const char * llama_model_type_name(e_model type) {
 | |
|     switch (type) {
 | |
|         case MODEL_22M:    return "22M";
 | |
|         case MODEL_33M:    return "33M";
 | |
|         case MODEL_109M:   return "109M";
 | |
|         case MODEL_137M:   return "137M";
 | |
|         case MODEL_0_5B:   return "0.5B";
 | |
|         case MODEL_1B:     return "1B";
 | |
|         case MODEL_2B:     return "2B";
 | |
|         case MODEL_3B:     return "3B";
 | |
|         case MODEL_7B:     return "7B";
 | |
|         case MODEL_8B:     return "8B";
 | |
|         case MODEL_12B:    return "12B";
 | |
|         case MODEL_13B:    return "13B";
 | |
|         case MODEL_14B:    return "14B";
 | |
|         case MODEL_15B:    return "15B";
 | |
|         case MODEL_20B:    return "20B";
 | |
|         case MODEL_30B:    return "30B";
 | |
|         case MODEL_34B:    return "34B";
 | |
|         case MODEL_35B:    return "35B";
 | |
|         case MODEL_40B:    return "40B";
 | |
|         case MODEL_65B:    return "65B";
 | |
|         case MODEL_70B:    return "70B";
 | |
|         case MODEL_314B:   return "314B";
 | |
|         case MODEL_SMALL:  return "0.1B";
 | |
|         case MODEL_MEDIUM: return "0.4B";
 | |
|         case MODEL_LARGE:  return "0.8B";
 | |
|         case MODEL_XL:     return "1.5B";
 | |
|         case MODEL_A2_7B:  return "A2.7B";
 | |
|         case MODEL_8x7B:   return "8x7B";
 | |
|         case MODEL_8x22B:  return "8x22B";
 | |
|         case MODEL_16x12B: return "16x12B";
 | |
|         default:           return "?B";
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
 | |
|     switch (type) {
 | |
|         case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
 | |
|         case LLAMA_VOCAB_TYPE_SPM:  return "SPM";
 | |
|         case LLAMA_VOCAB_TYPE_BPE:  return "BPE";
 | |
|         case LLAMA_VOCAB_TYPE_WPM:  return "WPM";
 | |
|         default:                    return "unknown";
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
 | |
|     model.arch = ml.get_arch();
 | |
|     if (model.arch == LLM_ARCH_UNKNOWN) {
 | |
|         throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void llm_load_hparams(
 | |
|         llama_model_loader & ml,
 | |
|         llama_model & model) {
 | |
|     auto & hparams = model.hparams;
 | |
|     const gguf_context * ctx = ml.meta;
 | |
| 
 | |
|     // get metadata as string
 | |
|     for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
 | |
|         enum gguf_type type = gguf_get_kv_type(ctx, i);
 | |
|         if (type == GGUF_TYPE_ARRAY) {
 | |
|             continue;
 | |
|         }
 | |
|         const char * name = gguf_get_key(ctx, i);
 | |
|         const std::string value = gguf_kv_to_str(ctx, i);
 | |
|         model.gguf_kv.emplace(name, value);
 | |
|     }
 | |
| 
 | |
|     // get general kv
 | |
|     ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
 | |
| 
 | |
|     // get hparams kv
 | |
|     ml.get_key(LLM_KV_VOCAB_SIZE,           hparams.n_vocab,       false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
 | |
|     ml.get_key(LLM_KV_CONTEXT_LENGTH,       hparams.n_ctx_train);
 | |
|     ml.get_key(LLM_KV_EMBEDDING_LENGTH,     hparams.n_embd);
 | |
|     ml.get_key(LLM_KV_FEED_FORWARD_LENGTH,  hparams.n_ff);
 | |
|     ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
 | |
|     ml.get_key(LLM_KV_BLOCK_COUNT,          hparams.n_layer);
 | |
|     ml.get_key(LLM_KV_EXPERT_COUNT,         hparams.n_expert,      false);
 | |
|     ml.get_key(LLM_KV_EXPERT_USED_COUNT,    hparams.n_expert_used, false);
 | |
| 
 | |
|     GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
 | |
|     GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
 | |
|     if (hparams.n_expert > 0) {
 | |
|         GGML_ASSERT(hparams.n_expert_used > 0);
 | |
|     } else {
 | |
|         GGML_ASSERT(hparams.n_expert_used == 0);
 | |
|     }
 | |
| 
 | |
|     // n_head_kv is optional, default to n_head
 | |
|     hparams.n_head_kv = hparams.n_head;
 | |
|     ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false);
 | |
| 
 | |
|     bool rope_finetuned = false;
 | |
|     ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
 | |
|     hparams.rope_finetuned = rope_finetuned;
 | |
| 
 | |
|     hparams.n_yarn_orig_ctx = hparams.n_ctx_train;
 | |
|     ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_yarn_orig_ctx, false);
 | |
| 
 | |
|     // rope_freq_base (optional)
 | |
|     hparams.rope_freq_base_train = 10000.0f;
 | |
|     ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
 | |
| 
 | |
|     std::string rope_scaling("linear");
 | |
|     ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
 | |
|     hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
 | |
|     GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
 | |
| 
 | |
|     // rope_freq_scale (inverse of the kv) is optional
 | |
|     float ropescale = 0.0f;
 | |
|     if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
 | |
|         // try the old key name
 | |
|         ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
 | |
|     }
 | |
|     hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
 | |
| 
 | |
|     // sanity check for n_rot (optional)
 | |
|     {
 | |
|         hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
 | |
| 
 | |
|         ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
 | |
| 
 | |
|         if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
 | |
|             if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
 | |
|                 throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
 | |
|             }
 | |
|         }
 | |
|         // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
 | |
|         // gpt-j n_rot = rotary_dim
 | |
|     }
 | |
| 
 | |
|     hparams.n_embd_head_k = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
 | |
|     ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
 | |
| 
 | |
|     hparams.n_embd_head_v = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
 | |
|     ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
 | |
| 
 | |
|     // arch-specific KVs
 | |
|     switch (model.arch) {
 | |
|         case LLM_ARCH_LLAMA:
 | |
|             {
 | |
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
 | |
| 
 | |
|                 if (hparams.n_expert == 8) {
 | |
|                     switch (hparams.n_layer) {
 | |
|                         case 32: model.type = e_model::MODEL_8x7B; break;
 | |
|                         case 56: model.type = e_model::MODEL_8x22B; break;
 | |
|                         default: model.type = e_model::MODEL_UNKNOWN;
 | |
|                     }
 | |
|                 } else {
 | |
|                     switch (hparams.n_layer) {
 | |
|                         case 22: model.type = e_model::MODEL_1B; break;
 | |
|                         case 26: model.type = e_model::MODEL_3B; break;
 | |
|                         case 32: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_7B : e_model::MODEL_8B; break; // LLaMa 8B v3 uses GQA
 | |
|                         case 40: model.type = e_model::MODEL_13B; break;
 | |
|                         case 48: model.type = e_model::MODEL_34B; break;
 | |
|                         case 60: model.type = e_model::MODEL_30B; break;
 | |
|                         case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
 | |
|                         default: model.type = e_model::MODEL_UNKNOWN;
 | |
|                     }
 | |
|                 }
 | |
|             } break;
 | |
|         case LLM_ARCH_MINICPM:
 | |
|             {
 | |
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
 | |
| 
 | |
|                 switch (hparams.n_layer) {
 | |
|                     case 40: model.type = e_model::MODEL_2B; break;
 | |
|                     default: model.type = e_model::MODEL_UNKNOWN;
 | |
|                 }
 | |
|             } break;
 | |
|         case LLM_ARCH_GROK:
 | |
|             {
 | |
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
 | |
| 
 | |
|                 switch (hparams.n_layer) {
 | |
|                     case 64: model.type = e_model::MODEL_314B; break;
 | |
|                     default: model.type = e_model::MODEL_UNKNOWN;
 | |
|                 }
 | |
|             } break;
 | |
|         case LLM_ARCH_FALCON:
 | |
|             {
 | |
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
 | |
| 
 | |
|                 switch (hparams.n_layer) {
 | |
|                     case 32: model.type = e_model::MODEL_7B; break;
 | |
|                     case 60: model.type = e_model::MODEL_40B; break;
 | |
|                     default: model.type = e_model::MODEL_UNKNOWN;
 | |
|                 }
 | |
|             } break;
 | |
|         case LLM_ARCH_BAICHUAN:
 | |
|             {
 | |
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
 | |
|                 switch (hparams.n_layer) {
 | |
|                     case 32: model.type = e_model::MODEL_7B; break;
 | |
|                     case 40: model.type = e_model::MODEL_13B; break;
 | |
|                     default: model.type = e_model::MODEL_UNKNOWN;
 | |
|                 }
 | |
| 
 | |
|                 if (model.type == e_model::MODEL_13B) {
 | |
|                     // TODO: become GGUF KV parameter
 | |
|                     hparams.f_max_alibi_bias = 8.0f;
 | |
|                 }
 | |
|             } break;
 | |
|         case LLM_ARCH_STARCODER:
 | |
|             {
 | |
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
 | |
|                 switch (hparams.n_layer) {
 | |
|                     case 24: model.type = e_model::MODEL_1B; break;
 | |
|                     case 36: model.type = e_model::MODEL_3B; break;
 | |
|                     case 42: model.type = e_model::MODEL_7B; break;
 | |
|                     case 40: model.type = e_model::MODEL_15B; break;
 | |
|                     default: model.type = e_model::MODEL_UNKNOWN;
 | |
|                 }
 | |
|             } break;
 | |
|         case LLM_ARCH_PERSIMMON:
 | |
|             {
 | |
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
 | |
|                 switch (hparams.n_layer) {
 | |
|                     case 36: model.type = e_model::MODEL_8B; break;
 | |
|                     default: model.type = e_model::MODEL_UNKNOWN;
 | |
|                 }
 | |
|             } break;
 | |
|         case LLM_ARCH_REFACT:
 | |
|             {
 | |
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
 | |
|                 switch (hparams.n_layer) {
 | |
|                     case 32: model.type = e_model::MODEL_1B; break;
 | |
|                     default: model.type = e_model::MODEL_UNKNOWN;
 | |
|                 }
 | |
| 
 | |
|                 // TODO: become GGUF KV parameter
 | |
|                 hparams.f_max_alibi_bias = 8.0f;
 | |
|             } break;
 | |
|         case LLM_ARCH_BERT:
 | |
|             {
 | |
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS,    hparams.f_norm_eps);
 | |
|                 ml.get_key(LLM_KV_ATTENTION_CAUSAL,           hparams.causal_attn);
 | |
|                 ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
 | |
|                 ml.get_key(LLM_KV_POOLING_TYPE,               hparams.pooling_type, false);
 | |
| 
 | |
|                 switch (hparams.n_layer) {
 | |
|                     case 3:
 | |
|                         model.type = e_model::MODEL_17M; break; // bge-micro
 | |
|                     case 6:
 | |
|                         model.type = e_model::MODEL_22M; break; // MiniLM-L6
 | |
|                     case 12:
 | |
|                         switch (hparams.n_embd) {
 | |
|                             case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
 | |
|                             case 768: model.type = e_model::MODEL_109M; break; // bge-base
 | |
|                         } break;
 | |
|                     case 24:
 | |
|                         model.type = e_model::MODEL_335M; break; // bge-large
 | |
|                 }
 | |
|             } break;
 | |
|         case LLM_ARCH_NOMIC_BERT:
 | |
|             {
 | |
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS,    hparams.f_norm_eps);
 | |
|                 ml.get_key(LLM_KV_ATTENTION_CAUSAL,           hparams.causal_attn);
 | |
|                 ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
 | |
|                 ml.get_key(LLM_KV_POOLING_TYPE,               hparams.pooling_type);
 | |
| 
 | |
|                 if (hparams.n_layer == 12 && hparams.n_embd == 768) {
 | |
|                     model.type = e_model::MODEL_137M;
 | |
|                 }
 | |
|             } break;
 | |
|         case LLM_ARCH_BLOOM:
 | |
|             {
 | |
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
 | |
| 
 | |
|                 switch (hparams.n_layer) {
 | |
|                     case 24: model.type = e_model::MODEL_1B; break;
 | |
|                     case 30:
 | |
|                         switch (hparams.n_embd) {
 | |
|                             case 2560: model.type = e_model::MODEL_3B; break;
 | |
|                             case 4096: model.type = e_model::MODEL_7B; break;
 | |
|                         } break;
 | |
|                 }
 | |
| 
 | |
|                 // TODO: become GGUF KV parameter
 | |
|                 hparams.f_max_alibi_bias = 8.0f;
 | |
|             } break;
 | |
|         case LLM_ARCH_MPT:
 | |
|             {
 | |
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS,  hparams.f_norm_eps);
 | |
|                 ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV,      hparams.f_clamp_kqv, false);
 | |
|                 ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
 | |
| 
 | |
|                 switch (hparams.n_layer) {
 | |
|                     case 32: model.type = e_model::MODEL_7B; break;
 | |
|                     case 48: model.type = e_model::MODEL_30B; break;
 | |
|                     default: model.type = e_model::MODEL_UNKNOWN;
 | |
|                 }
 | |
|             } break;
 | |
|         case LLM_ARCH_STABLELM:
 | |
|             {
 | |
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
 | |
| 
 | |
|                 switch (hparams.n_layer) {
 | |
|                     case 24: model.type = e_model::MODEL_1B; break;
 | |
|                     case 32: model.type = e_model::MODEL_3B; break;
 | |
|                     case 40: model.type = e_model::MODEL_12B; break;
 | |
|                     default: model.type = e_model::MODEL_UNKNOWN;
 | |
|                }
 | |
|             } break;
 | |
|         case LLM_ARCH_QWEN:
 | |
|             {
 | |
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
 | |
| 
 | |
|                 switch (hparams.n_layer) {
 | |
|                     case 32: model.type = e_model::MODEL_7B; break;
 | |
|                     case 40: model.type = e_model::MODEL_13B; break;
 | |
|                     default: model.type = e_model::MODEL_UNKNOWN;
 | |
|                 }
 | |
|             } break;
 | |
|         case LLM_ARCH_QWEN2:
 | |
|             {
 | |
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
 | |
|                 switch (hparams.n_layer) {
 | |
|                     case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
 | |
|                     case 32: model.type = e_model::MODEL_7B; break;
 | |
|                     case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
 | |
|                     case 80: model.type = e_model::MODEL_70B; break;
 | |
|                     default: model.type = e_model::MODEL_UNKNOWN;
 | |
|                 }
 | |
|             } break;
 | |
|         case LLM_ARCH_QWEN2MOE:
 | |
|             {
 | |
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
 | |
|                 switch (hparams.n_layer) {
 | |
|                     case 24: model.type = e_model::MODEL_A2_7B; break;
 | |
|                     default: model.type = e_model::MODEL_UNKNOWN;
 | |
|                 }
 | |
|             } break;
 | |
|         case LLM_ARCH_PHI2:
 | |
|             {
 | |
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
 | |
| 
 | |
|                 switch (hparams.n_layer) {
 | |
|                     case 24: model.type = e_model::MODEL_1B; break;
 | |
|                     case 32: model.type = e_model::MODEL_3B; break;
 | |
|                     default: model.type = e_model::MODEL_UNKNOWN;
 | |
|                 }
 | |
|             } break;
 | |
|         case LLM_ARCH_PHI3:
 | |
|             {
 | |
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
 | |
| 
 | |
|                 switch (hparams.n_layer) {
 | |
|                     case 24: model.type = e_model::MODEL_1B; break;
 | |
|                     case 32: model.type = e_model::MODEL_3B; break;
 | |
|                     default: model.type = e_model::MODEL_UNKNOWN;
 | |
|                 }
 | |
|             } break;
 | |
|         case LLM_ARCH_PLAMO:
 | |
|             {
 | |
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
 | |
| 
 | |
|                 switch (hparams.n_layer) {
 | |
|                     case 40: model.type = e_model::MODEL_13B; break;
 | |
|                     default: model.type = e_model::MODEL_UNKNOWN;
 | |
|                }
 | |
|             } break;
 | |
|         case LLM_ARCH_GPT2:
 | |
|             {
 | |
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
 | |
|                 switch (hparams.n_layer) {
 | |
|                     case 12: model.type = e_model::MODEL_SMALL; break;
 | |
|                     case 24: model.type = e_model::MODEL_MEDIUM; break;
 | |
|                     case 36: model.type = e_model::MODEL_LARGE; break;
 | |
|                     case 48: model.type = e_model::MODEL_XL; break;
 | |
|                     default: model.type = e_model::MODEL_UNKNOWN;
 | |
|                 }
 | |
|             } break;
 | |
|         case LLM_ARCH_CODESHELL:
 | |
|             {
 | |
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
 | |
|                 switch (hparams.n_layer) {
 | |
|                     case 42: model.type = e_model::MODEL_SMALL; break;
 | |
|                     default: model.type = e_model::MODEL_UNKNOWN;
 | |
|                 }
 | |
|             } break;
 | |
|         case LLM_ARCH_ORION:
 | |
|             {
 | |
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
 | |
| 
 | |
|                 switch (hparams.n_layer) {
 | |
|                     case 40: model.type = e_model::MODEL_14B; break;
 | |
|                     default: model.type = e_model::MODEL_UNKNOWN;
 | |
|                 }
 | |
|             } break;
 | |
|         case LLM_ARCH_INTERNLM2:
 | |
|             {
 | |
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
 | |
|                 switch (hparams.n_layer) {
 | |
|                     case 32: model.type = e_model::MODEL_7B; break;
 | |
|                     case 48: model.type = e_model::MODEL_20B; break;
 | |
|                     default: model.type = e_model::MODEL_UNKNOWN;
 | |
|                 }
 | |
|             } break;
 | |
|         case LLM_ARCH_GEMMA:
 | |
|             {
 | |
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
 | |
| 
 | |
|                 switch (hparams.n_layer) {
 | |
|                     case 18: model.type = e_model::MODEL_2B; break;
 | |
|                     case 28: model.type = e_model::MODEL_7B; break;
 | |
|                     default: model.type = e_model::MODEL_UNKNOWN;
 | |
|                }
 | |
|             } break;
 | |
|         case LLM_ARCH_STARCODER2:
 | |
|             {
 | |
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
 | |
|                 switch (hparams.n_layer) {
 | |
|                     case 30: model.type = e_model::MODEL_3B; break;
 | |
|                     case 32: model.type = e_model::MODEL_7B; break;
 | |
|                     case 40: model.type = e_model::MODEL_15B; break;
 | |
|                     default: model.type = e_model::MODEL_UNKNOWN;
 | |
|                 }
 | |
|             } break;
 | |
|         case LLM_ARCH_MAMBA:
 | |
|             {
 | |
|                 ml.get_key(LLM_KV_SSM_CONV_KERNEL,    hparams.ssm_d_conv);
 | |
|                 ml.get_key(LLM_KV_SSM_INNER_SIZE,     hparams.ssm_d_inner);
 | |
|                 ml.get_key(LLM_KV_SSM_STATE_SIZE,     hparams.ssm_d_state);
 | |
|                 ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
 | |
| 
 | |
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
 | |
| 
 | |
|                 switch (hparams.n_layer) {
 | |
|                     case 24:
 | |
|                         switch (hparams.n_embd) {
 | |
|                             case 768: model.type = e_model::MODEL_SMALL; break;
 | |
|                             default: model.type = e_model::MODEL_UNKNOWN;
 | |
|                         } break;
 | |
|                     case 48:
 | |
|                         switch (hparams.n_embd) {
 | |
|                             case 1024: model.type = e_model::MODEL_MEDIUM; break;
 | |
|                             case 1536: model.type = e_model::MODEL_LARGE; break;
 | |
|                             case 2048: model.type = e_model::MODEL_XL; break;
 | |
|                             default: model.type = e_model::MODEL_UNKNOWN;
 | |
|                         } break;
 | |
|                     case 64:
 | |
|                         switch (hparams.n_embd) {
 | |
|                             case 2560: model.type = e_model::MODEL_3B; break;
 | |
|                             default: model.type = e_model::MODEL_UNKNOWN;
 | |
|                         } break;
 | |
|                     default: model.type = e_model::MODEL_UNKNOWN;
 | |
|                 }
 | |
|             } break;
 | |
|         case LLM_ARCH_XVERSE:
 | |
|             {
 | |
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
 | |
|                 switch (hparams.n_layer) {
 | |
|                     case 32: model.type = e_model::MODEL_7B; break;
 | |
|                     case 40: model.type = e_model::MODEL_13B; break;
 | |
|                     case 80: model.type = e_model::MODEL_65B; break;
 | |
|                     default: model.type = e_model::MODEL_UNKNOWN;
 | |
|                 }
 | |
|             } break;
 | |
|         case LLM_ARCH_COMMAND_R:
 | |
|             {
 | |
|                 ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
 | |
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
 | |
|                 switch (hparams.n_layer) {
 | |
|                     case 40: model.type = e_model::MODEL_35B; break;
 | |
|                     default: model.type = e_model::MODEL_UNKNOWN;
 | |
|                 }
 | |
|             } break;
 | |
|         case LLM_ARCH_DBRX:
 | |
|         {
 | |
|             ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS,  hparams.f_norm_eps);
 | |
|             ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV,      hparams.f_clamp_kqv);
 | |
| 
 | |
|             switch (hparams.n_layer) {
 | |
|                 case 40: model.type = e_model::MODEL_16x12B; break;
 | |
|                 default: model.type = e_model::MODEL_UNKNOWN;
 | |
|             }
 | |
|         } break;
 | |
|         case LLM_ARCH_OLMO:
 | |
|             {
 | |
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
 | |
|                 ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV,     hparams.f_clamp_kqv, false);
 | |
| 
 | |
|                 switch (hparams.n_layer) {
 | |
|                     case 22: model.type = e_model::MODEL_1B; break;
 | |
|                     case 32: model.type = e_model::MODEL_7B; break;
 | |
|                     case 80: model.type = e_model::MODEL_70B; break;
 | |
|                     default: model.type = e_model::MODEL_UNKNOWN;
 | |
|                 }
 | |
|             } break;
 | |
|         default: (void)0;
 | |
|     }
 | |
| 
 | |
|     model.ftype = ml.ftype;
 | |
| 
 | |
|     if (hparams.f_max_alibi_bias > 0.0f) {
 | |
|         hparams.need_kq_pos = true;
 | |
|     }
 | |
| 
 | |
|     hparams.rope_type = llama_rope_type(&model);
 | |
| }
 | |
| 
 | |
| // TODO: This should probably be in llama.h
 | |
| static std::vector<llama_vocab::id> llama_tokenize_internal(
 | |
|     const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special = false
 | |
| );
 | |
| static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
 | |
| 
 | |
| static void llm_load_vocab(
 | |
|         llama_model_loader & ml,
 | |
|         llama_model & model) {
 | |
|     auto & vocab = model.vocab;
 | |
| 
 | |
|     struct gguf_context * ctx = ml.meta;
 | |
| 
 | |
|     const auto kv = LLM_KV(model.arch);
 | |
| 
 | |
|     // determine vocab type
 | |
|     {
 | |
|         std::string tokenizer_name;
 | |
| 
 | |
|         ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_name);
 | |
| 
 | |
|         if (tokenizer_name == "no_vocab") {
 | |
|             vocab.type = LLAMA_VOCAB_TYPE_NONE;
 | |
| 
 | |
|             // default special tokens
 | |
|             vocab.special_bos_id  = -1;
 | |
|             vocab.special_eos_id  = -1;
 | |
|             vocab.special_unk_id  = -1;
 | |
|             vocab.special_sep_id  = -1;
 | |
|             vocab.special_pad_id  = -1;
 | |
|             vocab.special_cls_id  = -1;
 | |
|             vocab.special_mask_id = -1;
 | |
|             vocab.linefeed_id     = -1;
 | |
| 
 | |
|             return;
 | |
|         } else if (tokenizer_name == "llama") {
 | |
|             vocab.type = LLAMA_VOCAB_TYPE_SPM;
 | |
| 
 | |
|             // default special tokens
 | |
|             vocab.special_bos_id  = 1;
 | |
|             vocab.special_eos_id  = 2;
 | |
|             vocab.special_unk_id  = 0;
 | |
|             vocab.special_sep_id  = -1;
 | |
|             vocab.special_pad_id  = -1;
 | |
|             vocab.special_cls_id  = -1;
 | |
|             vocab.special_mask_id = -1;
 | |
| 
 | |
|             // For Fill-In-the-Middle (FIM)/infill models which where converted
 | |
|             // prior to support of FIM special tokens in GGUF, the following
 | |
|             // will allow those models to continue to work. The general names
 | |
|             // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and
 | |
|             // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once
 | |
|             // new versions of these models have been published.
 | |
|             std::string gen_name;
 | |
|             ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false);
 | |
| 
 | |
|             std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(),
 | |
|                 [](unsigned char c){ return std::tolower(c); });
 | |
| 
 | |
|             if (gen_name.find("code") != std::string::npos) {
 | |
|                 if (model.arch == LLM_ARCH_LLAMA) {
 | |
|                     vocab.special_prefix_id = 32007;
 | |
|                     vocab.special_suffix_id = 32008;
 | |
|                     vocab.special_middle_id = 32009;
 | |
|                     vocab.special_eot_id    = 32010;
 | |
|                 } else if (model.arch == LLM_ARCH_GEMMA) {
 | |
|                     vocab.special_prefix_id = 67;
 | |
|                     vocab.special_suffix_id = 69;
 | |
|                     vocab.special_middle_id = 68;
 | |
|                     // TODO: this is not EOT, it is "file separator" token, needs fix
 | |
|                     //       https://huggingface.co/google/codegemma-7b-it/blob/9b1d9231388358c04d90bd003458f5070d97db44/tokenizer_config.json#L565-L572
 | |
|                     //vocab.special_eot_id    = 70;
 | |
|                     vocab.special_eot_id    = 107;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
 | |
|             if (add_space_prefix_keyidx != -1) {
 | |
|                 vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
 | |
|             } // The default value of add_space_prefix is true.
 | |
|         } else if (tokenizer_name == "gpt2") {
 | |
|             vocab.type = LLAMA_VOCAB_TYPE_BPE;
 | |
| 
 | |
|             // read bpe merges and populate bpe ranks
 | |
|             const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
 | |
|             if (merges_keyidx == -1) {
 | |
|                 throw std::runtime_error("cannot find tokenizer merges in model file\n");
 | |
|             }
 | |
| 
 | |
|             const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
 | |
| 
 | |
|             for (int i = 0; i < n_merges; i++) {
 | |
|                 const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
 | |
|                 GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
 | |
| 
 | |
|                 std::string first;
 | |
|                 std::string second;
 | |
| 
 | |
|                 const size_t pos = word.find(' ', 1);
 | |
| 
 | |
|                 if (pos != std::string::npos) {
 | |
|                     first  = word.substr(0, pos);
 | |
|                     second = word.substr(pos + 1);
 | |
|                 }
 | |
| 
 | |
|                 vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
 | |
|             }
 | |
| 
 | |
|             // default special tokens
 | |
|             vocab.special_bos_id  = 11;
 | |
|             vocab.special_eos_id  = 11;
 | |
|             vocab.special_unk_id  = -1;
 | |
|             vocab.special_sep_id  = -1;
 | |
|             vocab.special_pad_id  = -1;
 | |
|             vocab.special_cls_id  = -1;
 | |
|             vocab.special_mask_id = -1;
 | |
|         } else if (tokenizer_name == "bert") {
 | |
|             vocab.type = LLAMA_VOCAB_TYPE_WPM;
 | |
| 
 | |
|             // default special tokens
 | |
|             vocab.special_bos_id  = -1;
 | |
|             vocab.special_eos_id  = -1;
 | |
|             vocab.special_unk_id  = 100;
 | |
|             vocab.special_sep_id  = 102;
 | |
|             vocab.special_pad_id  = 0;
 | |
|             vocab.special_cls_id  = 101;
 | |
|             vocab.special_mask_id = 103;
 | |
|             vocab.add_space_prefix = false;
 | |
|         } else {
 | |
|             LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
 | |
|             LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
 | |
| 
 | |
|             vocab.type = LLAMA_VOCAB_TYPE_SPM;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
 | |
|     if (token_idx == -1) {
 | |
|         throw std::runtime_error("cannot find tokenizer vocab in model file\n");
 | |
|     }
 | |
| 
 | |
|     const float * scores = nullptr;
 | |
|     const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
 | |
|     if (score_idx != -1) {
 | |
|         scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
 | |
|     }
 | |
| 
 | |
|     const int * toktypes = nullptr;
 | |
|     const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
 | |
|     if (toktype_idx != -1) {
 | |
|         toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
 | |
|     }
 | |
| 
 | |
|     const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
 | |
| 
 | |
|     vocab.id_to_token.resize(n_vocab);
 | |
| 
 | |
|     for (uint32_t i = 0; i < n_vocab; i++) {
 | |
|         std::string word = gguf_get_arr_str(ctx, token_idx, i);
 | |
|         GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
 | |
| 
 | |
|         vocab.token_to_id[word] = i;
 | |
| 
 | |
|         auto & token_data = vocab.id_to_token[i];
 | |
|         token_data.text  = std::move(word);
 | |
|         token_data.score = scores ? scores[i] : 0.0f;
 | |
|         token_data.type  = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL;
 | |
|     }
 | |
|     GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
 | |
| 
 | |
|     // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
 | |
|     if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
 | |
|         try {
 | |
|             vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
 | |
|         } catch (const std::exception & e) {
 | |
|             LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
 | |
|             vocab.linefeed_id = vocab.special_pad_id;
 | |
|         }
 | |
|     } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
 | |
|         vocab.linefeed_id = vocab.special_pad_id;
 | |
|     } else {
 | |
|         const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
 | |
|         GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
 | |
|         vocab.linefeed_id = ids[0];
 | |
|     }
 | |
| 
 | |
|     // special tokens
 | |
|     {
 | |
|         const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
 | |
|             { LLM_KV_TOKENIZER_BOS_ID,    vocab.special_bos_id    },
 | |
|             { LLM_KV_TOKENIZER_EOS_ID,    vocab.special_eos_id    },
 | |
|             { LLM_KV_TOKENIZER_UNK_ID,    vocab.special_unk_id    },
 | |
|             { LLM_KV_TOKENIZER_SEP_ID,    vocab.special_sep_id    },
 | |
|             { LLM_KV_TOKENIZER_PAD_ID,    vocab.special_pad_id    },
 | |
|             { LLM_KV_TOKENIZER_CLS_ID,    vocab.special_cls_id    },
 | |
|             { LLM_KV_TOKENIZER_MASK_ID,   vocab.special_mask_id   },
 | |
|             { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
 | |
|             { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
 | |
|             { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
 | |
|             { LLM_KV_TOKENIZER_EOT_ID,    vocab.special_eot_id    },
 | |
|         };
 | |
| 
 | |
|         for (const auto & it : special_token_types) {
 | |
|             const std::string & key = kv(std::get<0>(it));
 | |
|             int32_t & id = std::get<1>(it);
 | |
| 
 | |
|             uint32_t new_id;
 | |
|             if (!ml.get_key(std::get<0>(it), new_id, false)) {
 | |
|                 continue;
 | |
|             }
 | |
|             if (new_id >= vocab.id_to_token.size()) {
 | |
|                 LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
 | |
|                     __func__, key.c_str(), new_id, id);
 | |
|             } else {
 | |
|                 id = new_id;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Handle add_bos_token and add_eos_token
 | |
|         {
 | |
|             bool temp = true;
 | |
| 
 | |
|             if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
 | |
|                 vocab.special_add_bos = int(temp);
 | |
|             }
 | |
|             if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
 | |
|                 vocab.special_add_eos = int(temp);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
 | |
|         //
 | |
|         // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOT_ID
 | |
|         //       for now, we apply this workaround to find the EOT token based on its text
 | |
|         if (vocab.special_eot_id == -1) {
 | |
|             for (const auto & t : vocab.token_to_id) {
 | |
|                 if (
 | |
|                         // TODO: gemma "<end_of_turn>" is exported as a normal token, so the following check does not work
 | |
|                         //       need to fix convert script
 | |
|                         //vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
 | |
|                         (t.first == "<|eot_id|>" ||
 | |
|                          t.first == "<|im_end|>" ||
 | |
|                          t.first == "<|end|>" ||
 | |
|                          t.first == "<end_of_turn>"
 | |
|                         )
 | |
|                    ) {
 | |
|                     vocab.special_eot_id = t.second;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // build special tokens cache
 | |
|     {
 | |
|         // TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type,
 | |
|         //  and will always be correctly labeled in 'added_tokens.json' etc.
 | |
|         // The assumption is, since special tokens aren't meant to be exposed to end user, they are designed
 | |
|         //  to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer
 | |
|         //  are special tokens.
 | |
|         // From testing, this appears to correlate 1:1 with special tokens.
 | |
|         //
 | |
| 
 | |
|         // Counting special tokens and verifying in only one direction
 | |
|         //  is sufficient to detect difference in those two sets.
 | |
|         //
 | |
|         uint32_t special_tokens_count_by_type = 0;
 | |
|         uint32_t special_tokens_count_from_verification = 0;
 | |
| 
 | |
|         bool special_tokens_definition_mismatch = false;
 | |
| 
 | |
|         for (const auto & t : vocab.token_to_id) {
 | |
|             const auto & token = t.first;
 | |
|             const auto & id    = t.second;
 | |
| 
 | |
|             // Count all non-normal tokens in the vocab while iterating
 | |
|             if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
 | |
|                 special_tokens_count_by_type++;
 | |
|             }
 | |
| 
 | |
|             // Skip single character tokens
 | |
|             if (token.length() > 1) {
 | |
|                 bool is_tokenizable = false;
 | |
| 
 | |
|                 // Split token string representation in two, in all possible ways
 | |
|                 //  and check if both halves can be matched to a valid token
 | |
|                 for (unsigned i = 1; i < token.length();) {
 | |
|                     const auto left  = token.substr(0, i);
 | |
|                     const auto right = token.substr(i);
 | |
| 
 | |
|                     // check if we didnt partition in the middle of a utf sequence
 | |
|                     auto utf = utf8_len(left.at(left.length() - 1));
 | |
| 
 | |
|                     if (utf == 1) {
 | |
|                         if (vocab.token_to_id.find(left)  != vocab.token_to_id.end() &&
 | |
|                             vocab.token_to_id.find(right) != vocab.token_to_id.end() ) {
 | |
|                             is_tokenizable = true;
 | |
|                             break;
 | |
|                         }
 | |
|                         i++;
 | |
|                     } else {
 | |
|                         // skip over the rest of multibyte utf sequence
 | |
|                         i += utf - 1;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 if (!is_tokenizable) {
 | |
|                     // Some tokens are multibyte, but they are utf sequences with equivalent text length of 1
 | |
|                     //  it's faster to re-filter them here, since there are way less candidates now
 | |
| 
 | |
|                     // Calculate a total "utf" length of a token string representation
 | |
|                     size_t utf8_str_len = 0;
 | |
|                     for (unsigned i = 0; i < token.length();) {
 | |
|                         utf8_str_len++;
 | |
|                         i += utf8_len(token.at(i));
 | |
|                     }
 | |
| 
 | |
|                     // And skip the ones which are one character
 | |
|                     if (utf8_str_len > 1) {
 | |
|                         // At this point what we have left are special tokens only
 | |
|                         vocab.special_tokens_cache[token] = id;
 | |
| 
 | |
|                         // Count manually found special tokens
 | |
|                         special_tokens_count_from_verification++;
 | |
| 
 | |
|                         // If this manually found special token is not marked as such, flag a mismatch
 | |
|                         if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) {
 | |
|                             special_tokens_definition_mismatch = true;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) {
 | |
|             LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n",
 | |
|                 __func__,
 | |
|                 special_tokens_count_from_verification, vocab.id_to_token.size(),
 | |
|                 special_tokens_count_by_type, vocab.id_to_token.size()
 | |
|             );
 | |
|         } else {
 | |
|             LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n",
 | |
|                 __func__,
 | |
|                 special_tokens_count_from_verification, vocab.id_to_token.size()
 | |
|             );
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
 | |
|     const auto & hparams = model.hparams;
 | |
|     const auto & vocab   = model.vocab;
 | |
| 
 | |
|     const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
 | |
| 
 | |
|     // hparams
 | |
|     LLAMA_LOG_INFO("%s: format           = %s\n",     __func__, llama_file_version_name(ml.fver));
 | |
|     LLAMA_LOG_INFO("%s: arch             = %s\n",     __func__, LLM_ARCH_NAMES.at(model.arch));
 | |
|     LLAMA_LOG_INFO("%s: vocab type       = %s\n",     __func__, llama_model_vocab_type_name(vocab.type));
 | |
|     LLAMA_LOG_INFO("%s: n_vocab          = %u\n",     __func__, hparams.n_vocab);
 | |
|     LLAMA_LOG_INFO("%s: n_merges         = %u\n",     __func__, (int) vocab.bpe_ranks.size());
 | |
|     LLAMA_LOG_INFO("%s: n_ctx_train      = %u\n",     __func__, hparams.n_ctx_train);
 | |
|     LLAMA_LOG_INFO("%s: n_embd           = %u\n",     __func__, hparams.n_embd);
 | |
|     LLAMA_LOG_INFO("%s: n_head           = %u\n",     __func__, hparams.n_head);
 | |
|     LLAMA_LOG_INFO("%s: n_head_kv        = %u\n",     __func__, hparams.n_head_kv);
 | |
|     LLAMA_LOG_INFO("%s: n_layer          = %u\n",     __func__, hparams.n_layer);
 | |
|     LLAMA_LOG_INFO("%s: n_rot            = %u\n",     __func__, hparams.n_rot);
 | |
|     LLAMA_LOG_INFO("%s: n_embd_head_k    = %u\n",     __func__, hparams.n_embd_head_k);
 | |
|     LLAMA_LOG_INFO("%s: n_embd_head_v    = %u\n",     __func__, hparams.n_embd_head_v);
 | |
|     LLAMA_LOG_INFO("%s: n_gqa            = %u\n",     __func__, hparams.n_gqa());
 | |
|     LLAMA_LOG_INFO("%s: n_embd_k_gqa     = %u\n",     __func__, hparams.n_embd_k_gqa());
 | |
|     LLAMA_LOG_INFO("%s: n_embd_v_gqa     = %u\n",     __func__, hparams.n_embd_v_gqa());
 | |
|     LLAMA_LOG_INFO("%s: f_norm_eps       = %.1e\n",   __func__, hparams.f_norm_eps);
 | |
|     LLAMA_LOG_INFO("%s: f_norm_rms_eps   = %.1e\n",   __func__, hparams.f_norm_rms_eps);
 | |
|     LLAMA_LOG_INFO("%s: f_clamp_kqv      = %.1e\n",   __func__, hparams.f_clamp_kqv);
 | |
|     LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n",   __func__, hparams.f_max_alibi_bias);
 | |
|     LLAMA_LOG_INFO("%s: f_logit_scale    = %.1e\n",   __func__, hparams.f_logit_scale);
 | |
|     LLAMA_LOG_INFO("%s: n_ff             = %u\n",     __func__, hparams.n_ff);
 | |
|     LLAMA_LOG_INFO("%s: n_expert         = %u\n",     __func__, hparams.n_expert);
 | |
|     LLAMA_LOG_INFO("%s: n_expert_used    = %u\n",     __func__, hparams.n_expert_used);
 | |
|     LLAMA_LOG_INFO("%s: causal attn      = %d\n",     __func__, hparams.causal_attn);
 | |
|     LLAMA_LOG_INFO("%s: pooling type     = %d\n",     __func__, hparams.pooling_type);
 | |
|     LLAMA_LOG_INFO("%s: rope type        = %d\n",     __func__, hparams.rope_type);
 | |
|     LLAMA_LOG_INFO("%s: rope scaling     = %s\n",     __func__, rope_scaling_type);
 | |
|     LLAMA_LOG_INFO("%s: freq_base_train  = %.1f\n",   __func__, hparams.rope_freq_base_train);
 | |
|     LLAMA_LOG_INFO("%s: freq_scale_train = %g\n",     __func__, hparams.rope_freq_scale_train);
 | |
|     LLAMA_LOG_INFO("%s: n_yarn_orig_ctx  = %u\n",     __func__, hparams.n_yarn_orig_ctx);
 | |
|     LLAMA_LOG_INFO("%s: rope_finetuned   = %s\n",     __func__, hparams.rope_finetuned ? "yes" : "unknown");
 | |
|     LLAMA_LOG_INFO("%s: ssm_d_conv       = %u\n",     __func__, hparams.ssm_d_conv);
 | |
|     LLAMA_LOG_INFO("%s: ssm_d_inner      = %u\n",     __func__, hparams.ssm_d_inner);
 | |
|     LLAMA_LOG_INFO("%s: ssm_d_state      = %u\n",     __func__, hparams.ssm_d_state);
 | |
|     LLAMA_LOG_INFO("%s: ssm_dt_rank      = %u\n",     __func__, hparams.ssm_dt_rank);
 | |
|     LLAMA_LOG_INFO("%s: model type       = %s\n",     __func__, llama_model_type_name(model.type));
 | |
|     LLAMA_LOG_INFO("%s: model ftype      = %s\n",     __func__, llama_model_ftype_name(model.ftype).c_str());
 | |
|     if (ml.n_elements >= 1e12) {
 | |
|         LLAMA_LOG_INFO("%s: model params     = %.2f T\n", __func__, ml.n_elements*1e-12);
 | |
|     } else if (ml.n_elements >= 1e9) {
 | |
|         LLAMA_LOG_INFO("%s: model params     = %.2f B\n", __func__, ml.n_elements*1e-9);
 | |
|     } else if (ml.n_elements >= 1e6) {
 | |
|         LLAMA_LOG_INFO("%s: model params     = %.2f M\n", __func__, ml.n_elements*1e-6);
 | |
|     } else {
 | |
|         LLAMA_LOG_INFO("%s: model params     = %.2f K\n", __func__, ml.n_elements*1e-3);
 | |
|     }
 | |
|     if (ml.n_bytes < GiB) {
 | |
|         LLAMA_LOG_INFO("%s: model size       = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0,        ml.n_bytes*8.0/ml.n_elements);
 | |
|     } else {
 | |
|         LLAMA_LOG_INFO("%s: model size       = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
 | |
|     }
 | |
| 
 | |
|     // general kv
 | |
|     LLAMA_LOG_INFO("%s: general.name     = %s\n",    __func__, model.name.c_str());
 | |
| 
 | |
|     // special tokens
 | |
|     if (vocab.special_bos_id    != -1) { LLAMA_LOG_INFO( "%s: BOS token        = %d '%s'\n", __func__, vocab.special_bos_id,  vocab.id_to_token[vocab.special_bos_id].text.c_str() );  }
 | |
|     if (vocab.special_eos_id    != -1) { LLAMA_LOG_INFO( "%s: EOS token        = %d '%s'\n", __func__, vocab.special_eos_id,  vocab.id_to_token[vocab.special_eos_id].text.c_str() );  }
 | |
|     if (vocab.special_unk_id    != -1) { LLAMA_LOG_INFO( "%s: UNK token        = %d '%s'\n", __func__, vocab.special_unk_id,  vocab.id_to_token[vocab.special_unk_id].text.c_str() );  }
 | |
|     if (vocab.special_sep_id    != -1) { LLAMA_LOG_INFO( "%s: SEP token        = %d '%s'\n", __func__, vocab.special_sep_id,  vocab.id_to_token[vocab.special_sep_id].text.c_str() );  }
 | |
|     if (vocab.special_pad_id    != -1) { LLAMA_LOG_INFO( "%s: PAD token        = %d '%s'\n", __func__, vocab.special_pad_id,  vocab.id_to_token[vocab.special_pad_id].text.c_str() );  }
 | |
|     if (vocab.special_cls_id    != -1) { LLAMA_LOG_INFO( "%s: CLS token        = %d '%s'\n", __func__, vocab.special_cls_id,  vocab.id_to_token[vocab.special_cls_id].text.c_str() );  }
 | |
|     if (vocab.special_mask_id   != -1) { LLAMA_LOG_INFO( "%s: MASK token       = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }
 | |
| 
 | |
|     if (vocab.linefeed_id       != -1) { LLAMA_LOG_INFO( "%s: LF token         = %d '%s'\n", __func__, vocab.linefeed_id,       vocab.id_to_token[vocab.linefeed_id].text.c_str() );       }
 | |
|     if (vocab.special_prefix_id != -1) { LLAMA_LOG_INFO( "%s: PRE token        = %d '%s'\n", __func__, vocab.special_prefix_id, vocab.id_to_token[vocab.special_prefix_id].text.c_str() ); }
 | |
|     if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token        = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); }
 | |
|     if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token        = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
 | |
|     if (vocab.special_eot_id    != -1) { LLAMA_LOG_INFO( "%s: EOT token        = %d '%s'\n", __func__, vocab.special_eot_id,    vocab.id_to_token[vocab.special_eot_id].text.c_str() );    }
 | |
| }
 | |
| 
 | |
| // Returns false if cancelled by progress_callback
 | |
| static bool llm_load_tensors(
 | |
|         llama_model_loader & ml,
 | |
|         llama_model & model,
 | |
|         int n_gpu_layers,
 | |
|         enum llama_split_mode split_mode,
 | |
|         int main_gpu,
 | |
|         const float * tensor_split,
 | |
|         bool use_mlock,
 | |
|         llama_progress_callback progress_callback,
 | |
|         void * progress_callback_user_data) {
 | |
|     model.t_start_us = ggml_time_us();
 | |
| 
 | |
|     auto & hparams = model.hparams;
 | |
| 
 | |
| #ifdef GGML_USE_SYCL
 | |
|     // disable MoE with SYCL until mul_mat_id is updated
 | |
|     if (hparams.n_expert > 0) {
 | |
|         n_gpu_layers = 0;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     model.split_mode   = split_mode;
 | |
|     model.main_gpu     = main_gpu;
 | |
|     model.n_gpu_layers = n_gpu_layers;
 | |
| 
 | |
|     const int64_t n_layer     = hparams.n_layer;
 | |
|     const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
 | |
|     bool use_mmap_buffer = true;
 | |
| 
 | |
|     // there is very little benefit to offloading the input layer, so always keep it on the CPU
 | |
|     model.buft_input = llama_default_buffer_type_cpu(true);
 | |
|     //model.buft_input = llama_default_buffer_type_offload(main_gpu);
 | |
| 
 | |
|     model.buft_layer.resize(n_layer);
 | |
| 
 | |
|     // assign cpu layers
 | |
|     for (int64_t i = 0; i < i_gpu_start; ++i) {
 | |
|         model.buft_layer[i] = llama_default_buffer_type_cpu(true);
 | |
|     }
 | |
| 
 | |
|     if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
 | |
|         // calculate the split points
 | |
|         int device_count = llama_get_device_count();
 | |
|         bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
 | |
|         std::vector<float> splits(device_count);
 | |
|         if (all_zero) {
 | |
|             // default split, by free memory
 | |
|             for (int i = 0; i < device_count; ++i) {
 | |
|                 splits[i] = llama_get_device_memory(i);
 | |
|             }
 | |
|         } else {
 | |
|             std::copy(tensor_split, tensor_split + device_count, splits.begin());
 | |
|         }
 | |
| 
 | |
|         // sum and normalize the splits to get the split points
 | |
|         float split_sum = 0.0f;
 | |
|         for (int i = 0; i < device_count; ++i) {
 | |
|             split_sum += splits[i];
 | |
|             splits[i] = split_sum;
 | |
|         }
 | |
|         for (int i = 0; i < device_count; ++i) {
 | |
|             splits[i] /= split_sum;
 | |
|         }
 | |
| 
 | |
|         // assign the repeating layers to the devices according to the splits
 | |
|         int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
 | |
|         for (int64_t i = i_gpu_start; i < n_layer; ++i) {
 | |
|             int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
 | |
|             model.buft_layer[i] = llama_default_buffer_type_offload(layer_gpu);
 | |
|         }
 | |
|         // assign the output layer
 | |
|         if (n_gpu_layers > n_layer) {
 | |
|             int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
 | |
|             model.buft_output = llama_default_buffer_type_offload(layer_gpu);
 | |
|         } else {
 | |
|             model.buft_output = llama_default_buffer_type_cpu(true);
 | |
|         }
 | |
|     } else {
 | |
|         ggml_backend_buffer_type_t split_buft;
 | |
|         if (split_mode == LLAMA_SPLIT_MODE_ROW) {
 | |
|             split_buft = llama_default_buffer_type_split(main_gpu, tensor_split);
 | |
|         } else {
 | |
|             // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
 | |
|             split_buft = llama_default_buffer_type_offload(main_gpu);
 | |
|         }
 | |
|         // assign the repeating layers
 | |
|         for (int64_t i = i_gpu_start; i < n_layer; ++i) {
 | |
|             model.buft_layer[i] = {
 | |
|                 split_buft,
 | |
|                 llama_default_buffer_type_offload(main_gpu)
 | |
|             };
 | |
|         }
 | |
|         // assign the output layer
 | |
|         if (n_gpu_layers > n_layer) {
 | |
|             model.buft_output = {
 | |
|                 split_buft,
 | |
|                 llama_default_buffer_type_offload(main_gpu)
 | |
|             };
 | |
|         } else {
 | |
|             model.buft_output = llama_default_buffer_type_cpu(true);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // count used buffer types
 | |
|     std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
 | |
|     buft_layer_count[model.buft_input.buft]++;
 | |
|     buft_layer_count[model.buft_input.buft_matrix]++;
 | |
|     buft_layer_count[model.buft_output.buft]++;
 | |
|     buft_layer_count[model.buft_output.buft_matrix]++;
 | |
|     for (int64_t i = 0; i < n_layer; ++i) {
 | |
|         buft_layer_count[model.buft_layer[i].buft]++;
 | |
|         buft_layer_count[model.buft_layer[i].buft_matrix]++;
 | |
|     }
 | |
| 
 | |
|     // create one context per buffer type
 | |
|     size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
 | |
| 
 | |
|     // for moe merged tensors
 | |
|     ctx_size += ggml_tensor_overhead()*n_layer*3;
 | |
| 
 | |
|     std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
 | |
|     for (auto & it : buft_layer_count) {
 | |
|         struct ggml_init_params params = {
 | |
|             /*.mem_size   =*/ ctx_size,
 | |
|             /*.mem_buffer =*/ NULL,
 | |
|             /*.no_alloc   =*/ true,
 | |
|         };
 | |
|         ggml_context * ctx = ggml_init(params);
 | |
|         if (!ctx) {
 | |
|             throw std::runtime_error(format("failed to create context"));
 | |
|         }
 | |
|         ctx_map[it.first] = ctx;
 | |
|         model.ctxs.push_back(ctx);
 | |
|     }
 | |
| 
 | |
|     LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
 | |
| 
 | |
|     // create tensors for the weights
 | |
|     {
 | |
|         const int64_t n_embd       = hparams.n_embd;
 | |
|         const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
 | |
|         const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
 | |
|         const int64_t n_embd_gqa   = n_embd_v_gqa;
 | |
|         const int64_t n_vocab      = hparams.n_vocab;
 | |
|         const int64_t n_vocab_type = hparams.n_vocab_type;
 | |
|         const int64_t n_ff         = hparams.n_ff;
 | |
|         const int64_t n_expert     = hparams.n_expert;
 | |
| 
 | |
|         if (n_expert > 0 && hparams.n_expert_used == 0) {
 | |
|             throw std::runtime_error("model has expert layers but no expert layers are used");
 | |
|         }
 | |
| 
 | |
|         GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
 | |
| 
 | |
|         ggml_context * ctx_input        = ctx_map.at(model.buft_input.buft);
 | |
|         ggml_context * ctx_output       = ctx_map.at(model.buft_output.buft);
 | |
|         ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
 | |
|         auto ctx_for_layer              = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
 | |
|         auto ctx_for_layer_split        = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
 | |
| 
 | |
|         model.layers.resize(n_layer);
 | |
| 
 | |
|         const auto tn = LLM_TN(model.arch);
 | |
|         switch (model.arch) {
 | |
|             case LLM_ARCH_LLAMA:
 | |
|             case LLM_ARCH_REFACT:
 | |
|             case LLM_ARCH_MINICPM:
 | |
|                 {
 | |
|                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
 | |
| 
 | |
|                     // output
 | |
|                     {
 | |
|                         model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
 | |
|                         if (model.arch != LLM_ARCH_MINICPM){
 | |
|                             model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
 | |
|                             // if output is NULL, init from the input tok embed
 | |
|                             if (model.output == NULL) {
 | |
|                                 model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
 | |
|                                 ml.n_created--; // artificial tensor
 | |
|                                 ml.size_data += ggml_nbytes(model.output);
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
| 
 | |
|                     for (int i = 0; i < n_layer; ++i) {
 | |
|                         ggml_context * ctx_layer = ctx_for_layer(i);
 | |
|                         ggml_context * ctx_split = ctx_for_layer_split(i);
 | |
| 
 | |
|                         auto & layer = model.layers[i];
 | |
| 
 | |
|                         layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
 | |
| 
 | |
|                         layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
 | |
|                         layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
 | |
|                         layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
 | |
|                         layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
 | |
| 
 | |
|                         // optional bias tensors
 | |
|                         layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd},     false);
 | |
|                         layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, false);
 | |
|                         layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, false);
 | |
|                         layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd},     false);
 | |
| 
 | |
|                         layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
 | |
| 
 | |
|                         if (n_expert == 0) {
 | |
|                             layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
 | |
|                             layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
 | |
|                             layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
 | |
|                         } else {
 | |
|                             layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
 | |
| 
 | |
|                             layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd,   n_ff, n_expert}, false);
 | |
|                             if (layer.ffn_gate_exps) {
 | |
|                                 layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {  n_ff, n_embd, n_expert});
 | |
|                                 layer.ffn_up_exps   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd,   n_ff, n_expert});
 | |
|                             } else {
 | |
|                                 // merge split expert into a single tensor for compatibility with older models
 | |
|                                 // requires disabling mmap
 | |
|                                 use_mmap_buffer = false;
 | |
| 
 | |
|                                 ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
 | |
|                                 ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
 | |
|                                 ggml_type type_up   = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP,   "weight", i, 0).c_str())->type;
 | |
| 
 | |
|                                 layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd,   n_ff, n_expert);
 | |
|                                 layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down,   n_ff, n_embd, n_expert);
 | |
|                                 layer.ffn_up_exps   = ggml_new_tensor_3d(ctx_split, type_up,   n_embd,   n_ff, n_expert);
 | |
| 
 | |
|                                 ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
 | |
|                                 ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
 | |
|                                 ggml_set_name(layer.ffn_up_exps,   tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i).c_str());
 | |
| 
 | |
|                                 for (uint32_t x = 0; x < n_expert; ++x) {
 | |
|                                     // the individual experts are loaded into a view of the merged tensor
 | |
|                                     ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
 | |
|                                     ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
 | |
|                                     ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps,   tn(LLM_TENSOR_FFN_UP_EXP,   "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
 | |
|                                 }
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                 } break;
 | |
|             case LLM_ARCH_GROK:
 | |
|                 {
 | |
|                     if (n_expert == 0) {
 | |
|                         throw std::runtime_error("Grok model cannot have zero experts");
 | |
|                     }
 | |
| 
 | |
|                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
 | |
| 
 | |
|                     // output
 | |
|                     {
 | |
|                         model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
 | |
|                         model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, false);
 | |
|                         // if output is NULL, init from the input tok embed
 | |
|                         if (model.output == NULL) {
 | |
|                             model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
 | |
|                             ml.n_created--; // artificial tensor
 | |
|                             ml.size_data += ggml_nbytes(model.output);
 | |
|                         }
 | |
|                     }
 | |
| 
 | |
|                     for (int i = 0; i < n_layer; ++i) {
 | |
|                         ggml_context * ctx_layer = ctx_for_layer(i);
 | |
|                         ggml_context * ctx_split = ctx_for_layer_split(i);
 | |
| 
 | |
|                         auto & layer = model.layers[i];
 | |
| 
 | |
|                         layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
 | |
| 
 | |
|                         layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
 | |
|                         layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
 | |
|                         layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
 | |
|                         layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
 | |
| 
 | |
|                         layer.attn_out_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
 | |
| 
 | |
|                         layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
 | |
| 
 | |
|                         layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
 | |
| 
 | |
|                         layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
 | |
|                         if (layer.ffn_gate_exps) {
 | |
|                             layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {  n_ff, n_embd, n_expert});
 | |
|                             layer.ffn_up_exps   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd,   n_ff, n_expert});
 | |
|                         } else {
 | |
|                             // merge split expert into a single tensor for compatibility with older models
 | |
|                             // requires disabling mmap
 | |
|                             use_mmap_buffer = false;
 | |
| 
 | |
|                             ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
 | |
|                             ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
 | |
|                             ggml_type type_up   = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP,   "weight", i, 0).c_str())->type;
 | |
| 
 | |
|                             layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd,   n_ff, n_expert);
 | |
|                             layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down,   n_ff, n_embd, n_expert);
 | |
|                             layer.ffn_up_exps   = ggml_new_tensor_3d(ctx_split, type_up,   n_embd,   n_ff, n_expert);
 | |
| 
 | |
|                             ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
 | |
|                             ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
 | |
|                             ggml_set_name(layer.ffn_up_exps,   tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i).c_str());
 | |
| 
 | |
|                             for (uint32_t x = 0; x < n_expert; ++x) {
 | |
|                                 // the individual experts are loaded into a view of the merged tensor
 | |
|                                 ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
 | |
|                                 ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
 | |
|                                 ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps,   tn(LLM_TENSOR_FFN_UP_EXP,   "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
 | |
|                             }
 | |
|                         }
 | |
| 
 | |
|                         layer.layer_out_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
 | |
|                     }
 | |
|                 } break;
 | |
|             case LLM_ARCH_DBRX:
 | |
|             {
 | |
|                 if (n_expert == 0) {
 | |
|                     throw std::runtime_error("DBRX model cannot have zero experts");
 | |
|                 }
 | |
| 
 | |
|                 model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
 | |
| 
 | |
|                 // output
 | |
|                 {
 | |
|                     model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
 | |
|                     model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
 | |
|                 }
 | |
| 
 | |
|                 for (int i = 0; i < n_layer; ++i) {
 | |
|                     ggml_context * ctx_layer = ctx_for_layer(i);
 | |
|                     ggml_context * ctx_split = ctx_for_layer_split(i);
 | |
| 
 | |
|                     auto & layer = model.layers[i];
 | |
| 
 | |
|                     layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM,  "weight", i), {n_embd});
 | |
| 
 | |
|                     layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
 | |
|                     layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
 | |
| 
 | |
|                     layer.attn_out_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
 | |
| 
 | |
|                     layer.ffn_gate_inp  = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP,  "weight", i), {n_embd, n_expert});
 | |
|                     layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff,   n_expert});
 | |
|                     layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff,   n_embd, n_expert});
 | |
|                     layer.ffn_up_exps   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd, n_ff,   n_expert});
 | |
|                 }
 | |
|             } break;
 | |
|             case LLM_ARCH_BAICHUAN:
 | |
|                 {
 | |
|                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
 | |
|                     {
 | |
|                         model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
 | |
|                         model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
 | |
|                     }
 | |
| 
 | |
|                     for (int i = 0; i < n_layer; ++i) {
 | |
|                         ggml_context * ctx_layer = ctx_for_layer(i);
 | |
|                         ggml_context * ctx_split = ctx_for_layer_split(i);
 | |
| 
 | |
|                         auto & layer = model.layers[i];
 | |
| 
 | |
|                         layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
 | |
| 
 | |
|                         layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
 | |
|                         layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
 | |
|                         layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
 | |
|                         layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
 | |
| 
 | |
|                         layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
 | |
| 
 | |
|                         layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
 | |
|                         layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
 | |
|                         layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
 | |
|                     }
 | |
|                 } break;
 | |
|             case LLM_ARCH_FALCON:
 | |
|                 {
 | |
|                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
 | |
| 
 | |
|                     // output
 | |
|                     {
 | |
|                         model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
 | |
|                         model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
 | |
| 
 | |
|                         model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, false);
 | |
|                         if (!model.output) {
 | |
|                             model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
 | |
|                             ml.n_created--; // artificial tensor
 | |
|                             ml.size_data += ggml_nbytes(model.output);
 | |
|                         }
 | |
|                     }
 | |
| 
 | |
|                     for (int i = 0; i < n_layer; ++i) {
 | |
|                         ggml_context * ctx_layer = ctx_for_layer(i);
 | |
|                         ggml_context * ctx_split = ctx_for_layer_split(i);
 | |
| 
 | |
|                         auto & layer = model.layers[i];
 | |
| 
 | |
|                         layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
 | |
|                         layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd});
 | |
| 
 | |
|                         layer.attn_norm_2   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, false);
 | |
|                         layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i),   {n_embd}, false);
 | |
| 
 | |
|                         layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
 | |
|                         layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
 | |
| 
 | |
|                         layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
 | |
|                         layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
 | |
|                     }
 | |
|                 } break;
 | |
|             case LLM_ARCH_STARCODER:
 | |
|                 {
 | |
|                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
 | |
|                     model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD,   "weight"), {n_embd, hparams.n_ctx_train});
 | |
| 
 | |
|                     // output
 | |
|                     {
 | |
|                         model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
 | |
|                         model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
 | |
|                         model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
 | |
|                     }
 | |
| 
 | |
|                     for (int i = 0; i < n_layer; ++i) {
 | |
|                         ggml_context * ctx_layer = ctx_for_layer(i);
 | |
|                         ggml_context * ctx_split = ctx_for_layer_split(i);
 | |
| 
 | |
|                         auto & layer = model.layers[i];
 | |
| 
 | |
|                         layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
 | |
|                         layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd});
 | |
| 
 | |
|                         layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
 | |
|                         layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa});
 | |
| 
 | |
|                         layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
 | |
|                         layer.bo   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd});
 | |
| 
 | |
|                         layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
 | |
|                         layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd});
 | |
| 
 | |
|                         layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
 | |
|                         layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd});
 | |
| 
 | |
|                         layer.ffn_up     = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i),   {n_embd, n_ff});
 | |
|                         layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i),     {n_ff});
 | |
|                     }
 | |
|                 } break;
 | |
|             case LLM_ARCH_PERSIMMON:
 | |
|                 {
 | |
|                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"),  {n_embd, n_vocab});
 | |
| 
 | |
|                     {
 | |
|                         model.output_norm    = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
 | |
|                         model.output_norm_b  = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
 | |
|                         model.output         = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
 | |
|                     }
 | |
| 
 | |
|                     for (int i = 0; i < n_layer; ++i) {
 | |
|                         ggml_context * ctx_layer = ctx_for_layer(i);
 | |
|                         ggml_context * ctx_split = ctx_for_layer_split(i);
 | |
| 
 | |
|                         auto & layer = model.layers[i];
 | |
| 
 | |
|                         layer.attn_norm     = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM,   "weight", i), {n_embd});
 | |
|                         layer.attn_norm_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM,   "bias",   i), {n_embd});
 | |
| 
 | |
|                         layer.wqkv          = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV,    "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
 | |
|                         layer.bqkv          = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV,    "bias",   i), {n_embd + 2*n_embd_gqa});
 | |
| 
 | |
|                         layer.wo            = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT,    "weight", i), {n_embd, n_embd});
 | |
|                         layer.bo            = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT,    "bias",   i), {n_embd});
 | |
| 
 | |
|                         layer.ffn_down      = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN,    "weight", i), {n_ff, n_embd});
 | |
|                         layer.ffn_down_b    = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN,    "bias",   i), {n_embd});
 | |
| 
 | |
|                         layer.ffn_up        = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,      "weight", i), {n_embd, n_ff});
 | |
|                         layer.ffn_up_b      = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP,      "bias",   i), {n_ff});
 | |
| 
 | |
|                         layer.ffn_norm      = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM,    "weight", i), {n_embd});
 | |
|                         layer.ffn_norm_b    = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM,    "bias",   i), {n_embd});
 | |
| 
 | |
|                         layer.attn_q_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {64});
 | |
|                         layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias",   i), {64});
 | |
| 
 | |
|                         layer.attn_k_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {64});
 | |
|                         layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias",   i), {64});
 | |
|                     }
 | |
|                 } break;
 | |
|             case LLM_ARCH_BERT:
 | |
|             case LLM_ARCH_NOMIC_BERT:
 | |
|                 {
 | |
|                     model.tok_embd     = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD,  "weight"), {n_embd, n_vocab});
 | |
|                     model.type_embd    = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
 | |
|                     if (model.arch == LLM_ARCH_BERT) {
 | |
|                         model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD,    "weight"), {n_embd, hparams.n_ctx_train});
 | |
|                     }
 | |
| 
 | |
|                     model.tok_norm   = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
 | |
|                     model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"),   {n_embd});
 | |
| 
 | |
|                     for (int i = 0; i < n_layer; ++i) {
 | |
|                         ggml_context * ctx_layer = ctx_for_layer(i);
 | |
|                         ggml_context * ctx_split = ctx_for_layer_split(i);
 | |
| 
 | |
|                         auto & layer = model.layers[i];
 | |
| 
 | |
|                         if (model.arch == LLM_ARCH_BERT) {
 | |
|                             layer.wq   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
 | |
|                             layer.bq   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q,   "bias", i),   {n_embd});
 | |
| 
 | |
|                             layer.wk   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
 | |
|                             layer.bk   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K,   "bias", i),   {n_embd_gqa});
 | |
| 
 | |
|                             layer.wv   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
 | |
|                             layer.bv   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V,   "bias", i),   {n_embd_gqa});
 | |
|                         } else {
 | |
|                             layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
 | |
|                         }
 | |
| 
 | |
|                         layer.wo              = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT,      "weight", i), {n_embd, n_embd});
 | |
| 
 | |
|                         layer.attn_out_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
 | |
|                         layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i),   {n_embd});
 | |
| 
 | |
|                         layer.ffn_up          = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,        "weight", i), {n_embd, n_ff});
 | |
|                         layer.ffn_down        = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN,      "weight", i), {n_ff, n_embd});
 | |
| 
 | |
|                         if (model.arch == LLM_ARCH_BERT) {
 | |
|                             layer.bo         = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd});
 | |
|                             layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff});
 | |
| 
 | |
|                             layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd});
 | |
|                         } else {
 | |
|                             layer.ffn_gate   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
 | |
|                         }
 | |
| 
 | |
|                         layer.layer_out_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
 | |
|                         layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i),   {n_embd});
 | |
|                     }
 | |
|                 } break;
 | |
|             case LLM_ARCH_BLOOM:
 | |
|                 {
 | |
|                     model.tok_embd   = ml.create_tensor(ctx_input,  tn(LLM_TENSOR_TOKEN_EMBD,      "weight"), {n_embd, n_vocab});
 | |
|                     model.tok_norm   = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
 | |
|                     model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"),   {n_embd});
 | |
| 
 | |
|                     // output
 | |
|                     {
 | |
|                         model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
 | |
|                         model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
 | |
|                         model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
 | |
|                     }
 | |
| 
 | |
|                     for (int i = 0; i < n_layer; ++i) {
 | |
|                         ggml_context * ctx_layer = ctx_for_layer(i);
 | |
|                         ggml_context * ctx_split = ctx_for_layer_split(i);
 | |
| 
 | |
|                         auto & layer = model.layers[i];
 | |
| 
 | |
|                         layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
 | |
|                         layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd});
 | |
| 
 | |
|                         layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
 | |
|                         layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa});
 | |
| 
 | |
|                         layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
 | |
|                         layer.bo   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd});
 | |
| 
 | |
|                         layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
 | |
|                         layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd});
 | |
| 
 | |
|                         layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
 | |
|                         layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd});
 | |
| 
 | |
|                         layer.ffn_up     = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff});
 | |
|                         layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff});
 | |
|                     }
 | |
|                 } break;
 | |
|             case LLM_ARCH_MPT:
 | |
|                 {
 | |
|                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
 | |
|                     model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD,   "weight"), {n_embd, hparams.n_ctx_train}, false);
 | |
| 
 | |
|                     // output
 | |
|                     {
 | |
|                         model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
 | |
|                         model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, false);
 | |
| 
 | |
|                         model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, false);
 | |
|                         if (!model.output) {
 | |
|                             model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
 | |
|                             ml.n_created--; // artificial tensor
 | |
|                             ml.size_data += ggml_nbytes(model.output);
 | |
|                         }
 | |
|                     }
 | |
| 
 | |
|                     for (int i = 0; i < n_layer; ++i) {
 | |
|                         ggml_context * ctx_layer = ctx_for_layer(i);
 | |
|                         ggml_context * ctx_split = ctx_for_layer_split(i);
 | |
| 
 | |
|                         auto & layer = model.layers[i];
 | |
| 
 | |
|                         layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
 | |
|                         layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd}, false);
 | |
| 
 | |
|                         layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
 | |
|                         layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa}, false);
 | |
| 
 | |
|                         layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
 | |
|                         layer.bo   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd}, false);
 | |
| 
 | |
|                         layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
 | |
|                         layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd}, false);
 | |
| 
 | |
|                         layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
 | |
|                         layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd}, false);
 | |
| 
 | |
|                         layer.ffn_up     = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
 | |
|                         layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff}, false);
 | |
| 
 | |
|                         layer.attn_q_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, false);
 | |
|                         layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias",   i), {n_embd}, false);
 | |
| 
 | |
|                         layer.attn_k_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, false);
 | |
|                         layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias",   i), {n_embd}, false);
 | |
| 
 | |
|                         // AWQ ScaleActivation layer
 | |
|                         layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false);
 | |
|                     }
 | |
|                 } break;
 | |
|             case LLM_ARCH_STABLELM:
 | |
|                 {
 | |
|                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
 | |
| 
 | |
|                     // output
 | |
|                     {
 | |
|                         model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
 | |
|                         model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
 | |
|                         model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
 | |
|                     }
 | |
| 
 | |
|                     for (int i = 0; i < n_layer; ++i) {
 | |
|                         ggml_context * ctx_layer = ctx_for_layer(i);
 | |
|                         ggml_context * ctx_split = ctx_for_layer_split(i);
 | |
| 
 | |
|                         auto & layer = model.layers[i];
 | |
| 
 | |
|                         layer.attn_norm =   ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
 | |
|                         layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
 | |
| 
 | |
|                         layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
 | |
|                         layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
 | |
|                         layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
 | |
|                         layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
 | |
| 
 | |
|                         // optional bias tensors, present in Stable LM 2 1.6B
 | |
|                         layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd},     false);
 | |
|                         layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, false);
 | |
|                         layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, false);
 | |
| 
 | |
|                         // optional q and k layernorms, present in StableLM 2 12B
 | |
|                         layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}, false);
 | |
|                         layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, false);
 | |
| 
 | |
|                         // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
 | |
|                         layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, false);
 | |
|                         layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd}, false);
 | |
| 
 | |
|                         layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
 | |
|                         layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
 | |
|                         layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
 | |
|                     }
 | |
|                 } break;
 | |
|             case LLM_ARCH_QWEN:
 | |
|                 {
 | |
|                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
 | |
| 
 | |
|                     // output
 | |
|                     {
 | |
|                         model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
 | |
|                         model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
 | |
|                     }
 | |
| 
 | |
|                     for (int i = 0; i < n_layer; ++i) {
 | |
|                         ggml_context * ctx_layer = ctx_for_layer(i);
 | |
|                         ggml_context * ctx_split = ctx_for_layer_split(i);
 | |
| 
 | |
|                         auto & layer = model.layers[i];
 | |
| 
 | |
|                         layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
 | |
| 
 | |
|                         layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
 | |
|                         layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd*3});
 | |
|                         layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
 | |
| 
 | |
|                         layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
 | |
| 
 | |
|                         layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
 | |
|                         layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
 | |
|                         layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff/2});
 | |
|                     }
 | |
|                 } break;
 | |
|             case LLM_ARCH_QWEN2:
 | |
|                 {
 | |
|                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
 | |
| 
 | |
|                     // output
 | |
|                     {
 | |
|                         model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
 | |
|                         model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, false);
 | |
|                         // if output is NULL, init from the input tok embed
 | |
|                         if (model.output == NULL) {
 | |
|                             model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
 | |
|                             ml.n_created--; // artificial tensor
 | |
|                             ml.size_data += ggml_nbytes(model.output);
 | |
|                         }
 | |
|                     }
 | |
| 
 | |
|                     for (int i = 0; i < n_layer; ++i) {
 | |
|                         ggml_context * ctx_layer = ctx_for_layer(i);
 | |
|                         ggml_context * ctx_split = ctx_for_layer_split(i);
 | |
| 
 | |
|                         auto & layer = model.layers[i];
 | |
| 
 | |
|                         layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
 | |
| 
 | |
|                         layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
 | |
|                         layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
 | |
|                         layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
 | |
|                         layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
 | |
| 
 | |
|                         // optional bias tensors
 | |
|                         layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd});
 | |
|                         layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa});
 | |
|                         layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa});
 | |
| 
 | |
|                         layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
 | |
| 
 | |
|                         layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
 | |
|                         layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
 | |
|                         layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
 | |
|                     }
 | |
|                 } break;
 | |
|             case LLM_ARCH_QWEN2MOE:
 | |
|                 {
 | |
|                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
 | |
| 
 | |
|                     // output
 | |
|                     {
 | |
|                         model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
 | |
|                         model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
 | |
|                     }
 | |
| 
 | |
|                     for (int i = 0; i < n_layer; ++i) {
 | |
|                         ggml_context * ctx_layer = ctx_for_layer(i);
 | |
|                         ggml_context * ctx_split = ctx_for_layer_split(i);
 | |
| 
 | |
|                         auto & layer = model.layers[i];
 | |
| 
 | |
|                         layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
 | |
| 
 | |
|                         layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
 | |
|                         layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
 | |
|                         layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
 | |
|                         layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
 | |
| 
 | |
|                         // optional bias tensors
 | |
|                         layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd});
 | |
|                         layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa});
 | |
|                         layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa});
 | |
| 
 | |
|                         layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
 | |
| 
 | |
|                         layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
 | |
| 
 | |
|                         GGML_ASSERT(hparams.n_expert      > 0);
 | |
|                         GGML_ASSERT(hparams.n_expert_used > 0);
 | |
| 
 | |
|                         // MoE branch
 | |
|                         auto n_ff_exp = n_ff / hparams.n_expert_used;
 | |
|                         layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {  n_embd, n_ff_exp, n_expert});
 | |
|                         layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert});
 | |
|                         layer.ffn_up_exps   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert});
 | |
| 
 | |
|                         // Shared expert branch
 | |
|                         layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
 | |
|                         layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd,   n_ff});
 | |
|                         layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {  n_ff, n_embd});
 | |
|                         layer.ffn_up_shexp   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd,   n_ff});
 | |
|                     }
 | |
|                 } break;
 | |
|             case LLM_ARCH_PHI2:
 | |
|                 {
 | |
|                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
 | |
| 
 | |
|                     // output
 | |
|                     {
 | |
|                         model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
 | |
|                         model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
 | |
|                         model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
 | |
|                         model.output_b      = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT,      "bias"),   {n_vocab});
 | |
|                     }
 | |
| 
 | |
|                     for (int i = 0; i < n_layer; ++i) {
 | |
|                         ggml_context * ctx_layer = ctx_for_layer(i);
 | |
|                         ggml_context * ctx_split = ctx_for_layer_split(i);
 | |
| 
 | |
|                         auto & layer = model.layers[i];
 | |
| 
 | |
|                         layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
 | |
|                         layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd});
 | |
| 
 | |
|                         layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, false);
 | |
|                         layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa}, false);
 | |
| 
 | |
|                         if (layer.wqkv == nullptr) {
 | |
|                             layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
 | |
|                             layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i),   {n_embd});
 | |
| 
 | |
|                             layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
 | |
|                             layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i),   {n_embd_gqa});
 | |
| 
 | |
|                             layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
 | |
|                             layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i),   {n_embd_gqa});
 | |
|                         }
 | |
| 
 | |
|                         layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
 | |
|                         layer.bo   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd});
 | |
| 
 | |
|                         layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
 | |
|                         layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd});
 | |
| 
 | |
|                         layer.ffn_up     = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff});
 | |
|                         layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff});
 | |
|                     }
 | |
|                 } break;
 | |
|             case LLM_ARCH_PHI3:
 | |
|                 {
 | |
|                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });
 | |
| 
 | |
|                     // output
 | |
|                     {
 | |
|                         model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
 | |
|                         model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
 | |
|                     }
 | |
| 
 | |
|                     for (int i = 0; i < n_layer; ++i) {
 | |
|                         ggml_context* ctx_layer = ctx_for_layer(i);
 | |
|                         ggml_context* ctx_split = ctx_for_layer_split(i);
 | |
| 
 | |
|                         auto& layer = model.layers[i];
 | |
| 
 | |
|                         layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });
 | |
| 
 | |
|                         layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, false);
 | |
|                         layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });
 | |
| 
 | |
|                         layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });
 | |
| 
 | |
|                         layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
 | |
|                         layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });
 | |
|                     }
 | |
|                 } break;
 | |
|             case LLM_ARCH_PLAMO:
 | |
|                 {
 | |
|                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
 | |
| 
 | |
|                     // output
 | |
|                     {
 | |
|                         model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
 | |
|                         model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
 | |
|                     }
 | |
| 
 | |
|                     for (int i = 0; i < n_layer; ++i) {
 | |
|                         ggml_context * ctx_layer = ctx_for_layer(i);
 | |
|                         ggml_context * ctx_split = ctx_for_layer_split(i);
 | |
| 
 | |
|                         auto & layer = model.layers[i];
 | |
| 
 | |
|                         layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
 | |
| 
 | |
|                         layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
 | |
|                         layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
 | |
|                         layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
 | |
|                         layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
 | |
| 
 | |
|                         layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
 | |
|                         layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
 | |
|                         layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
 | |
|                     }
 | |
|                 } break;
 | |
|             case LLM_ARCH_GPT2:
 | |
|                 {
 | |
|                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
 | |
|                     model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD,   "weight"),   {n_embd, hparams.n_ctx_train});
 | |
| 
 | |
|                     // output
 | |
|                     {
 | |
|                         model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
 | |
|                         model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
 | |
|                         model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
 | |
|                     }
 | |
| 
 | |
|                     for (int i = 0; i < n_layer; ++i) {
 | |
|                         ggml_context * ctx_layer = ctx_for_layer(i);
 | |
|                         ggml_context * ctx_split = ctx_for_layer_split(i);
 | |
| 
 | |
|                         auto & layer = model.layers[i];
 | |
| 
 | |
|                         layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM,   "weight", i), {n_embd});
 | |
|                         layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM,   "bias", i),   {n_embd});
 | |
| 
 | |
|                         layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
 | |
|                         layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa});
 | |
| 
 | |
|                         layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
 | |
|                         layer.bo   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd});
 | |
| 
 | |
|                         layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
 | |
|                         layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd});
 | |
| 
 | |
|                         layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
 | |
|                         layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd});
 | |
| 
 | |
|                         layer.ffn_up     = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff});
 | |
|                         layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff});
 | |
|                     }
 | |
|                 } break;
 | |
|             case LLM_ARCH_CODESHELL:
 | |
|                 {
 | |
|                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
 | |
| 
 | |
|                     // output
 | |
|                     {
 | |
|                         model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
 | |
|                         model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
 | |
|                         model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
 | |
|                     }
 | |
| 
 | |
|                     for (int i = 0; i < n_layer; ++i) {
 | |
|                         ggml_context * ctx_layer = ctx_for_layer(i);
 | |
|                         ggml_context * ctx_split = ctx_for_layer_split(i);
 | |
| 
 | |
|                         auto & layer = model.layers[i];
 | |
| 
 | |
|                         layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
 | |
|                         layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd});
 | |
| 
 | |
|                         layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
 | |
|                         layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa});
 | |
| 
 | |
|                         layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
 | |
|                         layer.bo   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd});
 | |
| 
 | |
|                         layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
 | |
|                         layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd});
 | |
| 
 | |
|                         layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
 | |
|                         layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd});
 | |
| 
 | |
|                         layer.ffn_up     = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i),   {n_embd, n_ff});
 | |
|                         layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i),     {n_ff});
 | |
|                     }
 | |
|                 } break;
 | |
|             case LLM_ARCH_ORION:
 | |
|                 {
 | |
|                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
 | |
|                     {
 | |
|                         model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
 | |
|                         model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
 | |
|                         model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
 | |
|                     }
 | |
|                     for (int i = 0; i < n_layer; ++i) {
 | |
|                         ggml_context * ctx_layer = ctx_for_layer(i);
 | |
|                         ggml_context * ctx_split = ctx_for_layer_split(i);
 | |
| 
 | |
|                         auto & layer = model.layers[i];
 | |
| 
 | |
|                         layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
 | |
|                         layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd});
 | |
| 
 | |
|                         layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
 | |
|                         layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
 | |
|                         layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
 | |
|                         layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
 | |
| 
 | |
|                         layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
 | |
|                         layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd});
 | |
| 
 | |
|                         layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
 | |
|                         layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
 | |
|                         layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
 | |
|                     }
 | |
|                 } break;
 | |
|             case LLM_ARCH_INTERNLM2:
 | |
|                 {
 | |
|                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
 | |
| 
 | |
|                     // output
 | |
|                     {
 | |
|                         model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
 | |
|                         model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
 | |
|                     }
 | |
| 
 | |
|                     for (int i = 0; i < n_layer; ++i) {
 | |
|                         ggml_context * ctx_layer = ctx_for_layer(i);
 | |
|                         ggml_context * ctx_split = ctx_for_layer_split(i);
 | |
| 
 | |
|                         auto & layer = model.layers[i];
 | |
| 
 | |
|                         layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
 | |
|                         // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
 | |
|                         layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
 | |
|                         layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
 | |
|                         layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
 | |
| 
 | |
|                         layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
 | |
|                         layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
 | |
|                         layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
 | |
|                         layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
 | |
|                         layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
 | |
|                     }
 | |
|                 } break;
 | |
|             case LLM_ARCH_GEMMA:
 | |
|                 {
 | |
|                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
 | |
| 
 | |
|                     // output
 | |
|                     model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
 | |
|                     model.output      = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD,  "weight"), {n_embd, n_vocab}); // same as tok_embd, duplicated to allow offloading
 | |
|                     ml.n_created--; // artificial tensor
 | |
|                     ml.size_data += ggml_nbytes(model.output);
 | |
| 
 | |
|                     const int64_t n_ff          = hparams.n_ff;
 | |
|                     const int64_t n_embd_head_k = hparams.n_embd_head_k;
 | |
|                     const int64_t n_embd_k_gqa  = hparams.n_embd_k_gqa();
 | |
|                     const int64_t n_embd_v_gqa  = hparams.n_embd_v_gqa();
 | |
| 
 | |
|                     for (uint32_t i = 0; i < n_layer; ++i) {
 | |
|                         ggml_context * ctx_layer = ctx_for_layer(i);
 | |
|                         ggml_context * ctx_split = ctx_for_layer_split(i);
 | |
| 
 | |
|                         auto & layer = model.layers[i];
 | |
| 
 | |
|                         layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
 | |
| 
 | |
|                         layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
 | |
|                         layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa});
 | |
|                         layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa});
 | |
|                         layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
 | |
| 
 | |
|                         layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
 | |
|                         layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
 | |
|                         layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
 | |
|                         layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
 | |
|                     }
 | |
|                 } break;
 | |
|             case LLM_ARCH_STARCODER2:
 | |
|                 {
 | |
|                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
 | |
| 
 | |
|                     // output
 | |
|                     {
 | |
|                         model.output_norm   = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
 | |
|                         model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
 | |
| 
 | |
|                         model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
 | |
|                         // if output is NULL, init from the input tok embed
 | |
|                         if (model.output == NULL) {
 | |
|                             model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
 | |
|                             ml.n_created--; // artificial tensor
 | |
|                             ml.size_data += ggml_nbytes(model.output);
 | |
|                         }
 | |
| 
 | |
|                     }
 | |
| 
 | |
|                     for (int i = 0; i < n_layer; ++i) {
 | |
|                         ggml_context * ctx_layer = ctx_for_layer(i);
 | |
|                         ggml_context * ctx_split = ctx_for_layer_split(i);
 | |
| 
 | |
|                         auto & layer = model.layers[i];
 | |
| 
 | |
|                         layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
 | |
|                         layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd});
 | |
| 
 | |
|                         layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
 | |
|                         layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
 | |
|                         layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
 | |
|                         layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
 | |
| 
 | |
|                         // optional bias tensors
 | |
|                         layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd});
 | |
|                         layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa});
 | |
|                         layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa});
 | |
|                         layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
 | |
| 
 | |
|                         layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
 | |
|                         layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd});
 | |
| 
 | |
|                         layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
 | |
|                         layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
 | |
| 
 | |
|                         // optional bias tensors
 | |
|                         layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
 | |
|                         layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP ,  "bias", i), {  n_ff});
 | |
|                     }
 | |
|                 } break;
 | |
|             case LLM_ARCH_MAMBA:
 | |
|                 {
 | |
|                     const int64_t d_conv  = hparams.ssm_d_conv;
 | |
|                     const int64_t d_inner = hparams.ssm_d_inner;
 | |
|                     const int64_t d_state = hparams.ssm_d_state;
 | |
|                     const int64_t dt_rank = hparams.ssm_dt_rank;
 | |
|                     // only an expansion factor of 2 is supported for now
 | |
|                     GGML_ASSERT(2 * n_embd == d_inner);
 | |
| 
 | |
|                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
 | |
| 
 | |
|                     // output
 | |
|                     {
 | |
|                         model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
 | |
| 
 | |
|                         model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
 | |
|                         // if output is NULL, init from the input tok embed, duplicated to allow offloading
 | |
|                         if (model.output == NULL) {
 | |
|                             model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
 | |
|                             ml.n_created--; // artificial tensor
 | |
|                             ml.size_data += ggml_nbytes(model.output);
 | |
|                         }
 | |
|                     }
 | |
| 
 | |
|                     for (int i = 0; i < n_layer; ++i) {
 | |
|                         ggml_context * ctx_layer = ctx_for_layer(i);
 | |
|                         ggml_context * ctx_split = ctx_for_layer_split(i);
 | |
| 
 | |
|                         auto & layer = model.layers[i];
 | |
| 
 | |
|                         // norm
 | |
|                         layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
 | |
| 
 | |
|                         layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
 | |
| 
 | |
|                         layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
 | |
|                         layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
 | |
| 
 | |
|                         layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
 | |
| 
 | |
|                         layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
 | |
|                         layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
 | |
| 
 | |
|                         // no "weight" suffix for these
 | |
|                         layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
 | |
|                         layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
 | |
| 
 | |
|                         // out_proj
 | |
|                         layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
 | |
|                     }
 | |
|                 } break;
 | |
|             case LLM_ARCH_XVERSE:
 | |
|                 {
 | |
|                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
 | |
|                     {
 | |
|                         model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
 | |
|                         model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
 | |
|                     }
 | |
|                     for (int i = 0; i < n_layer; ++i) {
 | |
|                         ggml_context * ctx_layer = ctx_for_layer(i);
 | |
|                         ggml_context * ctx_split = ctx_for_layer_split(i);
 | |
|                         auto & layer = model.layers[i];
 | |
|                         layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
 | |
|                         layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
 | |
|                         layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
 | |
|                         layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
 | |
|                         layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
 | |
|                         layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
 | |
|                         layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
 | |
|                         layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
 | |
|                         layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
 | |
|                     }
 | |
|                 } break;
 | |
|             case LLM_ARCH_COMMAND_R:
 | |
|                 {
 | |
|                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
 | |
| 
 | |
|                     // output
 | |
|                     {
 | |
|                         model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
 | |
|                         // init output from the input tok embed
 | |
|                         model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
 | |
|                         ml.n_created--; // artificial tensor
 | |
|                         ml.size_data += ggml_nbytes(model.output);
 | |
|                     }
 | |
| 
 | |
|                     for (int i = 0; i < n_layer; ++i) {
 | |
|                         ggml_context * ctx_layer = ctx_for_layer(i);
 | |
|                         ggml_context * ctx_split = ctx_for_layer_split(i);
 | |
| 
 | |
|                         auto & layer = model.layers[i];
 | |
| 
 | |
|                         layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
 | |
| 
 | |
|                         if (n_layer >= 64){
 | |
|                             layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head});
 | |
|                             layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv});
 | |
|                         }
 | |
| 
 | |
|                         layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
 | |
|                         layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
 | |
|                         layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
 | |
|                         layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
 | |
| 
 | |
|                         layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
 | |
|                         layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
 | |
|                         layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
 | |
|                     }
 | |
|                 } break;
 | |
|             case LLM_ARCH_OLMO:  // adapted from LLM_ARCH_LLAMA with norm params removed
 | |
|                 {
 | |
|                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
 | |
| 
 | |
|                     // output
 | |
|                     {
 | |
|                         model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
 | |
|                         // if output is NULL, init from the input tok embed
 | |
|                         if (model.output == NULL) {
 | |
|                             model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
 | |
|                             ml.n_created--; // artificial tensor
 | |
|                             ml.size_data += ggml_nbytes(model.output);
 | |
|                         }
 | |
|                     }
 | |
| 
 | |
|                     for (int i = 0; i < n_layer; ++i) {
 | |
|                         ggml_context * ctx_split = ctx_for_layer_split(i);
 | |
| 
 | |
|                         auto & layer = model.layers[i];
 | |
| 
 | |
|                         layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
 | |
|                         layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
 | |
|                         layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
 | |
|                         layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
 | |
| 
 | |
| 
 | |
|                         layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
 | |
|                         layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
 | |
|                         layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
 | |
|                     }
 | |
|                 } break;
 | |
|             default:
 | |
|                 throw std::runtime_error("unknown architecture");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ml.done_getting_tensors();
 | |
| 
 | |
|     ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
 | |
|     model.mappings.reserve(ml.mappings.size());
 | |
| 
 | |
|     // create the backend buffers
 | |
|     std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
 | |
|     ctx_bufs.reserve(ctx_map.size());
 | |
| 
 | |
|     // Ensure we have enough capacity for the maximum backend buffer we will potentially create
 | |
|     size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
 | |
|     model.bufs.reserve(n_max_backend_buffer);
 | |
| 
 | |
|     for (auto & it : ctx_map) {
 | |
|         ggml_backend_buffer_type_t buft = it.first;
 | |
|         ggml_context * ctx              = it.second;
 | |
| 
 | |
|         llama_buf_map bufs;
 | |
|         bufs.reserve(n_max_backend_buffer);
 | |
| 
 | |
|         // only the mmap region containing the tensors in the model is mapped to the backend buffer
 | |
|         // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
 | |
|         // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
 | |
|         if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
 | |
|             for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
 | |
|                 void * addr = nullptr;
 | |
|                 size_t first, last;
 | |
|                 ml.get_mapping_range(&first, &last, &addr, idx, ctx);
 | |
|                 if (first >= last) {
 | |
|                     continue;
 | |
|                 }
 | |
|                 ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
 | |
|                 if (buf == nullptr) {
 | |
|                     throw std::runtime_error("unable to allocate backend CPU buffer");
 | |
|                 }
 | |
|                 model.bufs.push_back(buf);
 | |
|                 bufs.emplace(idx, buf);
 | |
| #ifdef GGML_USE_CUDA
 | |
|                 if (n_layer >= n_gpu_layers) {
 | |
|                     ggml_backend_cuda_register_host_buffer(
 | |
|                         ggml_backend_buffer_get_base(buf),
 | |
|                         ggml_backend_buffer_get_size(buf));
 | |
|                 }
 | |
| #endif
 | |
|             }
 | |
|         }
 | |
| #ifdef GGML_USE_METAL
 | |
|         else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
 | |
|             for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
 | |
|                 const size_t max_size = ggml_get_max_tensor_size(ctx);
 | |
|                 void * addr = nullptr;
 | |
|                 size_t first, last;
 | |
|                 ml.get_mapping_range(&first, &last, &addr, idx, ctx);
 | |
|                 if (first >= last) {
 | |
|                     continue;
 | |
|                 }
 | |
|                 ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
 | |
|                 if (buf == nullptr) {
 | |
|                     throw std::runtime_error("unable to allocate backend metal buffer");
 | |
|                 }
 | |
|                 model.bufs.push_back(buf);
 | |
|                 bufs.emplace(idx, buf);
 | |
|             }
 | |
|         }
 | |
| #endif
 | |
|         else {
 | |
|             ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
 | |
|             if (buf == nullptr) {
 | |
|                 throw std::runtime_error("unable to allocate backend buffer");
 | |
|             }
 | |
|             model.bufs.push_back(buf);
 | |
|             if (use_mlock && ggml_backend_buffer_is_host(buf)) {
 | |
|                 model.mlock_bufs.emplace_back(new llama_mlock);
 | |
|                 auto & mlock_buf = model.mlock_bufs.back();
 | |
|                 mlock_buf->init   (ggml_backend_buffer_get_base(buf));
 | |
|                 mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
 | |
|             }
 | |
|             for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
 | |
|                 bufs.emplace(idx, buf);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (bufs.empty()) {
 | |
|             throw std::runtime_error("failed to allocate buffer");
 | |
|         }
 | |
| 
 | |
|         for (auto & buf : bufs) {
 | |
|             // indicate that this buffer contains weights
 | |
|             // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
 | |
|             ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
 | |
|         }
 | |
| 
 | |
|         ctx_bufs.emplace_back(ctx, bufs);
 | |
|     }
 | |
| 
 | |
|     if (llama_supports_gpu_offload()) {
 | |
|         const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
 | |
| 
 | |
|         LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
 | |
|         if (n_gpu_layers > (int) hparams.n_layer) {
 | |
|             LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
 | |
|         }
 | |
| 
 | |
|         const int max_backend_supported_layers = hparams.n_layer + 1;
 | |
|         const int max_offloadable_layers       = hparams.n_layer + 1;
 | |
| 
 | |
|         LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
 | |
|     }
 | |
| 
 | |
|     // print memory requirements
 | |
|     for (ggml_backend_buffer_t buf : model.bufs) {
 | |
|         LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
 | |
|     }
 | |
| 
 | |
|     // populate tensors_by_name
 | |
|     for (ggml_context * ctx : model.ctxs) {
 | |
|         for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
 | |
|             model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // load tensor data
 | |
|     for (auto & it : ctx_bufs) {
 | |
|         ggml_context * ctx = it.first;
 | |
|         auto & bufs = it.second;
 | |
|         if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (use_mmap_buffer) {
 | |
|         for (auto & mapping : ml.mappings) {
 | |
|             model.mappings.emplace_back(std::move(mapping));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // loading time will be recalculate after the first eval, so
 | |
|     // we take page faults deferred by mmap() into consideration
 | |
|     model.t_load_us = ggml_time_us() - model.t_start_us;
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
 | |
| static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
 | |
|     try {
 | |
|         llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);
 | |
| 
 | |
|         model.hparams.vocab_only = params.vocab_only;
 | |
| 
 | |
|         try {
 | |
|             llm_load_arch(ml, model);
 | |
|         } catch(const std::exception & e) {
 | |
|             throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
 | |
|         }
 | |
|         try {
 | |
|             llm_load_hparams(ml, model);
 | |
|         } catch(const std::exception & e) {
 | |
|             throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
 | |
|         }
 | |
|         try {
 | |
|             llm_load_vocab(ml, model);
 | |
|         } catch(const std::exception & e) {
 | |
|             throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
 | |
|         }
 | |
| 
 | |
|         llm_load_print_meta(ml, model);
 | |
| 
 | |
|         if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
 | |
|             model.hparams.n_vocab != model.vocab.id_to_token.size()) {
 | |
|             throw std::runtime_error("vocab size mismatch");
 | |
|         }
 | |
| 
 | |
|         if (params.vocab_only) {
 | |
|             LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
| #ifdef GGML_USE_KOMPUTE
 | |
|         if (params.n_gpu_layers > 0 && (
 | |
|             !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
 | |
|             || !(
 | |
|                 model.ftype == LLAMA_FTYPE_ALL_F32 ||
 | |
|                 model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
 | |
|                 model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
 | |
|                 model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
 | |
|             )
 | |
|         )) {
 | |
|             // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
 | |
|             LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
 | |
|             params.n_gpu_layers = 0;
 | |
|         }
 | |
| #endif
 | |
| 
 | |
| #ifdef GGML_USE_SYCL
 | |
|         if (params.split_mode == LLAMA_SPLIT_MODE_NONE) {
 | |
|             ggml_backend_sycl_set_single_device_mode(params.main_gpu);
 | |
|             //SYCL use device index (0, 1, 2) directly, uer input device id, then convert to device index.
 | |
|             params.main_gpu = ggml_backend_sycl_get_device_index(params.main_gpu);
 | |
|         } else {
 | |
|             ggml_backend_sycl_set_mul_device_mode();
 | |
|         }
 | |
| #endif
 | |
| 
 | |
|         if (!llm_load_tensors(
 | |
|             ml, model, params.n_gpu_layers, params.split_mode,  params.main_gpu, params.tensor_split, params.use_mlock,
 | |
|             params.progress_callback, params.progress_callback_user_data
 | |
|         )) {
 | |
|             return -2;
 | |
|         }
 | |
|     } catch (const std::exception & err) {
 | |
|         LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| //
 | |
| // llm_build
 | |
| //
 | |
| 
 | |
| using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
 | |
| 
 | |
| enum llm_ffn_op_type {
 | |
|     LLM_FFN_SILU,
 | |
|     LLM_FFN_GELU,
 | |
|     LLM_FFN_RELU,
 | |
|     LLM_FFN_RELU_SQR,
 | |
| };
 | |
| 
 | |
| enum llm_ffn_gate_type {
 | |
|     LLM_FFN_SEQ,
 | |
|     LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
 | |
| };
 | |
| 
 | |
| enum llm_norm_type {
 | |
|     LLM_NORM,
 | |
|     LLM_NORM_RMS,
 | |
| };
 | |
| 
 | |
| static struct ggml_tensor * llm_build_inp_embd(
 | |
|         struct ggml_context * ctx,
 | |
|        struct llama_context & lctx,
 | |
|         const llama_hparams & hparams,
 | |
|           const llama_batch & batch,
 | |
|          struct ggml_tensor * tok_embd,
 | |
|          const llm_build_cb & cb) {
 | |
|     const int64_t n_embd = hparams.n_embd;
 | |
| 
 | |
|     struct ggml_tensor * inpL;
 | |
| 
 | |
|     if (batch.token) {
 | |
|         lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
 | |
|         cb(lctx.inp_tokens, "inp_tokens", -1);
 | |
|         ggml_set_input(lctx.inp_tokens);
 | |
| 
 | |
|         inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
 | |
|     } else {
 | |
| #ifdef GGML_USE_MPI
 | |
|         GGML_ASSERT(false && "not implemented");
 | |
| #endif
 | |
|         lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
 | |
|         inpL = lctx.inp_embd;
 | |
|         ggml_set_input(lctx.inp_embd);
 | |
|     }
 | |
| 
 | |
|     cb(inpL, "inp_embd", -1);
 | |
| 
 | |
|     return inpL;
 | |
| }
 | |
| 
 | |
| static void llm_build_kv_store(
 | |
|         struct ggml_context * ctx,
 | |
|         const llama_hparams & hparams,
 | |
|        const llama_kv_cache & kv,
 | |
|          struct ggml_cgraph * graph,
 | |
|          struct ggml_tensor * k_cur,
 | |
|          struct ggml_tensor * v_cur,
 | |
|                     int64_t   n_ctx,
 | |
|                     int32_t   n_tokens,
 | |
|                     int32_t   kv_head,
 | |
|          const llm_build_cb & cb,
 | |
|                     int64_t   il) {
 | |
|     const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
 | |
|     const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
 | |
| 
 | |
|     GGML_ASSERT(kv.size == n_ctx);
 | |
| 
 | |
|     // compute the transposed [n_tokens, n_embd] V matrix
 | |
|     assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
 | |
|     struct ggml_tensor * v_cur_t = ggml_transpose(ctx, v_cur);
 | |
|     cb(v_cur_t, "v_cur_t", il);
 | |
| 
 | |
|     struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
 | |
|             (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
 | |
|     cb(k_cache_view, "k_cache_view", il);
 | |
| 
 | |
|     struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
 | |
|             (  n_ctx)*ggml_element_size(kv.v_l[il]),
 | |
|             (kv_head)*ggml_element_size(kv.v_l[il]));
 | |
|     cb(v_cache_view, "v_cache_view", il);
 | |
| 
 | |
|     // important: storing RoPE-ed version of K in the KV cache!
 | |
|     ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur,   k_cache_view));
 | |
|     ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur_t, v_cache_view));
 | |
| }
 | |
| 
 | |
| static struct ggml_tensor * llm_build_norm(
 | |
|         struct ggml_context * ctx,
 | |
|          struct ggml_tensor * cur,
 | |
|         const llama_hparams & hparams,
 | |
|          struct ggml_tensor * mw,
 | |
|          struct ggml_tensor * mb,
 | |
|               llm_norm_type   type,
 | |
|          const llm_build_cb & cb,
 | |
|                         int   il) {
 | |
|     switch (type) {
 | |
|         case LLM_NORM:     cur = ggml_norm    (ctx, cur, hparams.f_norm_eps);     break;
 | |
|         case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
 | |
|     }
 | |
| 
 | |
|     if (mw || mb) {
 | |
|         cb(cur, "norm", il);
 | |
|     }
 | |
| 
 | |
|     if (mw) {
 | |
|         cur = ggml_mul(ctx, cur, mw);
 | |
|         if (mb) {
 | |
|             cb(cur, "norm_w", il);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (mb) {
 | |
|         cur = ggml_add(ctx, cur, mb);
 | |
|     }
 | |
| 
 | |
|     return cur;
 | |
| }
 | |
| 
 | |
| static struct ggml_tensor * llm_build_ffn(
 | |
|         struct ggml_context * ctx,
 | |
|          struct ggml_tensor * cur,
 | |
|          struct ggml_tensor * up,
 | |
|          struct ggml_tensor * up_b,
 | |
|          struct ggml_tensor * gate,
 | |
|          struct ggml_tensor * gate_b,
 | |
|          struct ggml_tensor * down,
 | |
|          struct ggml_tensor * down_b,
 | |
|          struct ggml_tensor * act_scales,
 | |
|             llm_ffn_op_type   type_op,
 | |
|           llm_ffn_gate_type   type_gate,
 | |
|          const llm_build_cb & cb,
 | |
|                         int   il) {
 | |
|     struct ggml_tensor * tmp = ggml_mul_mat(ctx, up, cur);
 | |
|     cb(tmp, "ffn_up", il);
 | |
| 
 | |
|     if (up_b) {
 | |
|         tmp = ggml_add(ctx, tmp, up_b);
 | |
|         cb(tmp, "ffn_up_b", il);
 | |
|     }
 | |
| 
 | |
|     if (gate) {
 | |
|         switch (type_gate) {
 | |
|             case LLM_FFN_SEQ:
 | |
|                 {
 | |
|                     cur = ggml_mul_mat(ctx, gate, tmp);
 | |
|                     cb(cur, "ffn_gate", il);
 | |
|                 } break;
 | |
|             case LLM_FFN_PAR:
 | |
|                 {
 | |
|                     cur = ggml_mul_mat(ctx, gate, cur);
 | |
|                     cb(cur, "ffn_gate", il);
 | |
|                 } break;
 | |
|         }
 | |
| 
 | |
|         if (gate_b) {
 | |
|             cur = ggml_add(ctx, cur, gate_b);
 | |
|             cb(cur, "ffn_gate_b", il);
 | |
|         }
 | |
|     } else {
 | |
|         cur = tmp;
 | |
|     }
 | |
| 
 | |
|     switch (type_op) {
 | |
|         case LLM_FFN_SILU:
 | |
|             {
 | |
|                 cur = ggml_silu(ctx, cur);
 | |
|                 cb(cur, "ffn_silu", il);
 | |
|             } break;
 | |
|         case LLM_FFN_GELU:
 | |
|             {
 | |
|                 cur = ggml_gelu(ctx, cur);
 | |
|                 cb(cur, "ffn_gelu", il);
 | |
|                 if (act_scales != NULL) {
 | |
|                     cur = ggml_div(ctx, cur, act_scales);
 | |
|                     cb(cur, "ffn_act", il);
 | |
|                 }
 | |
|             } break;
 | |
|         case LLM_FFN_RELU:
 | |
|             {
 | |
|                 cur = ggml_relu(ctx, cur);
 | |
|                 cb(cur, "ffn_relu", il);
 | |
|             } break;
 | |
|         case LLM_FFN_RELU_SQR:
 | |
|             {
 | |
|                 cur = ggml_relu(ctx, cur);
 | |
|                 cb(cur, "ffn_relu", il);
 | |
| 
 | |
|                 cur = ggml_sqr(ctx, cur);
 | |
|                 cb(cur, "ffn_sqr(relu)", il);
 | |
|             } break;
 | |
|     }
 | |
| 
 | |
|     if (type_gate == LLM_FFN_PAR) {
 | |
|         cur = ggml_mul(ctx, cur, tmp);
 | |
|         cb(cur, "ffn_gate_par", il);
 | |
|     }
 | |
| 
 | |
|     cur = ggml_mul_mat(ctx, down, cur);
 | |
|     if (down_b) {
 | |
|         cb(cur, "ffn_down", il);
 | |
|     }
 | |
| 
 | |
|     if (down_b) {
 | |
|         cur = ggml_add(ctx, cur, down_b);
 | |
|     }
 | |
| 
 | |
|     return cur;
 | |
| }
 | |
| 
 | |
| static struct ggml_tensor * llm_build_moe_ffn(
 | |
|         struct ggml_context * ctx,
 | |
|          struct ggml_tensor * cur,
 | |
|          struct ggml_tensor * gate_inp,
 | |
|          struct ggml_tensor * up_exps,
 | |
|          struct ggml_tensor * gate_exps,
 | |
|          struct ggml_tensor * down_exps,
 | |
|                     int64_t   n_expert,
 | |
|                     int64_t   n_expert_used,
 | |
|             llm_ffn_op_type   type_op,
 | |
|                        bool   norm_w,
 | |
|          const llm_build_cb & cb,
 | |
|                         int   il) {
 | |
|     int64_t n_embd = cur->ne[0];
 | |
|     int64_t n_tokens = cur->ne[1];
 | |
| 
 | |
|     ggml_tensor * logits = ggml_mul_mat(ctx, gate_inp, cur); // [n_expert, n_tokens]
 | |
|     cb(logits, "ffn_moe_logits", il);
 | |
| 
 | |
|     ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
 | |
|     cb(probs, "ffn_moe_probs", il);
 | |
| 
 | |
|     // select experts
 | |
|     ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
 | |
|     cb(selected_experts->src[0], "ffn_moe_argsort", il);
 | |
|     cb(selected_experts, "ffn_moe_topk", il);
 | |
| 
 | |
|     ggml_tensor * weights = ggml_get_rows(ctx,
 | |
|             ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
 | |
|     cb(weights, "ffn_moe_weights", il);
 | |
| 
 | |
|     if (norm_w) {
 | |
|         weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
 | |
| 
 | |
|         ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
 | |
|         cb(weights_sum, "ffn_moe_weights_sum", il);
 | |
| 
 | |
|         weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
 | |
|         cb(weights, "ffn_moe_weights_norm", il);
 | |
| 
 | |
|         weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
 | |
|     }
 | |
| 
 | |
|     cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
 | |
|     ggml_tensor * up = ggml_mul_mat_id(ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
 | |
|     cb(up, "ffn_moe_up", il);
 | |
| 
 | |
|     ggml_tensor * gate = ggml_mul_mat_id(ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
 | |
|     cb(gate, "ffn_moe_gate", il);
 | |
| 
 | |
|     switch (type_op) {
 | |
|         case LLM_FFN_SILU:
 | |
|             {
 | |
|                 gate = ggml_silu(ctx, gate);
 | |
|                 cb(gate, "ffn_moe_silu", il);
 | |
|             } break;
 | |
|         case LLM_FFN_GELU:
 | |
|             {
 | |
|                 gate = ggml_gelu(ctx, gate);
 | |
|                 cb(gate, "ffn_moe_gelu", il);
 | |
|             } break;
 | |
|         default:
 | |
|             GGML_ASSERT(false);
 | |
|     }
 | |
| 
 | |
|     ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
 | |
|     cb(par, "ffn_moe_gate_par", il);
 | |
| 
 | |
|     ggml_tensor * experts = ggml_mul_mat_id(ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
 | |
|     cb(experts, "ffn_moe_down", il);
 | |
| 
 | |
|     experts = ggml_mul(ctx, experts, weights);
 | |
| 
 | |
|     // aggregate experts
 | |
|     ggml_tensor * moe_out = nullptr;
 | |
|     for (int i = 0; i < n_expert_used; ++i) {
 | |
|         ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens,
 | |
|                 experts->nb[2], i*experts->nb[1]);
 | |
| 
 | |
|         if (i == 0) {
 | |
|             moe_out = cur_expert;
 | |
|         } else {
 | |
|             moe_out = ggml_add(ctx, moe_out, cur_expert);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (n_expert_used == 1) {
 | |
|         // avoid returning a non-contiguous tensor
 | |
|         moe_out = ggml_cont(ctx, moe_out);
 | |
|     }
 | |
| 
 | |
|     return moe_out;
 | |
| }
 | |
| 
 | |
| // if max_alibi_bias > 0 then apply ALiBi
 | |
| static struct ggml_tensor * llm_build_kqv(
 | |
|         struct ggml_context * ctx,
 | |
|           const llama_model & model,
 | |
|         const llama_hparams & hparams,
 | |
|        const llama_kv_cache & kv,
 | |
|          struct ggml_cgraph * graph,
 | |
|          struct ggml_tensor * wo,
 | |
|          struct ggml_tensor * wo_b,
 | |
|          struct ggml_tensor * q_cur,
 | |
|          struct ggml_tensor * kq_mask,
 | |
|          struct ggml_tensor * kq_pos,
 | |
|                     int64_t   n_ctx,
 | |
|                     int32_t   n_tokens,
 | |
|                     int32_t   n_kv,
 | |
|                     float     kq_scale,
 | |
|          const llm_build_cb & cb,
 | |
|                     int       il) {
 | |
|     const int64_t n_head        = hparams.n_head;
 | |
|     const int64_t n_head_kv     = hparams.n_head_kv;
 | |
|     const int64_t n_embd_head_k = hparams.n_embd_head_k;
 | |
|     const int64_t n_embd_k_gqa  = hparams.n_embd_k_gqa();
 | |
|     const int64_t n_embd_head_v = hparams.n_embd_head_v;
 | |
| 
 | |
|     struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
 | |
|     cb(q, "q", il);
 | |
| 
 | |
|     struct ggml_tensor * k =
 | |
|         ggml_view_3d(ctx, kv.k_l[il],
 | |
|                 n_embd_head_k, n_kv, n_head_kv,
 | |
|                 ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
 | |
|                 ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
 | |
|                 0);
 | |
|     cb(k, "k", il);
 | |
| 
 | |
|     struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
 | |
|     cb(kq, "kq", il);
 | |
| 
 | |
|     if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3) {
 | |
|         // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
 | |
|         // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
 | |
|         ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
 | |
|     }
 | |
| 
 | |
|     if (model.arch == LLM_ARCH_GROK) {
 | |
|         // need to do the following:
 | |
|         // multiply by attn_output_multiplyer of 0.08838834764831845
 | |
|         // and then :
 | |
|         // kq = 30 * tanh(kq / 30)
 | |
|         // before the softmax below
 | |
| 
 | |
|         //try from phi2
 | |
|         //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
 | |
| 
 | |
|         kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
 | |
|         kq = ggml_scale(ctx, kq, 30);
 | |
|     }
 | |
| 
 | |
| #if defined(GGML_USE_KOMPUTE)
 | |
| #pragma message("TODO: ALiBi support in ggml_soft_max_ext is not implemented for Kompute")
 | |
| #pragma message("      Falling back to ggml_alibi(). Will become an error in Mar 2024")
 | |
| #pragma message("ref:  https://github.com/ggerganov/llama.cpp/pull/5488")
 | |
|     if (hparams.f_max_alibi_bias > 0.0f) {
 | |
|         kq = ggml_scale(ctx, kq, kq_scale);
 | |
|         cb(kq, "kq_scaled", il);
 | |
| 
 | |
|         kq = ggml_alibi(ctx, kq, /*n_past*/ 0, n_head, hparams.f_max_alibi_bias);
 | |
|         cb(kq, "kq_scaled_alibi", il);
 | |
| 
 | |
|         kq = ggml_add(ctx, kq, kq_mask);
 | |
|         cb(kq, "kq_masked", il);
 | |
| 
 | |
|         kq = ggml_soft_max(ctx, kq);
 | |
|         cb(kq, "kq_soft_max", il);
 | |
|     } else
 | |
| #endif
 | |
|     {
 | |
|         kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_pos, kq_scale, hparams.f_max_alibi_bias);
 | |
|         cb(kq, "kq_soft_max_ext", il);
 | |
|     }
 | |
| 
 | |
|     GGML_ASSERT(kv.size == n_ctx);
 | |
| 
 | |
|     // split cached v into n_head heads
 | |
|     struct ggml_tensor * v =
 | |
|         ggml_view_3d(ctx, kv.v_l[il],
 | |
|                 n_kv, n_embd_head_v, n_head_kv,
 | |
|                 ggml_element_size(kv.v_l[il])*n_ctx,
 | |
|                 ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
 | |
|                 0);
 | |
|     cb(v, "v", il);
 | |
| 
 | |
|     struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
 | |
|     cb(kqv, "kqv", il);
 | |
| 
 | |
|     struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
 | |
|     cb(kqv_merged, "kqv_merged", il);
 | |
| 
 | |
|     struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_k*n_head, n_tokens);
 | |
|     cb(cur, "kqv_merged_cont", il);
 | |
| 
 | |
|     ggml_build_forward_expand(graph, cur);
 | |
| 
 | |
|     cur = ggml_mul_mat(ctx, wo, cur);
 | |
|     if (wo_b) {
 | |
|         cb(cur, "kqv_wo", il);
 | |
|     }
 | |
| 
 | |
|     if (wo_b) {
 | |
|         cur = ggml_add(ctx, cur, wo_b);
 | |
|     }
 | |
| 
 | |
|     return cur;
 | |
| }
 | |
| 
 | |
| static struct ggml_tensor * llm_build_kv(
 | |
|         struct ggml_context * ctx,
 | |
|           const llama_model & model,
 | |
|         const llama_hparams & hparams,
 | |
|        const llama_kv_cache & kv,
 | |
|          struct ggml_cgraph * graph,
 | |
|          struct ggml_tensor * wo,
 | |
|          struct ggml_tensor * wo_b,
 | |
|          struct ggml_tensor * k_cur,
 | |
|          struct ggml_tensor * v_cur,
 | |
|          struct ggml_tensor * q_cur,
 | |
|          struct ggml_tensor * kq_mask,
 | |
|          struct ggml_tensor * kq_pos,
 | |
|                     int64_t   n_ctx,
 | |
|                     int32_t   n_tokens,
 | |
|                     int32_t   kv_head,
 | |
|                     int32_t   n_kv,
 | |
|                     float     kq_scale,
 | |
|          const llm_build_cb & cb,
 | |
|                     int       il) {
 | |
| 
 | |
|     // these nodes are added to the graph together so that they are not reordered
 | |
|     // by doing so, the number of splits in the graph is reduced
 | |
|     ggml_build_forward_expand(graph, q_cur);
 | |
|     ggml_build_forward_expand(graph, k_cur);
 | |
|     ggml_build_forward_expand(graph, v_cur);
 | |
| 
 | |
|     llm_build_kv_store(ctx, hparams, kv, graph, k_cur, v_cur, n_ctx, n_tokens, kv_head, cb, il);
 | |
| 
 | |
|     struct ggml_tensor * cur;
 | |
| 
 | |
|     cur  = llm_build_kqv(ctx, model, hparams, kv, graph, wo, wo_b,
 | |
|             q_cur, kq_mask, kq_pos, n_ctx, n_tokens, n_kv, kq_scale, cb, il);
 | |
|     cb(cur, "kqv_out", il);
 | |
| 
 | |
|     return cur;
 | |
| }
 | |
| 
 | |
| struct llm_build_context {
 | |
|     const llama_model    & model;
 | |
|           llama_context  & lctx;
 | |
|     const llama_hparams  & hparams;
 | |
|     const llama_cparams  & cparams;
 | |
|     const llama_batch    & batch;
 | |
|     const llama_kv_cache & kv_self;
 | |
| 
 | |
|     const int64_t n_embd;
 | |
|     const int64_t n_layer;
 | |
|     const int64_t n_rot;
 | |
|     const int64_t n_ctx;       // user-specified context size (can be different from n_ctx_train)
 | |
|     const int64_t n_head;
 | |
|     const int64_t n_head_kv;
 | |
|     const int64_t n_embd_head_k;
 | |
|     const int64_t n_embd_k_gqa;
 | |
|     const int64_t n_embd_head_v;
 | |
|     const int64_t n_embd_v_gqa;
 | |
|     const int64_t n_expert;
 | |
|     const int64_t n_expert_used;
 | |
| 
 | |
|     const float freq_base;
 | |
|     const float freq_scale;
 | |
|     const float ext_factor;
 | |
|     const float attn_factor;
 | |
|     const float beta_fast;
 | |
|     const float beta_slow;
 | |
|     const float norm_eps;
 | |
|     const float norm_rms_eps;
 | |
| 
 | |
|     const int32_t n_tokens;
 | |
|     const int32_t n_kv;     // size of KV cache to consider (n_kv <= kv_self.size)
 | |
|     const int32_t n_outputs;
 | |
|     const int32_t kv_head;  // index of where we store new KV data in the cache
 | |
|     const int32_t n_orig_ctx;
 | |
| 
 | |
|     const enum llama_pooling_type pooling_type;
 | |
|     const enum llama_rope_type    rope_type;
 | |
| 
 | |
|     const llm_build_cb & cb;
 | |
| 
 | |
|     std::vector<uint8_t> & buf_compute_meta;
 | |
| 
 | |
|     struct ggml_context * ctx0 = nullptr;
 | |
| 
 | |
|     // TODO: consider making the entire interface noexcept
 | |
|     llm_build_context(
 | |
|         llama_context  & lctx,
 | |
|     const llama_batch  & batch,
 | |
|     const llm_build_cb & cb,
 | |
|                   bool   worst_case) :
 | |
|         model            (lctx.model),
 | |
|         lctx             (lctx),
 | |
|         hparams          (model.hparams),
 | |
|         cparams          (lctx.cparams),
 | |
|         batch            (batch),
 | |
|         kv_self          (lctx.kv_self),
 | |
|         n_embd           (hparams.n_embd),
 | |
|         n_layer          (hparams.n_layer),
 | |
|         n_rot            (hparams.n_rot),
 | |
|         n_ctx            (cparams.n_ctx),
 | |
|         n_head           (hparams.n_head),
 | |
|         n_head_kv        (hparams.n_head_kv),
 | |
|         n_embd_head_k    (hparams.n_embd_head_k),
 | |
|         n_embd_k_gqa     (hparams.n_embd_k_gqa()),
 | |
|         n_embd_head_v    (hparams.n_embd_head_v),
 | |
|         n_embd_v_gqa     (hparams.n_embd_v_gqa()),
 | |
|         n_expert         (hparams.n_expert),
 | |
|         n_expert_used    (hparams.n_expert_used),
 | |
|         freq_base        (cparams.rope_freq_base),
 | |
|         freq_scale       (cparams.rope_freq_scale),
 | |
|         ext_factor       (cparams.yarn_ext_factor),
 | |
|         attn_factor      (cparams.yarn_attn_factor),
 | |
|         beta_fast        (cparams.yarn_beta_fast),
 | |
|         beta_slow        (cparams.yarn_beta_slow),
 | |
|         norm_eps         (hparams.f_norm_eps),
 | |
|         norm_rms_eps     (hparams.f_norm_rms_eps),
 | |
|         n_tokens         (batch.n_tokens),
 | |
|         n_kv             (worst_case ? kv_self.size : kv_self.n),
 | |
|         n_outputs        (worst_case ? n_tokens : lctx.n_outputs),
 | |
|         kv_head          (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
 | |
|         n_orig_ctx       (cparams.n_yarn_orig_ctx),
 | |
|         pooling_type     (cparams.pooling_type),
 | |
|         rope_type        (hparams.rope_type),
 | |
|         cb               (cb),
 | |
|         buf_compute_meta (lctx.buf_compute_meta) {
 | |
|             // all initializations should be done in init()
 | |
|         }
 | |
| 
 | |
|     void init() {
 | |
|         struct ggml_init_params params = {
 | |
|             /*.mem_size   =*/ buf_compute_meta.size(),
 | |
|             /*.mem_buffer =*/ buf_compute_meta.data(),
 | |
|             /*.no_alloc   =*/ true,
 | |
|         };
 | |
| 
 | |
|         ctx0 = ggml_init(params);
 | |
| 
 | |
|         lctx.inp_tokens = nullptr;
 | |
|         lctx.inp_embd = nullptr;
 | |
|         lctx.inp_pos = nullptr;
 | |
|         lctx.inp_out_ids = nullptr;
 | |
|         lctx.inp_KQ_mask = nullptr;
 | |
|         lctx.inp_KQ_pos = nullptr;
 | |
|         lctx.inp_K_shift = nullptr;
 | |
|         lctx.inp_mean = nullptr;
 | |
|         lctx.inp_cls = nullptr;
 | |
|         lctx.inp_s_copy = nullptr;
 | |
|         lctx.inp_s_mask = nullptr;
 | |
|         lctx.inp_s_seq = nullptr;
 | |
|     }
 | |
| 
 | |
|     void free() {
 | |
|         if (ctx0) {
 | |
|             ggml_free(ctx0);
 | |
|             ctx0 = nullptr;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph * build_k_shift() {
 | |
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 | |
| 
 | |
|         GGML_ASSERT(kv_self.size == n_ctx);
 | |
| 
 | |
|         lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
 | |
|         cb(lctx.inp_K_shift, "K_shift", -1);
 | |
|         ggml_set_input(lctx.inp_K_shift);
 | |
| 
 | |
|         for (int il = 0; il < n_layer; ++il) {
 | |
|             struct ggml_tensor * tmp =
 | |
|                 // we rotate only the first n_rot dimensions
 | |
|                 ggml_rope_custom_inplace(ctx0,
 | |
|                         ggml_view_3d(ctx0, kv_self.k_l[il],
 | |
|                             n_embd_head_k, n_head_kv, n_ctx,
 | |
|                             ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
 | |
|                             ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
 | |
|                             0),
 | |
|                         lctx.inp_K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                         ext_factor, attn_factor, beta_fast, beta_slow);
 | |
|             cb(tmp, "K_shifted", il);
 | |
|             ggml_build_forward_expand(gf, tmp);
 | |
|         }
 | |
| 
 | |
|         return gf;
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph * build_s_copy() {
 | |
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 | |
| 
 | |
|         GGML_ASSERT(kv_self.recurrent);
 | |
| 
 | |
|         struct ggml_tensor * state_copy = build_inp_s_copy();
 | |
| 
 | |
|         for (int il = 0; il < n_layer; ++il) {
 | |
|             struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
 | |
|             struct ggml_tensor * ssm_states  = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
 | |
| 
 | |
|             conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
 | |
|             ssm_states  = ggml_get_rows(ctx0,  ssm_states, state_copy);
 | |
| 
 | |
|             // TODO: name the intermediate tensors with cb()
 | |
| 
 | |
|             ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
 | |
|             ggml_build_forward_expand(gf, ggml_cpy(ctx0,  ssm_states, kv_self.v_l[il]));
 | |
|         }
 | |
| 
 | |
|         return gf;
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
 | |
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 | |
| 
 | |
|         for (uint32_t i = 0; i < ids.size(); ++i) {
 | |
|             const uint32_t id = ids[i];
 | |
| 
 | |
|             if (i == id || id == ids.size()) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             uint32_t nm = 1;
 | |
| 
 | |
|             while (i + nm < ids.size() && ids[i + nm] == id + nm) {
 | |
|                 nm++;
 | |
|             }
 | |
| 
 | |
|             for (int il = 0; il < n_layer; ++il) {
 | |
|                 ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
 | |
|                         n_embd_k_gqa, nm,
 | |
|                         ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
 | |
|                         ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
 | |
| 
 | |
|                 ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
 | |
|                         n_embd_k_gqa, nm,
 | |
|                         ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
 | |
|                         ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
 | |
| 
 | |
|                 ggml_tensor * view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
 | |
|                         nm, n_embd_v_gqa,
 | |
|                         ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
 | |
|                         ggml_row_size(kv_self.v_l[il]->type, i));
 | |
| 
 | |
|                 ggml_tensor * view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
 | |
|                         nm, n_embd_v_gqa,
 | |
|                         ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
 | |
|                         ggml_row_size(kv_self.v_l[il]->type, id));
 | |
| 
 | |
|                 ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
 | |
|                 ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
 | |
|             }
 | |
| 
 | |
|             i += nm - 1;
 | |
|         }
 | |
| 
 | |
|         //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
 | |
| 
 | |
|         return gf;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * build_inp_pos() {
 | |
|         lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
 | |
|         cb(lctx.inp_pos, "inp_pos", -1);
 | |
|         ggml_set_input(lctx.inp_pos);
 | |
|         return lctx.inp_pos;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * build_inp_out_ids() {
 | |
|         lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
 | |
|         cb(lctx.inp_out_ids, "inp_out_ids", -1);
 | |
|         ggml_set_input(lctx.inp_out_ids);
 | |
|         return lctx.inp_out_ids;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
 | |
|         if (causal) {
 | |
|             lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, n_tokens);
 | |
|         } else {
 | |
|             lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
 | |
|         }
 | |
|         cb(lctx.inp_KQ_mask, "KQ_mask", -1);
 | |
|         ggml_set_input(lctx.inp_KQ_mask);
 | |
|         return lctx.inp_KQ_mask;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * build_inp_KQ_pos() {
 | |
|         lctx.inp_KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n_kv);
 | |
|         cb(lctx.inp_KQ_pos, "KQ_pos", -1);
 | |
|         ggml_set_input(lctx.inp_KQ_pos);
 | |
|         return lctx.inp_KQ_pos;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * build_inp_mean() {
 | |
|         lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
 | |
|         cb(lctx.inp_mean, "inp_mean", -1);
 | |
|         ggml_set_input(lctx.inp_mean);
 | |
|         return lctx.inp_mean;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * build_inp_cls() {
 | |
|         lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
 | |
|         cb(lctx.inp_cls, "inp_cls", -1);
 | |
|         ggml_set_input(lctx.inp_cls);
 | |
|         return lctx.inp_cls;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * build_inp_s_copy() {
 | |
|         lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size);
 | |
|         cb(lctx.inp_s_copy, "inp_s_copy", -1);
 | |
|         ggml_set_input(lctx.inp_s_copy);
 | |
|         return lctx.inp_s_copy;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * build_inp_s_mask() {
 | |
|         lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
 | |
|         cb(lctx.inp_s_mask, "inp_s_mask", -1);
 | |
|         ggml_set_input(lctx.inp_s_mask);
 | |
|         return lctx.inp_s_mask;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * build_inp_s_seq() {
 | |
|         lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
 | |
|         cb(lctx.inp_s_seq, "inp_s_seq", -1);
 | |
|         ggml_set_input(lctx.inp_s_seq);
 | |
|         return lctx.inp_s_seq;
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph * build_llama() {
 | |
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 | |
| 
 | |
|         // mutable variable, needed during the last layer of the computation to skip unused tokens
 | |
|         int32_t n_tokens = this->n_tokens;
 | |
| 
 | |
|         const int64_t n_embd_head = hparams.n_embd_head_v;
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_rot);
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
|         struct ggml_tensor * inpL;
 | |
| 
 | |
|         inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
 | |
| 
 | |
|         // inp_pos - contains the positions
 | |
|         struct ggml_tensor * inp_pos = build_inp_pos();
 | |
| 
 | |
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
 | |
|         struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
 | |
| 
 | |
|         for (int il = 0; il < n_layer; ++il) {
 | |
|             struct ggml_tensor * inpSA = inpL;
 | |
| 
 | |
|             // norm
 | |
|             cur = llm_build_norm(ctx0, inpL, hparams,
 | |
|                     model.layers[il].attn_norm, NULL,
 | |
|                     LLM_NORM_RMS, cb, il);
 | |
|             cb(cur, "attn_norm", il);
 | |
| 
 | |
|             // self-attention
 | |
|             {
 | |
|                 // compute Q and K and RoPE them
 | |
|                 struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
 | |
|                 cb(Qcur, "Qcur", il);
 | |
|                 if (model.layers[il].bq) {
 | |
|                     Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
 | |
|                     cb(Qcur, "Qcur", il);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
|                 if (model.layers[il].bk) {
 | |
|                     Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
 | |
|                     cb(Kcur, "Kcur", il);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
 | |
|                 cb(Vcur, "Vcur", il);
 | |
|                 if (model.layers[il].bv) {
 | |
|                     Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
 | |
|                     cb(Vcur, "Vcur", il);
 | |
|                 }
 | |
| 
 | |
|                 Qcur = ggml_rope_custom(
 | |
|                     ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
 | |
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                     ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 Kcur = ggml_rope_custom(
 | |
|                     ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
 | |
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                     ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
 | |
|                         model.layers[il].wo, model.layers[il].bo,
 | |
|                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
 | |
|             }
 | |
| 
 | |
|             if (il == n_layer - 1) {
 | |
|                 // skip computing output for unused tokens
 | |
|                 struct ggml_tensor * inp_out_ids = build_inp_out_ids();
 | |
|                 n_tokens = n_outputs;
 | |
|                 cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
 | |
|                 inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
 | |
|             }
 | |
| 
 | |
|             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
 | |
|             cb(ffn_inp, "ffn_inp", il);
 | |
| 
 | |
|             // feed-forward network
 | |
|             if (model.layers[il].ffn_gate_inp == nullptr) {
 | |
|                 cur = llm_build_norm(ctx0, ffn_inp, hparams,
 | |
|                         model.layers[il].ffn_norm, NULL,
 | |
|                         LLM_NORM_RMS, cb, il);
 | |
|                 cb(cur, "ffn_norm", il);
 | |
| 
 | |
|                 cur = llm_build_ffn(ctx0, cur,
 | |
|                         model.layers[il].ffn_up,   NULL,
 | |
|                         model.layers[il].ffn_gate, NULL,
 | |
|                         model.layers[il].ffn_down, NULL,
 | |
|                         NULL,
 | |
|                         LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
 | |
|                 cb(cur, "ffn_out", il);
 | |
|             } else {
 | |
|                 // MoE branch
 | |
|                 cur = llm_build_norm(ctx0, ffn_inp, hparams,
 | |
|                         model.layers[il].ffn_norm, NULL,
 | |
|                         LLM_NORM_RMS, cb, il);
 | |
|                 cb(cur, "ffn_norm", il);
 | |
| 
 | |
|                 cur = llm_build_moe_ffn(ctx0, cur,
 | |
|                         model.layers[il].ffn_gate_inp,
 | |
|                         model.layers[il].ffn_up_exps,
 | |
|                         model.layers[il].ffn_gate_exps,
 | |
|                         model.layers[il].ffn_down_exps,
 | |
|                         n_expert, n_expert_used,
 | |
|                         LLM_FFN_SILU, true,
 | |
|                         cb, il);
 | |
|                 cb(cur, "ffn_moe_out", il);
 | |
|             }
 | |
| 
 | |
|             cur = ggml_add(ctx0, cur, ffn_inp);
 | |
|             cb(cur, "ffn_out", il);
 | |
| 
 | |
|             ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
 | |
|             if (layer_dir != nullptr) {
 | |
|                 cur = ggml_add(ctx0, cur, layer_dir);
 | |
|             }
 | |
|             cb(cur, "l_out", il);
 | |
| 
 | |
|             // input for next layer
 | |
|             inpL = cur;
 | |
|         }
 | |
| 
 | |
|         cur = inpL;
 | |
| 
 | |
|         cur = llm_build_norm(ctx0, cur, hparams,
 | |
|                 model.output_norm, NULL,
 | |
|                 LLM_NORM_RMS, cb, -1);
 | |
|         cb(cur, "result_norm", -1);
 | |
| 
 | |
|         // lm_head
 | |
|         cur = ggml_mul_mat(ctx0, model.output, cur);
 | |
|         cb(cur, "result_output", -1);
 | |
| 
 | |
|         ggml_build_forward_expand(gf, cur);
 | |
| 
 | |
|         return gf;
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph * build_baichuan() {
 | |
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 | |
| 
 | |
|         const int64_t n_embd_head = hparams.n_embd_head_v;
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_rot);
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
|         struct ggml_tensor * inpL;
 | |
| 
 | |
|         inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
 | |
| 
 | |
|         // inp_pos - contains the positions
 | |
|         struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
 | |
| 
 | |
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
 | |
|         struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
 | |
| 
 | |
|         // positions of the tokens in the KV cache
 | |
|         struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
 | |
| 
 | |
|         for (int il = 0; il < n_layer; ++il) {
 | |
|             struct ggml_tensor * inpSA = inpL;
 | |
| 
 | |
|             cur = llm_build_norm(ctx0, inpL, hparams,
 | |
|                     model.layers[il].attn_norm, NULL,
 | |
|                     LLM_NORM_RMS, cb, il);
 | |
|             cb(cur, "attn_norm", il);
 | |
| 
 | |
|             // self-attention
 | |
|             {
 | |
|                 struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                 struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
 | |
|                 cb(Vcur, "Vcur", il);
 | |
| 
 | |
|                 switch (model.type) {
 | |
|                     case MODEL_7B:
 | |
|                         Qcur = ggml_rope_custom(
 | |
|                             ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
 | |
|                             n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                             ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                         );
 | |
|                         Kcur = ggml_rope_custom(
 | |
|                             ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
 | |
|                             n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                             ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                         );
 | |
|                         break;
 | |
|                     case MODEL_13B:
 | |
|                         Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
 | |
|                         Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
 | |
|                         break;
 | |
|                     default:
 | |
|                         GGML_ASSERT(false);
 | |
|                 }
 | |
|                 cb(Qcur, "Qcur", il);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
 | |
|                         model.layers[il].wo, NULL,
 | |
|                         Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
 | |
|             }
 | |
| 
 | |
|             if (il == n_layer - 1) {
 | |
|                 // skip computing output for unused tokens
 | |
|                 struct ggml_tensor * inp_out_ids = build_inp_out_ids();
 | |
|                 cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
 | |
|                 inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
 | |
|             }
 | |
| 
 | |
|             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
 | |
|             cb(ffn_inp, "ffn_inp", il);
 | |
| 
 | |
|             // feed-forward network
 | |
|             {
 | |
|                 cur = llm_build_norm(ctx0, ffn_inp, hparams,
 | |
|                         model.layers[il].ffn_norm, NULL,
 | |
|                         LLM_NORM_RMS, cb, il);
 | |
|                 cb(cur, "ffn_norm", il);
 | |
| 
 | |
|                 cur = llm_build_ffn(ctx0, cur,
 | |
|                         model.layers[il].ffn_up,   NULL,
 | |
|                         model.layers[il].ffn_gate, NULL,
 | |
|                         model.layers[il].ffn_down, NULL,
 | |
|                         NULL,
 | |
|                         LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
 | |
|                 cb(cur, "ffn_out", il);
 | |
|             }
 | |
| 
 | |
|             cur = ggml_add(ctx0, cur, ffn_inp);
 | |
|             cb(cur, "l_out", il);
 | |
| 
 | |
|             // input for next layer
 | |
|             inpL = cur;
 | |
|         }
 | |
| 
 | |
|         cur = inpL;
 | |
| 
 | |
|         cur = llm_build_norm(ctx0, cur, hparams,
 | |
|                 model.output_norm, NULL,
 | |
|                 LLM_NORM_RMS, cb, -1);
 | |
|         cb(cur, "result_norm", -1);
 | |
| 
 | |
|         // lm_head
 | |
|         cur = ggml_mul_mat(ctx0, model.output, cur);
 | |
|         cb(cur, "result_output", -1);
 | |
| 
 | |
|         ggml_build_forward_expand(gf, cur);
 | |
| 
 | |
|         return gf;
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph * build_xverse() {
 | |
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 | |
| 
 | |
|         const int64_t n_embd_head = hparams.n_embd_head_v;
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_rot);
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
|         struct ggml_tensor * inpL;
 | |
| 
 | |
|         inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
 | |
| 
 | |
|         // inp_pos - contains the positions
 | |
|         struct ggml_tensor * inp_pos = build_inp_pos();
 | |
| 
 | |
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
 | |
|         struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
 | |
| 
 | |
|         // positions of the tokens in the KV cache
 | |
|         struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
 | |
| 
 | |
|         for (int il = 0; il < n_layer; ++il) {
 | |
|             struct ggml_tensor * inpSA = inpL;
 | |
| 
 | |
|             cur = llm_build_norm(ctx0, inpL, hparams,
 | |
|                     model.layers[il].attn_norm, NULL,
 | |
|                     LLM_NORM_RMS, cb, il);
 | |
|             cb(cur, "attn_norm", il);
 | |
| 
 | |
|             // self-attention
 | |
|             {
 | |
|                 struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                 struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
 | |
|                 cb(Vcur, "Vcur", il);
 | |
| 
 | |
|                 Qcur = ggml_rope_custom(
 | |
|                     ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
 | |
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                     ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 Kcur = ggml_rope_custom(
 | |
|                     ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
 | |
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                     ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Kcur, "Kcur", il);
 | |
|                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
 | |
|                         model.layers[il].wo, NULL,
 | |
|                         Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
 | |
|             }
 | |
| 
 | |
|             if (il == n_layer - 1) {
 | |
|                 // skip computing output for unused tokens
 | |
|                 struct ggml_tensor * inp_out_ids = build_inp_out_ids();
 | |
|                 cur   = ggml_get_rows(ctx0,      cur, inp_out_ids);
 | |
|                 inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
 | |
|             }
 | |
| 
 | |
|             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
 | |
|             cb(ffn_inp, "ffn_inp", il);
 | |
| 
 | |
|             // feed-forward network
 | |
|             {
 | |
|                 cur = llm_build_norm(ctx0, ffn_inp, hparams,
 | |
|                         model.layers[il].ffn_norm, NULL,
 | |
|                         LLM_NORM_RMS, cb, il);
 | |
|                 cb(cur, "ffn_norm", il);
 | |
| 
 | |
|                 cur = llm_build_ffn(ctx0, cur,
 | |
|                         model.layers[il].ffn_up,   NULL,
 | |
|                         model.layers[il].ffn_gate, NULL,
 | |
|                         model.layers[il].ffn_down, NULL,
 | |
|                         NULL,
 | |
|                         LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
 | |
|                 cb(cur, "ffn_out", il);
 | |
|             }
 | |
| 
 | |
|             cur = ggml_add(ctx0, cur, ffn_inp);
 | |
|             cb(cur, "l_out", il);
 | |
| 
 | |
|             // input for next layer
 | |
|             inpL = cur;
 | |
|         }
 | |
| 
 | |
|         cur = inpL;
 | |
| 
 | |
|         cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
 | |
|         cb(cur, "result_norm", -1);
 | |
| 
 | |
|         // lm_head
 | |
|         cur = ggml_mul_mat(ctx0, model.output, cur);
 | |
|         cb(cur, "result_output", -1);
 | |
| 
 | |
|         ggml_build_forward_expand(gf, cur);
 | |
| 
 | |
|         return gf;
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph * build_falcon() {
 | |
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 | |
| 
 | |
|         const int64_t n_embd_head = hparams.n_embd_head_v;
 | |
|         const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_rot);
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
|         struct ggml_tensor * inpL;
 | |
| 
 | |
|         inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
 | |
| 
 | |
|         // inp_pos - contains the positions
 | |
|         struct ggml_tensor * inp_pos = build_inp_pos();
 | |
| 
 | |
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
 | |
|         struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
 | |
| 
 | |
|         for (int il = 0; il < n_layer; ++il) {
 | |
|             struct ggml_tensor * attn_norm;
 | |
| 
 | |
|             attn_norm = llm_build_norm(ctx0, inpL, hparams,
 | |
|                     model.layers[il].attn_norm,
 | |
|                     model.layers[il].attn_norm_b,
 | |
|                     LLM_NORM, cb, il);
 | |
|             cb(attn_norm, "attn_norm", il);
 | |
| 
 | |
|             // self-attention
 | |
|             {
 | |
|                 if (model.layers[il].attn_norm_2) {
 | |
|                     // Falcon-40B
 | |
|                     cur = llm_build_norm(ctx0, inpL, hparams,
 | |
|                             model.layers[il].attn_norm_2,
 | |
|                             model.layers[il].attn_norm_2_b,
 | |
|                             LLM_NORM, cb, il);
 | |
|                     cb(cur, "attn_norm_2", il);
 | |
|                 } else {
 | |
|                     cur = attn_norm;
 | |
|                 }
 | |
| 
 | |
|                 cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
 | |
|                 cb(cur, "wqkv", il);
 | |
| 
 | |
|                 struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
 | |
|                 struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
 | |
|                 struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
 | |
| 
 | |
|                 cb(Qcur, "Qcur", il);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
|                 cb(Vcur, "Vcur", il);
 | |
| 
 | |
|                 Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
 | |
|                 Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
 | |
| 
 | |
|                 // using mode = 2 for neox mode
 | |
|                 Qcur = ggml_rope_custom(
 | |
|                     ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
 | |
|                     freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 Kcur = ggml_rope_custom(
 | |
|                     ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
 | |
|                     freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
 | |
|                         model.layers[il].wo, NULL,
 | |
|                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
 | |
|             }
 | |
| 
 | |
|             if (il == n_layer - 1) {
 | |
|                 // skip computing output for unused tokens
 | |
|                 struct ggml_tensor * inp_out_ids = build_inp_out_ids();
 | |
|                 cur       = ggml_get_rows(ctx0,       cur, inp_out_ids);
 | |
|                 inpL      = ggml_get_rows(ctx0,      inpL, inp_out_ids);
 | |
|                 attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
 | |
|             }
 | |
| 
 | |
|             struct ggml_tensor * ffn_inp = cur;
 | |
| 
 | |
|             // feed forward
 | |
|             {
 | |
|                 cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
 | |
|                         model.layers[il].ffn_up,   NULL,
 | |
|                         NULL,                      NULL,
 | |
|                         model.layers[il].ffn_down, NULL,
 | |
|                         NULL,
 | |
|                         LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
 | |
|                 cb(cur, "ffn_out", il);
 | |
|             }
 | |
| 
 | |
|             cur = ggml_add(ctx0, cur, ffn_inp);
 | |
|             cb(cur, "l_out", il);
 | |
| 
 | |
|             cur = ggml_add(ctx0, cur, inpL);
 | |
|             cb(cur, "l_out", il);
 | |
| 
 | |
|             // input for next layer
 | |
|             inpL = cur;
 | |
|         }
 | |
| 
 | |
|         cur = inpL;
 | |
| 
 | |
|         // norm
 | |
|         cur = llm_build_norm(ctx0, cur, hparams,
 | |
|                 model.output_norm,
 | |
|                 model.output_norm_b,
 | |
|                 LLM_NORM, cb, -1);
 | |
|         cb(cur, "result_norm", -1);
 | |
| 
 | |
|         cur = ggml_mul_mat(ctx0, model.output, cur);
 | |
|         cb(cur, "result_output", -1);
 | |
| 
 | |
|         ggml_build_forward_expand(gf, cur);
 | |
| 
 | |
|         return gf;
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph * build_grok() {
 | |
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 | |
| 
 | |
|         // mutable variable, needed during the last layer of the computation to skip unused tokens
 | |
|         int32_t n_tokens = this->n_tokens;
 | |
| 
 | |
|         const int64_t n_embd_head = hparams.n_embd_head_v;
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_rot);
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
|         struct ggml_tensor * inpL;
 | |
| 
 | |
|         inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
 | |
| 
 | |
|         // multiply by embedding_multiplier_scale of 78.38367176906169
 | |
|         inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
 | |
| 
 | |
|         // inp_pos - contains the positions
 | |
|         struct ggml_tensor * inp_pos = build_inp_pos();
 | |
| 
 | |
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
 | |
|         struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
 | |
| 
 | |
|         for (int il = 0; il < n_layer; ++il) {
 | |
|             struct ggml_tensor * inpSA = inpL;
 | |
| 
 | |
|             // norm
 | |
|             cur = llm_build_norm(ctx0, inpL, hparams,
 | |
|                     model.layers[il].attn_norm, NULL,
 | |
|                     LLM_NORM_RMS, cb, il);
 | |
|             cb(cur, "attn_norm", il);
 | |
| 
 | |
| 
 | |
|             // self-attention
 | |
|             {
 | |
|                 // compute Q and K and RoPE them
 | |
|                 struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
 | |
|                 cb(Qcur, "Qcur", il);
 | |
|                 if (model.layers[il].bq) {
 | |
|                     Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
 | |
|                     cb(Qcur, "Qcur", il);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
|                 if (model.layers[il].bk) {
 | |
|                     Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
 | |
|                     cb(Kcur, "Kcur", il);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
 | |
|                 cb(Vcur, "Vcur", il);
 | |
|                 if (model.layers[il].bv) {
 | |
|                     Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
 | |
|                     cb(Vcur, "Vcur", il);
 | |
|                 }
 | |
| 
 | |
|                 Qcur = ggml_rope_custom(
 | |
|                     ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
 | |
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                     ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 Kcur = ggml_rope_custom(
 | |
|                     ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
 | |
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                     ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
 | |
|                         model.layers[il].wo, model.layers[il].bo,
 | |
|                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
 | |
|             }
 | |
| 
 | |
|             if (il == n_layer - 1) {
 | |
|                 // skip computing output for unused tokens
 | |
|                 struct ggml_tensor * inp_out_ids = build_inp_out_ids();
 | |
|                 n_tokens = n_outputs;
 | |
|                 cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
 | |
|                 inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
 | |
|             }
 | |
| 
 | |
|             // Grok
 | |
|             // if attn_out_norm is present then apply it before adding the input
 | |
|             if (model.layers[il].attn_out_norm) {
 | |
|                 cur = llm_build_norm(ctx0, cur, hparams,
 | |
|                         model.layers[il].attn_out_norm, NULL,
 | |
|                         LLM_NORM_RMS, cb, il);
 | |
|                 cb(cur, "attn_out_norm", il);
 | |
|             }
 | |
| 
 | |
|             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
 | |
|             cb(ffn_inp, "ffn_inp", il);
 | |
| 
 | |
|             // feed-forward network
 | |
|             // MoE branch
 | |
|             cur = llm_build_norm(ctx0, ffn_inp, hparams,
 | |
|                     model.layers[il].ffn_norm, NULL,
 | |
|                     LLM_NORM_RMS, cb, il);
 | |
|             cb(cur, "ffn_norm", il);
 | |
| 
 | |
|             cur = llm_build_moe_ffn(ctx0, cur,
 | |
|                     model.layers[il].ffn_gate_inp,
 | |
|                     model.layers[il].ffn_up_exps,
 | |
|                     model.layers[il].ffn_gate_exps,
 | |
|                     model.layers[il].ffn_down_exps,
 | |
|                     n_expert, n_expert_used,
 | |
|                     LLM_FFN_GELU, true,
 | |
|                     cb, il);
 | |
|             cb(cur, "ffn_moe_out", il);
 | |
| 
 | |
|             // Grok
 | |
|             // if layer_out_norm is present then apply it before adding the input
 | |
|             // Idea: maybe ffn_out_norm is a better name
 | |
|             if (model.layers[il].layer_out_norm) {
 | |
|                 cur = llm_build_norm(ctx0, cur, hparams,
 | |
|                         model.layers[il].layer_out_norm, NULL,
 | |
|                         LLM_NORM_RMS, cb, il);
 | |
|                 cb(cur, "layer_out_norm", il);
 | |
|             }
 | |
| 
 | |
|             cur = ggml_add(ctx0, cur, ffn_inp);
 | |
|             cb(cur, "ffn_out", il);
 | |
| 
 | |
|             ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
 | |
|             if (layer_dir != nullptr) {
 | |
|                 cur = ggml_add(ctx0, cur, layer_dir);
 | |
|             }
 | |
|             cb(cur, "l_out", il);
 | |
| 
 | |
|             // input for next layer
 | |
|             inpL = cur;
 | |
|         }
 | |
| 
 | |
|         cur = inpL;
 | |
| 
 | |
|         cur = llm_build_norm(ctx0, cur, hparams,
 | |
|                 model.output_norm, NULL,
 | |
|                 LLM_NORM_RMS, cb, -1);
 | |
|         cb(cur, "result_norm", -1);
 | |
| 
 | |
|         // lm_head
 | |
|         cur = ggml_mul_mat(ctx0, model.output, cur);
 | |
| 
 | |
|         // Grok
 | |
|         // multiply logits by output_multiplier_scale of 0.5773502691896257
 | |
| 
 | |
|         cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
 | |
| 
 | |
|         cb(cur, "result_output", -1);
 | |
| 
 | |
|         ggml_build_forward_expand(gf, cur);
 | |
| 
 | |
|         return gf;
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph * build_dbrx() {
 | |
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 | |
| 
 | |
|         // mutable variable, needed during the last layer of the computation to skip unused tokens
 | |
|         int32_t n_tokens = this->n_tokens;
 | |
| 
 | |
|         const int64_t n_embd_head = hparams.n_embd_head_v;
 | |
|         const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_rot);
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
|         struct ggml_tensor * inpL;
 | |
| 
 | |
|         inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
 | |
| 
 | |
|         // inp_pos - contains the positions
 | |
|         struct ggml_tensor * inp_pos = build_inp_pos();
 | |
| 
 | |
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
 | |
|         struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
 | |
| 
 | |
|         for (int il = 0; il < n_layer; ++il) {
 | |
|             struct ggml_tensor * inpSA = inpL;
 | |
| 
 | |
|             // norm
 | |
|             cur = llm_build_norm(ctx0, inpL, hparams,
 | |
|                                  model.layers[il].attn_norm, NULL,
 | |
|                                  LLM_NORM, cb, il);
 | |
|             cb(cur, "attn_norm", il);
 | |
| 
 | |
|             // self-attention
 | |
|             {
 | |
|                 struct ggml_tensor * Qcur = nullptr;
 | |
|                 struct ggml_tensor * Kcur = nullptr;
 | |
|                 struct ggml_tensor * Vcur = nullptr;
 | |
| 
 | |
|                 cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
 | |
|                 cb(cur, "wqkv", il);
 | |
| 
 | |
|                 cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
 | |
|                 cb(cur, "wqkv_clamped", il);
 | |
| 
 | |
|                 Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
 | |
|                 Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
 | |
|                 Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
 | |
| 
 | |
|                 cb(Qcur, "Qcur", il);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
|                 cb(Vcur, "Vcur", il);
 | |
| 
 | |
|                 Qcur = ggml_rope_custom(
 | |
|                     ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
 | |
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                     ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 Kcur = ggml_rope_custom(
 | |
|                     ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
 | |
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                     ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
 | |
|                                    model.layers[il].wo, NULL,
 | |
|                                    Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
 | |
|             }
 | |
| 
 | |
|             if (il == n_layer - 1) {
 | |
|                 // skip computing output for unused tokens
 | |
|                 struct ggml_tensor * inp_out_ids = build_inp_out_ids();
 | |
|                 n_tokens = n_outputs;
 | |
|                 cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
 | |
|                 inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
 | |
|             }
 | |
| 
 | |
|             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
 | |
|             cb(ffn_inp, "ffn_inp", il);
 | |
| 
 | |
|             // feed-forward network
 | |
|             // MoE branch
 | |
|             cur = llm_build_norm(ctx0, ffn_inp, hparams,
 | |
|                                  model.layers[il].attn_out_norm, NULL,
 | |
|                                  LLM_NORM, cb, il);
 | |
|             cb(cur, "attn_out_norm", il);
 | |
| 
 | |
|             cur = llm_build_moe_ffn(ctx0, cur,
 | |
|                     model.layers[il].ffn_gate_inp,
 | |
|                     model.layers[il].ffn_up_exps,
 | |
|                     model.layers[il].ffn_gate_exps,
 | |
|                     model.layers[il].ffn_down_exps,
 | |
|                     n_expert, n_expert_used,
 | |
|                     LLM_FFN_SILU, true,
 | |
|                     cb, il);
 | |
|             cb(cur, "ffn_moe_out", il);
 | |
| 
 | |
|             cur = ggml_add(ctx0, cur, ffn_inp);
 | |
|             cb(cur, "ffn_out", il);
 | |
| 
 | |
|             ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
 | |
|             if (layer_dir != nullptr) {
 | |
|                 cur = ggml_add(ctx0, cur, layer_dir);
 | |
|             }
 | |
|             cb(cur, "l_out", il);
 | |
| 
 | |
|             // input for next layer
 | |
|             inpL = cur;
 | |
|         }
 | |
| 
 | |
|         cur = inpL;
 | |
| 
 | |
|         cur = llm_build_norm(ctx0, cur, hparams,
 | |
|                              model.output_norm, NULL,
 | |
|                              LLM_NORM, cb, -1);
 | |
|         cb(cur, "result_norm", -1);
 | |
| 
 | |
|         // lm_head
 | |
|         cur = ggml_mul_mat(ctx0, model.output, cur);
 | |
| 
 | |
|         cb(cur, "result_output", -1);
 | |
| 
 | |
|         ggml_build_forward_expand(gf, cur);
 | |
| 
 | |
|         return gf;
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph * build_starcoder() {
 | |
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 | |
| 
 | |
|         const int64_t n_embd_head = hparams.n_embd_head_v;
 | |
|         const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
|         struct ggml_tensor * inpL;
 | |
| 
 | |
|         inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
 | |
| 
 | |
|         // inp_pos - contains the positions
 | |
|         struct ggml_tensor * inp_pos = build_inp_pos();
 | |
| 
 | |
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
 | |
|         struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
 | |
| 
 | |
|         struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
 | |
|         cb(pos, "pos_embd", -1);
 | |
| 
 | |
|         inpL = ggml_add(ctx0, inpL, pos);
 | |
|         cb(inpL, "inpL", -1);
 | |
| 
 | |
|         for (int il = 0; il < n_layer; ++il) {
 | |
|             cur = llm_build_norm(ctx0, inpL, hparams,
 | |
|                     model.layers[il].attn_norm,
 | |
|                     model.layers[il].attn_norm_b,
 | |
|                     LLM_NORM, cb, il);
 | |
|             cb(cur, "attn_norm", il);
 | |
| 
 | |
|             // self-attention
 | |
|             {
 | |
|                 cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
 | |
|                 cb(cur, "wqkv", il);
 | |
| 
 | |
|                 cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
 | |
|                 cb(cur, "bqkv", il);
 | |
| 
 | |
|                 struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
 | |
|                 struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
 | |
|                 struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
 | |
| 
 | |
|                 cb(Qcur, "Qcur", il);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
|                 cb(Vcur, "Vcur", il);
 | |
| 
 | |
|                 Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
 | |
| 
 | |
|                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
 | |
|                         model.layers[il].wo, model.layers[il].bo,
 | |
|                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
 | |
|             }
 | |
| 
 | |
|             if (il == n_layer - 1) {
 | |
|                 // skip computing output for unused tokens
 | |
|                 struct ggml_tensor * inp_out_ids = build_inp_out_ids();
 | |
|                 cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
 | |
|                 inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
 | |
|             }
 | |
| 
 | |
|             // add the input
 | |
|             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
 | |
|             cb(ffn_inp, "ffn_inp", il);
 | |
| 
 | |
|             // FF
 | |
|             {
 | |
|                 cur = llm_build_norm(ctx0, ffn_inp, hparams,
 | |
|                         model.layers[il].ffn_norm,
 | |
|                         model.layers[il].ffn_norm_b,
 | |
|                         LLM_NORM, cb, il);
 | |
|                 cb(cur, "ffn_norm", il);
 | |
| 
 | |
|                 cur = llm_build_ffn(ctx0, cur,
 | |
|                         model.layers[il].ffn_up,   model.layers[il].ffn_up_b,
 | |
|                         NULL,                      NULL,
 | |
|                         model.layers[il].ffn_down, model.layers[il].ffn_down_b,
 | |
|                         NULL,
 | |
|                         LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
 | |
|                 cb(cur, "ffn_out", il);
 | |
|             }
 | |
| 
 | |
|             inpL = ggml_add(ctx0, cur, ffn_inp);
 | |
|             cb(inpL, "l_out", il);
 | |
|         }
 | |
| 
 | |
|         cur = llm_build_norm(ctx0, inpL, hparams,
 | |
|                 model.output_norm,
 | |
|                 model.output_norm_b,
 | |
|                 LLM_NORM, cb, -1);
 | |
|         cb(cur, "result_norm", -1);
 | |
| 
 | |
|         cur = ggml_mul_mat(ctx0, model.output, cur);
 | |
|         cb(cur, "result_output", -1);
 | |
| 
 | |
|         ggml_build_forward_expand(gf, cur);
 | |
| 
 | |
|         return gf;
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph * build_persimmon() {
 | |
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 | |
| 
 | |
|         const int64_t n_embd_head = hparams.n_embd_head_v;
 | |
|         GGML_ASSERT(n_embd_head   == hparams.n_embd_head_k);
 | |
|         GGML_ASSERT(n_embd_head/2 == hparams.n_rot);
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
|         struct ggml_tensor * inpL;
 | |
| 
 | |
|         inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
 | |
| 
 | |
|         // inp_pos - contains the positions
 | |
|         struct ggml_tensor * inp_pos = build_inp_pos();
 | |
| 
 | |
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
 | |
|         struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
 | |
| 
 | |
|         for (int il = 0; il < n_layer; ++il) {
 | |
|             struct ggml_tensor * residual = inpL;
 | |
| 
 | |
|             cur = llm_build_norm(ctx0, inpL, hparams,
 | |
|                     model.layers[il].attn_norm,
 | |
|                     model.layers[il].attn_norm_b,
 | |
|                     LLM_NORM, cb, il);
 | |
|             cb(cur, "attn_norm", il);
 | |
| 
 | |
|             // self attention
 | |
|             {
 | |
|                 cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
 | |
|                 cb(cur, "wqkv", il);
 | |
| 
 | |
|                 cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
 | |
|                 cb(cur, "bqkv", il);
 | |
| 
 | |
|                 // split qkv
 | |
|                 GGML_ASSERT(n_head_kv == n_head);
 | |
| 
 | |
|                 struct ggml_tensor * tmpqkv = ggml_reshape_4d(ctx0, cur, n_embd_head, 3, n_head, n_tokens);
 | |
|                 cb(tmpqkv, "tmpqkv", il);
 | |
| 
 | |
|                 struct ggml_tensor * tmpqkv_perm = ggml_cont(ctx0, ggml_permute(ctx0, tmpqkv, 0, 3, 1, 2));
 | |
|                 cb(tmpqkv_perm, "tmpqkv", il);
 | |
| 
 | |
|                 struct ggml_tensor * tmpq = ggml_view_3d(
 | |
|                         ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
 | |
|                         ggml_element_size(tmpqkv_perm) * n_embd_head,
 | |
|                         ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
 | |
|                         0
 | |
|                         );
 | |
|                 cb(tmpq, "tmpq", il);
 | |
| 
 | |
|                 struct ggml_tensor * tmpk = ggml_view_3d(
 | |
|                         ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
 | |
|                         ggml_element_size(tmpqkv_perm) * n_embd_head,
 | |
|                         ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
 | |
|                         ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens
 | |
|                         );
 | |
|                 cb(tmpk, "tmpk", il);
 | |
| 
 | |
|                 // Q/K Layernorm
 | |
|                 tmpq = llm_build_norm(ctx0, tmpq, hparams,
 | |
|                         model.layers[il].attn_q_norm,
 | |
|                         model.layers[il].attn_q_norm_b,
 | |
|                         LLM_NORM, cb, il);
 | |
|                 cb(tmpq, "tmpq", il);
 | |
| 
 | |
|                 tmpk = llm_build_norm(ctx0, tmpk, hparams,
 | |
|                         model.layers[il].attn_k_norm,
 | |
|                         model.layers[il].attn_k_norm_b,
 | |
|                         LLM_NORM, cb, il);
 | |
|                 cb(tmpk, "tmpk", il);
 | |
| 
 | |
|                 // RoPE the first n_rot of q/k, pass the other half, and concat.
 | |
|                 struct ggml_tensor * qrot = ggml_view_3d(
 | |
|                         ctx0, tmpq, n_rot, n_head, n_tokens,
 | |
|                         ggml_element_size(tmpq) * n_embd_head,
 | |
|                         ggml_element_size(tmpq) * n_embd_head * n_head,
 | |
|                         0
 | |
|                         );
 | |
|                 cb(qrot, "qrot", il);
 | |
| 
 | |
|                 struct ggml_tensor * krot = ggml_view_3d(
 | |
|                         ctx0, tmpk, n_rot, n_head, n_tokens,
 | |
|                         ggml_element_size(tmpk) * n_embd_head,
 | |
|                         ggml_element_size(tmpk) * n_embd_head * n_head,
 | |
|                         0
 | |
|                         );
 | |
|                 cb(krot, "krot", il);
 | |
| 
 | |
|                 // get the second half of tmpq, e.g tmpq[n_rot:, :, :]
 | |
|                 struct ggml_tensor * qpass = ggml_view_3d(
 | |
|                         ctx0, tmpq, n_rot, n_head, n_tokens,
 | |
|                         ggml_element_size(tmpq) * n_embd_head,
 | |
|                         ggml_element_size(tmpq) * n_embd_head * n_head,
 | |
|                         ggml_element_size(tmpq) * n_rot
 | |
|                         );
 | |
|                 cb(qpass, "qpass", il);
 | |
| 
 | |
|                 struct ggml_tensor * kpass = ggml_view_3d(
 | |
|                         ctx0, tmpk, n_rot, n_head, n_tokens,
 | |
|                         ggml_element_size(tmpk) * n_embd_head,
 | |
|                         ggml_element_size(tmpk) * n_embd_head * n_head,
 | |
|                         ggml_element_size(tmpk) * n_rot
 | |
|                         );
 | |
|                 cb(kpass, "kpass", il);
 | |
| 
 | |
|                 struct ggml_tensor * qrotated = ggml_rope_custom(
 | |
|                     ctx0, qrot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
 | |
|                     freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(qrotated, "qrotated", il);
 | |
| 
 | |
|                 struct ggml_tensor * krotated = ggml_rope_custom(
 | |
|                     ctx0, krot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
 | |
|                     freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(krotated, "krotated", il);
 | |
| 
 | |
|                 // ggml currently only supports concatenation on dim=2
 | |
|                 // so we need to permute qrot, qpass, concat, then permute back.
 | |
|                 qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3));
 | |
|                 cb(qrotated, "qrotated", il);
 | |
| 
 | |
|                 krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3));
 | |
|                 cb(krotated, "krotated", il);
 | |
| 
 | |
|                 qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3));
 | |
|                 cb(qpass, "qpass", il);
 | |
| 
 | |
|                 kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3));
 | |
|                 cb(kpass, "kpass", il);
 | |
| 
 | |
|                 struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass);
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                 struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 2, 1, 0, 3));
 | |
|                 cb(Q, "Q", il);
 | |
| 
 | |
|                 Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
 | |
|                 cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                 struct ggml_tensor * Vcur = ggml_view_3d(
 | |
|                         ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
 | |
|                         ggml_element_size(tmpqkv_perm) * n_embd_head,
 | |
|                         ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
 | |
|                         ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens * 2
 | |
|                         );
 | |
|                 cb(Vcur, "Vcur", il);
 | |
| 
 | |
|                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
 | |
|                         model.layers[il].wo, model.layers[il].bo,
 | |
|                         Kcur, Vcur, Q, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
 | |
|             }
 | |
| 
 | |
|             if (il == n_layer - 1) {
 | |
|                 // skip computing output for unused tokens
 | |
|                 struct ggml_tensor * inp_out_ids = build_inp_out_ids();
 | |
|                 cur      = ggml_get_rows(ctx0,      cur, inp_out_ids);
 | |
|                 residual = ggml_get_rows(ctx0, residual, inp_out_ids);
 | |
|             }
 | |
| 
 | |
|             struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
 | |
|             cb(ffn_inp, "ffn_inp", il);
 | |
| 
 | |
|             // feed-forward network
 | |
|             {
 | |
|                 cur = llm_build_norm(ctx0, ffn_inp, hparams,
 | |
|                         model.layers[il].ffn_norm,
 | |
|                         model.layers[il].ffn_norm_b,
 | |
|                         LLM_NORM, cb, il);
 | |
|                 cb(cur, "ffn_norm", il);
 | |
| 
 | |
|                 cur = llm_build_ffn(ctx0, cur,
 | |
|                         model.layers[il].ffn_up,   model.layers[il].ffn_up_b,
 | |
|                         NULL,                      NULL,
 | |
|                         model.layers[il].ffn_down, model.layers[il].ffn_down_b,
 | |
|                         NULL,
 | |
|                         LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il);
 | |
|                 cb(cur, "ffn_out", il);
 | |
|             }
 | |
| 
 | |
|             cur = ggml_add(ctx0, cur, ffn_inp);
 | |
|             cb(cur, "l_out", il);
 | |
| 
 | |
|             inpL = cur;
 | |
|         }
 | |
| 
 | |
|         cur = inpL;
 | |
| 
 | |
|         cur = llm_build_norm(ctx0, cur, hparams,
 | |
|                 model.output_norm,
 | |
|                 model.output_norm_b,
 | |
|                 LLM_NORM, cb, -1);
 | |
|         cb(cur, "result_norm", -1);
 | |
| 
 | |
|         cur = ggml_mul_mat(ctx0, model.output, cur);
 | |
|         cb(cur, "result_output", -1);
 | |
| 
 | |
|         ggml_build_forward_expand(gf, cur);
 | |
| 
 | |
|         return gf;
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph * build_refact() {
 | |
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 | |
| 
 | |
|         const int64_t n_embd_head = hparams.n_embd_head_v;
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
|         struct ggml_tensor * inpL;
 | |
| 
 | |
|         inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
 | |
| 
 | |
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
 | |
|         struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
 | |
| 
 | |
|         // positions of the tokens in the KV cache
 | |
|         struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
 | |
| 
 | |
|         for (int il = 0; il < n_layer; ++il) {
 | |
|             struct ggml_tensor * inpSA = inpL;
 | |
| 
 | |
|             cur = llm_build_norm(ctx0, inpL, hparams,
 | |
|                     model.layers[il].attn_norm, NULL,
 | |
|                     LLM_NORM_RMS, cb, il);
 | |
|             cb(cur, "attn_norm", il);
 | |
| 
 | |
|             // self-attention
 | |
|             {
 | |
|                 struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                 struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
 | |
|                 cb(Vcur, "Vcur", il);
 | |
| 
 | |
|                 Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                 Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
 | |
|                         model.layers[il].wo, NULL,
 | |
|                         Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
 | |
|             }
 | |
| 
 | |
|             if (il == n_layer - 1) {
 | |
|                 // skip computing output for unused tokens
 | |
|                 struct ggml_tensor * inp_out_ids = build_inp_out_ids();
 | |
|                 cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
 | |
|                 inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
 | |
|             }
 | |
| 
 | |
|             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
 | |
|             cb(ffn_inp, "ffn_inp", il);
 | |
| 
 | |
|             // feed-forward network
 | |
|             {
 | |
|                 cur = llm_build_norm(ctx0, ffn_inp, hparams,
 | |
|                         model.layers[il].ffn_norm, NULL,
 | |
|                         LLM_NORM_RMS, cb, il);
 | |
|                 cb(cur, "ffn_norm", il);
 | |
| 
 | |
|                 cur = llm_build_ffn(ctx0, cur,
 | |
|                         model.layers[il].ffn_up,   NULL,
 | |
|                         model.layers[il].ffn_gate, NULL,
 | |
|                         model.layers[il].ffn_down, NULL,
 | |
|                         NULL,
 | |
|                         LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
 | |
|                 cb(cur, "ffn_out", il);
 | |
|             }
 | |
| 
 | |
|             cur = ggml_add(ctx0, cur, ffn_inp);
 | |
|             cb(cur, "l_out", il);
 | |
| 
 | |
|             // input for next layer
 | |
|             inpL = cur;
 | |
|         }
 | |
| 
 | |
|         cur = inpL;
 | |
| 
 | |
|         cur = llm_build_norm(ctx0, cur, hparams,
 | |
|                 model.output_norm, NULL,
 | |
|                 LLM_NORM_RMS, cb, -1);
 | |
|         cb(cur, "result_norm", -1);
 | |
| 
 | |
|         // lm_head
 | |
|         cur = ggml_mul_mat(ctx0, model.output, cur);
 | |
|         cb(cur, "result_output", -1);
 | |
| 
 | |
|         ggml_build_forward_expand(gf, cur);
 | |
| 
 | |
|         return gf;
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph * build_bert() {
 | |
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 | |
| 
 | |
|         const int64_t n_embd_head = hparams.n_embd_head_v;
 | |
|         const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
 | |
| 
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
|         struct ggml_tensor * inpL;
 | |
| 
 | |
|         struct ggml_tensor * inp_pos  = build_inp_pos();
 | |
|         struct ggml_tensor * inp_mean = build_inp_mean();
 | |
|         struct ggml_tensor * inp_cls  = build_inp_cls();
 | |
| 
 | |
|         // construct input embeddings (token, type, position)
 | |
|         inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
 | |
| 
 | |
|         // token types are hardcoded to zero ("Sentence A")
 | |
|         struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
 | |
|         inpL = ggml_add(ctx0, inpL, type_row0);
 | |
|         if (model.arch == LLM_ARCH_BERT) {
 | |
|             inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
 | |
|         }
 | |
|         cb(inpL, "inp_embd", -1);
 | |
| 
 | |
|         // embed layer norm
 | |
|         inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
 | |
|         cb(inpL, "inp_norm", -1);
 | |
| 
 | |
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
 | |
|         struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
 | |
| 
 | |
|         // iterate layers
 | |
|         for (int il = 0; il < n_layer; ++il) {
 | |
|             struct ggml_tensor * cur = inpL;
 | |
| 
 | |
|             struct ggml_tensor * Qcur;
 | |
|             struct ggml_tensor * Kcur;
 | |
|             struct ggml_tensor * Vcur;
 | |
| 
 | |
|             // self-attention
 | |
|             if (model.arch == LLM_ARCH_BERT) {
 | |
|                 Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                 Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
 | |
|                 cb(Vcur, "Vcur", il);
 | |
| 
 | |
|                 Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
 | |
|                 Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
 | |
|             } else {
 | |
|                 // compute Q and K and RoPE them
 | |
|                 cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
 | |
|                 cb(cur, "wqkv", il);
 | |
| 
 | |
|                 Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
 | |
|                 Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
 | |
|                 Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
 | |
| 
 | |
|                 cb(Qcur, "Qcur", il);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
|                 cb(Vcur, "Vcur", il);
 | |
| 
 | |
|                 Qcur = ggml_rope_custom(
 | |
|                     ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens), inp_pos,
 | |
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                     ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 Kcur = ggml_rope_custom(
 | |
|                     ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
 | |
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                     ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Kcur, "Kcur", il);
 | |
|             }
 | |
| 
 | |
|             struct ggml_tensor * q =                 ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
 | |
|             struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
 | |
| 
 | |
|             struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
 | |
|             cb(kq, "kq", il);
 | |
| 
 | |
|             kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, nullptr, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
 | |
|             cb(kq, "kq_soft_max_ext", il);
 | |
| 
 | |
|             struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
 | |
|             cb(v, "v", il);
 | |
| 
 | |
|             struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
 | |
|             cb(kqv, "kqv", il);
 | |
| 
 | |
|             struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
 | |
|             cb(kqv_merged, "kqv_merged", il);
 | |
| 
 | |
|             cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
 | |
|             cb(cur, "kqv_merged_cont", il);
 | |
| 
 | |
|             ggml_build_forward_expand(gf, cur);
 | |
| 
 | |
|             cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
 | |
|             if (model.layers[il].bo) {
 | |
|                 cb(cur, "kqv_wo", il);
 | |
|             }
 | |
| 
 | |
|             if (model.layers[il].bo) {
 | |
|                 cur = ggml_add(ctx0, cur, model.layers[il].bo);
 | |
|             }
 | |
|             cb(cur, "kqv_out", il);
 | |
| 
 | |
|             if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
 | |
|                 // skip computing output for unused tokens
 | |
|                 struct ggml_tensor * inp_out_ids = build_inp_out_ids();
 | |
|                 cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
 | |
|                 inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
 | |
|             }
 | |
| 
 | |
|             // re-add the layer input
 | |
|             cur = ggml_add(ctx0, cur, inpL);
 | |
| 
 | |
|             // attention layer norm
 | |
|             cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
 | |
| 
 | |
|             struct ggml_tensor * ffn_inp = cur;
 | |
|             cb(ffn_inp, "ffn_inp", il);
 | |
| 
 | |
|             // feed-forward network
 | |
|             if (model.arch == LLM_ARCH_BERT) {
 | |
|                 cur = llm_build_ffn(ctx0, cur,
 | |
|                         model.layers[il].ffn_up,   model.layers[il].ffn_up_b,
 | |
|                         NULL,                      NULL,
 | |
|                         model.layers[il].ffn_down, model.layers[il].ffn_down_b,
 | |
|                         NULL,
 | |
|                         LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
 | |
|             } else {
 | |
|                 cur = llm_build_ffn(ctx0, cur,
 | |
|                         model.layers[il].ffn_up,   NULL,
 | |
|                         model.layers[il].ffn_gate, NULL,
 | |
|                         model.layers[il].ffn_down, NULL,
 | |
|                         NULL,
 | |
|                         LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
 | |
|             }
 | |
|             cb(cur, "ffn_out", il);
 | |
| 
 | |
|             // attentions bypass the intermediate layer
 | |
|             cur = ggml_add(ctx0, cur, ffn_inp);
 | |
| 
 | |
|             // output layer norm
 | |
|             cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
 | |
| 
 | |
|             // input for next layer
 | |
|             inpL = cur;
 | |
|         }
 | |
| 
 | |
|         // final output
 | |
|         cur = inpL;
 | |
|         cb(cur, "result_embd", -1);
 | |
| 
 | |
|         // pooling layer
 | |
|         switch (pooling_type) {
 | |
|             case LLAMA_POOLING_TYPE_NONE:
 | |
|                 {
 | |
|                     // nop
 | |
|                 } break;
 | |
|             case LLAMA_POOLING_TYPE_MEAN:
 | |
|                 {
 | |
|                     cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
 | |
|                     cb(cur, "result_embd_pooled", -1);
 | |
|                 } break;
 | |
|             case LLAMA_POOLING_TYPE_CLS:
 | |
|                 {
 | |
|                     cur = ggml_get_rows(ctx0, cur, inp_cls);
 | |
|                     cb(cur, "result_embd_pooled", -1);
 | |
|                 } break;
 | |
|             case LLAMA_POOLING_TYPE_UNSPECIFIED:
 | |
|                 {
 | |
|                     GGML_ASSERT(false && "Invalid pooling type");
 | |
|                 } break;
 | |
|         }
 | |
| 
 | |
|         ggml_build_forward_expand(gf, cur);
 | |
| 
 | |
|         return gf;
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph * build_bloom() {
 | |
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 | |
| 
 | |
|         const int64_t n_embd_head = hparams.n_embd_head_v;
 | |
|         const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
|         struct ggml_tensor * inpL;
 | |
| 
 | |
|         inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
 | |
| 
 | |
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
 | |
|         struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
 | |
| 
 | |
|         // positions of the tokens in the KV cache
 | |
|         struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
 | |
| 
 | |
|         inpL = llm_build_norm(ctx0, inpL, hparams,
 | |
|                 model.tok_norm,
 | |
|                 model.tok_norm_b,
 | |
|                 LLM_NORM, cb, -1);
 | |
|         cb(inpL, "inp_norm", -1);
 | |
| 
 | |
|         for (int il = 0; il < n_layer; ++il) {
 | |
|             cur = llm_build_norm(ctx0, inpL, hparams,
 | |
|                     model.layers[il].attn_norm,
 | |
|                     model.layers[il].attn_norm_b,
 | |
|                     LLM_NORM, cb, il);
 | |
|             cb(cur, "attn_norm", il);
 | |
| 
 | |
|             // self-attention
 | |
|             {
 | |
|                 cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
 | |
|                 cb(cur, "wqkv", il);
 | |
| 
 | |
|                 cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
 | |
|                 cb(cur, "bqkv", il);
 | |
| 
 | |
|                 struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
 | |
|                 struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
 | |
|                 struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
 | |
| 
 | |
|                 cb(Qcur, "Qcur", il);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
|                 cb(Vcur, "Vcur", il);
 | |
| 
 | |
|                 Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
 | |
| 
 | |
|                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
 | |
|                         model.layers[il].wo, model.layers[il].bo,
 | |
|                         Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
 | |
|             }
 | |
| 
 | |
|             if (il == n_layer - 1) {
 | |
|                 // skip computing output for unused tokens
 | |
|                 struct ggml_tensor * inp_out_ids = build_inp_out_ids();
 | |
|                 cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
 | |
|                 inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
 | |
|             }
 | |
| 
 | |
|             // Add the input
 | |
|             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
 | |
|             cb(ffn_inp, "ffn_inp", il);
 | |
| 
 | |
|             // FF
 | |
|             {
 | |
|                 cur = llm_build_norm(ctx0, ffn_inp, hparams,
 | |
|                         model.layers[il].ffn_norm,
 | |
|                         model.layers[il].ffn_norm_b,
 | |
|                         LLM_NORM, cb, il);
 | |
|                 cb(cur, "ffn_norm", il);
 | |
| 
 | |
|                 cur = llm_build_ffn(ctx0, cur,
 | |
|                         model.layers[il].ffn_up,   model.layers[il].ffn_up_b,
 | |
|                         NULL,                      NULL,
 | |
|                         model.layers[il].ffn_down, model.layers[il].ffn_down_b,
 | |
|                         NULL,
 | |
|                         LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
 | |
|                 cb(cur, "ffn_out", il);
 | |
|             }
 | |
| 
 | |
|             inpL = ggml_add(ctx0, cur, ffn_inp);
 | |
|             cb(inpL, "l_out", il);
 | |
|         }
 | |
| 
 | |
|         cur = llm_build_norm(ctx0, inpL, hparams,
 | |
|                 model.output_norm,
 | |
|                 model.output_norm_b,
 | |
|                 LLM_NORM, cb, -1);
 | |
|         cb(cur, "result_norm", -1);
 | |
| 
 | |
|         cur = ggml_mul_mat(ctx0, model.output, cur);
 | |
|         cb(cur, "result_output", -1);
 | |
| 
 | |
|         ggml_build_forward_expand(gf, cur);
 | |
| 
 | |
|         return gf;
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph * build_mpt() {
 | |
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 | |
| 
 | |
|         const int64_t n_embd_head = hparams.n_embd_head_v;
 | |
|         const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
|         struct ggml_tensor * pos;
 | |
|         struct ggml_tensor * inpL;
 | |
| 
 | |
|         inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
 | |
| 
 | |
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
 | |
|         struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
 | |
| 
 | |
|         // positions of the tokens in the KV cache
 | |
|         struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
 | |
| 
 | |
|         if (model.pos_embd) {
 | |
|             // inp_pos - contains the positions
 | |
|             struct ggml_tensor * inp_pos = build_inp_pos();
 | |
|             pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
 | |
|             cb(pos, "pos_embd", -1);
 | |
| 
 | |
|             inpL = ggml_add(ctx0, inpL, pos);
 | |
|             cb(inpL, "inpL", -1);
 | |
|         }
 | |
| 
 | |
|         for (int il = 0; il < n_layer; ++il) {
 | |
|             struct ggml_tensor * attn_norm;
 | |
| 
 | |
|             attn_norm = llm_build_norm(ctx0, inpL, hparams,
 | |
|                     model.layers[il].attn_norm,
 | |
|                     model.layers[il].attn_norm_b,
 | |
|                     LLM_NORM, cb, il);
 | |
|             cb(attn_norm, "attn_norm", il);
 | |
| 
 | |
|             // self-attention
 | |
|             {
 | |
|                 cur = attn_norm;
 | |
| 
 | |
|                 cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
 | |
|                 cb(cur, "wqkv", il);
 | |
| 
 | |
|                 if (model.layers[il].bqkv){
 | |
|                     cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
 | |
|                     cb(cur, "bqkv", il);
 | |
|                 }
 | |
| 
 | |
|                 if (hparams.f_clamp_kqv > 0.0f) {
 | |
|                     cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
 | |
|                     cb(cur, "wqkv_clamped", il);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
 | |
|                 struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
 | |
|                 struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
 | |
| 
 | |
|                 cb(Qcur, "Qcur", il);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
|                 cb(Vcur, "Vcur", il);
 | |
| 
 | |
|                 // Q/K Layernorm
 | |
|                 if (model.layers[il].attn_q_norm) {
 | |
|                     Qcur = llm_build_norm(ctx0, Qcur, hparams,
 | |
|                             model.layers[il].attn_q_norm,
 | |
|                             model.layers[il].attn_q_norm_b,
 | |
|                             LLM_NORM, cb, il);
 | |
|                     cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                     Kcur = llm_build_norm(ctx0, Kcur, hparams,
 | |
|                             model.layers[il].attn_k_norm,
 | |
|                             model.layers[il].attn_k_norm_b,
 | |
|                             LLM_NORM, cb, il);
 | |
|                     cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                     Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
 | |
|                     Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
 | |
| 
 | |
|                     cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
 | |
|                         model.layers[il].wo, model.layers[il].bo,
 | |
|                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
 | |
|                 } else {
 | |
|                     Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
 | |
|                     cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
 | |
|                             model.layers[il].wo, model.layers[il].bo,
 | |
|                             Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (il == n_layer - 1) {
 | |
|                 // skip computing output for unused tokens
 | |
|                 struct ggml_tensor * inp_out_ids = build_inp_out_ids();
 | |
|                 cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
 | |
|                 inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
 | |
|             }
 | |
| 
 | |
|             // Add the input
 | |
|             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
 | |
|             cb(ffn_inp, "ffn_inp", il);
 | |
| 
 | |
|             // feed forward
 | |
|             {
 | |
|                 cur = llm_build_norm(ctx0, ffn_inp, hparams,
 | |
|                         model.layers[il].ffn_norm,
 | |
|                         model.layers[il].ffn_norm_b,
 | |
|                         LLM_NORM, cb, il);
 | |
|                 cb(cur, "ffn_norm", il);
 | |
|                 cur = llm_build_ffn(ctx0, cur,
 | |
|                         model.layers[il].ffn_up,   model.layers[il].ffn_up_b,
 | |
|                         NULL,                      NULL,
 | |
|                         model.layers[il].ffn_down, model.layers[il].ffn_down_b,
 | |
|                         model.layers[il].ffn_act,
 | |
|                         LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
 | |
|                 cb(cur, "ffn_out", il);
 | |
|             }
 | |
| 
 | |
|             cur = ggml_add(ctx0, cur, ffn_inp);
 | |
|             cb(cur, "l_out", il);
 | |
| 
 | |
|             // input for next layer
 | |
|             inpL = cur;
 | |
|         }
 | |
| 
 | |
|         cur = inpL;
 | |
| 
 | |
|         cur = llm_build_norm(ctx0, cur, hparams,
 | |
|                 model.output_norm,
 | |
|                 model.output_norm_b,
 | |
|                 LLM_NORM, cb, -1);
 | |
|         cb(cur, "result_norm", -1);
 | |
| 
 | |
|         cur = ggml_mul_mat(ctx0, model.output, cur);
 | |
|         cb(cur, "result_output", -1);
 | |
| 
 | |
|         ggml_build_forward_expand(gf, cur);
 | |
| 
 | |
|         return gf;
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph * build_stablelm() {
 | |
|         struct ggml_cgraph * gf = ggml_new_graph(ctx0);
 | |
| 
 | |
|         const int64_t n_embd_head = hparams.n_embd_head_v;
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
|         struct ggml_tensor * inpL;
 | |
| 
 | |
|         inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
 | |
| 
 | |
|         // inp_pos - contains the positions
 | |
|         struct ggml_tensor * inp_pos = build_inp_pos();
 | |
| 
 | |
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
 | |
|         struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
 | |
| 
 | |
|         for (int il = 0; il < n_layer; ++il) {
 | |
| 
 | |
| 
 | |
|             // norm
 | |
|             cur = llm_build_norm(ctx0, inpL, hparams,
 | |
|                     model.layers[il].attn_norm,
 | |
|                     model.layers[il].attn_norm_b,
 | |
|                     LLM_NORM, cb, il);
 | |
|             cb(cur, "attn_norm", il);
 | |
| 
 | |
|             struct ggml_tensor * inpSA = cur;
 | |
| 
 | |
|             // self-attention
 | |
|             {
 | |
|                 // compute Q and K and RoPE them
 | |
|                 struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
 | |
|                 cb(Qcur, "Qcur", il);
 | |
|                 if (model.layers[il].bq) {
 | |
|                     Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
 | |
|                     cb(Qcur, "Qcur", il);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
|                 if (model.layers[il].bk) {
 | |
|                     Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
 | |
|                     cb(Kcur, "Kcur", il);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
 | |
|                 cb(Vcur, "Vcur", il);
 | |
|                 if (model.layers[il].bv) {
 | |
|                     Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
 | |
|                     cb(Vcur, "Vcur", il);
 | |
|                 }
 | |
| 
 | |
|                 Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
 | |
|                 cb(Qcur, "Qcur", il);
 | |
|                 Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                 if (model.layers[il].attn_q_norm) {
 | |
|                     Qcur = llm_build_norm(ctx0, Qcur, hparams,
 | |
|                             model.layers[il].attn_q_norm,
 | |
|                             NULL,
 | |
|                             LLM_NORM, cb, il);
 | |
|                     cb(Qcur, "Qcur", il);
 | |
|                 }
 | |
|                 if (model.layers[il].attn_k_norm) {
 | |
|                     Kcur = llm_build_norm(ctx0, Kcur, hparams,
 | |
|                             model.layers[il].attn_k_norm,
 | |
|                             NULL,
 | |
|                             LLM_NORM, cb, il);
 | |
|                     cb(Kcur, "Kcur", il);
 | |
|                 }
 | |
| 
 | |
| 
 | |
|                 Qcur = ggml_rope_custom(
 | |
|                     ctx0, Qcur, inp_pos,
 | |
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                     ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 Kcur = ggml_rope_custom(
 | |
|                     ctx0, Kcur, inp_pos,
 | |
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                     ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
 | |
|                         model.layers[il].wo, NULL,
 | |
|                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
 | |
|             }
 | |
| 
 | |
|             if (il == n_layer - 1) {
 | |
|                 // skip computing output for unused tokens
 | |
|                 struct ggml_tensor * inp_out_ids = build_inp_out_ids();
 | |
|                 cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
 | |
|                 inpL  = ggml_get_rows(ctx0,  inpL, inp_out_ids);
 | |
|                 inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
 | |
|             }
 | |
| 
 | |
|             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
 | |
|             cb(ffn_inp, "ffn_inp", il);
 | |
| 
 | |
|             // feed-forward network
 | |
|             {
 | |
|                 if (model.layers[il].ffn_norm) {
 | |
|                     cur = llm_build_norm(ctx0, ffn_inp, hparams,
 | |
|                             model.layers[il].ffn_norm,
 | |
|                             model.layers[il].ffn_norm_b,
 | |
|                             LLM_NORM, cb, il);
 | |
|                     cb(cur, "ffn_norm", il);
 | |
|                 } else {
 | |
|                     // parallel residual
 | |
|                     cur = inpSA;
 | |
|                 }
 | |
|                 cur = llm_build_ffn(ctx0, cur,
 | |
|                         model.layers[il].ffn_up,   NULL,
 | |
|                         model.layers[il].ffn_gate, NULL,
 | |
|                         model.layers[il].ffn_down, NULL,
 | |
|                         NULL,
 | |
|                         LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
 | |
|                 cb(cur, "ffn_out", il);
 | |
|             }
 | |
| 
 | |
|             cur = ggml_add(ctx0, cur, ffn_inp);
 | |
|             cb(cur, "l_out", il);
 | |
| 
 | |
|             // input for next layer
 | |
|             inpL = cur;
 | |
|         }
 | |
| 
 | |
|         cur = inpL;
 | |
| 
 | |
|         cur = llm_build_norm(ctx0, cur, hparams,
 | |
|                 model.output_norm,
 | |
|                 model.output_norm_b,
 | |
|                 LLM_NORM, cb, -1);
 | |
|         cb(cur, "result_norm", -1);
 | |
| 
 | |
|         // lm_head
 | |
|         cur = ggml_mul_mat(ctx0, model.output, cur);
 | |
|         cb(cur, "result_output", -1);
 | |
| 
 | |
|         ggml_build_forward_expand(gf, cur);
 | |
| 
 | |
|         return gf;
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph * build_qwen() {
 | |
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 | |
| 
 | |
|         const int64_t n_embd_head = hparams.n_embd_head_v;
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
|         struct ggml_tensor * inpL;
 | |
| 
 | |
|         inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
 | |
| 
 | |
|         // inp_pos - contains the positions
 | |
|         struct ggml_tensor * inp_pos = build_inp_pos();
 | |
| 
 | |
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
 | |
|         struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
 | |
| 
 | |
|         for (int il = 0; il < n_layer; ++il) {
 | |
|             struct ggml_tensor * inpSA = inpL;
 | |
| 
 | |
|             cur = llm_build_norm(ctx0, inpL, hparams,
 | |
|                     model.layers[il].attn_norm, NULL,
 | |
|                     LLM_NORM_RMS, cb, il);
 | |
|             cb(cur, "attn_norm", il);
 | |
| 
 | |
|             // self-attention
 | |
|             {
 | |
|                 cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
 | |
|                 cb(cur, "wqkv", il);
 | |
| 
 | |
|                 cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
 | |
|                 cb(cur, "bqkv", il);
 | |
| 
 | |
|                 struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
 | |
|                 struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
 | |
|                 struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
 | |
| 
 | |
|                 cb(Qcur, "Qcur", il);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
|                 cb(Vcur, "Vcur", il);
 | |
| 
 | |
|                 Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
 | |
|                 Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
 | |
| 
 | |
|                 // using mode = 2 for neox mode
 | |
|                 Qcur = ggml_rope_custom(
 | |
|                     ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
 | |
|                     freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 Kcur = ggml_rope_custom(
 | |
|                     ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
 | |
|                     freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
 | |
|                         model.layers[il].wo, NULL,
 | |
|                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
 | |
|             }
 | |
| 
 | |
|             if (il == n_layer - 1) {
 | |
|                 // skip computing output for unused tokens
 | |
|                 struct ggml_tensor * inp_out_ids = build_inp_out_ids();
 | |
|                 cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
 | |
|                 inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
 | |
|             }
 | |
| 
 | |
|             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
 | |
|             cb(ffn_inp, "ffn_inp", il);
 | |
| 
 | |
|             // feed-forward forward
 | |
|             {
 | |
|                 cur = llm_build_norm(ctx0, ffn_inp, hparams,
 | |
|                         model.layers[il].ffn_norm, NULL,
 | |
|                         LLM_NORM_RMS, cb, il);
 | |
|                 cb(cur, "ffn_norm", il);
 | |
| 
 | |
|                 cur = llm_build_ffn(ctx0, cur,
 | |
|                         model.layers[il].ffn_up,   NULL,
 | |
|                         model.layers[il].ffn_gate, NULL,
 | |
|                         model.layers[il].ffn_down, NULL,
 | |
|                         NULL,
 | |
|                         LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
 | |
|                 cb(cur, "ffn_out", il);
 | |
|             }
 | |
| 
 | |
|             cur = ggml_add(ctx0, cur, ffn_inp);
 | |
|             cb(cur, "l_out", il);
 | |
| 
 | |
|             // input for next layer
 | |
|             inpL = cur;
 | |
|         }
 | |
| 
 | |
|         cur = inpL;
 | |
| 
 | |
|         cur = llm_build_norm(ctx0, cur, hparams,
 | |
|                 model.output_norm, NULL,
 | |
|                 LLM_NORM_RMS, cb, -1);
 | |
|         cb(cur, "result_norm", -1);
 | |
| 
 | |
|         // lm_head
 | |
|         cur = ggml_mul_mat(ctx0, model.output, cur);
 | |
|         cb(cur, "result_output", -1);
 | |
| 
 | |
|         ggml_build_forward_expand(gf, cur);
 | |
| 
 | |
|         return gf;
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph * build_qwen2() {
 | |
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 | |
| 
 | |
|         const int64_t n_embd_head = hparams.n_embd_head_v;
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_rot);
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
|         struct ggml_tensor * inpL;
 | |
| 
 | |
|         inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
 | |
| 
 | |
|         // inp_pos - contains the positions
 | |
|         struct ggml_tensor * inp_pos = build_inp_pos();
 | |
| 
 | |
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
 | |
|         struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
 | |
| 
 | |
|         for (int il = 0; il < n_layer; ++il) {
 | |
|             struct ggml_tensor * inpSA = inpL;
 | |
| 
 | |
|             // norm
 | |
|             cur = llm_build_norm(ctx0, inpL, hparams,
 | |
|                     model.layers[il].attn_norm, NULL,
 | |
|                     LLM_NORM_RMS, cb, il);
 | |
|             cb(cur, "attn_norm", il);
 | |
| 
 | |
|             // self-attention
 | |
|             {
 | |
|                 // compute Q and K and RoPE them
 | |
|                 struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
 | |
|                 cb(Qcur, "Qcur", il);
 | |
|                 Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
|                 Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                 struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
 | |
|                 cb(Vcur, "Vcur", il);
 | |
|                 Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
 | |
|                 cb(Vcur, "Vcur", il);
 | |
| 
 | |
|                 Qcur = ggml_rope_custom(
 | |
|                     ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens), inp_pos,
 | |
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                     ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 Kcur = ggml_rope_custom(
 | |
|                     ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
 | |
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                     ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
 | |
|                         model.layers[il].wo, model.layers[il].bo,
 | |
|                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
 | |
|             }
 | |
| 
 | |
|             if (il == n_layer - 1) {
 | |
|                 // skip computing output for unused tokens
 | |
|                 struct ggml_tensor * inp_out_ids = build_inp_out_ids();
 | |
|                 cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
 | |
|                 inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
 | |
|             }
 | |
| 
 | |
|             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
 | |
|             cb(ffn_inp, "ffn_inp", il);
 | |
| 
 | |
|             // feed-forward network
 | |
|             cur = llm_build_norm(ctx0, ffn_inp, hparams,
 | |
|                     model.layers[il].ffn_norm, NULL,
 | |
|                     LLM_NORM_RMS, cb, il);
 | |
|             cb(cur, "ffn_norm", il);
 | |
| 
 | |
|             cur = llm_build_ffn(ctx0, cur,
 | |
|                     model.layers[il].ffn_up,   NULL,
 | |
|                     model.layers[il].ffn_gate, NULL,
 | |
|                     model.layers[il].ffn_down, NULL,
 | |
|                     NULL,
 | |
|                     LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
 | |
|             cb(cur, "ffn_out", il);
 | |
| 
 | |
|             cur = ggml_add(ctx0, cur, ffn_inp);
 | |
|             cb(cur, "l_out", il);
 | |
| 
 | |
|             // input for next layer
 | |
|             inpL = cur;
 | |
|         }
 | |
| 
 | |
|         cur = inpL;
 | |
| 
 | |
|         cur = llm_build_norm(ctx0, cur, hparams,
 | |
|                 model.output_norm, NULL,
 | |
|                 LLM_NORM_RMS, cb, -1);
 | |
|         cb(cur, "result_norm", -1);
 | |
| 
 | |
|         // lm_head
 | |
|         cur = ggml_mul_mat(ctx0, model.output, cur);
 | |
|         cb(cur, "result_output", -1);
 | |
| 
 | |
|         ggml_build_forward_expand(gf, cur);
 | |
| 
 | |
|         return gf;
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph * build_qwen2moe() {
 | |
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 | |
| 
 | |
|         // mutable variable, needed during the last layer of the computation to skip unused tokens
 | |
|         int32_t n_tokens = this->n_tokens;
 | |
| 
 | |
|         const int64_t n_embd_head = hparams.n_embd_head_v;
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_rot);
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
|         struct ggml_tensor * inpL;
 | |
| 
 | |
|         inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
 | |
| 
 | |
|         // inp_pos - contains the positions
 | |
|         struct ggml_tensor * inp_pos = build_inp_pos();
 | |
| 
 | |
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
 | |
|         struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
 | |
| 
 | |
|         for (int il = 0; il < n_layer; ++il) {
 | |
|             struct ggml_tensor * inpSA = inpL;
 | |
| 
 | |
|             // norm
 | |
|             cur = llm_build_norm(ctx0, inpL, hparams,
 | |
|                     model.layers[il].attn_norm, NULL,
 | |
|                     LLM_NORM_RMS, cb, il);
 | |
|             cb(cur, "attn_norm", il);
 | |
| 
 | |
|             // self_attention
 | |
|             {
 | |
|                 // compute Q and K and RoPE them
 | |
|                 struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
 | |
|                 cb(Qcur, "Qcur", il);
 | |
|                 Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
|                 Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                 struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
 | |
|                 cb(Vcur, "Vcur", il);
 | |
|                 Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
 | |
|                 cb(Vcur, "Vcur", il);
 | |
| 
 | |
|                 Qcur = ggml_rope_custom(
 | |
|                     ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
 | |
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                     ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 Kcur = ggml_rope_custom(
 | |
|                     ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
 | |
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                     ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
 | |
|                         model.layers[il].wo, model.layers[il].bo,
 | |
|                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
 | |
|             }
 | |
| 
 | |
|             if (il == n_layer - 1) {
 | |
|                 // skip computing output for unused tokens
 | |
|                 struct ggml_tensor * inp_out_ids = build_inp_out_ids();
 | |
|                 n_tokens = n_outputs;
 | |
|                 cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
 | |
|                 inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
 | |
|             }
 | |
| 
 | |
|             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
 | |
|             cb(ffn_inp, "ffn_inp", il);
 | |
| 
 | |
|             // MoE branch
 | |
|             cur = llm_build_norm(ctx0, ffn_inp, hparams,
 | |
|                     model.layers[il].ffn_norm, NULL,
 | |
|                     LLM_NORM_RMS, cb, il);
 | |
|             cb(cur, "ffn_norm", il);
 | |
| 
 | |
|             ggml_tensor * moe_out =
 | |
|                     llm_build_moe_ffn(ctx0, cur,
 | |
|                         model.layers[il].ffn_gate_inp,
 | |
|                         model.layers[il].ffn_up_exps,
 | |
|                         model.layers[il].ffn_gate_exps,
 | |
|                         model.layers[il].ffn_down_exps,
 | |
|                         n_expert, n_expert_used,
 | |
|                         LLM_FFN_SILU, false,
 | |
|                         cb, il);
 | |
|             cb(cur, "ffn_moe_out", il);
 | |
| 
 | |
|             // FFN shared expert
 | |
|             {
 | |
|                 ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
 | |
|                 cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
 | |
| 
 | |
|                 // sigmoid
 | |
|                 ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
 | |
|                 cb(cur_gate, "ffn_shexp_gate", il);
 | |
| 
 | |
|                 ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur,
 | |
|                         model.layers[il].ffn_up_shexp,   NULL,
 | |
|                         model.layers[il].ffn_gate_shexp, NULL,
 | |
|                         model.layers[il].ffn_down_shexp, NULL,
 | |
|                         NULL,
 | |
|                         LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
 | |
|                 cb(cur_ffn, "ffn_shexp", il);
 | |
| 
 | |
|                 ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
 | |
|                 cb(ffn_shexp_out, "ffn_shexp_out", il);
 | |
| 
 | |
|                 moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
 | |
|                 cb(moe_out, "ffn_out", il);
 | |
| 
 | |
|                 cur = moe_out;
 | |
|             }
 | |
| 
 | |
|             cur = ggml_add(ctx0, cur, ffn_inp);
 | |
|             cb(cur, "l_out", il);
 | |
| 
 | |
|             // input for next layer
 | |
|             inpL = cur;
 | |
|         }
 | |
| 
 | |
|         cur = inpL;
 | |
| 
 | |
|         cur = llm_build_norm(ctx0, cur, hparams,
 | |
|                 model.output_norm, NULL,
 | |
|                 LLM_NORM_RMS, cb, -1);
 | |
|         cb(cur, "result_norm", -1);
 | |
| 
 | |
|         // lm_head
 | |
|         cur = ggml_mul_mat(ctx0, model.output, cur);
 | |
|         cb(cur, "result_output", -1);
 | |
| 
 | |
|         ggml_build_forward_expand(gf, cur);
 | |
| 
 | |
|         return gf;
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph * build_phi2() {
 | |
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 | |
| 
 | |
|         const int64_t n_embd_head = hparams.n_embd_head_v;
 | |
|         const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
|         struct ggml_tensor * attn_norm_output;
 | |
|         struct ggml_tensor * ffn_output;
 | |
|         struct ggml_tensor * inpL;
 | |
| 
 | |
|         inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
 | |
| 
 | |
|         // inp_pos - contains the positions
 | |
|         struct ggml_tensor * inp_pos = build_inp_pos();
 | |
| 
 | |
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
 | |
|         struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
 | |
| 
 | |
|         for (int il = 0; il < n_layer; ++il) {
 | |
|             attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
 | |
|                     model.layers[il].attn_norm,
 | |
|                     model.layers[il].attn_norm_b,
 | |
|                     LLM_NORM, cb, il);
 | |
|             cb(attn_norm_output, "attn_norm", il);
 | |
| 
 | |
|             // self-attention
 | |
|             {
 | |
|                 struct ggml_tensor * Qcur = nullptr;
 | |
|                 struct ggml_tensor * Kcur = nullptr;
 | |
|                 struct ggml_tensor * Vcur = nullptr;
 | |
| 
 | |
|                 if (model.layers[il].wqkv) {
 | |
|                     cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
 | |
|                     cb(cur, "wqkv", il);
 | |
| 
 | |
|                     cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
 | |
|                     cb(cur, "bqkv", il);
 | |
| 
 | |
|                     Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
 | |
|                     Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
 | |
|                     Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
 | |
|                 } else {
 | |
|                     Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
 | |
|                     Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
 | |
|                     Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
 | |
|                 }
 | |
| 
 | |
|                 cb(Qcur, "Qcur", il);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
|                 cb(Vcur, "Vcur", il);
 | |
| 
 | |
|                 Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
 | |
|                 Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
 | |
| 
 | |
|                 Qcur = ggml_rope_custom(
 | |
|                     ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
 | |
|                     freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 // with phi2, we scale the Q to avoid precision issues
 | |
|                 // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
 | |
|                 Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 Kcur = ggml_rope_custom(
 | |
|                     ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
 | |
|                     freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
 | |
|                         model.layers[il].wo, model.layers[il].bo,
 | |
|                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
 | |
|             }
 | |
| 
 | |
|             if (il == n_layer - 1) {
 | |
|                 // skip computing output for unused tokens
 | |
|                 struct ggml_tensor * inp_out_ids = build_inp_out_ids();
 | |
|                 cur              = ggml_get_rows(ctx0,              cur, inp_out_ids);
 | |
|                 inpL             = ggml_get_rows(ctx0,             inpL, inp_out_ids);
 | |
|                 attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
 | |
|             }
 | |
| 
 | |
|             // FF
 | |
|             {
 | |
|                 ffn_output = llm_build_ffn(ctx0, attn_norm_output,
 | |
|                         model.layers[il].ffn_up,   model.layers[il].ffn_up_b,
 | |
|                         NULL,                      NULL,
 | |
|                         model.layers[il].ffn_down, model.layers[il].ffn_down_b,
 | |
|                         NULL,
 | |
|                         LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
 | |
|                 cb(ffn_output, "ffn_out", il);
 | |
|             }
 | |
| 
 | |
|             cur = ggml_add(ctx0, cur, ffn_output);
 | |
|             cb(cur, "l_out", il);
 | |
| 
 | |
|             cur = ggml_add(ctx0, cur, inpL);
 | |
|             cb(cur, "l_out", il);
 | |
| 
 | |
|             inpL = cur;
 | |
|         }
 | |
| 
 | |
|         cur = llm_build_norm(ctx0, inpL, hparams,
 | |
|                 model.output_norm,
 | |
|                 model.output_norm_b,
 | |
|                 LLM_NORM, cb, -1);
 | |
|         cb(cur, "result_norm", -1);
 | |
| 
 | |
|         cur = ggml_mul_mat(ctx0, model.output, cur);
 | |
|         cb(cur, "result_output_no_bias", -1);
 | |
| 
 | |
|         cur = ggml_add(ctx0, cur, model.output_b);
 | |
|         cb(cur, "result_output", -1);
 | |
|         ggml_build_forward_expand(gf, cur);
 | |
|         return gf;
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph * build_phi3() {
 | |
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 | |
| 
 | |
|         const int64_t n_embd_head = hparams.n_embd_head_v;
 | |
|         const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
|         struct ggml_tensor * inpL;
 | |
| 
 | |
|         inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
 | |
| 
 | |
|         // inp_pos - contains the positions
 | |
|         struct ggml_tensor * inp_pos = build_inp_pos();
 | |
| 
 | |
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
 | |
|         struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
 | |
| 
 | |
|         for (int il = 0; il < n_layer; ++il) {
 | |
|             auto residual = inpL;
 | |
| 
 | |
|             // self-attention
 | |
|             {
 | |
|                 struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
 | |
|                     model.layers[il].attn_norm,
 | |
|                     NULL,
 | |
|                     LLM_NORM_RMS, cb, il);
 | |
|                 cb(attn_norm_output, "attn_norm", il);
 | |
| 
 | |
|                 struct ggml_tensor * Qcur = nullptr;
 | |
|                 struct ggml_tensor * Kcur = nullptr;
 | |
|                 struct ggml_tensor * Vcur = nullptr;
 | |
| 
 | |
|                 if (model.layers[il].wqkv) {
 | |
|                     cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
 | |
|                     cb(cur, "wqkv", il);
 | |
| 
 | |
|                     Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
 | |
|                     Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
 | |
|                     Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
 | |
|                 }
 | |
|                 else {
 | |
|                     Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
 | |
|                     Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
 | |
|                     Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
 | |
|                 }
 | |
| 
 | |
|                 cb(Qcur, "Qcur", il);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
|                 cb(Vcur, "Vcur", il);
 | |
| 
 | |
|                 Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
 | |
|                 Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
 | |
| 
 | |
|                 Qcur = ggml_rope_custom(
 | |
|                     ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
 | |
|                     freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 Kcur = ggml_rope_custom(
 | |
|                     ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
 | |
|                     freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
 | |
|                     model.layers[il].wo, NULL,
 | |
|                     Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
 | |
|             }
 | |
| 
 | |
|             if (il == n_layer - 1) {
 | |
|                 // skip computing output for unused tokens
 | |
|                 struct ggml_tensor* inp_out_ids = build_inp_out_ids();
 | |
|                 cur = ggml_get_rows(ctx0, cur, inp_out_ids);
 | |
|                 residual = ggml_get_rows(ctx0, residual, inp_out_ids);
 | |
|             }
 | |
| 
 | |
|             cur = ggml_add(ctx0, cur, residual);
 | |
|             residual = cur;
 | |
| 
 | |
|             cur = llm_build_norm(ctx0, cur, hparams,
 | |
|                 model.layers[il].ffn_norm, NULL,
 | |
|                 LLM_NORM_RMS, cb, il);
 | |
|             cb(cur, "ffn_norm", il);
 | |
| 
 | |
|             // FF
 | |
|             // special-case: the up and gate tensors are merged into a single tensor
 | |
|             // TOOD: support into llm_build_ffn
 | |
|             {
 | |
|                 struct ggml_tensor* up = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur);
 | |
|                 cb(up, "ffn_up", il);
 | |
| 
 | |
|                 auto g = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), 0));
 | |
|                 auto y = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), up->nb[1] / 2));
 | |
| 
 | |
|                 y = ggml_mul(ctx0, y, ggml_silu(ctx0, g));
 | |
|                 cb(y, "ffn_gate", il);
 | |
| 
 | |
|                 auto down = ggml_mul_mat(ctx0, model.layers[il].ffn_down, y);
 | |
|                 cb(down, "ffn_down", il);
 | |
| 
 | |
|                 cur = down;
 | |
|                 cb(cur, "ffn_out", il);
 | |
|             }
 | |
| 
 | |
|             cur = ggml_add(ctx0, residual, cur);
 | |
|             cb(cur, "l_out", il);
 | |
| 
 | |
|             inpL = cur;
 | |
|         }
 | |
| 
 | |
|         cur = llm_build_norm(ctx0, inpL, hparams,
 | |
|             model.output_norm,
 | |
|             NULL,
 | |
|             LLM_NORM_RMS, cb, -1);
 | |
|         cb(cur, "result_norm", -1);
 | |
| 
 | |
|         cur = ggml_mul_mat(ctx0, model.output, cur);
 | |
|         cb(cur, "result_output", -1);
 | |
| 
 | |
|         ggml_build_forward_expand(gf, cur);
 | |
| 
 | |
|         return gf;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     struct ggml_cgraph * build_plamo() {
 | |
|         struct ggml_cgraph * gf = ggml_new_graph(ctx0);
 | |
| 
 | |
|         const int64_t n_embd_head = hparams.n_embd_head_v;
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_rot);
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
|         struct ggml_tensor * inpL;
 | |
| 
 | |
|         inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
 | |
| 
 | |
|         // inp_pos - contains the positions
 | |
|         struct ggml_tensor * inp_pos = build_inp_pos();
 | |
| 
 | |
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
 | |
|         struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
 | |
| 
 | |
|         for (int il = 0; il < n_layer; ++il) {
 | |
| 
 | |
|             // norm
 | |
|             cur = llm_build_norm(ctx0, inpL, hparams,
 | |
|                     model.layers[il].attn_norm, NULL,
 | |
|                     LLM_NORM_RMS, cb, il);
 | |
|             cb(cur, "attn_norm", il);
 | |
| 
 | |
|             struct ggml_tensor * attention_norm = cur;
 | |
| 
 | |
|             // self-attention
 | |
|             {
 | |
|                 // compute Q and K and RoPE them
 | |
|                 struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                 struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
 | |
|                 cb(Vcur, "Vcur", il);
 | |
| 
 | |
|                 Qcur = ggml_rope_custom(
 | |
|                         ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head,    n_tokens), inp_pos,
 | |
|                         n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                         ext_factor, attn_factor, beta_fast, beta_slow);
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 Kcur = ggml_rope_custom(
 | |
|                         ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos,
 | |
|                         n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                         ext_factor, attn_factor, beta_fast, beta_slow);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
 | |
|                         model.layers[il].wo, NULL,
 | |
|                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
 | |
|             }
 | |
|             struct ggml_tensor * sa_out = cur;
 | |
| 
 | |
|             cur = attention_norm;
 | |
| 
 | |
|             if (il == n_layer - 1) {
 | |
|                 // skip computing output for unused tokens
 | |
|                 struct ggml_tensor * inp_out_ids = build_inp_out_ids();
 | |
|                 cur    = ggml_get_rows(ctx0,    cur, inp_out_ids);
 | |
|                 sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
 | |
|                 inpL   = ggml_get_rows(ctx0,   inpL, inp_out_ids);
 | |
|             }
 | |
| 
 | |
|             // feed-forward network
 | |
|             {
 | |
|                 cur = llm_build_ffn(ctx0, cur,
 | |
|                         model.layers[il].ffn_up, NULL,
 | |
|                         model.layers[il].ffn_gate, NULL,
 | |
|                         model.layers[il].ffn_down, NULL,
 | |
|                         NULL,
 | |
|                         LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
 | |
|                 cb(cur, "ffn_out", il);
 | |
|             }
 | |
| 
 | |
|             cur = ggml_add(ctx0, cur, sa_out);
 | |
|             cb(cur, "l_out", il);
 | |
| 
 | |
|             cur = ggml_add(ctx0, cur, inpL);
 | |
|             cb(cur, "l_out", il);
 | |
| 
 | |
|             // input for next layer
 | |
|             inpL = cur;
 | |
|         }
 | |
| 
 | |
|         cur = inpL;
 | |
| 
 | |
|         cur = llm_build_norm(ctx0, cur, hparams,
 | |
|                 model.output_norm, NULL,
 | |
|                 LLM_NORM_RMS, cb, -1);
 | |
|         cb(cur, "result_norm", -1);
 | |
| 
 | |
|         // lm_head
 | |
|         cur = ggml_mul_mat(ctx0, model.output, cur);
 | |
|         cb(cur, "result_output", -1);
 | |
| 
 | |
|         ggml_build_forward_expand(gf, cur);
 | |
| 
 | |
|         return gf;
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph * build_gpt2() {
 | |
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 | |
| 
 | |
|         const int64_t n_embd_head = hparams.n_embd_head_v;
 | |
|         const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
|         struct ggml_tensor * pos;
 | |
|         struct ggml_tensor * inpL;
 | |
| 
 | |
|         inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
 | |
| 
 | |
|         // inp_pos - contains the positions
 | |
|         struct ggml_tensor * inp_pos = build_inp_pos();
 | |
| 
 | |
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
 | |
|         struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
 | |
| 
 | |
|         pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
 | |
|         cb(pos, "pos_embd", -1);
 | |
| 
 | |
|         inpL = ggml_add(ctx0, inpL, pos);
 | |
|         cb(inpL, "inpL", -1);
 | |
| 
 | |
|         for (int il = 0; il < n_layer; ++il) {
 | |
|             cur = llm_build_norm(ctx0, inpL, hparams,
 | |
|                     model.layers[il].attn_norm,
 | |
|                     model.layers[il].attn_norm_b,
 | |
|                     LLM_NORM, cb, il);
 | |
|             cb(cur, "attn_norm", il);
 | |
| 
 | |
|             // self-attention
 | |
|             {
 | |
|                 cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
 | |
|                 cb(cur, "wqkv", il);
 | |
| 
 | |
|                 cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
 | |
|                 cb(cur, "bqkv", il);
 | |
| 
 | |
|                 struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
 | |
|                 struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
 | |
|                 struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
 | |
| 
 | |
|                 cb(Qcur, "Qcur", il);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
|                 cb(Vcur, "Vcur", il);
 | |
| 
 | |
|                 Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
 | |
| 
 | |
|                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
 | |
|                         model.layers[il].wo, model.layers[il].bo,
 | |
|                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
 | |
|             }
 | |
| 
 | |
|             if (il == n_layer - 1) {
 | |
|                 // skip computing output for unused tokens
 | |
|                 struct ggml_tensor * inp_out_ids = build_inp_out_ids();
 | |
|                 cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
 | |
|                 inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
 | |
|             }
 | |
| 
 | |
|             // add the input
 | |
|             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
 | |
|             cb(ffn_inp, "ffn_inp", il);
 | |
| 
 | |
|             // FF
 | |
|             {
 | |
|                 cur = llm_build_norm(ctx0, ffn_inp, hparams,
 | |
|                         model.layers[il].ffn_norm,
 | |
|                         model.layers[il].ffn_norm_b,
 | |
|                         LLM_NORM, cb, il);
 | |
|                 cb(cur, "ffn_norm", il);
 | |
| 
 | |
|                 cur = llm_build_ffn(ctx0, cur,
 | |
|                         model.layers[il].ffn_up,   model.layers[il].ffn_up_b,
 | |
|                         NULL,                      NULL,
 | |
|                         model.layers[il].ffn_down, model.layers[il].ffn_down_b,
 | |
|                         NULL,
 | |
|                         LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
 | |
|                 cb(cur, "ffn_out", il);
 | |
|             }
 | |
| 
 | |
|             inpL = ggml_add(ctx0, cur, ffn_inp);
 | |
|             cb(inpL, "l_out", il);
 | |
|         }
 | |
| 
 | |
|         cur = llm_build_norm(ctx0, inpL, hparams,
 | |
|                 model.output_norm,
 | |
|                 model.output_norm_b,
 | |
|                 LLM_NORM, cb, -1);
 | |
|         cb(cur, "result_norm", -1);
 | |
| 
 | |
|         cur = ggml_mul_mat(ctx0, model.output, cur);
 | |
|         cb(cur, "result_output", -1);
 | |
| 
 | |
|         ggml_build_forward_expand(gf, cur);
 | |
| 
 | |
|         return gf;
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph * build_codeshell() {
 | |
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 | |
| 
 | |
|         const int64_t n_embd_head = hparams.n_embd_head_v;
 | |
|         const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_rot);
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
|         struct ggml_tensor * inpL;
 | |
| 
 | |
|         inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
 | |
| 
 | |
|         // inp_pos - contains the positions
 | |
|         struct ggml_tensor * inp_pos = build_inp_pos();
 | |
| 
 | |
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
 | |
|         struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
 | |
| 
 | |
|         for (int il = 0; il < n_layer; ++il) {
 | |
|             cur = llm_build_norm(ctx0, inpL, hparams,
 | |
|                     model.layers[il].attn_norm,
 | |
|                     model.layers[il].attn_norm_b,
 | |
|                     LLM_NORM, cb, il);
 | |
|             cb(cur, "attn_norm", il);
 | |
| 
 | |
|             // self-attention
 | |
|             {
 | |
|                 cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
 | |
|                 cb(cur, "wqkv", il);
 | |
| 
 | |
|                 cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
 | |
|                 cb(cur, "bqkv", il);
 | |
| 
 | |
|                 struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
 | |
|                 struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
 | |
|                 struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
 | |
| 
 | |
|                 cb(tmpq, "tmpq", il);
 | |
|                 cb(tmpk, "tmpk", il);
 | |
|                 cb(Vcur, "Vcur", il);
 | |
| 
 | |
|                 struct ggml_tensor * Qcur = ggml_rope_custom(
 | |
|                     ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head,    n_tokens), inp_pos,
 | |
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                     ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 struct ggml_tensor * Kcur = ggml_rope_custom(
 | |
|                     ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos,
 | |
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                     ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
 | |
|                         model.layers[il].wo, model.layers[il].bo,
 | |
|                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
 | |
|             }
 | |
| 
 | |
|             if (il == n_layer - 1) {
 | |
|                 // skip computing output for unused tokens
 | |
|                 struct ggml_tensor * inp_out_ids = build_inp_out_ids();
 | |
|                 cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
 | |
|                 inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
 | |
|             }
 | |
| 
 | |
|             // add the input
 | |
|             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
 | |
|             cb(ffn_inp, "ffn_inp", il);
 | |
| 
 | |
|             // FF
 | |
|             {
 | |
|                 cur = llm_build_norm(ctx0, ffn_inp, hparams,
 | |
|                         model.layers[il].ffn_norm,
 | |
|                         model.layers[il].ffn_norm_b,
 | |
|                         LLM_NORM, cb, il);
 | |
|                 cb(cur, "ffn_norm", il);
 | |
| 
 | |
|                 cur = llm_build_ffn(ctx0, cur,
 | |
|                         model.layers[il].ffn_up,   model.layers[il].ffn_up_b,
 | |
|                         NULL,                      NULL,
 | |
|                         model.layers[il].ffn_down, model.layers[il].ffn_down_b,
 | |
|                         NULL,
 | |
|                         LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
 | |
|                 cb(cur, "ffn_out", il);
 | |
|             }
 | |
| 
 | |
|             inpL = ggml_add(ctx0, cur, ffn_inp);
 | |
|             cb(inpL, "l_out", il);
 | |
|         }
 | |
| 
 | |
|         cur = llm_build_norm(ctx0, inpL, hparams,
 | |
|                 model.output_norm,
 | |
|                 model.output_norm_b,
 | |
|                 LLM_NORM, cb, -1);
 | |
|         cb(cur, "result_norm", -1);
 | |
| 
 | |
|         cur = ggml_mul_mat(ctx0, model.output, cur);
 | |
|         cb(cur, "result_output", -1);
 | |
| 
 | |
|         ggml_build_forward_expand(gf, cur);
 | |
| 
 | |
|         return gf;
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph * build_orion() {
 | |
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 | |
| 
 | |
|         const int64_t n_embd_head = hparams.n_embd_head_v;
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_rot);
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
|         struct ggml_tensor * inpL;
 | |
| 
 | |
|         inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
 | |
| 
 | |
|         // inp_pos - contains the positions
 | |
|         struct ggml_tensor * inp_pos = build_inp_pos();
 | |
| 
 | |
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
 | |
|         struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
 | |
| 
 | |
|         for (int il = 0; il < n_layer; ++il) {
 | |
|             struct ggml_tensor * inpSA = inpL;
 | |
| 
 | |
|             // norm
 | |
|             cur = llm_build_norm(ctx0, inpL, hparams,
 | |
|                     model.layers[il].attn_norm, model.layers[il].attn_norm_b,
 | |
|                     LLM_NORM, cb, il);
 | |
|             cb(cur, "attn_norm", il);
 | |
| 
 | |
|             // self-attention
 | |
|             {
 | |
|                 // compute Q and K and RoPE them
 | |
|                 struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
 | |
|                 cb(Qcur, "Qcur", il);
 | |
|                 // if (model.layers[il].bq) {
 | |
|                 //     Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
 | |
|                 //     cb(Qcur, "Qcur", il);
 | |
|                 // }
 | |
| 
 | |
|                 struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
|                 // if (model.layers[il].bk) {
 | |
|                 //     Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
 | |
|                 //     cb(Kcur, "Kcur", il);
 | |
|                 // }
 | |
| 
 | |
|                 struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
 | |
|                 cb(Vcur, "Vcur", il);
 | |
|                 // if (model.layers[il].bv) {
 | |
|                 //     Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
 | |
|                 //     cb(Vcur, "Vcur", il);
 | |
|                 // }
 | |
| 
 | |
|                 Qcur = ggml_rope_custom(
 | |
|                     ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens), inp_pos,
 | |
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                     ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 Kcur = ggml_rope_custom(
 | |
|                     ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
 | |
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                     ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
 | |
|                         model.layers[il].wo, NULL,
 | |
|                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
 | |
|             }
 | |
| 
 | |
|             if (il == n_layer - 1) {
 | |
|                 // skip computing output for unused tokens
 | |
|                 struct ggml_tensor * inp_out_ids = build_inp_out_ids();
 | |
|                 cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
 | |
|                 inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
 | |
|             }
 | |
| 
 | |
|             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
 | |
|             cb(ffn_inp, "ffn_inp", il);
 | |
| 
 | |
|             // feed-forward network
 | |
|             cur = llm_build_norm(ctx0, ffn_inp, hparams,
 | |
|                     model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
 | |
|                     LLM_NORM, cb, il);
 | |
|             cb(cur, "ffn_norm", il);
 | |
| 
 | |
|             cur = llm_build_ffn(ctx0, cur,
 | |
|                     model.layers[il].ffn_up,   NULL,
 | |
|                     model.layers[il].ffn_gate, NULL,
 | |
|                     model.layers[il].ffn_down, NULL,
 | |
|                     NULL,
 | |
|                     LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
 | |
|             cb(cur, "ffn_out", il);
 | |
| 
 | |
|             cur = ggml_add(ctx0, cur, ffn_inp);
 | |
|             cb(cur, "l_out", il);
 | |
| 
 | |
|             // input for next layer
 | |
|             inpL = cur;
 | |
|         }
 | |
| 
 | |
|         cur = inpL;
 | |
| 
 | |
|         cur = llm_build_norm(ctx0, cur, hparams,
 | |
|                 model.output_norm, model.output_norm_b,
 | |
|                 LLM_NORM, cb, -1);
 | |
|         cb(cur, "result_norm", -1);
 | |
| 
 | |
|         // lm_head
 | |
|         cur = ggml_mul_mat(ctx0, model.output, cur);
 | |
|         cb(cur, "result_output", -1);
 | |
| 
 | |
|         ggml_build_forward_expand(gf, cur);
 | |
| 
 | |
|         return gf;
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph * build_internlm2() {
 | |
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 | |
| 
 | |
|         const int64_t n_embd_head = hparams.n_embd_head_v;
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_rot);
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
|         struct ggml_tensor * inpL;
 | |
| 
 | |
|         inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
 | |
| 
 | |
|         // inp_pos - contains the positions
 | |
|         struct ggml_tensor * inp_pos = build_inp_pos();
 | |
| 
 | |
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
 | |
|         struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
 | |
| 
 | |
|         for (int il = 0; il < n_layer; ++il) {
 | |
|             struct ggml_tensor * inpSA = inpL;
 | |
| 
 | |
|             // norm
 | |
|             cur = llm_build_norm(ctx0, inpL, hparams,
 | |
|                     model.layers[il].attn_norm, NULL,
 | |
|                     LLM_NORM_RMS, cb, il);
 | |
|             cb(cur, "attn_norm", il);
 | |
| 
 | |
|             // self-attention
 | |
|             {
 | |
|                 // compute Q and K and RoPE them
 | |
|                 struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
 | |
|                 cb(Qcur, "Qcur", il);
 | |
|                 if (model.layers[il].bq) {
 | |
|                     Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
 | |
|                     cb(Qcur, "Qcur", il);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
|                 if (model.layers[il].bk) {
 | |
|                     Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
 | |
|                     cb(Kcur, "Kcur", il);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
 | |
|                 cb(Vcur, "Vcur", il);
 | |
|                 if (model.layers[il].bv) {
 | |
|                     Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
 | |
|                     cb(Vcur, "Vcur", il);
 | |
|                 }
 | |
| 
 | |
|                 Qcur = ggml_rope_custom(
 | |
|                     ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens), inp_pos,
 | |
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                     ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 Kcur = ggml_rope_custom(
 | |
|                     ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
 | |
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                     ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
 | |
|                         model.layers[il].wo, model.layers[il].bo,
 | |
|                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
 | |
|             }
 | |
| 
 | |
|             if (il == n_layer - 1) {
 | |
|                 // skip computing output for unused tokens
 | |
|                 struct ggml_tensor * inp_out_ids = build_inp_out_ids();
 | |
|                 cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
 | |
|                 inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
 | |
|             }
 | |
| 
 | |
|             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
 | |
|             cb(ffn_inp, "ffn_inp", il);
 | |
| 
 | |
|             // feed-forward network
 | |
|             cur = llm_build_norm(ctx0, ffn_inp, hparams,
 | |
|                     model.layers[il].ffn_norm, NULL,
 | |
|                     LLM_NORM_RMS, cb, il);
 | |
|             cb(cur, "ffn_norm", il);
 | |
| 
 | |
|             cur = llm_build_ffn(ctx0, cur,
 | |
|                     model.layers[il].ffn_up,   NULL,
 | |
|                     model.layers[il].ffn_gate, NULL,
 | |
|                     model.layers[il].ffn_down, NULL,
 | |
|                     NULL,
 | |
|                     LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
 | |
|             cb(cur, "ffn_out", il);
 | |
| 
 | |
|             cur = ggml_add(ctx0, cur, ffn_inp);
 | |
|             cb(cur, "l_out", il);
 | |
| 
 | |
|             // input for next layer
 | |
|             inpL = cur;
 | |
|         }
 | |
| 
 | |
|         cur = inpL;
 | |
| 
 | |
|         cur = llm_build_norm(ctx0, cur, hparams,
 | |
|                 model.output_norm, NULL,
 | |
|                 LLM_NORM_RMS, cb, -1);
 | |
|         cb(cur, "result_norm", -1);
 | |
| 
 | |
|         // lm_head
 | |
|         cur = ggml_mul_mat(ctx0, model.output, cur);
 | |
|         cb(cur, "result_output", -1);
 | |
| 
 | |
|         ggml_build_forward_expand(gf, cur);
 | |
| 
 | |
|         return gf;
 | |
|     }
 | |
| 
 | |
|     // ref: https://arxiv.org/abs/2203.03466
 | |
|     //      https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
 | |
|     // based on the original build_llama() function
 | |
|     struct ggml_cgraph * build_minicpm() {
 | |
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 | |
| 
 | |
|         const int64_t n_embd_head = hparams.n_embd_head_v;
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_rot);
 | |
| 
 | |
|         const int64_t n_embd = hparams.n_embd;
 | |
|         //TODO: if the model varies, these parameters need to be read from the model
 | |
|         const int64_t n_embd_base = 256;
 | |
|         const float scale_embd  = 12.0f;
 | |
|         const float scale_depth = 1.4f;
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
|         struct ggml_tensor * inpL;
 | |
| 
 | |
|         inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
 | |
| 
 | |
|         // scale the input embeddings
 | |
|         inpL = ggml_scale(ctx0, inpL, scale_embd);
 | |
|         cb(inpL, "inp_scaled", -1);
 | |
| 
 | |
|         // inp_pos - contains the positions
 | |
|         struct ggml_tensor * inp_pos = build_inp_pos();
 | |
| 
 | |
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
 | |
|         struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
 | |
| 
 | |
|         for (int il = 0; il < n_layer; ++il) {
 | |
|             struct ggml_tensor * inpSA = inpL;
 | |
| 
 | |
|             // norm
 | |
|             cur = llm_build_norm(ctx0, inpL, hparams,
 | |
|                     model.layers[il].attn_norm, NULL,
 | |
|                     LLM_NORM_RMS, cb, il);
 | |
|             cb(cur, "attn_norm", il);
 | |
| 
 | |
|             // self-attention
 | |
|             {
 | |
|                 // compute Q and K and RoPE them
 | |
|                 struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
 | |
|                 cb(Qcur, "Qcur", il);
 | |
|                 if (model.layers[il].bq) {
 | |
|                     Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
 | |
|                     cb(Qcur, "Qcur", il);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
|                 if (model.layers[il].bk) {
 | |
|                     Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
 | |
|                     cb(Kcur, "Kcur", il);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
 | |
|                 cb(Vcur, "Vcur", il);
 | |
|                 if (model.layers[il].bv) {
 | |
|                     Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
 | |
|                     cb(Vcur, "Vcur", il);
 | |
|                 }
 | |
| 
 | |
|                 Qcur = ggml_rope_custom(
 | |
|                     ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens), inp_pos,
 | |
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                     ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 Kcur = ggml_rope_custom(
 | |
|                     ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
 | |
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                     ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
 | |
|                         model.layers[il].wo, model.layers[il].bo,
 | |
|                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
 | |
|             }
 | |
| 
 | |
|             if (il == n_layer - 1) {
 | |
|                 // skip computing output for unused tokens
 | |
|                 struct ggml_tensor * inp_out_ids = build_inp_out_ids();
 | |
|                 cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
 | |
|                 inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
 | |
|             }
 | |
| 
 | |
|             // scale_res - scale the hidden states for residual connection
 | |
|             const float scale_res = scale_depth/sqrtf(float(n_layer));
 | |
|             cur = ggml_scale(ctx0, cur, scale_res);
 | |
|             cb(cur, "hidden_scaled", -1);
 | |
| 
 | |
|             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
 | |
|             cb(ffn_inp, "ffn_inp", il);
 | |
| 
 | |
|             // feed-forward network
 | |
|             {
 | |
|                 cur = llm_build_norm(ctx0, ffn_inp, hparams,
 | |
|                         model.layers[il].ffn_norm, NULL,
 | |
|                         LLM_NORM_RMS, cb, il);
 | |
|                 cb(cur, "ffn_norm", il);
 | |
| 
 | |
|                 cur = llm_build_ffn(ctx0, cur,
 | |
|                         model.layers[il].ffn_up,   NULL,
 | |
|                         model.layers[il].ffn_gate, NULL,
 | |
|                         model.layers[il].ffn_down, NULL,
 | |
|                         NULL,
 | |
|                         LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
 | |
|                 cb(cur, "ffn_out", il);
 | |
|             }
 | |
| 
 | |
|             // scale the hidden states for residual connection
 | |
|             cur = ggml_scale(ctx0, cur, scale_res);
 | |
|             cb(cur, "hidden_scaled_ffn", -1);
 | |
| 
 | |
|             cur = ggml_add(ctx0, cur, ffn_inp);
 | |
|             cb(cur, "l_out", il);
 | |
| 
 | |
|             // input for next layer
 | |
|             inpL = cur;
 | |
|         }
 | |
| 
 | |
|         cur = inpL;
 | |
| 
 | |
|         cur = llm_build_norm(ctx0, cur, hparams,
 | |
|                 model.output_norm, NULL,
 | |
|                 LLM_NORM_RMS, cb, -1);
 | |
|         cb(cur, "result_norm", -1);
 | |
| 
 | |
|         // lm_head scaling
 | |
|         const float scale_lmhead = float(n_embd_base)/float(n_embd);
 | |
|         cur = ggml_scale(ctx0, cur, scale_lmhead);
 | |
|         cb(cur, "lmhead_scaling", -1);
 | |
| 
 | |
|         // lm_head
 | |
|         cur = ggml_mul_mat(ctx0, model.tok_embd, cur);
 | |
|         cb(cur, "result_output", -1);
 | |
| 
 | |
|         ggml_build_forward_expand(gf, cur);
 | |
| 
 | |
|         return gf;
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph * build_gemma() {
 | |
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 | |
| 
 | |
|         const int64_t n_embd_head_k = hparams.n_embd_head_k;
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
|         struct ggml_tensor * inpL;
 | |
| 
 | |
|         inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
 | |
| 
 | |
|         inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
 | |
|         cb(inpL, "inp_scaled", -1);
 | |
| 
 | |
|         // inp_pos - contains the positions
 | |
|         struct ggml_tensor * inp_pos = build_inp_pos();
 | |
| 
 | |
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
 | |
|         struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
 | |
| 
 | |
|         for (int il = 0; il < n_layer; ++il) {
 | |
|             // norm
 | |
|             cur = llm_build_norm(ctx0, inpL, hparams,
 | |
|                     model.layers[il].attn_norm, NULL,
 | |
|                     LLM_NORM_RMS, cb, il);
 | |
|             cb(cur, "attn_norm", il);
 | |
| 
 | |
|             // self-attention
 | |
|             {
 | |
|                 // compute Q and K and RoPE them
 | |
|                 struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                 struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
 | |
|                 cb(Vcur, "Vcur", il);
 | |
| 
 | |
|                 Qcur = ggml_rope_custom(
 | |
|                         ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head,    n_tokens), inp_pos,
 | |
|                         n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                         ext_factor, attn_factor, beta_fast, beta_slow);
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
 | |
|                 cb(Qcur, "Qcur_scaled", il);
 | |
| 
 | |
|                 Kcur = ggml_rope_custom(
 | |
|                         ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos,
 | |
|                         n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                         ext_factor, attn_factor, beta_fast, beta_slow);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
 | |
|                         model.layers[il].wo, NULL,
 | |
|                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
 | |
|             }
 | |
| 
 | |
|             if (il == n_layer - 1) {
 | |
|                 // skip computing output for unused tokens
 | |
|                 struct ggml_tensor * inp_out_ids = build_inp_out_ids();
 | |
|                 cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
 | |
|                 inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
 | |
|             }
 | |
| 
 | |
|             struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
 | |
|             cb(sa_out, "sa_out", il);
 | |
| 
 | |
|             cur = llm_build_norm(ctx0, sa_out, hparams,
 | |
|                     model.layers[il].ffn_norm, NULL,
 | |
|                     LLM_NORM_RMS, cb, il);
 | |
|             cb(cur, "ffn_norm", il);
 | |
| 
 | |
|             // feed-forward network
 | |
|             {
 | |
|                 cur = llm_build_ffn(ctx0, cur,
 | |
|                         model.layers[il].ffn_up, NULL,
 | |
|                         model.layers[il].ffn_gate, NULL,
 | |
|                         model.layers[il].ffn_down, NULL,
 | |
|                         NULL,
 | |
|                         LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
 | |
|                 cb(cur, "ffn_out", il);
 | |
|             }
 | |
| 
 | |
|             cur = ggml_add(ctx0, cur, sa_out);
 | |
|             cb(cur, "l_out", il);
 | |
| 
 | |
|             // input for next layer
 | |
|             inpL = cur;
 | |
|         }
 | |
| 
 | |
|         cur = inpL;
 | |
| 
 | |
|         cur = llm_build_norm(ctx0, cur, hparams,
 | |
|                 model.output_norm, NULL,
 | |
|                 LLM_NORM_RMS, cb, -1);
 | |
|         cb(cur, "result_norm", -1);
 | |
| 
 | |
|         // lm_head
 | |
|         cur = ggml_mul_mat(ctx0, model.output, cur);
 | |
|         cb(cur, "result_output", -1);
 | |
| 
 | |
|         ggml_build_forward_expand(gf, cur);
 | |
| 
 | |
|         return gf;
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph * build_starcoder2() {
 | |
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 | |
| 
 | |
|         const int64_t n_embd_head = hparams.n_embd_head_v;
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_rot);
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
|         struct ggml_tensor * inpL;
 | |
| 
 | |
|         inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
 | |
| 
 | |
|         // inp_pos - contains the positions
 | |
|         struct ggml_tensor * inp_pos = build_inp_pos();
 | |
| 
 | |
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
 | |
|         struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
 | |
| 
 | |
|         for (int il = 0; il < n_layer; ++il) {
 | |
|             struct ggml_tensor * inpSA = inpL;
 | |
| 
 | |
|             // norm
 | |
|             cur = llm_build_norm(ctx0, inpL, hparams,
 | |
|                     model.layers[il].attn_norm, model.layers[il].attn_norm_b,
 | |
|                     LLM_NORM, cb, il);
 | |
|             cb(cur, "attn_norm", il);
 | |
| 
 | |
|             // self-attention
 | |
|             {
 | |
|                 // compute Q and K and RoPE them
 | |
|                 struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
 | |
|                 cb(Qcur, "Qcur", il);
 | |
|                 if (model.layers[il].bq) {
 | |
|                     Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
 | |
|                     cb(Qcur, "Qcur", il);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
|                 if (model.layers[il].bk) {
 | |
|                     Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
 | |
|                     cb(Kcur, "Kcur", il);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
 | |
|                 cb(Vcur, "Vcur", il);
 | |
|                 if (model.layers[il].bv) {
 | |
|                     Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
 | |
|                     cb(Vcur, "Vcur", il);
 | |
|                 }
 | |
| 
 | |
|                 Qcur = ggml_rope_custom(
 | |
|                     ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
 | |
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                     ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 Kcur = ggml_rope_custom(
 | |
|                     ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
 | |
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                     ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
 | |
|                         model.layers[il].wo, model.layers[il].bo,
 | |
|                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
 | |
|             }
 | |
| 
 | |
|             if (il == n_layer - 1) {
 | |
|                 // skip computing output for unused tokens
 | |
|                 struct ggml_tensor * inp_out_ids = build_inp_out_ids();
 | |
|                 cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
 | |
|                 inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
 | |
|             }
 | |
| 
 | |
|             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
 | |
|             cb(ffn_inp, "ffn_inp", il);
 | |
| 
 | |
|             // feed-forward network
 | |
| 
 | |
|             cur = llm_build_norm(ctx0, ffn_inp, hparams,
 | |
|                     model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
 | |
|                     LLM_NORM, cb, il);
 | |
|             cb(cur, "ffn_norm", il);
 | |
| 
 | |
|             cur = llm_build_ffn(ctx0, cur,
 | |
|                         model.layers[il].ffn_up,   model.layers[il].ffn_up_b,
 | |
|                         NULL,                      NULL,
 | |
|                         model.layers[il].ffn_down, model.layers[il].ffn_down_b,
 | |
|                         NULL,
 | |
|                         LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
 | |
|             cb(cur, "ffn_out", il);
 | |
|             cur = ggml_add(ctx0, cur, ffn_inp);
 | |
|             cb(cur, "l_out", il);
 | |
| 
 | |
|             // input for next layer
 | |
|             inpL = cur;
 | |
|         }
 | |
| 
 | |
|         cur = inpL;
 | |
| 
 | |
|         cur = llm_build_norm(ctx0, cur, hparams,
 | |
|                 model.output_norm, model.output_norm_b,
 | |
|                 LLM_NORM, cb, -1);
 | |
|         cb(cur, "result_norm", -1);
 | |
| 
 | |
|         // lm_head
 | |
|         cur = ggml_mul_mat(ctx0, model.output, cur);
 | |
|         cb(cur, "result_output", -1);
 | |
| 
 | |
|         ggml_build_forward_expand(gf, cur);
 | |
| 
 | |
|         return gf;
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph * build_mamba() {
 | |
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 | |
| 
 | |
|         const int64_t d_model = n_embd;
 | |
|         const int64_t d_conv  = hparams.ssm_d_conv;
 | |
|         const int64_t d_inner = hparams.ssm_d_inner;
 | |
|         GGML_ASSERT(2 * d_model == d_inner);
 | |
|         const int64_t d_state = hparams.ssm_d_state;
 | |
|         const int64_t dt_rank = hparams.ssm_dt_rank;
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
|         struct ggml_tensor * inpL;
 | |
| 
 | |
|         // {n_embd, n_tokens}
 | |
|         inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
 | |
| 
 | |
|         struct ggml_tensor * state_mask = build_inp_s_mask();
 | |
|         struct ggml_tensor * state_seq  = build_inp_s_seq();
 | |
| 
 | |
|         for (int il = 0; il < n_layer; ++il) {
 | |
|             // (ab)using the KV cache to store the states
 | |
|             struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
 | |
|             struct ggml_tensor * ssm_states  = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
 | |
| 
 | |
|             // clear states of sequences which are starting at the beginning of this batch
 | |
|             {
 | |
|                 conv_states = ggml_mul(ctx0,
 | |
|                     ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
 | |
|                     state_mask);
 | |
|                 ssm_states  = ggml_mul(ctx0,
 | |
|                     ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]),
 | |
|                     state_mask);
 | |
|             }
 | |
| 
 | |
|             conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
 | |
|             ssm_states  = ggml_reshape_3d(ctx0,  ssm_states,    d_state, d_inner, n_kv);
 | |
| 
 | |
|             // norm
 | |
|             cur = llm_build_norm(ctx0, inpL, hparams,
 | |
|                     model.layers[il].attn_norm, NULL,
 | |
|                     LLM_NORM_RMS, cb, il);
 | |
|             cb(cur, "attn_norm", il);
 | |
| 
 | |
|             // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
 | |
|             struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur);
 | |
|             // split the above in two
 | |
|             // => {d_inner, n_tokens}
 | |
|             struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
 | |
|             struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
 | |
| 
 | |
|             // conv
 | |
|             {
 | |
|                 // Custom operator which is needed only to ease simultaneous sequence processing.
 | |
|                 // For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
 | |
|                 // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
 | |
|                 // then element-wise multiply that with the conv1d weigth,
 | |
|                 // then sum the elements of each row,
 | |
|                 // (the last two steps are a dot product over rows (also doable with mul_mat))
 | |
|                 // then permute away the ne[0] dimension,
 | |
|                 // and then you're left with the resulting x tensor.
 | |
|                 // The new conv_states is the last (d_conv - 1) columns
 | |
|                 // of the last 3rd dimensional "layer" of the self-overlapping view.
 | |
|                 // For simultaneous sequences, it's more complicated.
 | |
|                 struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
 | |
| 
 | |
|                 // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
 | |
|                 ggml_build_forward_expand(gf,
 | |
|                     ggml_cpy(ctx0,
 | |
|                         ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
 | |
|                         ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
 | |
| 
 | |
|                 // extract x from x_conv
 | |
|                 x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
 | |
| 
 | |
|                 // bias
 | |
|                 x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
 | |
| 
 | |
|                 x = ggml_silu(ctx0, x);
 | |
|             }
 | |
| 
 | |
|             // ssm
 | |
|             {
 | |
|                 // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
 | |
|                 struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
 | |
|                 // split
 | |
|                 struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
 | |
|                 struct ggml_tensor * B  = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
 | |
|                 struct ggml_tensor * C  = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
 | |
| 
 | |
|                 // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
 | |
|                 dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
 | |
|                 dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
 | |
| 
 | |
|                 // Custom operator to optimize the parallel associative scan
 | |
|                 // as described in the Annex D of the Mamba paper.
 | |
|                 // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
 | |
|                 // because only a single tensor can be returned.
 | |
|                 struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
 | |
| 
 | |
|                 // store last states (the second part of y_ssm_states)
 | |
|                 ggml_build_forward_expand(gf,
 | |
|                     ggml_cpy(ctx0,
 | |
|                         ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
 | |
|                         ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states))));
 | |
| 
 | |
|                 struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
 | |
| 
 | |
|                 if (il == n_layer - 1) {
 | |
|                     // skip computing output for unused tokens
 | |
|                     struct ggml_tensor * inp_out_ids = build_inp_out_ids();
 | |
|                     x    = ggml_get_rows(ctx0,    x, inp_out_ids);
 | |
|                     y    = ggml_get_rows(ctx0,    y, inp_out_ids);
 | |
|                     z    = ggml_get_rows(ctx0,    z, inp_out_ids);
 | |
|                     inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
 | |
|                 }
 | |
| 
 | |
|                 // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
 | |
|                 y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
 | |
|                 y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
 | |
| 
 | |
|                 // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
 | |
|                 cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
 | |
|             }
 | |
| 
 | |
|             // residual
 | |
|             cur = ggml_add(ctx0, cur, inpL);
 | |
|             cb(cur, "l_out", il);
 | |
| 
 | |
|             // input for next layer
 | |
|             inpL = cur;
 | |
|         }
 | |
| 
 | |
|         // final rmsnorm
 | |
|         cur = llm_build_norm(ctx0, inpL, hparams,
 | |
|                 model.output_norm, NULL,
 | |
|                 LLM_NORM_RMS, cb, -1);
 | |
|         cb(cur, "result_norm", -1);
 | |
| 
 | |
|         // lm_head
 | |
|         cur = ggml_mul_mat(ctx0, model.output, cur);
 | |
|         cb(cur, "result_output", -1);
 | |
| 
 | |
|         ggml_build_forward_expand(gf, cur);
 | |
| 
 | |
|         return gf;
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph * build_command_r() {
 | |
| 
 | |
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 | |
| 
 | |
|         const int64_t n_embd_head = hparams.n_embd_head_v;
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
 | |
|         const float f_logit_scale = hparams.f_logit_scale;
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
|         struct ggml_tensor * inpL;
 | |
| 
 | |
|         inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
 | |
| 
 | |
|         // inp_pos - contains the positions
 | |
|         struct ggml_tensor * inp_pos = build_inp_pos();
 | |
| 
 | |
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
 | |
|         struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
 | |
| 
 | |
|         for (int il = 0; il < n_layer; ++il) {
 | |
| 
 | |
|             // norm
 | |
|             cur = llm_build_norm(ctx0, inpL, hparams,
 | |
|                     model.layers[il].attn_norm, NULL,
 | |
|                     LLM_NORM, cb, il);
 | |
|             cb(cur, "attn_norm", il);
 | |
|             struct ggml_tensor * ffn_inp = cur;
 | |
| 
 | |
|             // self-attention
 | |
|             {
 | |
|                 // compute Q and K and RoPE them
 | |
|                 struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
 | |
|                 cb(Qcur, "Qcur", il);
 | |
|                 if (model.layers[il].bq) {
 | |
|                     Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
 | |
|                     cb(Qcur, "Qcur", il);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
|                 if (model.layers[il].bk) {
 | |
|                     Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
 | |
|                     cb(Kcur, "Kcur", il);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
 | |
|                 cb(Vcur, "Vcur", il);
 | |
|                 if (model.layers[il].bv) {
 | |
|                     Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
 | |
|                     cb(Vcur, "Vcur", il);
 | |
|                 }
 | |
| 
 | |
|                 if (model.layers[il].attn_q_norm) {
 | |
|                     Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
 | |
|                                 ggml_element_size(Qcur) * n_embd_head,
 | |
|                                 ggml_element_size(Qcur) * n_embd_head * n_head,
 | |
|                                 0);
 | |
|                     cb(Qcur, "Qcur", il);
 | |
|                     Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
 | |
|                                 ggml_element_size(Kcur) * n_embd_head,
 | |
|                                 ggml_element_size(Kcur) * n_embd_head * n_head_kv,
 | |
|                                 0);
 | |
|                     cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                     Qcur = llm_build_norm(ctx0, Qcur, hparams,
 | |
|                                 model.layers[il].attn_q_norm,
 | |
|                                 NULL,
 | |
|                                 LLM_NORM, cb, il);
 | |
|                     cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                     Kcur = llm_build_norm(ctx0, Kcur, hparams,
 | |
|                             model.layers[il].attn_k_norm,
 | |
|                             NULL,
 | |
|                             LLM_NORM, cb, il);
 | |
|                     cb(Kcur, "Kcur", il);
 | |
|                 }
 | |
| 
 | |
|                 Qcur = ggml_rope_custom(
 | |
|                     ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
 | |
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                     ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 Kcur = ggml_rope_custom(
 | |
|                     ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
 | |
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                     ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
 | |
|                         model.layers[il].wo, model.layers[il].bo,
 | |
|                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
 | |
|             }
 | |
| 
 | |
|             if (il == n_layer - 1) {
 | |
|                 // skip computing output for unused tokens
 | |
|                 struct ggml_tensor * inp_out_ids = build_inp_out_ids();
 | |
|                 cur     = ggml_get_rows(ctx0,     cur, inp_out_ids);
 | |
|                 inpL    = ggml_get_rows(ctx0,    inpL, inp_out_ids);
 | |
|                 ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
 | |
|             }
 | |
| 
 | |
|             struct ggml_tensor * attn_out = cur;
 | |
| 
 | |
|             // feed-forward network
 | |
|             {
 | |
|                 cur = llm_build_ffn(ctx0, ffn_inp,
 | |
|                         model.layers[il].ffn_up,   NULL,
 | |
|                         model.layers[il].ffn_gate, NULL,
 | |
|                         model.layers[il].ffn_down, NULL,
 | |
|                         NULL,
 | |
|                         LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
 | |
|                 cb(cur, "ffn_out", il);
 | |
|             }
 | |
| 
 | |
|             // add together residual + FFN + self-attention
 | |
|             cur = ggml_add(ctx0, cur, inpL);
 | |
|             cur = ggml_add(ctx0, cur, attn_out);
 | |
|             cb(cur, "l_out", il);
 | |
| 
 | |
|             // input for next layer
 | |
|             inpL = cur;
 | |
|         }
 | |
| 
 | |
|         cur = inpL;
 | |
| 
 | |
|         cur = llm_build_norm(ctx0, cur, hparams,
 | |
|                 model.output_norm, NULL,
 | |
|                 LLM_NORM, cb, -1);
 | |
|         cb(cur, "result_norm", -1);
 | |
| 
 | |
|         // lm_head
 | |
|         cur = ggml_mul_mat(ctx0, model.output, cur);
 | |
| 
 | |
|         if (f_logit_scale) {
 | |
|             cur = ggml_scale(ctx0, cur, f_logit_scale);
 | |
|         }
 | |
| 
 | |
|         cb(cur, "result_output", -1);
 | |
| 
 | |
|         ggml_build_forward_expand(gf, cur);
 | |
| 
 | |
|         return gf;
 | |
| 
 | |
|     }
 | |
| 
 | |
|     // ref: https://allenai.org/olmo
 | |
|     // based on the original build_llama() function, changes:
 | |
|     //   * non-parametric layer norm
 | |
|     //   * clamp qkv
 | |
|     //   * removed bias
 | |
|     //   * removed MoE
 | |
|     struct ggml_cgraph * build_olmo() {
 | |
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
 | |
| 
 | |
|         // mutable variable, needed during the last layer of the computation to skip unused tokens
 | |
|         int32_t n_tokens = this->n_tokens;
 | |
| 
 | |
|         const int64_t n_embd_head = hparams.n_embd_head_v;
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
 | |
|         GGML_ASSERT(n_embd_head == hparams.n_rot);
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
|         struct ggml_tensor * inpL;
 | |
| 
 | |
|         inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
 | |
| 
 | |
|         // inp_pos - contains the positions
 | |
|         struct ggml_tensor * inp_pos = build_inp_pos();
 | |
| 
 | |
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
 | |
|         struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
 | |
| 
 | |
|         for (int il = 0; il < n_layer; ++il) {
 | |
|             struct ggml_tensor * inpSA = inpL;
 | |
| 
 | |
|             // norm
 | |
|             cur = llm_build_norm(ctx0, inpL, hparams,
 | |
|                     NULL, NULL,
 | |
|                     LLM_NORM, cb, il);
 | |
|             cb(cur, "attn_norm", il);
 | |
| 
 | |
|             // self-attention
 | |
|             {
 | |
|                 // compute Q and K and RoPE them
 | |
|                 struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
 | |
|                 cb(Qcur, "Qcur", il);
 | |
|                 if (hparams.f_clamp_kqv > 0.0f) {
 | |
|                     Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
 | |
|                     cb(Qcur, "Qcur", il);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
 | |
|                 cb(Kcur, "Kcur", il);
 | |
|                 if (hparams.f_clamp_kqv > 0.0f) {
 | |
|                     Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
 | |
|                     cb(Kcur, "Kcur", il);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
 | |
|                 cb(Vcur, "Vcur", il);
 | |
|                 if (hparams.f_clamp_kqv > 0.0f) {
 | |
|                     Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
 | |
|                     cb(Vcur, "Vcur", il);
 | |
|                 }
 | |
| 
 | |
|                 Qcur = ggml_rope_custom(
 | |
|                     ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
 | |
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                     ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Qcur, "Qcur", il);
 | |
| 
 | |
|                 Kcur = ggml_rope_custom(
 | |
|                     ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
 | |
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
 | |
|                     ext_factor, attn_factor, beta_fast, beta_slow
 | |
|                 );
 | |
|                 cb(Kcur, "Kcur", il);
 | |
| 
 | |
|                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
 | |
|                         model.layers[il].wo, nullptr,
 | |
|                         Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
 | |
|             }
 | |
| 
 | |
|             if (il == n_layer - 1) {
 | |
|                 // skip computing output for unused tokens
 | |
|                 struct ggml_tensor * inp_out_ids = build_inp_out_ids();
 | |
|                 n_tokens = n_outputs;
 | |
|                 cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
 | |
|                 inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
 | |
|             }
 | |
| 
 | |
|             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
 | |
|             cb(ffn_inp, "ffn_inp", il);
 | |
| 
 | |
|             // feed-forward network
 | |
|             cur = llm_build_norm(ctx0, ffn_inp, hparams,
 | |
|                     NULL, NULL,
 | |
|                     LLM_NORM, cb, il);
 | |
|             cb(cur, "ffn_norm", il);
 | |
| 
 | |
|             cur = llm_build_ffn(ctx0, cur,
 | |
|                     model.layers[il].ffn_up,   NULL,
 | |
|                     model.layers[il].ffn_gate, NULL,
 | |
|                     model.layers[il].ffn_down, NULL,
 | |
|                     NULL,
 | |
|                     LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
 | |
|             cb(cur, "ffn_out", il);
 | |
| 
 | |
|             cur = ggml_add(ctx0, cur, ffn_inp);
 | |
|             cb(cur, "ffn_out", il);
 | |
| 
 | |
|             ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
 | |
|             if (layer_dir != nullptr) {
 | |
|                 cur = ggml_add(ctx0, cur, layer_dir);
 | |
|             }
 | |
|             cb(cur, "l_out", il);
 | |
| 
 | |
|             // input for next layer
 | |
|             inpL = cur;
 | |
|         }
 | |
| 
 | |
|         cur = inpL;
 | |
| 
 | |
|         cur = llm_build_norm(ctx0, cur, hparams,
 | |
|                 NULL, NULL,
 | |
|                 LLM_NORM, cb, -1);
 | |
|         cb(cur, "result_norm", -1);
 | |
| 
 | |
|         // lm_head
 | |
|         cur = ggml_mul_mat(ctx0, model.output, cur);
 | |
|         cb(cur, "result_output", -1);
 | |
| 
 | |
|         ggml_build_forward_expand(gf, cur);
 | |
| 
 | |
|         return gf;
 | |
|     }
 | |
| };
 | |
| 
 | |
| static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
 | |
|     llama_batch dummy;
 | |
|     dummy.n_tokens = 0;
 | |
| 
 | |
|     llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
 | |
| 
 | |
|     struct llm_build_context llm(lctx, dummy, cb, false);
 | |
| 
 | |
|     llm.init();
 | |
| 
 | |
|     struct ggml_cgraph * result = llm.build_defrag(ids);
 | |
| 
 | |
|     llm.free();
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
 | |
|     llama_batch dummy;
 | |
|     dummy.n_tokens = 0;
 | |
| 
 | |
|     llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
 | |
| 
 | |
|     struct llm_build_context llm(lctx, dummy, cb, false);
 | |
| 
 | |
|     llm.init();
 | |
| 
 | |
|     struct ggml_cgraph * result = llm.build_k_shift();
 | |
| 
 | |
|     llm.free();
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
 | |
|     llama_batch dummy;
 | |
|     dummy.n_tokens = 0;
 | |
| 
 | |
|     llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
 | |
| 
 | |
|     struct llm_build_context llm(lctx, dummy, cb, false);
 | |
| 
 | |
|     llm.init();
 | |
| 
 | |
|     struct ggml_cgraph * result = llm.build_s_copy();
 | |
| 
 | |
|     llm.free();
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static struct ggml_cgraph * llama_build_graph(
 | |
|          llama_context & lctx,
 | |
|      const llama_batch & batch,
 | |
|                   bool   worst_case) {
 | |
|     const auto & model = lctx.model;
 | |
| 
 | |
|     // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
 | |
|     llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
 | |
|         if (il >= 0) {
 | |
|             ggml_format_name(cur, "%s-%d", name, il);
 | |
|         } else {
 | |
|             ggml_set_name(cur, name);
 | |
|         }
 | |
| 
 | |
|         if (!lctx.cparams.offload_kqv) {
 | |
|             if (strcmp(name, "kqv_merged_cont") == 0) {
 | |
|                 // all nodes between the KV store and the attention output are run on the CPU
 | |
|                 ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
 | |
|         // FIXME: fix in ggml_backend_sched
 | |
|         const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
 | |
|         if (batch.n_tokens < 32 || full_offload) {
 | |
|             if (il != -1 && strcmp(name, "norm") == 0) {
 | |
|                 for (auto * backend : lctx.backends) {
 | |
|                     if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) {
 | |
|                         ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     struct ggml_cgraph * result = NULL;
 | |
| 
 | |
|     struct llm_build_context llm(lctx, batch, cb, worst_case);
 | |
| 
 | |
|     llm.init();
 | |
| 
 | |
|     switch (model.arch) {
 | |
|         case LLM_ARCH_LLAMA:
 | |
|             {
 | |
|                 result = llm.build_llama();
 | |
|             } break;
 | |
|         case LLM_ARCH_BAICHUAN:
 | |
|             {
 | |
|                 result = llm.build_baichuan();
 | |
|             } break;
 | |
|         case LLM_ARCH_FALCON:
 | |
|             {
 | |
|                 result = llm.build_falcon();
 | |
|             } break;
 | |
|         case LLM_ARCH_GROK:
 | |
|             {
 | |
|                 result = llm.build_grok();
 | |
|             } break;
 | |
|         case LLM_ARCH_STARCODER:
 | |
|             {
 | |
|                 result = llm.build_starcoder();
 | |
|             } break;
 | |
|         case LLM_ARCH_PERSIMMON:
 | |
|             {
 | |
|                 result = llm.build_persimmon();
 | |
|             } break;
 | |
|         case LLM_ARCH_REFACT:
 | |
|             {
 | |
|                 result = llm.build_refact();
 | |
|             } break;
 | |
|         case LLM_ARCH_BERT:
 | |
|         case LLM_ARCH_NOMIC_BERT:
 | |
|             {
 | |
|                 result = llm.build_bert();
 | |
|             } break;
 | |
|         case LLM_ARCH_BLOOM:
 | |
|             {
 | |
|                 result = llm.build_bloom();
 | |
|             } break;
 | |
|         case LLM_ARCH_MPT:
 | |
|             {
 | |
|                 result = llm.build_mpt();
 | |
|             } break;
 | |
|          case LLM_ARCH_STABLELM:
 | |
|             {
 | |
|                 result = llm.build_stablelm();
 | |
|             } break;
 | |
|         case LLM_ARCH_QWEN:
 | |
|             {
 | |
|                 result = llm.build_qwen();
 | |
|             } break;
 | |
|         case LLM_ARCH_QWEN2:
 | |
|             {
 | |
|                 result = llm.build_qwen2();
 | |
|             } break;
 | |
|         case LLM_ARCH_QWEN2MOE:
 | |
|             {
 | |
|                 result = llm.build_qwen2moe();
 | |
|             } break;
 | |
|         case LLM_ARCH_PHI2:
 | |
|             {
 | |
|                 result = llm.build_phi2();
 | |
|             } break;
 | |
|         case LLM_ARCH_PHI3:
 | |
|             {
 | |
|                 result = llm.build_phi3();
 | |
|             } break;
 | |
|         case LLM_ARCH_PLAMO:
 | |
|             {
 | |
|                 result = llm.build_plamo();
 | |
|             } break;
 | |
|         case LLM_ARCH_GPT2:
 | |
|             {
 | |
|                 result = llm.build_gpt2();
 | |
|             } break;
 | |
|         case LLM_ARCH_CODESHELL:
 | |
|             {
 | |
|                 result = llm.build_codeshell();
 | |
|             } break;
 | |
|         case LLM_ARCH_ORION:
 | |
|             {
 | |
|                 result = llm.build_orion();
 | |
|             } break;
 | |
|         case LLM_ARCH_INTERNLM2:
 | |
|             {
 | |
|                 result = llm.build_internlm2();
 | |
|             } break;
 | |
|         case LLM_ARCH_MINICPM:
 | |
|             {
 | |
|                 result = llm.build_minicpm();
 | |
|             } break;
 | |
|         case LLM_ARCH_GEMMA:
 | |
|             {
 | |
|                 result = llm.build_gemma();
 | |
|             } break;
 | |
|         case LLM_ARCH_STARCODER2:
 | |
|             {
 | |
|                 result = llm.build_starcoder2();
 | |
|             } break;
 | |
|         case LLM_ARCH_MAMBA:
 | |
|             {
 | |
|                 result = llm.build_mamba();
 | |
|             } break;
 | |
|         case LLM_ARCH_XVERSE:
 | |
|             {
 | |
|                 result = llm.build_xverse();
 | |
|             } break;
 | |
|         case LLM_ARCH_COMMAND_R:
 | |
|             {
 | |
|                 result = llm.build_command_r();
 | |
|             } break;
 | |
|         case LLM_ARCH_DBRX:
 | |
|             {
 | |
|                 result = llm.build_dbrx();
 | |
|             } break;
 | |
|         case LLM_ARCH_OLMO:
 | |
|             {
 | |
|                 result = llm.build_olmo();
 | |
|             } break;
 | |
|         default:
 | |
|             GGML_ASSERT(false);
 | |
|     }
 | |
| 
 | |
|     llm.free();
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static void llama_set_k_shift(llama_context & lctx) {
 | |
|     const int64_t kv_size = lctx.kv_self.size;
 | |
| 
 | |
|     assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
 | |
| 
 | |
|     int32_t * data = (int32_t *) lctx.inp_K_shift->data;
 | |
| 
 | |
|     for (int i = 0; i < kv_size; ++i) {
 | |
|         data[i] = lctx.kv_self.cells[i].delta;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void llama_set_s_copy(llama_context & lctx) {
 | |
|     const int64_t kv_size = lctx.kv_self.size;
 | |
| 
 | |
|     assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
 | |
| 
 | |
|     int32_t * data = (int32_t *) lctx.inp_s_copy->data;
 | |
| 
 | |
|     for (int i = 0; i < kv_size; ++i) {
 | |
|         data[i] = lctx.kv_self.cells[i].src;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
 | |
|     //
 | |
|     // set input data
 | |
|     //
 | |
| 
 | |
|     const auto & hparams = lctx.model.hparams;
 | |
|     const auto & cparams = lctx.cparams;
 | |
|     const auto & kv_self = lctx.kv_self;
 | |
| 
 | |
|     if (batch.token) {
 | |
|         const int64_t n_tokens = batch.n_tokens;
 | |
| 
 | |
|         ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
 | |
|     }
 | |
| 
 | |
|     if (batch.embd) {
 | |
|         const int64_t n_embd   = hparams.n_embd;
 | |
|         const int64_t n_tokens = batch.n_tokens;
 | |
| 
 | |
|         ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
 | |
|     }
 | |
| 
 | |
|     if (batch.pos && lctx.inp_pos) {
 | |
|         const int64_t n_tokens = batch.n_tokens;
 | |
| 
 | |
|         ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
 | |
|     }
 | |
| 
 | |
|     if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
 | |
|         GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
 | |
|         const int64_t n_tokens = batch.n_tokens;
 | |
| 
 | |
|         GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
 | |
|         int32_t * data = (int32_t *) lctx.inp_out_ids->data;
 | |
| 
 | |
|         if (lctx.n_outputs == n_tokens) {
 | |
|             for (int i = 0; i < n_tokens; ++i) {
 | |
|                 data[i] = i;
 | |
|             }
 | |
|         } else if (batch.logits) {
 | |
|             int32_t n_outputs = 0;
 | |
|             for (int i = 0; i < n_tokens; ++i) {
 | |
|                 if (batch.logits[i]) {
 | |
|                     data[n_outputs++] = i;
 | |
|                 }
 | |
|             }
 | |
|             // the graph needs to have been passed the correct number of outputs
 | |
|             GGML_ASSERT(lctx.n_outputs == n_outputs);
 | |
|         } else if (lctx.n_outputs == 1) {
 | |
|             // only keep last output
 | |
|             data[0] = n_tokens - 1;
 | |
|         } else {
 | |
|             GGML_ASSERT(lctx.n_outputs == 0);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     GGML_ASSERT(
 | |
|         // (!a || b) is a logical implication (a -> b)
 | |
|         // !hparams.causal_attn -> !cparams.causal_attn
 | |
|         (hparams.causal_attn || !cparams.causal_attn) &&
 | |
|         "causal attention with embedding models is not supported"
 | |
|     );
 | |
| 
 | |
|     if (lctx.inp_KQ_mask) {
 | |
|         // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
 | |
|         if (cparams.causal_attn) {
 | |
|             const int64_t n_kv     = kv_self.n;
 | |
|             const int64_t n_tokens = batch.n_tokens;
 | |
| 
 | |
|             GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
 | |
| 
 | |
|             float * data = (float *) lctx.inp_KQ_mask->data;
 | |
| 
 | |
|             // For causal attention, use only the previous KV cells
 | |
|             // of the correct sequence for each token of the batch.
 | |
|             // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
 | |
|             for (int h = 0; h < 1; ++h) {
 | |
|                 for (int j = 0; j < n_tokens; ++j) {
 | |
|                     const llama_pos    pos    = batch.pos[j];
 | |
|                     const llama_seq_id seq_id = batch.seq_id[j][0];
 | |
| 
 | |
|                     for (int i = 0; i < n_kv; ++i) {
 | |
|                         float f;
 | |
|                         if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
 | |
|                             f = -INFINITY;
 | |
|                         } else {
 | |
|                             f = 0.0f;
 | |
|                         }
 | |
|                         data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             // when using kv cache, the mask needs to match the kv cache size
 | |
|             const int64_t n_tokens = batch.n_tokens;
 | |
|             const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens;
 | |
| 
 | |
|             GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
 | |
| 
 | |
|             float * data = (float *) lctx.inp_KQ_mask->data;
 | |
| 
 | |
|             for (int h = 0; h < 1; ++h) {
 | |
|                 for (int j = 0; j < n_tokens; ++j) {
 | |
|                     const llama_seq_id seq_id = batch.seq_id[j][0];
 | |
| 
 | |
|                     for (int i = 0; i < n_tokens; ++i) {
 | |
|                         float f = -INFINITY;
 | |
|                         for (int s = 0; s < batch.n_seq_id[i]; ++s) {
 | |
|                             if (batch.seq_id[i][s] == seq_id) {
 | |
|                                 f = 0.0f;
 | |
|                                 break;
 | |
|                             }
 | |
|                         }
 | |
| 
 | |
|                         data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
 | |
|                     }
 | |
| 
 | |
|                     for (int i = n_tokens; i < n_stride; ++i) {
 | |
|                         data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (hparams.need_kq_pos) {
 | |
|         const int64_t n_kv = kv_self.n;
 | |
| 
 | |
|         GGML_ASSERT(lctx.inp_KQ_pos);
 | |
|         GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_pos->buffer));
 | |
| 
 | |
|         float * data = (float *) lctx.inp_KQ_pos->data;
 | |
| 
 | |
|         for (int i = 0; i < n_kv; ++i) {
 | |
|             data[i] = float(lctx.kv_self.cells[i].pos);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
 | |
|         const int64_t n_tokens = batch.n_tokens;
 | |
| 
 | |
|         GGML_ASSERT(lctx.inp_mean);
 | |
|         GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
 | |
| 
 | |
|         float * data = (float *) lctx.inp_mean->data;
 | |
|         memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
 | |
| 
 | |
|         std::vector<uint64_t> sum(n_tokens, 0);
 | |
|         for (int i = 0; i < n_tokens; ++i) {
 | |
|             const llama_seq_id seq_id = batch.seq_id[i][0];
 | |
| 
 | |
|             GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
 | |
| 
 | |
|             sum[seq_id] += 1;
 | |
|         }
 | |
| 
 | |
|         std::vector<float> div(n_tokens, 0.0f);
 | |
|         for (int i = 0; i < n_tokens; ++i) {
 | |
|             const uint64_t s = sum[i];
 | |
|             if (s > 0) {
 | |
|                 div[i] = 1.0f/float(s);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         for (int i = 0; i < n_tokens; ++i) {
 | |
|             const llama_seq_id seq_id = batch.seq_id[i][0];
 | |
|             data[seq_id*n_tokens + i] = div[seq_id];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
 | |
|         const int64_t n_tokens = batch.n_tokens;
 | |
| 
 | |
|         GGML_ASSERT(lctx.inp_cls);
 | |
|         GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
 | |
| 
 | |
|         uint32_t * data = (uint32_t *) lctx.inp_cls->data;
 | |
|         memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
 | |
| 
 | |
|         for (int i = 0; i < n_tokens; ++i) {
 | |
|             const llama_seq_id seq_id = batch.seq_id[i][0];
 | |
|             const llama_pos    pos    = batch.pos[i];
 | |
| 
 | |
|             GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
 | |
| 
 | |
|             if (pos == 0) {
 | |
|                 data[seq_id] = i;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (kv_self.recurrent) {
 | |
|         const int64_t n_kv = kv_self.n;
 | |
| 
 | |
|         if (lctx.inp_s_mask) {
 | |
|             GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
 | |
|             float * data = (float *) lctx.inp_s_mask->data;
 | |
| 
 | |
|             // states which are not affected by the current batch are left untouched
 | |
|             for (int i = 0; i < n_kv; ++i) {
 | |
|                 llama_seq_id    seq_id       = i + lctx.kv_self.head;
 | |
|                 llama_kv_cell & kv_cell      = lctx.kv_self.cells[seq_id];
 | |
|                 bool            has_self_seq = kv_cell.has_seq_id(seq_id);
 | |
| 
 | |
|                 data[i] = (float) has_self_seq;
 | |
| 
 | |
|                 // ensure current sequences will be kept
 | |
|                 if (!has_self_seq && kv_cell.pos >= 0) {
 | |
|                     kv_cell.seq_id.insert(seq_id);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         // For Mamba (and other recurrent architectures),
 | |
|         // update the correct state(s)/sequence(s) for each token of the batch.
 | |
|         // Like with the KQ_mask, if a token in the batch has multiple sequences,
 | |
|         // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv).
 | |
|         if (lctx.inp_s_seq) {
 | |
|             const int64_t n_tokens = batch.n_tokens;
 | |
| 
 | |
|             GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer));
 | |
|             int32_t * data = (int32_t *) lctx.inp_s_seq->data;
 | |
| 
 | |
|             for (int j = 0; j < n_tokens; ++j) {
 | |
|                 const int32_t n_seq = batch.n_seq_id[j];
 | |
|                 GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence
 | |
| 
 | |
|                 for (int i = 0; i < n_kv; ++i) {
 | |
|                     if (i < n_seq) {
 | |
|                         // for this type of model, the head is the minimum seq_id of the batch
 | |
|                         data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head;
 | |
|                     } else {
 | |
|                         data[j*n_kv + i] = -1;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Make sure enough space is available for outputs.
 | |
| // Returns max number of outputs for which space was reserved.
 | |
| static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
 | |
|     const auto & cparams = lctx.cparams;
 | |
|     const auto & hparams = lctx.model.hparams;
 | |
| 
 | |
|     const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
 | |
| 
 | |
|     const auto n_batch = cparams.n_batch;
 | |
|     const auto n_vocab = hparams.n_vocab;
 | |
|     const auto n_embd  = hparams.n_embd;
 | |
| 
 | |
|     // TODO: use a per-batch flag for logits presence instead
 | |
|     const bool has_logits = cparams.causal_attn;
 | |
|     const bool has_embd   = cparams.embeddings && (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
 | |
| 
 | |
|     const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
 | |
|     const size_t embd_size   = has_embd   ?  n_embd*n_outputs_max : 0;
 | |
| 
 | |
|     if (lctx.output_ids.empty()) {
 | |
|         // init, never resized afterwards
 | |
|         lctx.output_ids.resize(n_batch);
 | |
|     }
 | |
| 
 | |
|     const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
 | |
|     const size_t new_size  = (logits_size + embd_size) * sizeof(float);
 | |
| 
 | |
|     // alloc only when more than the current capacity is required
 | |
|     // TODO: also consider shrinking the buffer
 | |
|     if (!lctx.buf_output || prev_size < new_size) {
 | |
|         if (lctx.buf_output) {
 | |
| #ifndef NDEBUG
 | |
|             // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
 | |
|             LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
 | |
| #endif
 | |
|             ggml_backend_buffer_free(lctx.buf_output);
 | |
|             lctx.buf_output = nullptr;
 | |
|             lctx.logits = nullptr;
 | |
|             lctx.embd = nullptr;
 | |
|         }
 | |
| 
 | |
|         lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
 | |
|         if (lctx.buf_output == nullptr) {
 | |
|             LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
 | |
| 
 | |
|     lctx.logits = has_logits ? output_base               : nullptr;
 | |
|     lctx.embd   = has_embd   ? output_base + logits_size : nullptr;
 | |
| 
 | |
|     lctx.output_size = n_outputs_max;
 | |
|     lctx.logits_size = logits_size;
 | |
|     lctx.embd_size   = embd_size;
 | |
| 
 | |
|     // set all ids as invalid (negative)
 | |
|     std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
 | |
| 
 | |
|     ggml_backend_buffer_clear(lctx.buf_output, 0);
 | |
| 
 | |
|     lctx.n_outputs = 0;
 | |
| 
 | |
|     return n_outputs_max;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void llama_graph_compute(
 | |
|         llama_context & lctx,
 | |
|           ggml_cgraph * gf,
 | |
|                   int   n_threads) {
 | |
| #ifdef GGML_USE_MPI
 | |
|     const int64_t n_layer = lctx.model.hparams.n_layer;
 | |
|     ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
 | |
| #endif
 | |
| 
 | |
| #ifdef GGML_USE_METAL
 | |
|     if (ggml_backend_is_metal(lctx.backend_metal)) {
 | |
|         ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (lctx.backend_cpu != nullptr) {
 | |
|         ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
 | |
|         ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
 | |
|     }
 | |
| 
 | |
|     ggml_backend_sched_graph_compute_async(lctx.sched, gf);
 | |
| 
 | |
|     // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
 | |
| 
 | |
| #ifdef GGML_USE_MPI
 | |
|     ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // decode a batch of tokens by evaluating the transformer
 | |
| //
 | |
| //   - lctx:      llama context
 | |
| //   - batch:     batch to evaluate
 | |
| //
 | |
| // return 0 on success
 | |
| // return positive int on warning
 | |
| // return negative int on error
 | |
| //
 | |
| static int llama_decode_internal(
 | |
|          llama_context & lctx,
 | |
|            llama_batch   batch_all) { // TODO: rename back to batch
 | |
| 
 | |
|     const uint32_t n_tokens_all = batch_all.n_tokens;
 | |
| 
 | |
|     if (n_tokens_all == 0) {
 | |
|         LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     const auto & model   = lctx.model;
 | |
|     const auto & hparams = model.hparams;
 | |
|     const auto & cparams = lctx.cparams;
 | |
| 
 | |
|     GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
 | |
| 
 | |
|     GGML_ASSERT(n_tokens_all <= cparams.n_batch);
 | |
| 
 | |
|     GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
 | |
| 
 | |
|     if (lctx.t_compute_start_us == 0) {
 | |
|         lctx.t_compute_start_us = ggml_time_us();
 | |
|     }
 | |
|     lctx.n_queued_tokens += n_tokens_all;
 | |
| 
 | |
| #ifdef GGML_USE_MPI
 | |
|     // TODO: needs fix after #3228
 | |
|     GGML_ASSERT(false && "not implemented");
 | |
|     //ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
 | |
| #endif
 | |
| 
 | |
|     auto & kv_self = lctx.kv_self;
 | |
| 
 | |
|     const int64_t n_embd  = hparams.n_embd;
 | |
|     const int64_t n_vocab = hparams.n_vocab;
 | |
| 
 | |
|     uint32_t n_outputs = 0;
 | |
|     uint32_t n_outputs_prev = 0;
 | |
| 
 | |
|     const auto n_ubatch = cparams.n_ubatch;
 | |
| 
 | |
|     std::vector<llama_pos> pos;
 | |
|     std::vector<int32_t>                   n_seq_id;
 | |
|     std::vector<llama_seq_id *>            seq_id_arr;
 | |
|     std::vector<std::vector<llama_seq_id>> seq_id;
 | |
| 
 | |
|     // count outputs
 | |
|     if (batch_all.logits) {
 | |
|         for (uint32_t i = 0; i < n_tokens_all; ++i) {
 | |
|             n_outputs += batch_all.logits[i] != 0;
 | |
|         }
 | |
|     } else if (lctx.logits_all || (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) {
 | |
|         n_outputs = n_tokens_all;
 | |
|     } else {
 | |
|         // keep last output only
 | |
|         n_outputs = 1;
 | |
|     }
 | |
| 
 | |
|     // reserve output buffer
 | |
|     if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
 | |
|         LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
 | |
|         return -2;
 | |
|     };
 | |
| 
 | |
|     // set output mappings
 | |
|     if (batch_all.logits) {
 | |
|         int32_t i_logits = 0;
 | |
|         for (uint32_t i = 0; i < n_tokens_all; ++i) {
 | |
|             if (batch_all.logits[i]) {
 | |
|                 lctx.output_ids[i] = i_logits++;
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         for (uint32_t i = 0; i < n_outputs; ++i) {
 | |
|             lctx.output_ids[i] = i;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) {
 | |
|         const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token);
 | |
|         llama_batch u_batch = {
 | |
|             /* .n_tokens   = */ (int32_t) n_tokens,
 | |
|             /* .token      = */ batch_all.token     ? batch_all.token    + cur_token        : nullptr,
 | |
|             /* .embd       = */ batch_all.embd      ? batch_all.embd     + cur_token*n_embd : nullptr,
 | |
|             /* .pos        = */ batch_all.pos       ? batch_all.pos      + cur_token        : nullptr,
 | |
|             /* .n_seq_id   = */ batch_all.n_seq_id  ? batch_all.n_seq_id + cur_token        : nullptr,
 | |
|             /* .seq_id     = */ batch_all.seq_id    ? batch_all.seq_id   + cur_token        : nullptr,
 | |
|             /* .logits     = */ batch_all.logits    ? batch_all.logits   + cur_token        : nullptr,
 | |
|             /* .all_pos_0  = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1,
 | |
|             /* .all_pos_1  = */ batch_all.all_pos_1,
 | |
|             /* .all_seq_id = */ batch_all.all_seq_id,
 | |
|         };
 | |
| 
 | |
|         // count the outputs in this u_batch
 | |
|         {
 | |
|             int32_t n_outputs_new = 0;
 | |
| 
 | |
|             if (u_batch.logits) {
 | |
|                 for (uint32_t i = 0; i < n_tokens; i++) {
 | |
|                     n_outputs_new += u_batch.logits[i] != 0;
 | |
|                 }
 | |
|             } else if (n_outputs == n_tokens_all) {
 | |
|                 n_outputs_new = n_tokens;
 | |
|             } else {
 | |
|                 // keep last output only
 | |
|                 if (cur_token + n_tokens >= n_tokens_all) {
 | |
|                     n_outputs_new = 1;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // needs to happen before the graph is built
 | |
|             lctx.n_outputs = n_outputs_new;
 | |
|         }
 | |
| 
 | |
|         int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
 | |
|         GGML_ASSERT(n_threads > 0);
 | |
| 
 | |
|         // helpers for smoother batch API transition
 | |
|         // after deprecating the llama_eval calls, these will be removed
 | |
|         if (u_batch.pos == nullptr) {
 | |
|             pos.resize(n_tokens);
 | |
|             for (uint32_t i = 0; i < n_tokens; i++) {
 | |
|                 pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
 | |
|             }
 | |
| 
 | |
|             u_batch.pos = pos.data();
 | |
|         }
 | |
| 
 | |
|         if (u_batch.seq_id == nullptr) {
 | |
|             n_seq_id.resize(n_tokens);
 | |
|             seq_id.resize(n_tokens);
 | |
|             seq_id_arr.resize(n_tokens);
 | |
|             for (uint32_t i = 0; i < n_tokens; i++) {
 | |
|                 n_seq_id[i] = 1;
 | |
|                 seq_id[i].resize(1);
 | |
|                 seq_id[i][0] = u_batch.all_seq_id;
 | |
|                 seq_id_arr[i] = seq_id[i].data();
 | |
|             }
 | |
| 
 | |
|             u_batch.n_seq_id = n_seq_id.data();
 | |
|             u_batch.seq_id = seq_id_arr.data();
 | |
|         }
 | |
| 
 | |
|         // non-causal masks do not use the KV cache
 | |
|         if (hparams.causal_attn) {
 | |
|             llama_kv_cache_update(&lctx);
 | |
| 
 | |
|             // if we have enough unused cells before the current head ->
 | |
|             //   better to start searching from the beginning of the cache, hoping to fill it
 | |
|             if (kv_self.head > kv_self.used + 2*n_tokens) {
 | |
|                 kv_self.head = 0;
 | |
|             }
 | |
| 
 | |
|             if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
 | |
|                 return 1;
 | |
|             }
 | |
| 
 | |
|             if (!kv_self.recurrent) {
 | |
|                 // a heuristic, to avoid attending the full cache if it is not yet utilized
 | |
|                 // after enough generations, the benefit from this heuristic disappears
 | |
|                 // if we start defragmenting the cache, the benefit from this will be more important
 | |
|                 kv_self.n = std::min(kv_self.size, std::max(32u, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)));
 | |
|                 //kv_self.n = llama_kv_cache_cell_max(kv_self);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
 | |
| 
 | |
|         ggml_backend_sched_reset(lctx.sched);
 | |
|         ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
 | |
| 
 | |
|         ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false);
 | |
| 
 | |
|         // the output is always the last tensor in the graph
 | |
|         struct ggml_tensor * res  = gf->nodes[gf->n_nodes - 1];
 | |
|         struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
 | |
| 
 | |
|         if (lctx.n_outputs == 0) {
 | |
|             // no output
 | |
|             res  = nullptr;
 | |
|             embd = nullptr;
 | |
|         } else if (!hparams.causal_attn) {
 | |
|             res = nullptr; // do not extract logits for embedding models such as BERT
 | |
| 
 | |
|             // token or sequence embeddings
 | |
|             embd = gf->nodes[gf->n_nodes - 1];
 | |
| 
 | |
|             GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0);
 | |
|         } else if (cparams.embeddings) {
 | |
|             // the embeddings could be in the second to last tensor, or any of the previous tensors
 | |
|             int i_embd = gf->n_nodes - 2;
 | |
|             for (int i = 3; strcmp(embd->name, "result_norm") != 0; ++i) {
 | |
|                 i_embd = gf->n_nodes - i;
 | |
|                 if (i_embd < 0) { break; }
 | |
|                 embd = gf->nodes[i_embd];
 | |
|             }
 | |
|             GGML_ASSERT(i_embd >= 0 && "missing result_norm tensor");
 | |
| 
 | |
|             // TODO: use a per-batch flag to know when to skip logits while keeping embeddings
 | |
|             if (!cparams.causal_attn) {
 | |
|                 res = nullptr; // do not extract logits when not needed
 | |
|                 // skip computing logits
 | |
|                 // TODO: is this safe?
 | |
|                 gf->n_nodes = i_embd + 1;
 | |
|             }
 | |
|         } else {
 | |
|             embd = nullptr; // do not extract embeddings when not needed
 | |
|             GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
 | |
|         }
 | |
|         // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
 | |
| 
 | |
|         // for big prompts, if BLAS is enabled, it is better to use only one thread
 | |
|         // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
 | |
|         // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
 | |
|         //       we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
 | |
|         //       with the BLAS calls. need a better solution
 | |
|         // MoE Special Case: This logic applies when hparams.n_expert == 0, i.e. the model is NOT an MoE model. When an MoE is
 | |
|         //                   being processed then Accelerate/BLAS will not be involved, so capping would limit performance.
 | |
|         if (n_tokens >= 32 && hparams.n_expert == 0 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
 | |
|             n_threads = std::min(4, n_threads);
 | |
|         }
 | |
| 
 | |
|         ggml_backend_sched_alloc_graph(lctx.sched, gf);
 | |
| 
 | |
|         llama_set_inputs(lctx, u_batch);
 | |
| 
 | |
|         llama_graph_compute(lctx, gf, n_threads);
 | |
| 
 | |
|         // update the kv ring buffer
 | |
|         {
 | |
|             kv_self.head += n_tokens;
 | |
| 
 | |
|             // Ensure kv cache head points to a valid index.
 | |
|             if (kv_self.head >= kv_self.size) {
 | |
|                 kv_self.head = 0;
 | |
|             }
 | |
|         }
 | |
| 
 | |
| #ifdef GGML_PERF
 | |
|         // print timing information per ggml operation (for debugging purposes)
 | |
|         // requires GGML_PERF to be defined
 | |
|         ggml_graph_print(gf);
 | |
| #endif
 | |
| 
 | |
|         // plot the computation graph in dot format (for debugging purposes)
 | |
|         //if (n_past%100 == 0) {
 | |
|         //    ggml_graph_dump_dot(gf, NULL, "llama.dot");
 | |
|         //}
 | |
| 
 | |
|         // extract logits
 | |
|         if (res) {
 | |
|             ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
 | |
|             GGML_ASSERT(backend_res != nullptr);
 | |
|             GGML_ASSERT(lctx.logits != nullptr);
 | |
| 
 | |
|             float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
 | |
|             const int32_t n_outputs_new = lctx.n_outputs;
 | |
| 
 | |
|             if (n_outputs_new) {
 | |
|                 GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
 | |
|                 GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
 | |
|                 ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // extract embeddings
 | |
|         if (embd) {
 | |
|             ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
 | |
|             GGML_ASSERT(backend_embd != nullptr);
 | |
| 
 | |
|             switch (cparams.pooling_type) {
 | |
|                 case LLAMA_POOLING_TYPE_NONE:
 | |
|                     {
 | |
|                         // extract token embeddings
 | |
|                         GGML_ASSERT(lctx.embd != nullptr);
 | |
|                         float * embd_out = lctx.embd + n_outputs_prev*n_embd;
 | |
|                         const int32_t n_outputs_new = lctx.n_outputs;
 | |
| 
 | |
|                         if (n_outputs_new) {
 | |
|                             GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
 | |
|                             GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
 | |
|                             ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
 | |
|                         }
 | |
|                     } break;
 | |
|                 case LLAMA_POOLING_TYPE_CLS:
 | |
|                 case LLAMA_POOLING_TYPE_MEAN:
 | |
|                     {
 | |
|                         GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0);
 | |
| 
 | |
|                         // extract sequence embeddings
 | |
|                         auto & embd_seq_out = lctx.embd_seq;
 | |
|                         embd_seq_out.clear();
 | |
| 
 | |
|                         for (uint32_t i = 0; i < n_tokens; i++) {
 | |
|                             const llama_seq_id seq_id = u_batch.seq_id[i][0];
 | |
|                             if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
 | |
|                                 continue;
 | |
|                             }
 | |
|                             embd_seq_out[seq_id].resize(n_embd);
 | |
|                             ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
 | |
|                         }
 | |
|                     } break;
 | |
|                 case LLAMA_POOLING_TYPE_UNSPECIFIED:
 | |
|                     {
 | |
|                         GGML_ASSERT(false && "unknown pooling type");
 | |
|                     } break;
 | |
|             }
 | |
|         }
 | |
|         n_outputs_prev += lctx.n_outputs;
 | |
|     }
 | |
| 
 | |
|     // set to total number of outputs in the batch, for use in llama_get_logits_ith
 | |
|     lctx.n_outputs = n_outputs;
 | |
| 
 | |
|     // wait for the computation to finish (automatically done when obtaining the model output)
 | |
|     //llama_synchronize(&lctx);
 | |
| 
 | |
|     // decide if we need to defrag the kv cache
 | |
|     if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
 | |
|         const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
 | |
| 
 | |
|         // queue defragmentation for next llama_kv_cache_update
 | |
|         if (fragmentation > cparams.defrag_thold) {
 | |
|             //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
 | |
| 
 | |
|             llama_kv_cache_defrag(kv_self);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
 | |
|     // overlap with device computation.
 | |
|     ggml_backend_sched_reset(lctx.sched);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
 | |
| static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
 | |
|     auto & kv_self = lctx.kv_self;
 | |
| 
 | |
|     const auto & hparams = lctx.model.hparams;
 | |
| 
 | |
|     const uint32_t n_layer = hparams.n_layer;
 | |
| 
 | |
|     const uint32_t n_kv   = llama_kv_cache_cell_max(kv_self);
 | |
|     const uint32_t n_used = kv_self.used;
 | |
| 
 | |
|     assert(n_used <= n_kv);
 | |
| 
 | |
|     //const int64_t t_start = ggml_time_us();
 | |
| 
 | |
|     // number of cells moved
 | |
|     uint32_t n_moves = 0;
 | |
| 
 | |
|     // each move requires 6*n_layer tensors (see build_defrag)
 | |
|     //   - source view, destination view, copy operation
 | |
|     //   - x2 for keys and values
 | |
|     const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
 | |
| 
 | |
|     // determine which KV cells to move where
 | |
|     //
 | |
|     //  cell i moves to ids[i]
 | |
|     //
 | |
|     //  if ids[i] == i || ids[i] == n_kv, then cell i is not moved
 | |
|     //
 | |
|     std::vector<uint32_t> ids(n_kv, n_kv);
 | |
| 
 | |
|     for (uint32_t i0 = 0; i0 < n_used; ++i0) {
 | |
|         const auto & cell0 = kv_self.cells[i0];
 | |
| 
 | |
|         if (!cell0.is_empty()) {
 | |
|             ids[i0] = i0;
 | |
| 
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         // found a hole - fill it with data from the end of the cache
 | |
| 
 | |
|         uint32_t nh = 1;
 | |
| 
 | |
|         // determine the size of the hole
 | |
|         while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
 | |
|             nh++;
 | |
|         }
 | |
| 
 | |
|         uint32_t nf = 0;
 | |
|         uint32_t is = n_kv - 1;
 | |
| 
 | |
|         // starting from the end, find nh non-empty cells
 | |
|         for (; is > i0; --is) {
 | |
|             const auto & cell1 = kv_self.cells[is];
 | |
| 
 | |
|             if (cell1.is_empty() || ids[is] != n_kv) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             // non-empty cell which is not yet moved
 | |
|             nf++;
 | |
| 
 | |
|             if (nf == nh) {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // this can only happen if `n_used` is not accurate, which would be a bug
 | |
|         GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
 | |
| 
 | |
|         nf = 0;
 | |
| 
 | |
|         uint32_t i1 = is;
 | |
| 
 | |
|         // are we moving a continuous block of memory?
 | |
|         bool cont = false;
 | |
| 
 | |
|         // should we stop searching for the next move?
 | |
|         bool stop = false;
 | |
| 
 | |
|         // go back and move the nf cells to the hole
 | |
|         for (; i1 < n_kv; ++i1) {
 | |
|             auto & cell1 = kv_self.cells[i1];
 | |
| 
 | |
|             if (cell1.is_empty() || ids[i1] != n_kv) {
 | |
|                 if (n_moves == max_moves) {
 | |
|                     stop = true;
 | |
|                     break;
 | |
|                 }
 | |
| 
 | |
|                 cont = false;
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             // this cell goes to (i0 + nf)
 | |
|             ids[i1] = i0 + nf;
 | |
| 
 | |
|             // move the cell meta data
 | |
|             kv_self.cells[i0 + nf] = cell1;
 | |
| 
 | |
|             // clear the old cell and move the head there
 | |
|             cell1 = llama_kv_cell();
 | |
|             kv_self.head = n_used;
 | |
| 
 | |
|             if (!cont) {
 | |
|                 n_moves++;
 | |
|                 cont = true;
 | |
|             }
 | |
| 
 | |
|             nf++;
 | |
| 
 | |
|             if (nf == nh) {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (stop || n_moves == max_moves) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
 | |
| 
 | |
|         i0 += nh - 1;
 | |
|     }
 | |
| 
 | |
|     if (n_moves == 0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
 | |
| 
 | |
|     //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
 | |
| 
 | |
| #if 0
 | |
|     // CPU defrag
 | |
|     //
 | |
|     // TODO: optimizations are possible:
 | |
|     //       - multiple threads
 | |
|     //       - avoid copying to the host memory when already there
 | |
|     //
 | |
|     // likely not worth the effort, as we have ggml_graph based defrag
 | |
|     //
 | |
| 
 | |
|     const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
 | |
|     const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
 | |
| 
 | |
|     const uint32_t kv_size = kv_self.size;
 | |
| 
 | |
|     std::vector<uint8_t> buf_k;
 | |
|     std::vector<uint8_t> buf_v;
 | |
| 
 | |
|     for (uint32_t il = 0; il < n_layer; ++il) {
 | |
|         const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
 | |
|         const size_t k_size     = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
 | |
| 
 | |
|         const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
 | |
|         const size_t v_size    = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
 | |
| 
 | |
|         buf_k.resize(k_size);
 | |
|         buf_v.resize(v_size);
 | |
| 
 | |
|         ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
 | |
|         ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
 | |
| 
 | |
|         // batch move [i, i+nm) to [id, id+nm)
 | |
|         // note: cells can move only to a lower index
 | |
|         for (uint32_t i = 0; i < n_kv; ++i) {
 | |
|             const uint32_t id = ids[i];
 | |
| 
 | |
|             if (i == id || id == n_kv) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             uint32_t nm = 1;
 | |
| 
 | |
|             while (i + nm < n_kv && ids[i + nm] == id + nm) {
 | |
|                 nm++;
 | |
|             }
 | |
| 
 | |
|             // move keys
 | |
|             {
 | |
|                 const int64_t os =  i*k_size_row;
 | |
|                 const int64_t od = id*k_size_row;
 | |
| 
 | |
|                 memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
 | |
|             }
 | |
| 
 | |
|             // move values (note: they are transposed)
 | |
|             {
 | |
|                 const int64_t os =  i;
 | |
|                 const int64_t od = id;
 | |
| 
 | |
|                 for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
 | |
|                     memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             i += nm - 1;
 | |
|         }
 | |
| 
 | |
|         ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
 | |
|         ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
 | |
|     }
 | |
| #else
 | |
|     // ggml_graph defrag
 | |
| 
 | |
|     ggml_backend_sched_reset(lctx.sched);
 | |
| 
 | |
|     ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
 | |
| 
 | |
|     llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
 | |
| #endif
 | |
| 
 | |
|     //const int64_t t_end = ggml_time_us();
 | |
| 
 | |
|     //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
 | |
| }
 | |
| 
 | |
| static void llama_kv_cache_update_internal(struct llama_context & lctx) {
 | |
|     bool need_reserve = false;
 | |
| 
 | |
|     // apply K-shift if needed
 | |
|     if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
 | |
|         {
 | |
|             ggml_backend_sched_reset(lctx.sched);
 | |
| 
 | |
|             ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
 | |
| 
 | |
|             ggml_backend_sched_alloc_graph(lctx.sched, gf);
 | |
| 
 | |
|             llama_set_k_shift(lctx);
 | |
| 
 | |
|             llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
 | |
| 
 | |
|             need_reserve = true;
 | |
|         }
 | |
| 
 | |
|         {
 | |
|             auto & kv_self = lctx.kv_self;
 | |
| 
 | |
|             kv_self.has_shift = false;
 | |
| 
 | |
|             for (uint32_t i = 0; i < kv_self.size; ++i) {
 | |
|                 kv_self.cells[i].delta = 0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) {
 | |
|         {
 | |
|             ggml_backend_sched_reset(lctx.sched);
 | |
| 
 | |
|             ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
 | |
| 
 | |
|             ggml_backend_sched_alloc_graph(lctx.sched, gf);
 | |
| 
 | |
|             llama_set_s_copy(lctx);
 | |
| 
 | |
|             llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
 | |
| 
 | |
|             need_reserve = true;
 | |
|         }
 | |
| 
 | |
|         {
 | |
|             auto & kv_self = lctx.kv_self;
 | |
| 
 | |
|             kv_self.do_copy = false;
 | |
| 
 | |
|             for (uint32_t i = 0; i < kv_self.size; ++i) {
 | |
|                 kv_self.cells[i].src = i;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // defragment the KV cache if needed
 | |
|     if (lctx.kv_self.do_defrag) {
 | |
|         llama_kv_cache_defrag_internal(lctx);
 | |
| 
 | |
|         need_reserve = true;
 | |
| 
 | |
|         lctx.kv_self.do_defrag = false;
 | |
|     }
 | |
| 
 | |
|     // reserve a worst case graph again
 | |
|     if (need_reserve) {
 | |
|         // TODO: extract to a function
 | |
|         // build worst-case graph
 | |
|         int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
 | |
|         int n_past = lctx.cparams.n_ctx - n_tokens;
 | |
|         llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
 | |
|         ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
 | |
| 
 | |
|         // initialize scheduler with the worst-case graph
 | |
|         ggml_backend_sched_reset(lctx.sched);
 | |
|         if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
 | |
|             LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // tokenizer
 | |
| //
 | |
| 
 | |
| static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
 | |
|     return vocab.type;
 | |
| }
 | |
| 
 | |
| static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
 | |
|     GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
 | |
|     return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
 | |
| }
 | |
| 
 | |
| static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
 | |
|     GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
 | |
|     return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
 | |
| }
 | |
| 
 | |
| static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
 | |
|     GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
 | |
|     return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
 | |
| }
 | |
| 
 | |
| static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
 | |
|     GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
 | |
|     return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
 | |
| }
 | |
| 
 | |
| static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
 | |
|     GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
 | |
|     return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
 | |
| }
 | |
| 
 | |
| static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
 | |
|     GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
 | |
|     GGML_ASSERT(llama_is_byte_token(vocab, id));
 | |
|     const auto& token_data = vocab.id_to_token.at(id);
 | |
|     switch (llama_vocab_get_type(vocab)) {
 | |
|         case LLAMA_VOCAB_TYPE_SPM: {
 | |
|             auto buf = token_data.text.substr(3, 2);
 | |
|             return strtol(buf.c_str(), NULL, 16);
 | |
|         }
 | |
|         case LLAMA_VOCAB_TYPE_BPE: {
 | |
|             GGML_ASSERT(false);
 | |
|             return unicode_utf8_to_byte(token_data.text);
 | |
|         }
 | |
|         case LLAMA_VOCAB_TYPE_WPM: {
 | |
|             GGML_ASSERT(false);
 | |
|         }
 | |
|         default:
 | |
|             GGML_ASSERT(false);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
 | |
|     GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
 | |
|     static const char * hex = "0123456789ABCDEF";
 | |
|     switch (llama_vocab_get_type(vocab)) {
 | |
|         case LLAMA_VOCAB_TYPE_SPM: {
 | |
|             const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
 | |
|             auto token = vocab.token_to_id.find(buf);
 | |
|             if (token != vocab.token_to_id.end()) {
 | |
|                 return (*token).second;
 | |
|             }
 | |
|             // Try to fall back to just the byte as a string
 | |
|             const char buf2[2] = { (char)ch, 0 };
 | |
|             return vocab.token_to_id.at(buf2);
 | |
|         }
 | |
|         case LLAMA_VOCAB_TYPE_WPM:
 | |
|         case LLAMA_VOCAB_TYPE_BPE: {
 | |
|             return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
 | |
|         }
 | |
|         default:
 | |
|             GGML_ASSERT(false);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void llama_escape_whitespace(std::string & text) {
 | |
|     replace_all(text, " ", "\xe2\x96\x81");
 | |
| }
 | |
| 
 | |
| static void llama_unescape_whitespace(std::string & word) {
 | |
|     replace_all(word, "\xe2\x96\x81", " ");
 | |
| }
 | |
| 
 | |
| struct llm_symbol {
 | |
|     using index = int;
 | |
|     index prev;
 | |
|     index next;
 | |
|     const char * text;
 | |
|     size_t n;
 | |
| };
 | |
| 
 | |
| static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
 | |
| 
 | |
| // SPM tokenizer
 | |
| // original implementation:
 | |
| // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
 | |
| 
 | |
| struct llm_bigram_spm {
 | |
|     struct comparator {
 | |
|         bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
 | |
|             return (l.score < r.score) || (l.score == r.score && l.left > r.left);
 | |
|         }
 | |
|     };
 | |
|     using queue_storage = std::vector<llm_bigram_spm>;
 | |
|     using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
 | |
|     llm_symbol::index left;
 | |
|     llm_symbol::index right;
 | |
|     float score;
 | |
|     size_t size;
 | |
| };
 | |
| 
 | |
| struct llm_tokenizer_spm {
 | |
|     llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
 | |
| 
 | |
|     void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
 | |
|         // split string into utf8 chars
 | |
|         int index = 0;
 | |
|         size_t offs = 0;
 | |
|         while (offs < text.size()) {
 | |
|             llm_symbol sym;
 | |
|             size_t len = utf8_len(text[offs]);
 | |
|             sym.text = text.c_str() + offs;
 | |
|             sym.n = std::min(len, text.size() - offs);
 | |
|             offs += sym.n;
 | |
|             sym.prev = index - 1;
 | |
|             sym.next = offs == text.size() ? -1 : index + 1;
 | |
|             index++;
 | |
|             symbols.emplace_back(sym);
 | |
|         }
 | |
| 
 | |
|         // seed the work queue with all possible 2-character tokens.
 | |
|         for (size_t i = 1; i < symbols.size(); ++i) {
 | |
|             try_add_bigram(i - 1, i);
 | |
|         }
 | |
| 
 | |
|         // keep substituting the highest frequency pairs for as long as we can.
 | |
|         while (!work_queue.empty()) {
 | |
|             auto bigram = work_queue.top();
 | |
|             work_queue.pop();
 | |
| 
 | |
|             auto & left_sym = symbols[bigram.left];
 | |
|             auto & right_sym = symbols[bigram.right];
 | |
| 
 | |
|             // if one of the symbols already got merged, skip it.
 | |
|             if (left_sym.n == 0 || right_sym.n == 0 ||
 | |
|                 left_sym.n + right_sym.n != bigram.size) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             // merge the right sym into the left one
 | |
|             left_sym.n += right_sym.n;
 | |
|             right_sym.n = 0;
 | |
| 
 | |
|             //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
 | |
| 
 | |
|             // remove the right sym from the chain
 | |
|             left_sym.next = right_sym.next;
 | |
|             if (right_sym.next >= 0) {
 | |
|                 symbols[right_sym.next].prev = bigram.left;
 | |
|             }
 | |
| 
 | |
|             // find more substitutions
 | |
|             try_add_bigram(left_sym.prev, bigram.left);
 | |
|             try_add_bigram(bigram.left, left_sym.next);
 | |
|         }
 | |
| 
 | |
|         for (int i = 0; i != -1; i = symbols[i].next) {
 | |
|             auto & symbol = symbols[i];
 | |
|             resegment(symbol, output);
 | |
|         }
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
 | |
|         auto text = std::string(symbol.text, symbol.n);
 | |
|         auto token = vocab.token_to_id.find(text);
 | |
| 
 | |
|         // Do we need to support is_unused?
 | |
|         if (token != vocab.token_to_id.end()) {
 | |
|             output.push_back((*token).second);
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         const auto p = rev_merge.find(text);
 | |
| 
 | |
|         if (p == rev_merge.end()) {
 | |
|             // output any symbols that did not form tokens as bytes.
 | |
|             output.reserve(output.size() + symbol.n);
 | |
|             for (int j = 0; j < (int)symbol.n; ++j) {
 | |
|                 llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
 | |
|                 output.push_back(token_id);
 | |
|             }
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         resegment(symbols[p->second.first],  output);
 | |
|         resegment(symbols[p->second.second], output);
 | |
|     }
 | |
| 
 | |
|     void try_add_bigram(int left, int right) {
 | |
|         if (left == -1 || right == -1) {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
 | |
|         auto token = vocab.token_to_id.find(text);
 | |
| 
 | |
|         if (token == vocab.token_to_id.end()) {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         const auto & tok_data = vocab.id_to_token[(*token).second];
 | |
| 
 | |
|         llm_bigram_spm bigram;
 | |
|         bigram.left  = left;
 | |
|         bigram.right = right;
 | |
|         bigram.score = tok_data.score;
 | |
|         bigram.size  = text.size();
 | |
| 
 | |
|         work_queue.push(bigram);
 | |
| 
 | |
|         // Do we need to support is_unused?
 | |
|         rev_merge[text] = std::make_pair(left, right);
 | |
|     }
 | |
| 
 | |
|     const llama_vocab & vocab;
 | |
| 
 | |
|     std::vector<llm_symbol> symbols;
 | |
|     llm_bigram_spm::queue work_queue;
 | |
| 
 | |
|     std::map<std::string, std::pair<int, int>> rev_merge;
 | |
| };
 | |
| 
 | |
| // BPE tokenizer
 | |
| // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
 | |
| // tried to simplify unicode stuff, so most likely does not work 100% correctly!
 | |
| 
 | |
| // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
 | |
| 
 | |
| struct llm_bigram_bpe {
 | |
|     struct comparator {
 | |
|         bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
 | |
|             return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     using queue_storage = std::vector<llm_bigram_bpe>;
 | |
|     using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
 | |
|     llm_symbol::index left;
 | |
|     llm_symbol::index right;
 | |
|     std::string text;
 | |
|     int rank;
 | |
|     size_t size;
 | |
| };
 | |
| 
 | |
| struct llm_tokenizer_bpe {
 | |
|     llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
 | |
| 
 | |
|     void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
 | |
|         int final_prev_index = -1;
 | |
|         auto word_collection = bpe_gpt2_preprocess(text);
 | |
| 
 | |
|         symbols_final.clear();
 | |
| 
 | |
|         for (auto & word : word_collection) {
 | |
|             work_queue = llm_bigram_bpe::queue();
 | |
|             symbols.clear();
 | |
| 
 | |
|             int index = 0;
 | |
|             size_t offset = 0;
 | |
| 
 | |
|             while (offset < word.size()) {
 | |
|                 llm_symbol sym;
 | |
|                 size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
 | |
|                 sym.text = word.c_str() + offset;
 | |
|                 sym.n = char_len;
 | |
|                 offset += sym.n;
 | |
|                 sym.prev = index - 1;
 | |
|                 sym.next = offset == word.size() ? -1 : index + 1;
 | |
|                 index++;
 | |
|                 symbols.emplace_back(sym);
 | |
|             }
 | |
|             for (size_t i = 1; i < symbols.size(); ++i) {
 | |
|                 add_new_bigram(i - 1, i);
 | |
|             }
 | |
| 
 | |
|             // build token(s)
 | |
|             while (!work_queue.empty()) {
 | |
|                 auto bigram = work_queue.top();
 | |
|                 work_queue.pop();
 | |
| 
 | |
|                 auto & left_symbol = symbols[bigram.left];
 | |
|                 auto & right_symbol = symbols[bigram.right];
 | |
| 
 | |
|                 if (left_symbol.n == 0 || right_symbol.n == 0) {
 | |
|                     continue;
 | |
|                 }
 | |
|                 std::string left_token = std::string(left_symbol.text, left_symbol.n);
 | |
|                 std::string right_token = std::string(right_symbol.text, right_symbol.n);
 | |
|                 if (left_token + right_token != bigram.text) {
 | |
|                     continue;  // Skip this bigram if it's outdated
 | |
|                 }
 | |
| 
 | |
|                 // merge the right sym into the left one
 | |
|                 left_symbol.n += right_symbol.n;
 | |
|                 right_symbol.n = 0;
 | |
| 
 | |
|                 // remove the right sym from the chain
 | |
|                 left_symbol.next = right_symbol.next;
 | |
|                 if (right_symbol.next >= 0) {
 | |
|                     symbols[right_symbol.next].prev = bigram.left;
 | |
|                 }
 | |
| 
 | |
|                 add_new_bigram(left_symbol.prev, bigram.left);  // left side of current symbol
 | |
|                 add_new_bigram(bigram.left, left_symbol.next);  // right side of current symbol
 | |
|             }
 | |
| 
 | |
|             // add the finished tokens to the final list keeping correct order for next and prev
 | |
|             for (auto & sym : symbols) {
 | |
|                 if (sym.n > 0) {
 | |
|                     sym.prev = final_prev_index;
 | |
|                     sym.next = -1;
 | |
|                     if (final_prev_index != -1) {
 | |
|                         symbols_final[final_prev_index].next = symbols_final.size();
 | |
|                     }
 | |
|                     symbols_final.emplace_back(sym);
 | |
|                     final_prev_index = symbols_final.size() - 1;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         symbols = symbols_final;
 | |
| 
 | |
|         if (!symbols.empty()) {
 | |
|             for (int i = 0; i != -1; i = symbols[i].next) {
 | |
|                 auto & symbol = symbols[i];
 | |
|                 if (symbol.n == 0) {
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 const std::string str = std::string(symbol.text, symbol.n);
 | |
|                 const auto token = vocab.token_to_id.find(str);
 | |
| 
 | |
|                 if (token == vocab.token_to_id.end()) {
 | |
|                     for (auto j = str.begin(); j != str.end(); ++j) {
 | |
|                         std::string byte_str(1, *j);
 | |
|                         auto token_multibyte = vocab.token_to_id.find(byte_str);
 | |
|                         if (token_multibyte == vocab.token_to_id.end()) {
 | |
|                             throw std::runtime_error("ERROR: byte not found in vocab");
 | |
|                         }
 | |
|                         output.push_back((*token_multibyte).second);
 | |
|                     }
 | |
|                 } else {
 | |
|                     output.push_back((*token).second);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     void add_new_bigram(int left, int right) {
 | |
|         if (left == -1 || right == -1) {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         std::string left_token  = std::string(symbols[left].text,  symbols[left].n);
 | |
|         std::string right_token = std::string(symbols[right].text, symbols[right].n);
 | |
| 
 | |
|         int rank_found = -1;
 | |
| 
 | |
|         rank_found = vocab.find_bpe_rank(left_token, right_token);
 | |
| 
 | |
|         if (rank_found < 0) {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         llm_bigram_bpe bigram;
 | |
| 
 | |
|         bigram.left  = left;
 | |
|         bigram.right = right;
 | |
|         bigram.text  = left_token + right_token;
 | |
|         bigram.size  = left_token.size() + right_token.size();
 | |
|         bigram.rank  = rank_found;
 | |
| 
 | |
|         work_queue.push(bigram);
 | |
|     }
 | |
| 
 | |
|     std::vector<std::string> bpe_gpt2_preprocess(const std::string & text) {
 | |
|         std::vector<std::string> bpe_words;
 | |
|         std::vector<std::string> bpe_encoded_words;
 | |
| 
 | |
|         std::string token = "";
 | |
|         // GPT2 system regex:  's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+
 | |
|         bool collecting_numeric = false;
 | |
|         bool collecting_letter = false;
 | |
|         bool collecting_special = false;
 | |
|         bool collecting_whitespace_lookahead = false;
 | |
|         bool collecting = false;
 | |
| 
 | |
|         std::vector<std::string> text_utf;
 | |
|         text_utf.reserve(text.size());
 | |
|         bpe_words.reserve(text.size());
 | |
|         bpe_encoded_words.reserve(text.size());
 | |
| 
 | |
|         const auto cpts = unicode_cpts_from_utf8(text);
 | |
|         for (size_t i = 0; i < cpts.size(); ++i)
 | |
|             text_utf.emplace_back(unicode_cpt_to_utf8(cpts[i]));
 | |
| 
 | |
|         for (int i = 0; i < (int)text_utf.size(); i++) {
 | |
|             const std::string & utf_char = text_utf[i];
 | |
|             bool split_condition = false;
 | |
|             int bytes_remain = text_utf.size() - i;
 | |
|             // forward backward lookups
 | |
|             const std::string & utf_char_next = (i + 1 < (int)text_utf.size()) ? text_utf[i + 1] : "";
 | |
|             const std::string & utf_char_next_next = (i + 2 < (int)text_utf.size()) ? text_utf[i + 2] : "";
 | |
| 
 | |
|             // handling contractions
 | |
|             if (!split_condition && bytes_remain >= 2) {
 | |
|                 // 's|'t|'m|'d
 | |
|                 if (utf_char == "\'" && (utf_char_next == "s" || utf_char_next == "t" || utf_char_next == "m" || utf_char_next == "d")) {
 | |
|                     split_condition = true;
 | |
|                 }
 | |
|                 if (split_condition) {
 | |
|                     if (token.size()) {
 | |
|                         bpe_words.emplace_back(token); // push previous content as token
 | |
|                     }
 | |
|                     token = utf_char + utf_char_next;
 | |
|                     bpe_words.emplace_back(token);
 | |
|                     token = "";
 | |
|                     i++;
 | |
|                     continue;
 | |
|                 }
 | |
|             }
 | |
|             if (!split_condition && bytes_remain >= 3) {
 | |
|                 // 're|'ve|'ll
 | |
|                 if (utf_char == "\'" && (
 | |
|                     (utf_char_next == "r" && utf_char_next_next == "e") ||
 | |
|                     (utf_char_next == "v" && utf_char_next_next == "e") ||
 | |
|                     (utf_char_next == "l" && utf_char_next_next == "l"))
 | |
|                     ) {
 | |
|                     split_condition = true;
 | |
|                 }
 | |
|                 if (split_condition) {
 | |
|                     // current token + next token can be defined
 | |
|                     if (token.size()) {
 | |
|                         bpe_words.emplace_back(token); // push previous content as token
 | |
|                     }
 | |
|                     token = utf_char + utf_char_next + utf_char_next_next;
 | |
|                     bpe_words.emplace_back(token); // the contraction
 | |
|                     token = "";
 | |
|                     i += 2;
 | |
|                     continue;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (!split_condition && !collecting) {
 | |
|                 if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER)) {
 | |
|                     collecting_letter = true;
 | |
|                     collecting = true;
 | |
|                 }
 | |
|                 else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_DIGIT || (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
 | |
|                     collecting_numeric = true;
 | |
|                     collecting = true;
 | |
|                 }
 | |
|                 else if (
 | |
|                     ((unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_DIGIT) && (unicode_cpt_type(utf_char) != CODEPOINT_TYPE_WHITESPACE)) ||
 | |
|                     (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_DIGIT && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_WHITESPACE)
 | |
|                     ) {
 | |
|                     collecting_special = true;
 | |
|                     collecting = true;
 | |
|                 }
 | |
|                 else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_WHITESPACE) {
 | |
|                     collecting_whitespace_lookahead = true;
 | |
|                     collecting = true;
 | |
|                 }
 | |
|                 else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE) {
 | |
|                     split_condition = true;
 | |
|                 }
 | |
|             }
 | |
|             else if (!split_condition && collecting) {
 | |
|                 if (collecting_letter && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER) {
 | |
|                     split_condition = true;
 | |
|                 }
 | |
|                 else if (collecting_numeric && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_DIGIT) {
 | |
|                     split_condition = true;
 | |
|                 }
 | |
|                 else if (collecting_special && (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_DIGIT || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE)) {
 | |
|                     split_condition = true;
 | |
|                 }
 | |
|                 else if (collecting_whitespace_lookahead && (unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
 | |
|                     split_condition = true;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (utf_char_next == "") {
 | |
|                 split_condition = true; // final
 | |
|                 token += utf_char;
 | |
|             }
 | |
| 
 | |
|             if (split_condition) {
 | |
|                 if (token.size()) {
 | |
|                     bpe_words.emplace_back(token);
 | |
|                 }
 | |
|                 token = utf_char;
 | |
|                 collecting = false;
 | |
|                 collecting_letter = false;
 | |
|                 collecting_numeric = false;
 | |
|                 collecting_special = false;
 | |
|                 collecting_whitespace_lookahead = false;
 | |
|             }
 | |
|             else {
 | |
|                 token += utf_char;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         for (std::string & word : bpe_words) {
 | |
|             std::string encoded_token = "";
 | |
|             for (char & c : word) {
 | |
|                 encoded_token += unicode_byte_to_utf8(c);
 | |
|             }
 | |
|             bpe_encoded_words.emplace_back(encoded_token);
 | |
|         }
 | |
| 
 | |
|         return bpe_encoded_words;
 | |
|     }
 | |
| 
 | |
|     const llama_vocab & vocab;
 | |
| 
 | |
|     std::vector<llm_symbol> symbols;
 | |
|     std::vector<llm_symbol> symbols_final;
 | |
| 
 | |
|     llm_bigram_bpe::queue work_queue;
 | |
| };
 | |
| 
 | |
| struct llm_tokenizer_wpm {
 | |
|     llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
 | |
| 
 | |
|     void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
 | |
|         auto * token_map = &vocab.token_to_id;
 | |
| 
 | |
|         // normalize and split by whitespace
 | |
|         std::vector<std::string> words = preprocess(text);
 | |
| 
 | |
|         // bos token prepended already
 | |
| 
 | |
|         // find the longest tokens that form the words
 | |
|         for (const std::string &word : words) {
 | |
|             // skip empty words
 | |
|             if (word.size() == 0) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             // prepend phantom space
 | |
|             std::string word1 = "\xe2\x96\x81" + word;
 | |
|             int n = word1.size();
 | |
| 
 | |
|             // we're at the start of a new word
 | |
|             int i = 0;
 | |
|             bool match_any = false;
 | |
| 
 | |
|             // move through character position in word
 | |
|             while (i < n) {
 | |
|                 // loop through possible match length
 | |
|                 bool match = false;
 | |
|                 for (int j = n; j > i; j--) {
 | |
|                     auto it = token_map->find(word1.substr(i, j - i));
 | |
|                     if (it != token_map->end()) {
 | |
|                         output.push_back(it->second);
 | |
|                         match = true;
 | |
|                         match_any = true;
 | |
|                         i = j;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 // must be an unknown character
 | |
|                 if (!match) {
 | |
|                     i++;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // we didn't find any matches for this word
 | |
|             if (!match_any) {
 | |
|                 output.push_back(vocab.special_unk_id);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     std::vector<std::string> preprocess(const std::string & text) {
 | |
|         std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
 | |
| 
 | |
|         // strip accents, strip control, uniformize whitespace,
 | |
|         // to lowercase, pad chinese characters, pad punctuation
 | |
|         std::string new_str = "";
 | |
|         for (uint32_t code : cpts_nfd) {
 | |
|             int type = unicode_cpt_type(code);
 | |
|             if (type == CODEPOINT_TYPE_ACCENT_MARK || type == CODEPOINT_TYPE_CONTROL) {
 | |
|                 continue;
 | |
|             }
 | |
|             code = unicode_tolower(code);
 | |
|             if (type == CODEPOINT_TYPE_WHITESPACE) {
 | |
|                 code = ' ';
 | |
|             }
 | |
|             std::string s = unicode_cpt_to_utf8(code);
 | |
|             if (type == CODEPOINT_TYPE_PUNCTUATION || is_ascii_punct(code) || is_chinese_char(code)) {
 | |
|                 new_str += " ";
 | |
|                 new_str += s;
 | |
|                 new_str += " ";
 | |
|             } else {
 | |
|                 new_str += s;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // split by whitespace
 | |
|         uint64_t l = 0;
 | |
|         uint64_t r = 0;
 | |
|         std::vector<std::string> words;
 | |
|         while (r < new_str.size()) {
 | |
|             // if is whitespace
 | |
|             if (isspace(new_str[r], std::locale::classic())) {
 | |
|                 if (r > l) words.push_back(new_str.substr(l, (r - l)));
 | |
|                 l = r + 1;
 | |
|                 r = l;
 | |
|             } else {
 | |
|                 r += 1;
 | |
|             }
 | |
|         }
 | |
|         if (r > l) {
 | |
|             words.push_back(new_str.substr(l, (r - l)));
 | |
|         }
 | |
|         return words;
 | |
|     }
 | |
| 
 | |
|     bool is_ascii_punct(uint32_t code) {
 | |
|         if (code > 0xFF) {
 | |
|             return false;
 | |
|         }
 | |
|         auto c = char(static_cast<unsigned char>(code));
 | |
|         return ispunct(c, std::locale::classic());
 | |
|     }
 | |
| 
 | |
|     bool is_chinese_char(uint32_t cpt) {
 | |
|         if ((cpt >= 0x4E00  && cpt <= 0x9FFF)  ||
 | |
|             (cpt >= 0x3400  && cpt <= 0x4DBF)  ||
 | |
|             (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
 | |
|             (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
 | |
|             (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
 | |
|             (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
 | |
|             (cpt >= 0xF900  && cpt <= 0xFAFF)  ||
 | |
|             (cpt >= 0x2F800 && cpt <= 0x2FA1F) ||
 | |
|             (cpt >= 0x3000  && cpt <= 0x303F)  ||
 | |
|             (cpt >= 0xFF00  && cpt <= 0xFFEF)) {
 | |
|             return true; // NOLINT
 | |
|         }
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     const llama_vocab & vocab;
 | |
| };
 | |
| 
 | |
| typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
 | |
|     FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
 | |
|     FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
 | |
| } FRAGMENT_BUFFER_VARIANT_TYPE;
 | |
| 
 | |
| struct fragment_buffer_variant {
 | |
|     fragment_buffer_variant(llama_vocab::id _token)
 | |
|     :
 | |
|         type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
 | |
|         token(_token),
 | |
|         raw_text(_dummy),
 | |
|         offset(0),
 | |
|         length(0) {}
 | |
| 
 | |
|     fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
 | |
|     :
 | |
|         type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
 | |
|         token((llama_vocab::id) - 1),
 | |
|         raw_text(_raw_text),
 | |
|         offset(_offset),
 | |
|         length(_length){
 | |
|             GGML_ASSERT(_offset >= 0);
 | |
|             GGML_ASSERT(_length >= 1);
 | |
|             GGML_ASSERT(offset + length <= raw_text.length());
 | |
|         }
 | |
| 
 | |
|     const FRAGMENT_BUFFER_VARIANT_TYPE type;
 | |
|     const llama_vocab::id token;
 | |
|     const std::string _dummy;
 | |
|     const std::string & raw_text;
 | |
|     const uint64_t offset;
 | |
|     const uint64_t length;
 | |
| };
 | |
| 
 | |
| // #define PRETOKENIZERDEBUG
 | |
| 
 | |
| static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
 | |
|     // for each special token
 | |
|     for (const auto & st: vocab.special_tokens_cache) {
 | |
|         const auto & special_token = st.first;
 | |
|         const auto & special_id    = st.second;
 | |
| 
 | |
|         // for each text fragment
 | |
|         std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
 | |
|         while (it != buffer.end()) {
 | |
|             auto & fragment = (*it);
 | |
| 
 | |
|             // if a fragment is text ( not yet processed )
 | |
|             if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
 | |
|                 auto * raw_text = &(fragment.raw_text);
 | |
| 
 | |
|                 auto raw_text_base_offset = fragment.offset;
 | |
|                 auto raw_text_base_length = fragment.length;
 | |
| 
 | |
|                 // loop over the text
 | |
|                 while (true) {
 | |
|                     // find the first occurrence of a given special token in this fragment
 | |
|                     //  passing offset argument only limit the "search area" but match coordinates
 | |
|                     //  are still relative to the source full raw_text
 | |
|                     auto match = raw_text->find(special_token, raw_text_base_offset);
 | |
| 
 | |
|                     // no occurrences found, stop processing this fragment for a given special token
 | |
|                     if (match == std::string::npos) break;
 | |
| 
 | |
|                     // check if match is within bounds of offset <-> length
 | |
|                     if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
 | |
| 
 | |
| #ifdef PRETOKENIZERDEBUG
 | |
|                     LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
 | |
| #endif
 | |
|                     auto source = std::distance(buffer.begin(), it);
 | |
| 
 | |
|                     // if match is further than base offset
 | |
|                     //  then we have some text to the left of it
 | |
|                     if (match > raw_text_base_offset) {
 | |
|                         // left
 | |
|                         const int64_t left_reminder_offset = raw_text_base_offset + 0;
 | |
|                         const int64_t left_reminder_length = match - raw_text_base_offset;
 | |
|                         buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length);
 | |
| 
 | |
| #ifdef PRETOKENIZERDEBUG
 | |
|                         LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
 | |
| #endif
 | |
|                         it++;
 | |
|                     }
 | |
| 
 | |
|                     // special token
 | |
|                     buffer.emplace_after(it, special_id);
 | |
|                     it++;
 | |
| 
 | |
|                     // right
 | |
|                     if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
 | |
|                         const int64_t right_reminder_offset = match + special_token.length();
 | |
|                         const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
 | |
|                         buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length);
 | |
| 
 | |
| #ifdef PRETOKENIZERDEBUG
 | |
|                         LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
 | |
| #endif
 | |
| 
 | |
|                         it++;
 | |
| 
 | |
|                         if (source == 0) {
 | |
|                             buffer.erase_after(buffer.before_begin());
 | |
|                         } else {
 | |
|                             buffer.erase_after(std::next(buffer.begin(), (source-1)));
 | |
|                         }
 | |
| 
 | |
|                         // repeat for the right side
 | |
|                         raw_text_base_offset = right_reminder_offset;
 | |
|                         raw_text_base_length = right_reminder_length;
 | |
| 
 | |
| #ifdef PRETOKENIZERDEBUG
 | |
|                         LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
 | |
| #endif
 | |
|                     } else {
 | |
|                         if (source == 0) {
 | |
|                             buffer.erase_after(buffer.before_begin());
 | |
|                         } else {
 | |
|                             buffer.erase_after(std::next(buffer.begin(), (source-1)));
 | |
|                         }
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             it++;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) {
 | |
|     std::vector<llama_vocab::id> output;
 | |
|     std::forward_list<fragment_buffer_variant> fragment_buffer;
 | |
| 
 | |
|     if (!raw_text.empty()) {
 | |
|         fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
 | |
|         if (parse_special) tokenizer_st_partition(vocab, fragment_buffer);
 | |
|     }
 | |
| 
 | |
|     switch (vocab.type) {
 | |
|         case LLAMA_VOCAB_TYPE_SPM:
 | |
|             {
 | |
|                 // OG tokenizer behavior:
 | |
|                 //
 | |
|                 // tokenizer.encode('', add_special_tokens=True)  returns [1]
 | |
|                 // tokenizer.encode('', add_special_tokens=False) returns []
 | |
| 
 | |
|                 if (add_special && vocab.special_add_bos != 0) {
 | |
|                     GGML_ASSERT(vocab.special_bos_id != -1);
 | |
|                     output.push_back(vocab.special_bos_id);
 | |
|                 }
 | |
| 
 | |
|                 for (const auto & fragment : fragment_buffer) {
 | |
|                     if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
 | |
|                         // without adding this leading whitespace, we do not get the same results as the original tokenizer
 | |
| 
 | |
|                         // TODO: It's likely possible to get rid of this string copy entirely
 | |
|                         //  by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
 | |
|                         //  and passing 'add space prefix' as bool argument
 | |
|                         //
 | |
|                         auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
 | |
|                         if (&fragment == &fragment_buffer.front()) {
 | |
|                             if (vocab.add_space_prefix) {
 | |
|                                 raw_text = " " + raw_text; // prefix with space if the first token is not special
 | |
|                             }
 | |
|                         }
 | |
| 
 | |
| #ifdef PRETOKENIZERDEBUG
 | |
|                         LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
 | |
| #endif
 | |
|                         llm_tokenizer_spm tokenizer(vocab);
 | |
|                         llama_escape_whitespace(raw_text);
 | |
|                         tokenizer.tokenize(raw_text, output);
 | |
|                     } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
 | |
|                         output.push_back(fragment.token);
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 if (add_special && vocab.special_add_eos == 1) {
 | |
|                     GGML_ASSERT(vocab.special_eos_id != -1);
 | |
|                     output.push_back(vocab.special_eos_id);
 | |
|                 }
 | |
|             } break;
 | |
|         case LLAMA_VOCAB_TYPE_BPE:
 | |
|             {
 | |
|                 if (add_special && vocab.special_add_bos == 1) {
 | |
|                     GGML_ASSERT(vocab.special_bos_id != -1);
 | |
|                     output.push_back(vocab.special_bos_id);
 | |
|                 }
 | |
| 
 | |
|                 for (const auto & fragment : fragment_buffer) {
 | |
|                     if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
 | |
|                         auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
 | |
| 
 | |
| #ifdef PRETOKENIZERDEBUG
 | |
|                         LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
 | |
| #endif
 | |
|                         llm_tokenizer_bpe tokenizer(vocab);
 | |
|                         tokenizer.tokenize(raw_text, output);
 | |
|                     } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
 | |
|                         output.push_back(fragment.token);
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 GGML_ASSERT(vocab.special_add_eos != 1);
 | |
|             } break;
 | |
|         case LLAMA_VOCAB_TYPE_WPM:
 | |
|             {
 | |
|                 if (add_special) {
 | |
|                     GGML_ASSERT(vocab.special_cls_id != -1);
 | |
|                     output.push_back(vocab.special_cls_id);
 | |
|                 }
 | |
| 
 | |
|                 for (const auto & fragment : fragment_buffer) {
 | |
|                     if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
 | |
|                         auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
 | |
| 
 | |
| #ifdef PRETOKENIZERDEBUG
 | |
|                         LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
 | |
| #endif
 | |
|                         llm_tokenizer_wpm tokenizer(vocab);
 | |
|                         tokenizer.tokenize(raw_text, output);
 | |
|                     } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
 | |
|                         output.push_back(fragment.token);
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 if (add_special) {
 | |
|                     GGML_ASSERT(vocab.special_sep_id != -1);
 | |
|                     output.push_back(vocab.special_sep_id);
 | |
|                 }
 | |
|             } break;
 | |
|         case LLAMA_VOCAB_TYPE_NONE:
 | |
|             GGML_ASSERT(false);
 | |
|     }
 | |
| 
 | |
|     return output;
 | |
| }
 | |
| 
 | |
| //
 | |
| // grammar - internal
 | |
| //
 | |
| 
 | |
| 
 | |
| // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
 | |
| // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
 | |
| std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
 | |
|         const std::string & src,
 | |
|         llama_partial_utf8   partial_start) {
 | |
|     static const int      lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
 | |
|     const char          * pos      = src.c_str();
 | |
|     std::vector<uint32_t> code_points;
 | |
|     // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
 | |
|     code_points.reserve(src.size() + 1);
 | |
|     uint32_t              value    = partial_start.value;
 | |
|     int                   n_remain = partial_start.n_remain;
 | |
| 
 | |
|     // continue previous decode, if applicable
 | |
|     while (*pos != 0 && n_remain > 0) {
 | |
|         uint8_t next_byte = static_cast<uint8_t>(*pos);
 | |
|         if ((next_byte >> 6) != 2) {
 | |
|             // invalid sequence, abort
 | |
|             code_points.push_back(0);
 | |
|             return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
 | |
|         }
 | |
|         value = (value << 6) + (next_byte & 0x3F);
 | |
|         ++pos;
 | |
|         --n_remain;
 | |
|     }
 | |
| 
 | |
|     if (partial_start.n_remain > 0 && n_remain == 0) {
 | |
|         code_points.push_back(value);
 | |
|     }
 | |
| 
 | |
|     // decode any subsequent utf-8 sequences, which may end in an incomplete one
 | |
|     while (*pos != 0) {
 | |
|         uint8_t  first_byte = static_cast<uint8_t>(*pos);
 | |
|         uint8_t  highbits   = first_byte >> 4;
 | |
|                  n_remain   = lookup[highbits] - 1;
 | |
| 
 | |
|         if (n_remain < 0) {
 | |
|             // invalid sequence, abort
 | |
|             code_points.clear();
 | |
|             code_points.push_back(0);
 | |
|             return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
 | |
|         }
 | |
| 
 | |
|         uint8_t  mask       = (1 << (7 - n_remain)) - 1;
 | |
|                  value      = first_byte & mask;
 | |
|         ++pos;
 | |
|         while (*pos != 0 && n_remain > 0) {
 | |
|             value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
 | |
|             ++pos;
 | |
|             --n_remain;
 | |
|         }
 | |
|         if (n_remain == 0) {
 | |
|             code_points.push_back(value);
 | |
|         }
 | |
|     }
 | |
|     code_points.push_back(0);
 | |
| 
 | |
|     return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
 | |
| }
 | |
| 
 | |
| // returns true iff pos points to the end of one of the definitions of a rule
 | |
| static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
 | |
|     switch (pos->type) {
 | |
|         case LLAMA_GRETYPE_END: return true;  // NOLINT
 | |
|         case LLAMA_GRETYPE_ALT: return true;  // NOLINT
 | |
|         default:                return false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // returns true iff chr satisfies the char range at pos (regular or inverse range)
 | |
| // asserts that pos is pointing to a char range element
 | |
| static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
 | |
|         const llama_grammar_element * pos,
 | |
|         const uint32_t                chr) {
 | |
| 
 | |
|     bool found            = false;
 | |
|     bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
 | |
| 
 | |
|     GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
 | |
| 
 | |
|     do {
 | |
|         if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
 | |
|             // inclusive range, e.g. [a-z]
 | |
|             found = found || (pos->value <= chr && chr <= pos[1].value);
 | |
|             pos += 2;
 | |
|         } else {
 | |
|             // exact char match, e.g. [a] or "a"
 | |
|             found = found || pos->value == chr;
 | |
|             pos += 1;
 | |
|         }
 | |
|     } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
 | |
| 
 | |
|     return std::make_pair(found == is_positive_char, pos);
 | |
| }
 | |
| 
 | |
| // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
 | |
| // range at pos (regular or inverse range)
 | |
| // asserts that pos is pointing to a char range element
 | |
| static bool llama_grammar_match_partial_char(
 | |
|         const llama_grammar_element * pos,
 | |
|         const llama_partial_utf8      partial_utf8) {
 | |
| 
 | |
|     bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
 | |
|     GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
 | |
| 
 | |
|     uint32_t partial_value = partial_utf8.value;
 | |
|     int      n_remain      = partial_utf8.n_remain;
 | |
| 
 | |
|     // invalid sequence or 7-bit char split across 2 bytes (overlong)
 | |
|     if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // range of possible code points this partial UTF-8 sequence could complete to
 | |
|     uint32_t low  = partial_value << (n_remain * 6);
 | |
|     uint32_t high = low | ((1 << (n_remain * 6)) - 1);
 | |
| 
 | |
|     if (low == 0) {
 | |
|         if (n_remain == 2) {
 | |
|             low = 1 << 11;
 | |
|         } else if (n_remain == 3) {
 | |
|             low = 1 << 16;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     do {
 | |
|         if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
 | |
|             // inclusive range, e.g. [a-z]
 | |
|             if (pos->value <= high && low <= pos[1].value) {
 | |
|                 return is_positive_char;
 | |
|             }
 | |
|             pos += 2;
 | |
|         } else {
 | |
|             // exact char match, e.g. [a] or "a"
 | |
|             if (low <= pos->value && pos->value <= high) {
 | |
|                 return is_positive_char;
 | |
|             }
 | |
|             pos += 1;
 | |
|         }
 | |
|     } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
 | |
| 
 | |
|     return !is_positive_char;
 | |
| }
 | |
| 
 | |
| 
 | |
| // transforms a grammar pushdown stack into N possible stacks, all ending
 | |
| // at a character range (terminal element)
 | |
| static void llama_grammar_advance_stack(
 | |
|         const std::vector<std::vector<llama_grammar_element>>   & rules,
 | |
|         const std::vector<const llama_grammar_element *>        & stack,
 | |
|         std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
 | |
| 
 | |
|     if (stack.empty()) {
 | |
|         if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
 | |
|             new_stacks.emplace_back(stack);
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const llama_grammar_element * pos = stack.back();
 | |
| 
 | |
|     switch (pos->type) {
 | |
|         case LLAMA_GRETYPE_RULE_REF: {
 | |
|             const size_t                  rule_id = static_cast<size_t>(pos->value);
 | |
|             const llama_grammar_element * subpos  = rules[rule_id].data();
 | |
|             do {
 | |
|                 // init new stack without the top (pos)
 | |
|                 std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
 | |
|                 if (!llama_grammar_is_end_of_sequence(pos + 1)) {
 | |
|                     // if this rule ref is followed by another element, add that to stack
 | |
|                     new_stack.push_back(pos + 1);
 | |
|                 }
 | |
|                 if (!llama_grammar_is_end_of_sequence(subpos)) {
 | |
|                     // if alternate is nonempty, add to stack
 | |
|                     new_stack.push_back(subpos);
 | |
|                 }
 | |
|                 llama_grammar_advance_stack(rules, new_stack, new_stacks);
 | |
|                 while (!llama_grammar_is_end_of_sequence(subpos)) {
 | |
|                     // scan to end of alternate def
 | |
|                     subpos++;
 | |
|                 }
 | |
|                 if (subpos->type == LLAMA_GRETYPE_ALT) {
 | |
|                     // there's another alternate def of this rule to process
 | |
|                     subpos++;
 | |
|                 } else {
 | |
|                     break;
 | |
|                 }
 | |
|             } while (true);
 | |
|             break;
 | |
|         }
 | |
|         case LLAMA_GRETYPE_CHAR:
 | |
|         case LLAMA_GRETYPE_CHAR_NOT:
 | |
|             if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
 | |
|                 // only add the stack if it's not a duplicate of one we already have
 | |
|                 new_stacks.emplace_back(stack);
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
 | |
|             // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
 | |
|             // those
 | |
|             GGML_ASSERT(false);
 | |
|     }
 | |
| }
 | |
| 
 | |
| // takes a set of possible pushdown stacks on a grammar, which are required to
 | |
| // be positioned at a character range (see `llama_grammar_advance_stack`), and
 | |
| // produces the N possible stacks if the given char is accepted at those
 | |
| // positions
 | |
| void llama_grammar_accept(
 | |
|         const std::vector<std::vector<llama_grammar_element>>         & rules,
 | |
|         const std::vector<std::vector<const llama_grammar_element *>> & stacks,
 | |
|         const uint32_t                                                  chr,
 | |
|         std::vector<std::vector<const llama_grammar_element *>>       & new_stacks) {
 | |
| 
 | |
|     new_stacks.clear();
 | |
| 
 | |
|     for (const auto & stack : stacks) {
 | |
|         if (stack.empty()) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         auto match = llama_grammar_match_char(stack.back(), chr);
 | |
|         if (match.first) {
 | |
|             const llama_grammar_element * pos = match.second;
 | |
| 
 | |
|             // update top of stack to next element, if any
 | |
|             std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
 | |
|             if (!llama_grammar_is_end_of_sequence(pos)) {
 | |
|                 new_stack.push_back(pos);
 | |
|             }
 | |
|             llama_grammar_advance_stack(rules, new_stack, new_stacks);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
 | |
|         const std::vector<std::vector<llama_grammar_element>>         & rules,
 | |
|         const std::vector<std::vector<const llama_grammar_element *>> & stacks,
 | |
|         const std::vector<llama_grammar_candidate>                    & candidates);
 | |
| 
 | |
| static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
 | |
|         const std::vector<std::vector<llama_grammar_element>> & rules,
 | |
|         const std::vector<const llama_grammar_element *>      & stack,
 | |
|         const std::vector<llama_grammar_candidate>            & candidates) {
 | |
| 
 | |
|     std::vector<llama_grammar_candidate> rejects;
 | |
|     rejects.reserve(candidates.size());
 | |
| 
 | |
|     if (stack.empty()) {
 | |
|         for (const auto & tok : candidates) {
 | |
|             if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
 | |
|                 rejects.push_back(tok);
 | |
|             }
 | |
|         }
 | |
|         return rejects;
 | |
|     }
 | |
| 
 | |
|     const llama_grammar_element * stack_pos = stack.back();
 | |
| 
 | |
|     std::vector<llama_grammar_candidate> next_candidates;
 | |
|     next_candidates.reserve(candidates.size());
 | |
| 
 | |
|     for (const auto & tok : candidates) {
 | |
|         if (*tok.code_points == 0) {
 | |
|             // reached end of full codepoints in token, reject iff it ended in a partial sequence
 | |
|             // that cannot satisfy this position in grammar
 | |
|             if (tok.partial_utf8.n_remain != 0 &&
 | |
|                     !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
 | |
|                 rejects.push_back(tok);
 | |
|             }
 | |
|         } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
 | |
|             next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
 | |
|         } else {
 | |
|             rejects.push_back(tok);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
 | |
| 
 | |
|     // update top of stack to next element, if any
 | |
|     std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
 | |
|     if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
 | |
|         stack_after.push_back(stack_pos_after);
 | |
|     }
 | |
|     std::vector<std::vector<const llama_grammar_element *>> next_stacks;
 | |
|     llama_grammar_advance_stack(rules, stack_after, next_stacks);
 | |
| 
 | |
|     auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
 | |
|     for (const auto & tok : next_rejects) {
 | |
|         rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
 | |
|     }
 | |
| 
 | |
|     return rejects;
 | |
| }
 | |
| 
 | |
| static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
 | |
|         const std::vector<std::vector<llama_grammar_element>>         & rules,
 | |
|         const std::vector<std::vector<const llama_grammar_element *>> & stacks,
 | |
|         const std::vector<llama_grammar_candidate>                    & candidates) {
 | |
|     GGML_ASSERT(!stacks.empty()); // REVIEW
 | |
| 
 | |
|     if (candidates.empty()) {
 | |
|         return std::vector<llama_grammar_candidate>();
 | |
|     }
 | |
| 
 | |
|     auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
 | |
| 
 | |
|     for (size_t i = 1, size = stacks.size(); i < size; ++i) {
 | |
|         rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
 | |
|     }
 | |
|     return rejects;
 | |
| }
 | |
| 
 | |
| //
 | |
| // grammar - external
 | |
| //
 | |
| 
 | |
| struct llama_grammar * llama_grammar_init(
 | |
|             const llama_grammar_element ** rules,
 | |
|                                  size_t    n_rules,
 | |
|                                  size_t    start_rule_index) {
 | |
|     const llama_grammar_element * pos;
 | |
| 
 | |
|     // copy rule definitions into vectors
 | |
|     std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
 | |
|     for (size_t i = 0; i < n_rules; i++) {
 | |
|         for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
 | |
|             vec_rules[i].push_back(*pos);
 | |
|         }
 | |
|         vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
 | |
|     }
 | |
| 
 | |
|     // loop over alternates of start rule to build initial stacks
 | |
|     std::vector<std::vector<const llama_grammar_element *>> stacks;
 | |
|     pos = vec_rules[start_rule_index].data();
 | |
|     do {
 | |
|         std::vector<const llama_grammar_element *> stack;
 | |
|         if (!llama_grammar_is_end_of_sequence(pos)) {
 | |
|             // if alternate is nonempty, add to stack
 | |
|             stack.push_back(pos);
 | |
|         }
 | |
|         llama_grammar_advance_stack(vec_rules, stack, stacks);
 | |
|         while (!llama_grammar_is_end_of_sequence(pos)) {
 | |
|             // scan to end of alternate def
 | |
|             pos++;
 | |
|         }
 | |
|         if (pos->type == LLAMA_GRETYPE_ALT) {
 | |
|             // there's another alternate def of this rule to process
 | |
|             pos++;
 | |
|         } else {
 | |
|             break;
 | |
|         }
 | |
|     } while (true);
 | |
| 
 | |
|     return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
 | |
| }
 | |
| 
 | |
| void llama_grammar_free(struct llama_grammar * grammar) {
 | |
|     delete grammar;
 | |
| }
 | |
| 
 | |
| struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
 | |
|     llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
 | |
| 
 | |
|     // redirect elements in stacks to point to new rules
 | |
|     for (size_t is = 0; is < result->stacks.size(); is++) {
 | |
|         for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
 | |
|             for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
 | |
|                 for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
 | |
|                     if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
 | |
|                          result->stacks[is][ie]  =  &result->rules[ir0][ir1];
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| //
 | |
| // sampling
 | |
| //
 | |
| 
 | |
| void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
 | |
|     if (seed == LLAMA_DEFAULT_SEED) {
 | |
|         seed = time(NULL);
 | |
|     }
 | |
|     ctx->rng.seed(seed);
 | |
| }
 | |
| 
 | |
| void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
 | |
|     GGML_ASSERT(candidates->size > 0);
 | |
| 
 | |
|     const int64_t t_start_sample_us = ggml_time_us();
 | |
| 
 | |
|     // Sort the logits in descending order
 | |
|     if (!candidates->sorted) {
 | |
|         std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
 | |
|             return a.logit > b.logit;
 | |
|         });
 | |
|         candidates->sorted = true;
 | |
|     }
 | |
| 
 | |
|     float max_l = candidates->data[0].logit;
 | |
|     float cum_sum = 0.0f;
 | |
|     for (size_t i = 0; i < candidates->size; ++i) {
 | |
|         float p = expf(candidates->data[i].logit - max_l);
 | |
|         candidates->data[i].p = p;
 | |
|         cum_sum += p;
 | |
|     }
 | |
|     for (size_t i = 0; i < candidates->size; ++i) {
 | |
|         candidates->data[i].p /= cum_sum;
 | |
|     }
 | |
| 
 | |
|     if (ctx) {
 | |
|         ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
 | |
|     // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
 | |
|     // if (k >= (int32_t)candidates->size) {
 | |
|     //     return;
 | |
|     // }
 | |
| 
 | |
|     const int64_t t_start_sample_us = ggml_time_us();
 | |
| 
 | |
|     if (k <= 0) {
 | |
|         k = candidates->size;
 | |
|     }
 | |
| 
 | |
|     k = std::max(k, (int) min_keep);
 | |
|     k = std::min(k, (int) candidates->size);
 | |
| 
 | |
|     // Sort scores in descending order
 | |
|     if (!candidates->sorted) {
 | |
|         auto comp = [](const llama_token_data & a, const llama_token_data & b) {
 | |
|             return a.logit > b.logit;
 | |
|         };
 | |
|         if (k <= 128) {
 | |
|             std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
 | |
|         } else {
 | |
|             constexpr int   nbuckets     = 128;
 | |
|             constexpr float bucket_low   = -10.0f;
 | |
|             constexpr float bucket_high  =  10.0f;
 | |
|             constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
 | |
|             constexpr float bucker_inter = -bucket_low * bucket_scale;
 | |
| 
 | |
|             std::vector<int> bucket_idx(candidates->size);
 | |
|             std::vector<int> histo(nbuckets, 0);
 | |
| 
 | |
|             for (int i = 0; i < (int)candidates->size; ++i) {
 | |
|                 const float val = candidates->data[i].logit;
 | |
|                 int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
 | |
|                 ib = std::max(0, std::min(nbuckets-1, ib));
 | |
|                 bucket_idx[i] = ib;
 | |
|                 ++histo[ib];
 | |
|             }
 | |
|             int nhave = 0;
 | |
|             int ib = nbuckets - 1;
 | |
|             for ( ; ib >= 0; --ib) {
 | |
|                 nhave += histo[ib];
 | |
|                 if (nhave >= k) break;
 | |
|             }
 | |
|             std::vector<llama_token_data> tmp_tokens(nhave);
 | |
|             auto ptr = tmp_tokens.data();
 | |
|             std::vector<llama_token_data*> bucket_ptrs;
 | |
|             bucket_ptrs.reserve(nbuckets - ib);
 | |
|             for (int j = nbuckets - 1; j >= ib; --j) {
 | |
|                 bucket_ptrs.push_back(ptr);
 | |
|                 ptr += histo[j];
 | |
|             }
 | |
|             for (int i = 0; i < (int)candidates->size; ++i) {
 | |
|                 int j = bucket_idx[i];
 | |
|                 if (j >= ib) {
 | |
|                     *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             ptr = tmp_tokens.data();
 | |
|             int ndone = 0;
 | |
|             for (int j = nbuckets-1; j > ib; --j) {
 | |
|                 std::sort(ptr, ptr + histo[j], comp);
 | |
|                 ptr += histo[j];
 | |
|                 ndone += histo[j];
 | |
|             }
 | |
|             std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
 | |
| 
 | |
|             std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
 | |
| 
 | |
|         }
 | |
|         candidates->sorted = true;
 | |
|     }
 | |
|     candidates->size = k;
 | |
| 
 | |
|     if (ctx) {
 | |
|         ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
 | |
|     if (p >= 1.0f) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     llama_sample_softmax(ctx, candidates);
 | |
| 
 | |
|     const int64_t t_start_sample_us = ggml_time_us();
 | |
| 
 | |
|     // Compute the cumulative probabilities
 | |
|     float cum_sum = 0.0f;
 | |
|     size_t last_idx = candidates->size;
 | |
| 
 | |
|     for (size_t i = 0; i < candidates->size; ++i) {
 | |
|         cum_sum += candidates->data[i].p;
 | |
| 
 | |
|         // Check if the running sum is at least p or if we have kept at least min_keep tokens
 | |
|         // we set the last index to i+1 to indicate that the current iterate should be included in the set
 | |
|         if (cum_sum >= p && i + 1 >= min_keep) {
 | |
|             last_idx = i + 1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Resize the output vector to keep only the top-p tokens
 | |
|     candidates->size = last_idx;
 | |
| 
 | |
|     if (ctx) {
 | |
|         ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
 | |
|     if (p <= 0.0f || !candidates->size) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int64_t t_start_sample_us = ggml_time_us();
 | |
| 
 | |
|     bool min_p_applied = false;
 | |
| 
 | |
|     // if the candidates aren't sorted, try the unsorted implementation first
 | |
|     if (!candidates->sorted) {
 | |
|         std::vector<llama_token_data> filtered_tokens;
 | |
| 
 | |
|         float max_logit = -FLT_MAX;
 | |
|         for (size_t i = 0; i < candidates->size; ++i) {
 | |
|             max_logit = std::max(max_logit, candidates->data[i].logit);
 | |
|         }
 | |
|         const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
 | |
| 
 | |
|         for (size_t i = 0; i < candidates->size; ++i) {
 | |
|             if (candidates->data[i].logit >= min_logit) {
 | |
|                 filtered_tokens.push_back(candidates->data[i]);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // if we have enough values the operation was a success
 | |
|         if (filtered_tokens.size() >= min_keep) {
 | |
|             memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
 | |
|             candidates->size = filtered_tokens.size();
 | |
|             min_p_applied = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // if the candidates are sorted or the unsorted implementation failed, use this implementation
 | |
|     if (!min_p_applied) {
 | |
|         // Sort the logits in descending order
 | |
|         if (!candidates->sorted) {
 | |
|             std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
 | |
|                 return a.logit > b.logit;
 | |
|             });
 | |
|             candidates->sorted = true;
 | |
|         }
 | |
| 
 | |
|         const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
 | |
|         size_t i = 1; // first token always matches
 | |
| 
 | |
|         for (; i < candidates->size; ++i) {
 | |
|             if (candidates->data[i].logit < min_logit && i >= min_keep) {
 | |
|                 break; // prob too small
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Resize the output vector to keep only the matching tokens
 | |
|         candidates->size = i;
 | |
|     }
 | |
| 
 | |
|     if (ctx) {
 | |
|         ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
 | |
|     if (z >= 1.0f || candidates->size <= 2) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     llama_sample_softmax(nullptr, candidates);
 | |
|     const int64_t t_start_sample_us = ggml_time_us();
 | |
| 
 | |
|     // Compute the first and second derivatives
 | |
|     std::vector<float> first_derivatives(candidates->size - 1);
 | |
|     std::vector<float> second_derivatives(candidates->size - 2);
 | |
| 
 | |
|     for (size_t i = 0; i < first_derivatives.size(); ++i) {
 | |
|         first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
 | |
|     }
 | |
|     for (size_t i = 0; i < second_derivatives.size(); ++i) {
 | |
|         second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
 | |
|     }
 | |
| 
 | |
|     // Calculate absolute value of second derivatives
 | |
|     for (size_t i = 0; i < second_derivatives.size(); ++i) {
 | |
|         second_derivatives[i] = std::abs(second_derivatives[i]);
 | |
|     }
 | |
| 
 | |
|     // Normalize the second derivatives
 | |
|     {
 | |
|         const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
 | |
| 
 | |
|         if (second_derivatives_sum > 1e-6f) {
 | |
|             for (float & value : second_derivatives) {
 | |
|                 value /= second_derivatives_sum;
 | |
|             }
 | |
|         } else {
 | |
|             for (float & value : second_derivatives) {
 | |
|                 value = 1.0f / second_derivatives.size();
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     float cum_sum = 0.0f;
 | |
|     size_t last_idx = candidates->size;
 | |
|     for (size_t i = 0; i < second_derivatives.size(); ++i) {
 | |
|         cum_sum += second_derivatives[i];
 | |
| 
 | |
|         // Check if the running sum is greater than z or if we have kept at least min_keep tokens
 | |
|         if (cum_sum > z && i >= min_keep) {
 | |
|             last_idx = i;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Resize the output vector to keep only the tokens above the tail location
 | |
|     candidates->size = last_idx;
 | |
| 
 | |
|     if (ctx) {
 | |
|         ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
 | |
|     // Reference implementation:
 | |
|     // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
 | |
|     if (p >= 1.0f) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Compute the softmax of logits and calculate entropy
 | |
|     llama_sample_softmax(nullptr, candidates);
 | |
| 
 | |
|     const int64_t t_start_sample_us = ggml_time_us();
 | |
| 
 | |
|     float entropy = 0.0f;
 | |
|     for (size_t i = 0; i < candidates->size; ++i) {
 | |
|         entropy += -candidates->data[i].p * logf(candidates->data[i].p);
 | |
|     }
 | |
| 
 | |
|     // Compute the absolute difference between negative log probability and entropy for each candidate
 | |
|     std::vector<float> shifted_scores;
 | |
|     for (size_t i = 0; i < candidates->size; ++i) {
 | |
|         float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
 | |
|         shifted_scores.push_back(shifted_score);
 | |
|     }
 | |
| 
 | |
|     // Sort tokens based on the shifted_scores and their corresponding indices
 | |
|     std::vector<size_t> indices(candidates->size);
 | |
|     std::iota(indices.begin(), indices.end(), 0);
 | |
| 
 | |
|     std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
 | |
|         return shifted_scores[a] < shifted_scores[b];
 | |
|     });
 | |
| 
 | |
|     // Compute the cumulative probabilities
 | |
|     float cum_sum = 0.0f;
 | |
|     size_t last_idx = indices.size();
 | |
| 
 | |
|     for (size_t i = 0; i < indices.size(); ++i) {
 | |
|         size_t idx = indices[i];
 | |
|         cum_sum += candidates->data[idx].p;
 | |
| 
 | |
|         // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
 | |
|         if (cum_sum > p && i >= min_keep - 1) {
 | |
|             last_idx = i + 1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Resize the output vector to keep only the locally typical tokens
 | |
|     std::vector<llama_token_data> new_candidates;
 | |
|     for (size_t i = 0; i < last_idx; ++i) {
 | |
|         size_t idx = indices[i];
 | |
|         new_candidates.push_back(candidates->data[idx]);
 | |
|     }
 | |
| 
 | |
|     // Replace the data in candidates with the new_candidates data
 | |
|     std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
 | |
|     candidates->size = new_candidates.size();
 | |
|     candidates->sorted = false;
 | |
| 
 | |
|     if (ctx) {
 | |
|         ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
 | |
|     const int64_t t_start_sample_us = ggml_time_us();
 | |
| 
 | |
|     // no need to do anything if there is only one (or zero) candidates
 | |
|     if(candidates_p->size <= 1) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Calculate maximum possible entropy
 | |
|     float max_entropy = -logf(1.0f / candidates_p->size);
 | |
| 
 | |
|     llama_sample_softmax(nullptr, candidates_p);
 | |
| 
 | |
|     // Calculate entropy of the softmax probabilities
 | |
|     float entropy = 0.0f;
 | |
|     for (size_t i = 0; i < candidates_p->size; ++i) {
 | |
|         float prob = candidates_p->data[i].p;
 | |
|         if (prob > 0.0f) { // Ensure no log(0)
 | |
|             entropy -= prob * logf(prob);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
 | |
|     float normalized_entropy = entropy / max_entropy;
 | |
| 
 | |
|     // Map the normalized entropy to the desired temperature range using the power function
 | |
|     float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
 | |
| 
 | |
| #ifdef DEBUG
 | |
|     LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
 | |
|     LLAMA_LOG_INFO("Entropy: %f\n", entropy);
 | |
|     LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
 | |
|     LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
 | |
|     LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
 | |
|     LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
 | |
| #endif
 | |
| 
 | |
|     // Apply the dynamically calculated temperature scaling
 | |
|     for (size_t i = 0; i < candidates_p->size; ++i) {
 | |
|         candidates_p->data[i].logit /= dyn_temp;
 | |
|     }
 | |
| 
 | |
|     // Re-compute softmax probabilities after scaling logits with dynamic temperature
 | |
|     double max_l_double = candidates_p->data[0].logit;
 | |
|     double cum_sum_double = 0.0;
 | |
|     for (size_t i = 0; i < candidates_p->size; ++i) {
 | |
|         double p = exp(candidates_p->data[i].logit - max_l_double);
 | |
|         candidates_p->data[i].p = p; // Store the scaled probability
 | |
|         cum_sum_double += p;
 | |
|     }
 | |
|     for (size_t i = 0; i < candidates_p->size; ++i) {
 | |
|         candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
 | |
|     }
 | |
| 
 | |
| #ifdef DEBUG
 | |
|     // Print the updated top 25 probabilities after temperature scaling
 | |
|     LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
 | |
|     for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
 | |
|         LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (ctx) {
 | |
|         ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
 | |
|     const int64_t t_start_sample_us = ggml_time_us();
 | |
| 
 | |
|     for (size_t i = 0; i < candidates_p->size; ++i) {
 | |
|         candidates_p->data[i].logit /= temp;
 | |
|     }
 | |
| 
 | |
|     if (ctx) {
 | |
|         ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void llama_sample_repetition_penalties(
 | |
|             struct llama_context * ctx,
 | |
|           llama_token_data_array * candidates,
 | |
|                const llama_token * last_tokens,
 | |
|                           size_t   penalty_last_n,
 | |
|                            float   penalty_repeat,
 | |
|                            float   penalty_freq,
 | |
|                            float   penalty_present) {
 | |
|     if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int64_t t_start_sample_us = ggml_time_us();
 | |
| 
 | |
|     // Create a frequency map to count occurrences of each token in last_tokens
 | |
|     std::unordered_map<llama_token, int> token_count;
 | |
|     for (size_t i = 0; i < penalty_last_n; ++i) {
 | |
|         token_count[last_tokens[i]]++;
 | |
|     }
 | |
| 
 | |
|     // Apply frequency and presence penalties to the candidates
 | |
|     for (size_t i = 0; i < candidates->size; ++i) {
 | |
|         const auto token_iter = token_count.find(candidates->data[i].id);
 | |
|         if (token_iter == token_count.end()) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         const int count = token_iter->second;
 | |
| 
 | |
|         // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
 | |
|         // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
 | |
|         if (candidates->data[i].logit <= 0) {
 | |
|             candidates->data[i].logit *= penalty_repeat;
 | |
|         } else {
 | |
|             candidates->data[i].logit /= penalty_repeat;
 | |
|         }
 | |
| 
 | |
|         candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
 | |
|     }
 | |
| 
 | |
|     candidates->sorted = false;
 | |
| 
 | |
|     if (ctx) {
 | |
|         ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
 | |
|     GGML_ASSERT(ctx);
 | |
|     const int64_t t_start_sample_us = ggml_time_us();
 | |
| 
 | |
|     bool allow_eog = false;
 | |
|     for (const auto & stack : grammar->stacks) {
 | |
|         if (stack.empty()) {
 | |
|             allow_eog = true;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
 | |
|     candidates_decoded.reserve(candidates->size);
 | |
|     std::vector<llama_grammar_candidate>                              candidates_grammar;
 | |
|     candidates_grammar.reserve(candidates->size);
 | |
| 
 | |
|     for (size_t i = 0; i < candidates->size; ++i) {
 | |
|         const llama_token id    = candidates->data[i].id;
 | |
|         const std::string piece = llama_token_to_piece(ctx, id, false);
 | |
| 
 | |
|         if (llama_token_is_eog(&ctx->model, id)) {
 | |
|             if (!allow_eog) {
 | |
|                 candidates->data[i].logit = -INFINITY;
 | |
|             }
 | |
|         } else if (piece.empty() || piece[0] == 0) {
 | |
|             candidates->data[i].logit = -INFINITY;
 | |
|         } else {
 | |
|             candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
 | |
|             candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
 | |
|     for (const auto & reject : rejects) {
 | |
|         candidates->data[reject.index].logit = -INFINITY;
 | |
|     }
 | |
| 
 | |
|     ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
 | |
| }
 | |
| 
 | |
| static void llama_log_softmax(float * array, size_t size) {
 | |
|     float max_l = *std::max_element(array, array + size);
 | |
|     float sum = 0.f;
 | |
|     for (size_t i = 0; i < size; ++i) {
 | |
|         float p = expf(array[i] - max_l);
 | |
|         sum += p;
 | |
|         array[i] = p;
 | |
|     }
 | |
| 
 | |
|     for (size_t i = 0; i < size; ++i) {
 | |
|         array[i] = logf(array[i] / sum);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void llama_sample_apply_guidance(
 | |
|           struct llama_context * ctx,
 | |
|                          float * logits,
 | |
|                          float * logits_guidance,
 | |
|                          float   scale) {
 | |
|     GGML_ASSERT(ctx);
 | |
| 
 | |
|     const auto t_start_sample_us = ggml_time_us();
 | |
|     const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
 | |
| 
 | |
|     llama_log_softmax(logits, n_vocab);
 | |
|     llama_log_softmax(logits_guidance, n_vocab);
 | |
| 
 | |
|     for (int i = 0; i < n_vocab; ++i) {
 | |
|               auto & l = logits[i];
 | |
|         const auto & g = logits_guidance[i];
 | |
| 
 | |
|         l = scale * (l - g) + g;
 | |
|     }
 | |
| 
 | |
|     ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
 | |
| }
 | |
| 
 | |
| llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
 | |
|     GGML_ASSERT(ctx);
 | |
| 
 | |
|     auto N = float(llama_n_vocab(llama_get_model(ctx)));
 | |
|     int64_t t_start_sample_us;
 | |
|     t_start_sample_us = ggml_time_us();
 | |
| 
 | |
|     llama_sample_softmax(nullptr, candidates);
 | |
| 
 | |
|     // Estimate s_hat using the most probable m tokens
 | |
|     float s_hat = 0.0;
 | |
|     float sum_ti_bi = 0.0;
 | |
|     float sum_ti_sq = 0.0;
 | |
|     for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
 | |
|         float t_i = logf(float(i + 2) / float(i + 1));
 | |
|         float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
 | |
|         sum_ti_bi += t_i * b_i;
 | |
|         sum_ti_sq += t_i * t_i;
 | |
|     }
 | |
|     s_hat = sum_ti_bi / sum_ti_sq;
 | |
| 
 | |
|     // Compute k from the estimated s_hat and target surprise value
 | |
|     float epsilon_hat = s_hat - 1;
 | |
|     float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
 | |
| 
 | |
|     // Sample the next word X using top-k sampling
 | |
|     llama_sample_top_k(nullptr, candidates, int(k), 1);
 | |
|     if (ctx) {
 | |
|         ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
 | |
|     }
 | |
|     llama_token X = llama_sample_token(ctx, candidates);
 | |
|     t_start_sample_us = ggml_time_us();
 | |
| 
 | |
|     // Compute error as the difference between observed surprise and target surprise value
 | |
|     size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
 | |
|         return candidate.id == X;
 | |
|     }));
 | |
|     float observed_surprise = -log2f(candidates->data[X_idx].p);
 | |
|     float e = observed_surprise - tau;
 | |
| 
 | |
|     // Update mu using the learning rate and error
 | |
|     *mu = *mu - eta * e;
 | |
| 
 | |
|     if (ctx) {
 | |
|         ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
 | |
|     }
 | |
|     return X;
 | |
| }
 | |
| 
 | |
| llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
 | |
|     int64_t t_start_sample_us;
 | |
|     t_start_sample_us = ggml_time_us();
 | |
| 
 | |
|     llama_sample_softmax(ctx, candidates);
 | |
| 
 | |
|     // Truncate the words with surprise values greater than mu
 | |
|     candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
 | |
|         return -log2f(candidate.p) > *mu;
 | |
|     }));
 | |
| 
 | |
|     if (candidates->size == 0) {
 | |
|         candidates->size = 1;
 | |
|     }
 | |
| 
 | |
|     if (ctx) {
 | |
|         ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
 | |
|     }
 | |
| 
 | |
|     // Normalize the probabilities of the remaining words
 | |
|     llama_sample_softmax(ctx, candidates);
 | |
| 
 | |
|     // Sample the next word X from the remaining words
 | |
|     llama_token X = llama_sample_token(ctx, candidates);
 | |
|     t_start_sample_us = ggml_time_us();
 | |
| 
 | |
|     // Compute error as the difference between observed surprise and target surprise value
 | |
|     size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
 | |
|         return candidate.id == X;
 | |
|     }));
 | |
|     float observed_surprise = -log2f(candidates->data[X_idx].p);
 | |
|     float e = observed_surprise - tau;
 | |
| 
 | |
|     // Update mu using the learning rate and error
 | |
|     *mu = *mu - eta * e;
 | |
| 
 | |
|     if (ctx) {
 | |
|         ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
 | |
|     }
 | |
|     return X;
 | |
| }
 | |
| 
 | |
| llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
 | |
|     const int64_t t_start_sample_us = ggml_time_us();
 | |
| 
 | |
|     // Find max element
 | |
|     auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
 | |
|         return a.logit < b.logit;
 | |
|     });
 | |
| 
 | |
|     llama_token result = max_iter->id;
 | |
|     if (ctx) {
 | |
|         ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
 | |
|         ctx->n_sample++;
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) {
 | |
|     GGML_ASSERT(ctx);
 | |
| 
 | |
|     const int64_t t_start_sample_us = ggml_time_us();
 | |
|     llama_sample_softmax(nullptr, candidates);
 | |
| 
 | |
|     std::vector<float> probs;
 | |
|     probs.reserve(candidates->size);
 | |
|     for (size_t i = 0; i < candidates->size; ++i) {
 | |
|         probs.push_back(candidates->data[i].p);
 | |
|     }
 | |
| 
 | |
|     std::discrete_distribution<> dist(probs.begin(), probs.end());
 | |
|     int idx = dist(rng);
 | |
| 
 | |
|     llama_token result = candidates->data[idx].id;
 | |
| 
 | |
|     ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
 | |
|     ctx->n_sample++;
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
 | |
|     return llama_sample_token_with_rng(ctx, candidates, ctx->rng);
 | |
| }
 | |
| 
 | |
| void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
 | |
|     const int64_t t_start_sample_us = ggml_time_us();
 | |
| 
 | |
|     if (llama_token_is_eog(&ctx->model, token)) {
 | |
|         for (const auto & stack : grammar->stacks) {
 | |
|             if (stack.empty()) {
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| 
 | |
|     const std::string piece = llama_token_to_piece(ctx, token, false);
 | |
| 
 | |
|     // Note terminating 0 in decoded string
 | |
|     const auto   decoded     = decode_utf8(piece, grammar->partial_utf8);
 | |
|     const auto & code_points = decoded.first;
 | |
|     std::vector<std::vector<const llama_grammar_element *>> tmp_new_stacks;
 | |
|     for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
 | |
|         llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks);
 | |
|         grammar->stacks = tmp_new_stacks;
 | |
|     }
 | |
|     grammar->partial_utf8 = decoded.second;
 | |
|     GGML_ASSERT(!grammar->stacks.empty());
 | |
| 
 | |
|     ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Beam search
 | |
| //
 | |
| 
 | |
| struct llama_beam {
 | |
|     std::vector<llama_token> tokens;
 | |
|     float p;  // Cumulative beam probability (renormalized relative to all beams)
 | |
|     bool eob; // Initialize end-of-beam to false. Callback sets this to true.
 | |
|     // Sort beams by probability. In case of ties, prefer beams at eob.
 | |
|     bool operator<(const llama_beam & rhs) const {
 | |
|         return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
 | |
|     }
 | |
|     // Shift off first n tokens and discard them.
 | |
|     void shift_tokens(const size_t n) {
 | |
|         if (n) {
 | |
|             std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
 | |
|             tokens.resize(tokens.size() - n);
 | |
|         }
 | |
|     }
 | |
|     llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
 | |
| };
 | |
| 
 | |
| // A struct for calculating logit-related info.
 | |
| struct llama_logit_info {
 | |
|     const float * const logits;
 | |
|     const int n_vocab;
 | |
|     const float max_l;
 | |
|     const float normalizer;
 | |
|     struct sum_exp {
 | |
|         float max_l;
 | |
|         float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
 | |
|     };
 | |
|     llama_logit_info(llama_context * ctx)
 | |
|       : logits(llama_get_logits(ctx))
 | |
|       , n_vocab(llama_n_vocab(llama_get_model(ctx)))
 | |
|       , max_l(*std::max_element(logits, logits + n_vocab))
 | |
|       , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
 | |
|       { }
 | |
|     llama_token_data get_token_data(const llama_token token_id) const {
 | |
|         constexpr auto p = std::numeric_limits<float>::quiet_NaN();  // never used
 | |
|         return {token_id, logits[token_id], p};
 | |
|     }
 | |
|     // Return top k token_data by logit.
 | |
|     std::vector<llama_token_data> top_k(size_t k) {
 | |
|         std::vector<llama_token_data> min_heap;  // min-heap by logit
 | |
|         const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
 | |
|         min_heap.reserve(k_min);
 | |
|         for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
 | |
|             min_heap.push_back(get_token_data(token_id));
 | |
|         }
 | |
|         auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
 | |
|         std::make_heap(min_heap.begin(), min_heap.end(), comp);
 | |
|         for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
 | |
|             if (min_heap.front().logit < logits[token_id]) {
 | |
|                 std::pop_heap(min_heap.begin(), min_heap.end(), comp);
 | |
|                 min_heap.back().id = token_id;
 | |
|                 min_heap.back().logit = logits[token_id];
 | |
|                 std::push_heap(min_heap.begin(), min_heap.end(), comp);
 | |
|             }
 | |
|         }
 | |
|         return min_heap;
 | |
|     }
 | |
|     float probability_from_logit(float logit) const {
 | |
|         return normalizer * std::exp(logit - max_l);
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct llama_beam_search_data {
 | |
|     llama_context * ctx;
 | |
|     size_t n_beams;
 | |
|     int n_past;
 | |
|     int n_predict;
 | |
|     std::vector<llama_beam> beams;
 | |
|     std::vector<llama_beam> next_beams;
 | |
| 
 | |
|     // Re-calculated on each loop iteration
 | |
|     size_t common_prefix_length;
 | |
| 
 | |
|     // Used to communicate to/from callback on beams state.
 | |
|     std::vector<llama_beam_view> beam_views;
 | |
| 
 | |
|     llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict)
 | |
|       : ctx(ctx)
 | |
|       , n_beams(n_beams)
 | |
|       , n_past(n_past)
 | |
|       , n_predict(n_predict)
 | |
|       , beam_views(n_beams) {
 | |
|         beams.reserve(n_beams);
 | |
|         next_beams.reserve(n_beams);
 | |
|     }
 | |
| 
 | |
|     // Collapse beams to a single beam given by index.
 | |
|     void collapse_beams(const size_t beam_idx) {
 | |
|         if (0u < beam_idx) {
 | |
|             std::swap(beams[0], beams[beam_idx]);
 | |
|         }
 | |
|         beams.resize(1);
 | |
|     }
 | |
| 
 | |
|     // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
 | |
|     // The repetitive patterns below reflect the 2 stages of heaps:
 | |
|     //  * Gather elements until the vector is full, then call std::make_heap() on it.
 | |
|     //  * If the heap is full and a new element is found that should be included, pop the
 | |
|     //    least element to the back(), replace it with the new, then push it into the heap.
 | |
|     void fill_next_beams_by_top_probabilities(llama_beam & beam) {
 | |
|         // Min-heaps use a greater-than comparator.
 | |
|         const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
 | |
|         if (beam.eob) {
 | |
|             // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
 | |
|             if (next_beams.size() < n_beams) {
 | |
|                 next_beams.push_back(std::move(beam));
 | |
|                 if (next_beams.size() == n_beams) {
 | |
|                     std::make_heap(next_beams.begin(), next_beams.end(), comp);
 | |
|                 }
 | |
|             } else if (next_beams.front().p < beam.p) {
 | |
|                 std::pop_heap(next_beams.begin(), next_beams.end(), comp);
 | |
|                 next_beams.back() = std::move(beam);
 | |
|                 std::push_heap(next_beams.begin(), next_beams.end(), comp);
 | |
|             }
 | |
|         } else {
 | |
|             // beam is not at end-of-sentence, so branch with next top_k tokens.
 | |
|             if (!beam.tokens.empty()) {
 | |
|                 llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0));
 | |
|             }
 | |
|             llama_logit_info logit_info(ctx);
 | |
|             std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
 | |
| 
 | |
|             // Clear the kv slot so that other beams may try different tokens at this position. The llama_decode()
 | |
|             // call in loop() will conclusively fill in the kv slot once the beams converge at this position.
 | |
|             llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
 | |
| 
 | |
|             size_t i=0;
 | |
|             if (next_beams.size() < n_beams) {
 | |
|                 for (; next_beams.size() < n_beams ; ++i) {
 | |
|                     llama_beam next_beam = beam;
 | |
|                     next_beam.tokens.push_back(next_tokens[i].id);
 | |
|                     next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
 | |
|                     next_beams.push_back(std::move(next_beam));
 | |
|                 }
 | |
|                 std::make_heap(next_beams.begin(), next_beams.end(), comp);
 | |
|             } else {
 | |
|                 for (; next_beams.front().p == 0.0f ; ++i) {
 | |
|                     std::pop_heap(next_beams.begin(), next_beams.end(), comp);
 | |
|                     next_beams.back() = beam;
 | |
|                     next_beams.back().tokens.push_back(next_tokens[i].id);
 | |
|                     next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
 | |
|                     std::push_heap(next_beams.begin(), next_beams.end(), comp);
 | |
|                 }
 | |
|             }
 | |
|             for (; i < n_beams ; ++i) {
 | |
|                 const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
 | |
|                 if (next_beams.front().p < next_p) {
 | |
|                     std::pop_heap(next_beams.begin(), next_beams.end(), comp);
 | |
|                     next_beams.back() = beam;
 | |
|                     next_beams.back().tokens.push_back(next_tokens[i].id);
 | |
|                     next_beams.back().p = next_p;
 | |
|                     std::push_heap(next_beams.begin(), next_beams.end(), comp);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Find common_prefix_length based on beams.
 | |
|     // Requires beams is not empty.
 | |
|     size_t find_common_prefix_length() {
 | |
|         size_t common_prefix_length = beams[0].tokens.size();
 | |
|         for (size_t i = 1 ; i < beams.size() ; ++i) {
 | |
|             common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
 | |
|             for (size_t j = 0 ; j < common_prefix_length ; ++j) {
 | |
|                 if (beams[0].tokens[j] != beams[i].tokens[j]) {
 | |
|                     common_prefix_length = j;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         return common_prefix_length;
 | |
|     }
 | |
| 
 | |
|     // Construct beams_state to send back to caller via the callback function.
 | |
|     // Side effect: set common_prefix_length = find_common_prefix_length();
 | |
|     llama_beams_state get_beams_state(const bool last_call) {
 | |
|         for (size_t i = 0 ; i < beams.size() ; ++i) {
 | |
|             beam_views[i] = beams[i].view();
 | |
|         }
 | |
|         common_prefix_length = find_common_prefix_length();
 | |
|         return {beam_views.data(), beams.size(), common_prefix_length, last_call};
 | |
|     }
 | |
| 
 | |
|     // Loop:
 | |
|     //  * while i < n_predict, AND
 | |
|     //  * any of the beams have not yet reached end-of-beam (eob), AND
 | |
|     //  * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
 | |
|     //    (since all other beam probabilities can only decrease)
 | |
|     void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
 | |
|         beams.push_back({{}, 1.0f, false});  // Start with one empty beam w/ probability = 1.0 and !eob.
 | |
|         const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
 | |
|         for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
 | |
|                        !beams[top_beam_index()].eob ; ++i) {
 | |
|             callback(callback_data, get_beams_state(false));  // Sets common_prefix_length
 | |
|             update_beams_from_beam_views();   // Update values (p,eob) that callback may have changed.
 | |
|             if (common_prefix_length) {
 | |
|                 llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0));
 | |
|                 n_past += common_prefix_length;
 | |
|             }
 | |
|             // Zero-out next_beam probabilities to place them last in following min-heap.
 | |
|             std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
 | |
|             for (llama_beam & beam : beams) {
 | |
|                 beam.shift_tokens(common_prefix_length);
 | |
|                 fill_next_beams_by_top_probabilities(beam);
 | |
|             }
 | |
|             // next_beams become the beams of next/final iteration. Swap them to re-use memory.
 | |
|             beams.swap(next_beams);
 | |
|             renormalize_beam_probabilities(beams);
 | |
|         }
 | |
|         collapse_beams(top_beam_index());
 | |
|         callback(callback_data, get_beams_state(true));
 | |
|     }
 | |
| 
 | |
|     // As beams grow, the cumulative probabilities decrease.
 | |
|     // Renormalize them to avoid floating point underflow.
 | |
|     static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
 | |
|         const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
 | |
|         const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
 | |
|         std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
 | |
|     }
 | |
| 
 | |
|     // Assumes beams is non-empty.  Uses llama_beam::operator<() for ordering.
 | |
|     size_t top_beam_index() {
 | |
|         return std::max_element(beams.begin(), beams.end()) - beams.begin();
 | |
|     }
 | |
| 
 | |
|     // Copy (p,eob) for each beam which may have been changed by the callback.
 | |
|     void update_beams_from_beam_views() {
 | |
|         for (size_t i = 0 ; i < beams.size() ; ++i) {
 | |
|             beams[i].p = beam_views[i].p;
 | |
|             beams[i].eob = beam_views[i].eob;
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| void llama_beam_search(llama_context * ctx,
 | |
|                        llama_beam_search_callback_fn_t callback, void * callback_data,
 | |
|                        size_t n_beams, int n_past, int n_predict) {
 | |
|     assert(ctx);
 | |
|     const int64_t t_start_sample_us = ggml_time_us();
 | |
| 
 | |
|     llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict);
 | |
| 
 | |
|     beam_search_data.loop(callback, callback_data);
 | |
| 
 | |
|     ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
 | |
|     ctx->n_sample++;
 | |
| }
 | |
| 
 | |
| //
 | |
| // quantization
 | |
| //
 | |
| 
 | |
| struct quantize_state_internal {
 | |
|     const llama_model                 & model;
 | |
|     const llama_model_quantize_params * params;
 | |
| 
 | |
|     int n_attention_wv    = 0;
 | |
|     int n_ffn_down        = 0;
 | |
|     int n_ffn_gate        = 0;
 | |
|     int n_ffn_up          = 0;
 | |
|     int i_attention_wv    = 0;
 | |
|     int i_ffn_down        = 0;
 | |
|     int i_ffn_gate        = 0;
 | |
|     int i_ffn_up          = 0;
 | |
| 
 | |
|     int n_k_quantized     = 0;
 | |
|     int n_fallback        = 0;
 | |
| 
 | |
|     bool has_imatrix      = false;
 | |
| 
 | |
|     // used to figure out if a model shares tok_embd with the output weight
 | |
|     bool has_output       = false;
 | |
| 
 | |
|     quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
 | |
|         : model(model)
 | |
|         , params(params)
 | |
|         {}
 | |
| };
 | |
| 
 | |
| static void llama_tensor_dequantize_internal(
 | |
|     struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
 | |
|     const size_t nelements, const int nthread
 | |
| ) {
 | |
|     if (output.size() < nelements) {
 | |
|         output.resize(nelements);
 | |
|     }
 | |
|     float * f32_output = (float *) output.data();
 | |
| 
 | |
|     ggml_type_traits_t qtype;
 | |
|     if (ggml_is_quantized(tensor->type)) {
 | |
|         qtype = ggml_internal_get_type_traits(tensor->type);
 | |
|         if (qtype.to_float == NULL) {
 | |
|             throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
 | |
|         }
 | |
|     } else if (tensor->type != GGML_TYPE_F16) {
 | |
|         throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
 | |
|     }
 | |
| 
 | |
|     if (nthread < 2) {
 | |
|         if (tensor->type == GGML_TYPE_F16) {
 | |
|             ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
 | |
|         } else if (ggml_is_quantized(tensor->type)) {
 | |
|             qtype.to_float(tensor->data, f32_output, nelements);
 | |
|         } else {
 | |
|             GGML_ASSERT(false); // unreachable
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     size_t block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type);
 | |
|     size_t block_size_bytes = ggml_type_size(tensor->type);
 | |
| 
 | |
|     GGML_ASSERT(nelements % block_size == 0);
 | |
|     size_t nblocks = nelements / block_size;
 | |
|     size_t blocks_per_thread = nblocks / nthread;
 | |
|     size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
 | |
| 
 | |
|     size_t in_buff_offs = 0;
 | |
|     size_t out_buff_offs = 0;
 | |
| 
 | |
|     for (int tnum = 0; tnum < nthread; tnum++) {
 | |
|         size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
 | |
|         size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
 | |
|         size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
 | |
| 
 | |
|         auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
 | |
|             if (typ == GGML_TYPE_F16) {
 | |
|                 ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
 | |
|             } else {
 | |
|                 qtype.to_float(inbuf, outbuf, nels);
 | |
|             }
 | |
|         };
 | |
|         workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
 | |
|         in_buff_offs += thr_block_bytes;
 | |
|         out_buff_offs += thr_elems;
 | |
|     }
 | |
|     for (auto & w : workers) { w.join(); }
 | |
|     workers.clear();
 | |
| }
 | |
| 
 | |
| static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
 | |
|     const std::string name = ggml_get_name(tensor);
 | |
| 
 | |
|     // TODO: avoid hardcoded tensor names - use the TN_* constants
 | |
|     const llm_arch arch = qs.model.arch;
 | |
|     const auto       tn = LLM_TN(arch);
 | |
| 
 | |
|     auto use_more_bits = [](int i_layer, int num_layers) -> bool {
 | |
|         return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
 | |
|     };
 | |
|     const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
 | |
|     auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
 | |
|         if (n_expert > 1) {
 | |
|             // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
 | |
|             // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
 | |
|             // for getting the current layer as I initially thought, and we need to resort to parsing the
 | |
|             // tensor name.
 | |
|             if (sscanf(name, "blk.%d.", &i_layer) != 1) {
 | |
|                 throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
 | |
|             }
 | |
|             if (i_layer < 0 || i_layer >= n_layer) {
 | |
|                 throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
 | |
|             }
 | |
|         }
 | |
|         return std::make_pair(i_layer, n_layer);
 | |
|     };
 | |
| 
 | |
|     // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
 | |
|     // with the quantization of the output tensor
 | |
|     if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
 | |
|         if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
 | |
|             new_type = qs.params->output_tensor_type;
 | |
|         } else {
 | |
|             int nx = tensor->ne[0];
 | |
|             if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
 | |
|                 new_type = GGML_TYPE_Q8_0;
 | |
|             }
 | |
|             else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
 | |
|                      ftype == LLAMA_FTYPE_MOSTLY_IQ1_S   || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S  || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M   ||
 | |
|                      ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
 | |
|                 new_type = GGML_TYPE_Q5_K;
 | |
|             }
 | |
|             else if (new_type != GGML_TYPE_Q8_0) {
 | |
|                 new_type = GGML_TYPE_Q6_K;
 | |
|             }
 | |
|         }
 | |
|     } else if (name == "token_embd.weight") {
 | |
|         if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
 | |
|             new_type = qs.params->token_embedding_type;
 | |
|         } else {
 | |
|             if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
 | |
|                 ftype == LLAMA_FTYPE_MOSTLY_IQ1_S   || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
 | |
|                 new_type = GGML_TYPE_Q2_K;
 | |
|             }
 | |
|             else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
 | |
|                 new_type = GGML_TYPE_IQ3_S;
 | |
|             }
 | |
|             else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
 | |
|                 new_type = GGML_TYPE_IQ3_S;
 | |
|             }
 | |
|         }
 | |
|     } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
 | |
|                ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M    || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
 | |
|         if (name.find("attn_v.weight") != std::string::npos) {
 | |
|             if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
 | |
|             else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
 | |
|             ++qs.i_attention_wv;
 | |
|         }
 | |
|         else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
 | |
|             new_type = GGML_TYPE_Q4_K;
 | |
|         }
 | |
|         else if (name.find("ffn_down") != std::string::npos) {
 | |
|             if (qs.i_ffn_down < qs.n_ffn_down/8) {
 | |
|                 new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
 | |
|             }
 | |
|             ++qs.i_ffn_down;
 | |
|         }
 | |
|         else if (name.find("attn_output.weight") != std::string::npos) {
 | |
|             if (qs.model.hparams.n_expert == 8) {
 | |
|                 new_type = GGML_TYPE_Q5_K;
 | |
|             } else {
 | |
|                 if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
 | |
|                 else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
 | |
|             }
 | |
|         }
 | |
|     } else if (name.find("attn_v.weight") != std::string::npos) {
 | |
|         if      (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
 | |
|             new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
 | |
|         }
 | |
|         else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
 | |
|             new_type = GGML_TYPE_Q4_K;
 | |
|         }
 | |
|         else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
 | |
|             new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
 | |
|         }
 | |
|         else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
 | |
|             new_type = GGML_TYPE_Q4_K;
 | |
|         }
 | |
|         else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
 | |
|             new_type = GGML_TYPE_Q4_K;
 | |
|         }
 | |
|         else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
 | |
|             new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
 | |
|         }
 | |
|         else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
 | |
|         else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
 | |
|             new_type = GGML_TYPE_Q5_K;
 | |
|         }
 | |
|         else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
 | |
|                 use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
 | |
|         else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
 | |
|         else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
 | |
|                 (qs.i_attention_wv < qs.n_attention_wv/8 || qs.i_attention_wv >= 7*qs.n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
 | |
|         if (qs.model.type == MODEL_70B) {
 | |
|             // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
 | |
|             // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
 | |
|             // nearly negligible increase in model size by quantizing this tensor with more bits:
 | |
|             if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
 | |
|         }
 | |
|         if (qs.model.hparams.n_expert == 8) {
 | |
|             // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
 | |
|             // TODO: explore better strategies
 | |
|             new_type = GGML_TYPE_Q8_0;
 | |
|         }
 | |
|         ++qs.i_attention_wv;
 | |
|     } else if (name.find("attn_k.weight") != std::string::npos) {
 | |
|         if (qs.model.hparams.n_expert == 8) {
 | |
|             // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
 | |
|             // TODO: explore better strategies
 | |
|             new_type = GGML_TYPE_Q8_0;
 | |
|         }
 | |
|         else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
 | |
|             new_type = GGML_TYPE_IQ3_XXS;
 | |
|         }
 | |
|         else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
 | |
|             new_type = GGML_TYPE_IQ2_S;
 | |
|         }
 | |
|     } else if (name.find("attn_q.weight") != std::string::npos) {
 | |
|         if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
 | |
|             new_type = GGML_TYPE_IQ3_XXS;
 | |
|         }
 | |
|         else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
 | |
|             new_type = GGML_TYPE_IQ2_S;
 | |
|         }
 | |
|     } else if (name.find("ffn_down") != std::string::npos) {
 | |
|         auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
 | |
|         int i_layer = info.first, n_layer = info.second;
 | |
|         if      (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
 | |
|         else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
 | |
|             if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
 | |
|         }
 | |
|         else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
 | |
|             new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
 | |
|         }
 | |
|         else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
 | |
|             new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
 | |
|                      : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
 | |
|                      : GGML_TYPE_Q3_K;
 | |
|         }
 | |
|         else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
 | |
|                     (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
 | |
|             new_type = GGML_TYPE_Q4_K;
 | |
|         }
 | |
|         else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
 | |
|             new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
 | |
|         }
 | |
|         else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
 | |
|             if (arch == LLM_ARCH_FALCON) {
 | |
|                 new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
 | |
|                            use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
 | |
|             } else {
 | |
|                 if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
 | |
|             }
 | |
|         }
 | |
|         else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
 | |
|             new_type = GGML_TYPE_Q5_K;
 | |
|         }
 | |
|         else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
 | |
|         else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
 | |
|             new_type = GGML_TYPE_Q5_K;
 | |
|         }
 | |
|         else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
 | |
|                 && qs.has_imatrix && i_layer < n_layer/8) {
 | |
|             // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
 | |
|             // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
 | |
|             // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
 | |
|             new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
 | |
|         }
 | |
|         ++qs.i_ffn_down;
 | |
|     } else if (name.find("attn_output.weight") != std::string::npos) {
 | |
|         if (arch != LLM_ARCH_FALCON) {
 | |
|             if (qs.model.hparams.n_expert == 8) {
 | |
|                 if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K   || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
 | |
|                     ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M  || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL  ||
 | |
|                     ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M  || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S  ||
 | |
|                     ftype == LLAMA_FTYPE_MOSTLY_IQ3_M  || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
 | |
|                     new_type = GGML_TYPE_Q5_K;
 | |
|                 }
 | |
|             } else {
 | |
|                 if      (ftype == LLAMA_FTYPE_MOSTLY_Q2_K   ) new_type = GGML_TYPE_Q3_K;
 | |
|                 else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
 | |
|                 else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
 | |
|                 else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
 | |
|                 else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M  ) new_type = GGML_TYPE_Q4_K;
 | |
|             }
 | |
|         } else {
 | |
|             if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
 | |
|         }
 | |
|     }
 | |
|     else if (name.find("attn_qkv.weight") != std::string::npos) {
 | |
|         if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
 | |
|             new_type = GGML_TYPE_Q4_K;
 | |
|         }
 | |
|         else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
 | |
|         else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
 | |
|     }
 | |
|     else if (name.find("ffn_gate") != std::string::npos) {
 | |
|         auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
 | |
|         int i_layer = info.first, n_layer = info.second;
 | |
|         if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
 | |
|             new_type = GGML_TYPE_IQ3_XXS;
 | |
|         }
 | |
|         ++qs.i_ffn_gate;
 | |
|     }
 | |
|     else if (name.find("ffn_up") != std::string::npos) {
 | |
|         auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
 | |
|         int i_layer = info.first, n_layer = info.second;
 | |
|         if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
 | |
|             new_type = GGML_TYPE_IQ3_XXS;
 | |
|         }
 | |
|         ++qs.i_ffn_up;
 | |
|     }
 | |
| 
 | |
|     //    if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
 | |
|     //}
 | |
|     // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
 | |
|     //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
 | |
|     //    if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
 | |
|     //}
 | |
|     // This can be used to reduce the size of the Q5_K_S model.
 | |
|     // The associated PPL increase is fully in line with the size reduction
 | |
|     //else {
 | |
|     //    if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
 | |
|     //}
 | |
|     bool convert_incompatible_tensor = false;
 | |
|     if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
 | |
|         new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
 | |
|         new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
 | |
|         new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
 | |
|         new_type == GGML_TYPE_IQ1_M) {
 | |
|         int nx = tensor->ne[0];
 | |
|         int ny = tensor->ne[1];
 | |
|         if (nx % QK_K != 0) {
 | |
|             LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
 | |
|             convert_incompatible_tensor = true;
 | |
|         } else {
 | |
|             ++qs.n_k_quantized;
 | |
|         }
 | |
|     }
 | |
|     if (convert_incompatible_tensor) {
 | |
|         switch (new_type) {
 | |
|             case GGML_TYPE_IQ2_XXS:
 | |
|             case GGML_TYPE_IQ2_XS:
 | |
|             case GGML_TYPE_IQ2_S:
 | |
|             case GGML_TYPE_IQ3_XXS:
 | |
|             case GGML_TYPE_IQ3_S:
 | |
|             case GGML_TYPE_IQ1_S:
 | |
|             case GGML_TYPE_IQ1_M:
 | |
|             case GGML_TYPE_Q2_K:
 | |
|             case GGML_TYPE_Q3_K:
 | |
|             case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
 | |
|             case GGML_TYPE_Q4_K:   new_type = GGML_TYPE_Q5_0;   break;
 | |
|             case GGML_TYPE_Q5_K:   new_type = GGML_TYPE_Q5_1;   break;
 | |
|             case GGML_TYPE_Q6_K:   new_type = GGML_TYPE_Q8_0;   break;
 | |
|             default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
 | |
|         }
 | |
|         LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
 | |
|         ++qs.n_fallback;
 | |
|     }
 | |
| 
 | |
|     return new_type;
 | |
| }
 | |
| 
 | |
| static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
 | |
|     if (nthread < 2) {
 | |
|         // single-thread
 | |
|         size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
 | |
|         if (!ggml_validate_row_data(new_type, new_data, new_size)) {
 | |
|             throw std::runtime_error("quantized data validation failed");
 | |
|         }
 | |
|         return new_size;
 | |
|     }
 | |
| 
 | |
|     std::mutex mutex;
 | |
|     int64_t counter = 0;
 | |
|     size_t new_size = 0;
 | |
|     bool valid = true;
 | |
|     auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
 | |
|             nrows, n_per_row, imatrix]() {
 | |
|         const int64_t nrows_per_chunk = chunk_size / n_per_row;
 | |
|         size_t local_size = 0;
 | |
|         while (true) {
 | |
|             std::unique_lock<std::mutex> lock(mutex);
 | |
|             int64_t first_row = counter; counter += nrows_per_chunk;
 | |
|             if (first_row >= nrows) {
 | |
|                 if (local_size > 0) {
 | |
|                     new_size += local_size;
 | |
|                 }
 | |
|                 break;
 | |
|             }
 | |
|             lock.unlock();
 | |
|             const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
 | |
|             size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
 | |
|             local_size += this_size;
 | |
| 
 | |
|             // validate the quantized data
 | |
|             const size_t row_size  = ggml_row_size(new_type, n_per_row);
 | |
|             void * this_data = (char *) new_data + first_row * row_size;
 | |
|             if (!ggml_validate_row_data(new_type, this_data, this_size)) {
 | |
|                 std::unique_lock<std::mutex> lock(mutex);
 | |
|                 valid = false;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     };
 | |
|     for (int it = 0; it < nthread - 1; ++it) {
 | |
|         workers.emplace_back(compute);
 | |
|     }
 | |
|     compute();
 | |
|     for (auto & w : workers) { w.join(); }
 | |
|     workers.clear();
 | |
|     if (!valid) {
 | |
|         throw std::runtime_error("quantized data validation failed");
 | |
|     }
 | |
|     return new_size;
 | |
| }
 | |
| 
 | |
| static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
 | |
|     ggml_type default_type;
 | |
|     llama_ftype ftype = params->ftype;
 | |
| 
 | |
|     switch (params->ftype) {
 | |
|         case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
 | |
|         case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
 | |
|         case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
 | |
|         case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
 | |
|         case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
 | |
|         case LLAMA_FTYPE_MOSTLY_F16:  default_type = GGML_TYPE_F16;  break;
 | |
|         case LLAMA_FTYPE_ALL_F32:     default_type = GGML_TYPE_F32;  break;
 | |
| 
 | |
|         // K-quants
 | |
|         case LLAMA_FTYPE_MOSTLY_Q2_K_S:
 | |
|         case LLAMA_FTYPE_MOSTLY_Q2_K:    default_type = GGML_TYPE_Q2_K;    break;
 | |
|         case LLAMA_FTYPE_MOSTLY_IQ3_XS:  default_type = GGML_TYPE_IQ3_S;   break;
 | |
|         case LLAMA_FTYPE_MOSTLY_Q3_K_S:
 | |
|         case LLAMA_FTYPE_MOSTLY_Q3_K_M:
 | |
|         case LLAMA_FTYPE_MOSTLY_Q3_K_L:  default_type = GGML_TYPE_Q3_K;    break;
 | |
|         case LLAMA_FTYPE_MOSTLY_Q4_K_S:
 | |
|         case LLAMA_FTYPE_MOSTLY_Q4_K_M:  default_type = GGML_TYPE_Q4_K;    break;
 | |
|         case LLAMA_FTYPE_MOSTLY_Q5_K_S:
 | |
|         case LLAMA_FTYPE_MOSTLY_Q5_K_M:  default_type = GGML_TYPE_Q5_K;    break;
 | |
|         case LLAMA_FTYPE_MOSTLY_Q6_K:    default_type = GGML_TYPE_Q6_K;    break;
 | |
|         case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
 | |
|         case LLAMA_FTYPE_MOSTLY_IQ2_XS:  default_type = GGML_TYPE_IQ2_XS;  break;
 | |
|         case LLAMA_FTYPE_MOSTLY_IQ2_S:   default_type = GGML_TYPE_IQ2_XS;  break;
 | |
|         case LLAMA_FTYPE_MOSTLY_IQ2_M:   default_type = GGML_TYPE_IQ2_S;   break;
 | |
|         case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
 | |
|         case LLAMA_FTYPE_MOSTLY_IQ1_S:   default_type = GGML_TYPE_IQ1_S;   break;
 | |
|         case LLAMA_FTYPE_MOSTLY_IQ1_M:   default_type = GGML_TYPE_IQ1_M;   break;
 | |
|         case LLAMA_FTYPE_MOSTLY_IQ4_NL:  default_type = GGML_TYPE_IQ4_NL;  break;
 | |
|         case LLAMA_FTYPE_MOSTLY_IQ4_XS:  default_type = GGML_TYPE_IQ4_XS;  break;
 | |
|         case LLAMA_FTYPE_MOSTLY_IQ3_S:   default_type = GGML_TYPE_IQ3_S;   break;
 | |
|         case LLAMA_FTYPE_MOSTLY_IQ3_M:   default_type = GGML_TYPE_IQ3_S;   break;
 | |
| 
 | |
|         default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
 | |
|     }
 | |
| 
 | |
|     int nthread = params->nthread;
 | |
| 
 | |
|     if (nthread <= 0) {
 | |
|         nthread = std::thread::hardware_concurrency();
 | |
|     }
 | |
| 
 | |
|     // mmap consistently increases speed Linux, and also increases speed on Windows with
 | |
|     // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
 | |
| #if defined(__linux__) || defined(_WIN32)
 | |
|     constexpr bool use_mmap = true;
 | |
| #else
 | |
|     constexpr bool use_mmap = false;
 | |
| #endif
 | |
| 
 | |
|     llama_model_kv_override * kv_overrides = nullptr;
 | |
|     if (params->kv_overrides) {
 | |
|         auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
 | |
|         kv_overrides = v->data();
 | |
|     }
 | |
|     llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
 | |
|     ml.init_mappings(false); // no prefetching
 | |
| 
 | |
|     llama_model model;
 | |
|     llm_load_arch(ml, model);
 | |
|     llm_load_hparams(ml, model);
 | |
| 
 | |
|     struct quantize_state_internal qs(model, params);
 | |
| 
 | |
|     if (params->only_copy) {
 | |
|         ftype = model.ftype;
 | |
|     }
 | |
|     const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
 | |
|     if (params->imatrix) {
 | |
|         imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
 | |
|         if (imatrix_data) {
 | |
|             LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
 | |
|             qs.has_imatrix = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     const size_t align = GGUF_DEFAULT_ALIGNMENT;
 | |
|     struct gguf_context * ctx_out = gguf_init_empty();
 | |
| 
 | |
|     // copy the KV pairs from the input file
 | |
|     gguf_set_kv     (ctx_out, ml.meta);
 | |
|     gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
 | |
|     gguf_set_val_u32(ctx_out, "general.file_type", ftype);
 | |
|     // Remove split metadata
 | |
|     gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
 | |
|     gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
 | |
|     gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
 | |
| 
 | |
|     if (params->kv_overrides) {
 | |
|         const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
 | |
|         for (auto & o : overrides) {
 | |
|             if (o.key[0] == 0) break;
 | |
|             if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
 | |
|                 gguf_set_val_f32(ctx_out, o.key, o.val_f64);
 | |
|             } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
 | |
|                 gguf_set_val_i32(ctx_out, o.key, o.val_i64);
 | |
|             } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
 | |
|                 gguf_set_val_bool(ctx_out, o.key, o.val_bool);
 | |
|             } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
 | |
|                 gguf_set_val_str(ctx_out, o.key, o.val_str);
 | |
|             } else {
 | |
|                 LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < ml.n_tensors; ++i) {
 | |
|         const struct ggml_tensor * meta = ml.get_tensor_meta(i);
 | |
| 
 | |
|         const std::string name = ggml_get_name(meta);
 | |
| 
 | |
|         // TODO: avoid hardcoded tensor names - use the TN_* constants
 | |
|         if (name.find("attn_v.weight")   != std::string::npos ||
 | |
|             name.find("attn_qkv.weight") != std::string::npos) {
 | |
|             ++qs.n_attention_wv;
 | |
|         } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
 | |
|             qs.has_output = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
 | |
| 
 | |
|     // sanity checks
 | |
|     //
 | |
|     //  - qs.n_attention_wv == 0                     for Mamba       models
 | |
|     //  - qs.n_attention_wv == model.hparams.n_layer for Transformer models
 | |
|     //
 | |
|     GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer) && "n_attention_wv is unexpected");
 | |
| 
 | |
|     size_t total_size_org = 0;
 | |
|     size_t total_size_new = 0;
 | |
| 
 | |
|     std::vector<std::thread> workers;
 | |
|     workers.reserve(nthread);
 | |
| 
 | |
|     int idx = 0;
 | |
| 
 | |
|     std::vector<no_init<uint8_t>> read_data;
 | |
|     std::vector<no_init<uint8_t>> work;
 | |
|     std::vector<no_init<float>> f32_conv_buf;
 | |
| 
 | |
|     uint16_t n_split = 1;
 | |
|     // Assume split index is continuous
 | |
|     if (params->keep_split) {
 | |
|         for (int i = 0; i < ml.n_tensors; ++i) {
 | |
|             n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split);
 | |
|         }
 | |
|     }
 | |
|     std::vector<gguf_context*> ctx_outs(n_split, NULL);
 | |
|     ctx_outs[0] = ctx_out;
 | |
| 
 | |
|     // populate the original tensors so we get an initial meta data
 | |
|     for (int i = 0; i < ml.n_tensors; ++i) {
 | |
|         auto weight = ml.get_weight(i);
 | |
|         uint16_t i_split = params->keep_split ? weight->idx : 0;
 | |
|         struct ggml_tensor * tensor = weight->tensor;
 | |
|         if (ctx_outs[i_split] == NULL) {
 | |
|             ctx_outs[i_split] = gguf_init_empty();
 | |
|         }
 | |
|         gguf_add_tensor(ctx_outs[i_split], tensor);
 | |
|     }
 | |
| 
 | |
|     // Set split info if needed
 | |
|     if (n_split > 1) {
 | |
|         for (size_t i = 0; i < ctx_outs.size(); ++i) {
 | |
|             gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
 | |
|             gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
 | |
|             gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     int cur_split = -1;
 | |
|     std::ofstream fout;
 | |
|     auto close_ofstream = [&]() {
 | |
|         // Write metadata and close file handler
 | |
|         if (fout.is_open()) {
 | |
|             fout.seekp(0);
 | |
|             std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split]));
 | |
|             gguf_get_meta_data(ctx_outs[cur_split], data.data());
 | |
|             fout.write((const char *) data.data(), data.size());
 | |
|             fout.close();
 | |
|         }
 | |
|     };
 | |
|     auto new_ofstream = [&](int index) {
 | |
|         cur_split = index;
 | |
|         GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
 | |
|         std::string fname = fname_out;
 | |
|         if (params->keep_split) {
 | |
|             char split_path[PATH_MAX] = {0};
 | |
|             llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split);
 | |
|             fname = std::string(split_path);
 | |
|         }
 | |
| 
 | |
|         fout = std::ofstream(fname, std::ios::binary);
 | |
|         fout.exceptions(std::ofstream::failbit); // fail fast on write errors
 | |
|         const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]);
 | |
|         // placeholder for the meta data
 | |
|         ::zeros(fout, meta_size);
 | |
|     };
 | |
| 
 | |
|     const auto tn = LLM_TN(model.arch);
 | |
|     new_ofstream(0);
 | |
|     for (int i = 0; i < ml.n_tensors; ++i) {
 | |
|         auto weight = ml.get_weight(i);
 | |
|         struct ggml_tensor * tensor = weight->tensor;
 | |
|         if (weight->idx != cur_split && params->keep_split) {
 | |
|             close_ofstream();
 | |
|             new_ofstream(weight->idx);
 | |
|         }
 | |
| 
 | |
|         const std::string name = ggml_get_name(tensor);
 | |
| 
 | |
|         if (!ml.use_mmap) {
 | |
|             if (read_data.size() < ggml_nbytes(tensor)) {
 | |
|                 read_data.resize(ggml_nbytes(tensor));
 | |
|             }
 | |
|             tensor->data = read_data.data();
 | |
|         }
 | |
|         ml.load_data_for(tensor);
 | |
| 
 | |
|         LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
 | |
|                ++idx, ml.n_tensors,
 | |
|                ggml_get_name(tensor),
 | |
|                llama_format_tensor_shape(tensor).c_str(),
 | |
|                ggml_type_name(tensor->type));
 | |
| 
 | |
|         // This used to be a regex, but <regex> has an extreme cost to compile times.
 | |
|         bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
 | |
| 
 | |
|         // quantize only 2D and 3D tensors (experts)
 | |
|         quantize &= (ggml_n_dims(tensor) >= 2);
 | |
| 
 | |
|         // do not quantize norm tensors
 | |
|         quantize &= name.find("_norm.weight") == std::string::npos;
 | |
| 
 | |
|         quantize &= params->quantize_output_tensor || name != "output.weight";
 | |
|         quantize &= !params->only_copy;
 | |
| 
 | |
|         // do not quantize expert gating tensors
 | |
|         // NOTE: can't use LLM_TN here because the layer number is not known
 | |
|         quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
 | |
| 
 | |
|         // do not quantize positional embeddings and token types (BERT)
 | |
|         quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD,    "weight");
 | |
|         quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
 | |
| 
 | |
|         // do not quantize Mamba's small yet 2D weights
 | |
|         // NOTE: can't use LLM_TN here because the layer number is not known
 | |
|         quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
 | |
|         quantize &= name.find("ssm_x.weight")      == std::string::npos;
 | |
|         quantize &= name.find("ssm_dt.weight")     == std::string::npos;
 | |
| 
 | |
|         enum ggml_type new_type;
 | |
|         void * new_data;
 | |
|         size_t new_size;
 | |
| 
 | |
|         if (quantize) {
 | |
|             new_type = default_type;
 | |
| 
 | |
|             // get more optimal quantization type based on the tensor shape, layer, etc.
 | |
|             if (!params->pure && ggml_is_quantized(default_type)) {
 | |
|                 new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
 | |
|             }
 | |
|             if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
 | |
|                 new_type = params->token_embedding_type;
 | |
|             }
 | |
|             if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
 | |
|                 new_type = params->output_tensor_type;
 | |
|             }
 | |
| 
 | |
|             // If we've decided to quantize to the same type the tensor is already
 | |
|             // in then there's nothing to do.
 | |
|             quantize = tensor->type != new_type;
 | |
|         }
 | |
| 
 | |
|         if (!quantize) {
 | |
|             new_type = tensor->type;
 | |
|             new_data = tensor->data;
 | |
|             new_size = ggml_nbytes(tensor);
 | |
|             LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
 | |
|         } else {
 | |
|             const int64_t nelements = ggml_nelements(tensor);
 | |
| 
 | |
|             const float * imatrix = nullptr;
 | |
|             if (imatrix_data) {
 | |
|                 auto it = imatrix_data->find(tensor->name);
 | |
|                 if (it == imatrix_data->end()) {
 | |
|                     LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
 | |
|                 } else {
 | |
|                     if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
 | |
|                         imatrix = it->second.data();
 | |
|                     } else {
 | |
|                         LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
 | |
|                                 int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
 | |
| 
 | |
|                         // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
 | |
|                         // this is a significant error and it may be good idea to abort the process if this happens,
 | |
|                         // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
 | |
|                         // tok_embd should be ignored in this case, since it always causes this warning
 | |
|                         if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
 | |
|                             throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
 | |
|                                     int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             if ((new_type == GGML_TYPE_IQ2_XXS ||
 | |
|                  new_type == GGML_TYPE_IQ2_XS  ||
 | |
|                  new_type == GGML_TYPE_IQ2_S   ||
 | |
|                  new_type == GGML_TYPE_IQ1_S   ||
 | |
|                 (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight"))  ||
 | |
|                 (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
 | |
|                 LLAMA_LOG_ERROR("\n\n============================================================\n");
 | |
|                 LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
 | |
|                 LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
 | |
|                 LLAMA_LOG_ERROR("============================================================\n\n");
 | |
|                 throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
 | |
|             }
 | |
| 
 | |
|             float * f32_data;
 | |
| 
 | |
|             if (tensor->type == GGML_TYPE_F32) {
 | |
|                 f32_data = (float *) tensor->data;
 | |
|             } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
 | |
|                 throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
 | |
|             } else {
 | |
|                 llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
 | |
|                 f32_data = (float *) f32_conv_buf.data();
 | |
|             }
 | |
| 
 | |
|             LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
 | |
|             fflush(stdout);
 | |
| 
 | |
|             if (work.size() < (size_t)nelements * 4) {
 | |
|                 work.resize(nelements * 4); // upper bound on size
 | |
|             }
 | |
|             new_data = work.data();
 | |
| 
 | |
|             const int64_t n_per_row = tensor->ne[0];
 | |
|             const int64_t nrows = tensor->ne[1];
 | |
| 
 | |
|             static const int64_t min_chunk_size = 32 * 512;
 | |
|             const int64_t chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
 | |
| 
 | |
|             const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
 | |
|             const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
 | |
|             const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
 | |
| 
 | |
|             // quantize each expert separately since they have different importance matrices
 | |
|             new_size = 0;
 | |
|             for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
 | |
|                 const float * f32_data_03 = f32_data + i03 * nelements_matrix;
 | |
|                 void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
 | |
|                 const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
 | |
| 
 | |
|                 new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
 | |
|             }
 | |
|             LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
 | |
|         }
 | |
|         total_size_org += ggml_nbytes(tensor);
 | |
|         total_size_new += new_size;
 | |
| 
 | |
|         // update the gguf meta data as we go
 | |
|         gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type);
 | |
|         gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size);
 | |
| 
 | |
|         // write tensor data + padding
 | |
|         fout.write((const char *) new_data, new_size);
 | |
|         zeros(fout, GGML_PAD(new_size, align) - new_size);
 | |
|     }
 | |
|     close_ofstream();
 | |
|     for (auto & c:ctx_outs) {
 | |
|         gguf_free(c);
 | |
|     }
 | |
| 
 | |
|     LLAMA_LOG_INFO("%s: model size  = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
 | |
|     LLAMA_LOG_INFO("%s: quant size  = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
 | |
| 
 | |
|     if (qs.n_fallback > 0) {
 | |
|         LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
 | |
|                 __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int llama_apply_lora_from_file_internal(
 | |
|     const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
 | |
| ) {
 | |
|     LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
 | |
| 
 | |
|     const int64_t t_start_lora_us = ggml_time_us();
 | |
| 
 | |
|     llama_file fin(path_lora, "rb");
 | |
| 
 | |
|     // verify magic and version
 | |
|     {
 | |
|         uint32_t magic = fin.read_u32();
 | |
|         if (magic != LLAMA_FILE_MAGIC_GGLA) {
 | |
|             LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         uint32_t format_version = fin.read_u32();
 | |
|         if (format_version != 1) {
 | |
|             LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     int32_t lora_r = fin.read_u32();
 | |
|     int32_t lora_alpha = fin.read_u32();
 | |
|     float scaling = scale * (float)lora_alpha / (float)lora_r;
 | |
| 
 | |
|     LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
 | |
| 
 | |
|     // load base model
 | |
|     std::unique_ptr<llama_model_loader> ml;
 | |
|     if (path_base_model) {
 | |
|         LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
 | |
|         ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
 | |
|         ml->init_mappings(/*prefetch*/ false); // no prefetching
 | |
|     }
 | |
| 
 | |
|     struct tensor_meta {
 | |
|         std::string name;
 | |
|         ggml_type type;
 | |
|         int32_t ne[2];
 | |
|         size_t offset;
 | |
|     };
 | |
|     std::map<std::string, tensor_meta> tensor_meta_map;
 | |
| 
 | |
|     // load all tensor meta
 | |
|     while (true) {
 | |
|         if (fin.tell() == fin.size) {
 | |
|             // eof
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         int32_t n_dims;
 | |
|         int32_t name_len;
 | |
|         int32_t ftype;
 | |
| 
 | |
|         fin.read_raw(&n_dims, sizeof(n_dims));
 | |
|         fin.read_raw(&name_len, sizeof(name_len));
 | |
|         fin.read_raw(&ftype, sizeof(ftype));
 | |
| 
 | |
|         if (n_dims != 1 && n_dims != 2) {
 | |
|             LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         int32_t ne[2] = { 1, 1 };
 | |
|         for (int i = 0; i < n_dims; ++i) {
 | |
|             fin.read_raw(&ne[i], sizeof(ne[i]));
 | |
|         }
 | |
| 
 | |
|         std::string name;
 | |
|         {
 | |
|             GGML_ASSERT(name_len < GGML_MAX_NAME);
 | |
|             char buf[GGML_MAX_NAME];
 | |
|             fin.read_raw(buf, name_len);
 | |
|             name = std::string(buf, name_len);
 | |
|         }
 | |
| 
 | |
|         // check for lora suffix
 | |
|         std::string lora_suffix;
 | |
|         if (name.length() > 6) {
 | |
|             lora_suffix = name.substr(name.length() - 6);
 | |
|         }
 | |
|         if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
 | |
|             LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         // tensor type
 | |
|         ggml_type wtype;
 | |
|         switch (ftype) {
 | |
|             case 0: wtype = GGML_TYPE_F32;  break;
 | |
|             case 1: wtype = GGML_TYPE_F16;  break;
 | |
|             default:
 | |
|                     {
 | |
|                         LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
 | |
|                                 __func__, ftype);
 | |
|                         return 1;
 | |
|                     }
 | |
|         }
 | |
| 
 | |
|         // data offset
 | |
|         size_t offset = fin.tell();
 | |
|         offset = (offset + 31) & -32;
 | |
| 
 | |
|         // skip tensor data
 | |
|         fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
 | |
| 
 | |
|         tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
 | |
|     }
 | |
| 
 | |
|     bool warned = false;
 | |
|     int n_tensors = 0;
 | |
| 
 | |
|     // apply
 | |
|     ggml_backend_t backend_cpu = ggml_backend_cpu_init();
 | |
|     if (backend_cpu == nullptr) {
 | |
|         LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
|     ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
 | |
| 
 | |
|     std::vector<no_init<uint8_t>> read_buf;
 | |
|     for (const auto & it : model.tensors_by_name) {
 | |
|         const std::string & base_name = it.first;
 | |
|         ggml_tensor * model_t = it.second;
 | |
| 
 | |
|         if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
 | |
|             tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
 | |
|         tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
 | |
| 
 | |
|         ggml_init_params lora_init_params = {
 | |
|             /* .mem_size   */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
 | |
|             /* .mem_buffer */ nullptr,
 | |
|             /* .no_alloc   */ true,
 | |
|         };
 | |
|         ggml_context * lora_ctx = ggml_init(lora_init_params);
 | |
|         if (lora_ctx == nullptr) {
 | |
|             LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
 | |
|             ggml_backend_free(backend_cpu);
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         // create tensors
 | |
|         ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
 | |
|         ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
 | |
|         ggml_set_name(loraA, metaA.name.c_str());
 | |
|         ggml_set_name(loraB, metaB.name.c_str());
 | |
| 
 | |
|         ggml_tensor * base_t;
 | |
|         if (ml) {
 | |
|             if (!ml->get_tensor_meta(base_name.c_str())) {
 | |
|                 LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
 | |
|                 return 1;
 | |
|             }
 | |
|             base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
 | |
|         } else {
 | |
|             base_t = ggml_dup_tensor(lora_ctx, model_t);
 | |
|         }
 | |
|         ggml_set_name(base_t, base_name.c_str());
 | |
| 
 | |
|         // allocate in backend buffer
 | |
|         ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
 | |
|         if (lora_buf == nullptr) {
 | |
|             LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         // load tensor data
 | |
|         auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
 | |
|             read_buf.resize(ggml_nbytes(tensor));
 | |
|             fin.seek(tensor_meta.offset, SEEK_SET);
 | |
|             fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
 | |
|             ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
 | |
|         };
 | |
|         load_tensor(metaA, loraA);
 | |
|         load_tensor(metaB, loraB);
 | |
| 
 | |
|         // load base model tensor data
 | |
|         if (ml) {
 | |
|             ml->load_data_for(base_t);
 | |
|         } else {
 | |
|             ggml_backend_tensor_copy(model_t, base_t);
 | |
|         }
 | |
| 
 | |
|         if (ggml_is_quantized(base_t->type) && !warned) {
 | |
|             LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
 | |
|                             "use a f16 or f32 base model with --lora-base\n", __func__);
 | |
|             warned = true;
 | |
|         }
 | |
| 
 | |
|         if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
 | |
|             LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
 | |
|                             " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
 | |
|             ggml_free(lora_ctx);
 | |
|             ggml_backend_buffer_free(lora_buf);
 | |
|             ggml_backend_free(backend_cpu);
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         auto build_lora_graph = [&]() {
 | |
|             // w = w + BA*s
 | |
|             ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
 | |
|             ggml_set_name(BA, "BA");
 | |
| 
 | |
|             if (scaling != 1.0f) {
 | |
|                 BA = ggml_scale(lora_ctx, BA, scaling);
 | |
|                 ggml_set_name(BA, "BA_scaled");
 | |
|             }
 | |
| 
 | |
|             ggml_tensor * r;
 | |
|             r = ggml_add_inplace(lora_ctx, base_t, BA);
 | |
|             ggml_set_name(r, "r_add");
 | |
| 
 | |
|             if (base_t->type != model_t->type) {
 | |
|                 // convert the result to the model type
 | |
|                 r = ggml_cast(lora_ctx, r, model_t->type);
 | |
|                 ggml_set_name(r, "r_cast");
 | |
|             }
 | |
| 
 | |
|             return r;
 | |
|         };
 | |
| 
 | |
|         ggml_cgraph * gf = ggml_new_graph(lora_ctx);
 | |
|         ggml_tensor * r = build_lora_graph();
 | |
|         ggml_build_forward_expand(gf, r);
 | |
| 
 | |
|         ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
 | |
|         if (graph_buf == nullptr) {
 | |
|             LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
 | |
|             ggml_free(lora_ctx);
 | |
|             ggml_backend_buffer_free(lora_buf);
 | |
|             ggml_backend_free(backend_cpu);
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         ggml_backend_graph_compute(backend_cpu, gf);
 | |
| 
 | |
|         ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
 | |
| 
 | |
| #if 0
 | |
|         // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
 | |
|         //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
 | |
| 
 | |
|         // sched compute
 | |
|         ggml_build_forward_expand(gf, build_graph());
 | |
|         ggml_backend_sched_init_measure(sched, gf);
 | |
| 
 | |
|         // create the graph again, since the previous one was destroyed by the measure
 | |
|         ggml_graph_clear(gf);
 | |
|         ggml_build_forward_expand(gf, build_graph());
 | |
|         ggml_backend_sched_graph_compute(sched, gf);
 | |
|         ggml_backend_sched_free(sched);
 | |
| #endif
 | |
| 
 | |
|         ggml_backend_buffer_free(lora_buf);
 | |
|         ggml_backend_buffer_free(graph_buf);
 | |
|         ggml_free(lora_ctx);
 | |
| 
 | |
|         n_tensors++;
 | |
|         if (n_tensors % 4 == 0) {
 | |
|             LLAMA_LOG_INFO(".");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ggml_backend_free(backend_cpu);
 | |
| 
 | |
|     const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
 | |
|     LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| //
 | |
| // interface implementation
 | |
| //
 | |
| struct llama_model_params llama_model_default_params() {
 | |
|     struct llama_model_params result = {
 | |
|         /*.n_gpu_layers                =*/ 0,
 | |
|         /*.split_mode                  =*/ LLAMA_SPLIT_MODE_LAYER,
 | |
|         /*.main_gpu                    =*/ 0,
 | |
|         /*.tensor_split                =*/ nullptr,
 | |
|         /*.progress_callback           =*/ nullptr,
 | |
|         /*.progress_callback_user_data =*/ nullptr,
 | |
|         /*.kv_overrides                =*/ nullptr,
 | |
|         /*.vocab_only                  =*/ false,
 | |
|         /*.use_mmap                    =*/ true,
 | |
|         /*.use_mlock                   =*/ false,
 | |
|         /*.check_tensors               =*/ false,
 | |
|     };
 | |
| 
 | |
| #ifdef GGML_USE_METAL
 | |
|     // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
 | |
|     result.n_gpu_layers = 999;
 | |
| #endif
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct llama_context_params llama_context_default_params() {
 | |
|     struct llama_context_params result = {
 | |
|         /*.seed                        =*/ LLAMA_DEFAULT_SEED,
 | |
|         /*.n_ctx                       =*/ 512,
 | |
|         /*.n_batch                     =*/ 2048,
 | |
|         /*.n_ubatch                    =*/ 512,
 | |
|         /*.n_seq_max                   =*/ 1,
 | |
|         /*.n_threads                   =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
 | |
|         /*.n_threads_batch             =*/ GGML_DEFAULT_N_THREADS,
 | |
|         /*.rope_scaling_type           =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
 | |
|         /*.pooling_type                =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
 | |
|         /*.rope_freq_base              =*/ 0.0f,
 | |
|         /*.rope_freq_scale             =*/ 0.0f,
 | |
|         /*.yarn_ext_factor             =*/ -1.0f,
 | |
|         /*.yarn_attn_factor            =*/ 1.0f,
 | |
|         /*.yarn_beta_fast              =*/ 32.0f,
 | |
|         /*.yarn_beta_slow              =*/ 1.0f,
 | |
|         /*.yarn_orig_ctx               =*/ 0,
 | |
|         /*.defrag_thold                =*/ -1.0f,
 | |
|         /*.cb_eval                     =*/ nullptr,
 | |
|         /*.cb_eval_user_data           =*/ nullptr,
 | |
|         /*.type_k                      =*/ GGML_TYPE_F16,
 | |
|         /*.type_v                      =*/ GGML_TYPE_F16,
 | |
|         /*.logits_all                  =*/ false,
 | |
|         /*.embeddings                  =*/ false,
 | |
|         /*.offload_kqv                 =*/ true,
 | |
|         /*.abort_callback              =*/ nullptr,
 | |
|         /*.abort_callback_data         =*/ nullptr,
 | |
|     };
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct llama_model_quantize_params llama_model_quantize_default_params() {
 | |
|     struct llama_model_quantize_params result = {
 | |
|         /*.nthread                     =*/ 0,
 | |
|         /*.ftype                       =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
 | |
|         /*.output_tensor_type          =*/ GGML_TYPE_COUNT,
 | |
|         /*.token_embedding_type        =*/ GGML_TYPE_COUNT,
 | |
|         /*.allow_requantize            =*/ false,
 | |
|         /*.quantize_output_tensor      =*/ true,
 | |
|         /*.only_copy                   =*/ false,
 | |
|         /*.pure                        =*/ false,
 | |
|         /*.keep_split                  =*/ false,
 | |
|         /*.imatrix                     =*/ nullptr,
 | |
|         /*.kv_overrides                =*/ nullptr,
 | |
|     };
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| size_t llama_max_devices(void) {
 | |
| #if defined(GGML_USE_METAL)
 | |
|     return 1;
 | |
| #elif defined(GGML_USE_CUDA)
 | |
|     return GGML_CUDA_MAX_DEVICES;
 | |
| #elif defined(GGML_USE_SYCL)
 | |
|     return GGML_SYCL_MAX_DEVICES;
 | |
| #elif defined(GGML_USE_VULKAN)
 | |
|     return GGML_VK_MAX_DEVICES;
 | |
| #else
 | |
|     return 1;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| bool llama_supports_mmap(void) {
 | |
|     return llama_mmap::SUPPORTED;
 | |
| }
 | |
| 
 | |
| bool llama_supports_mlock(void) {
 | |
|     return llama_mlock::SUPPORTED;
 | |
| }
 | |
| 
 | |
| bool llama_supports_gpu_offload(void) {
 | |
| #if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
 | |
|     defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE)
 | |
|     // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
 | |
|     return true;
 | |
| #else
 | |
|     return false;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void llama_backend_init(void) {
 | |
|     ggml_time_init();
 | |
| 
 | |
|     // needed to initialize f16 tables
 | |
|     {
 | |
|         struct ggml_init_params params = { 0, NULL, false };
 | |
|         struct ggml_context * ctx = ggml_init(params);
 | |
|         ggml_free(ctx);
 | |
|     }
 | |
| 
 | |
| #ifdef GGML_USE_MPI
 | |
|     ggml_mpi_backend_init();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void llama_numa_init(enum ggml_numa_strategy numa) {
 | |
|     if (numa != GGML_NUMA_STRATEGY_DISABLED) {
 | |
|         ggml_numa_init(numa);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void llama_backend_free(void) {
 | |
| #ifdef GGML_USE_MPI
 | |
|     ggml_mpi_backend_free();
 | |
| #endif
 | |
|     ggml_quantize_free();
 | |
| }
 | |
| 
 | |
| int64_t llama_time_us(void) {
 | |
|     return ggml_time_us();
 | |
| }
 | |
| 
 | |
| struct llama_model * llama_load_model_from_file(
 | |
|         const char * path_model,
 | |
|         struct llama_model_params   params) {
 | |
|     ggml_time_init();
 | |
| 
 | |
|     llama_model * model = new llama_model;
 | |
| 
 | |
|     unsigned cur_percentage = 0;
 | |
|     if (params.progress_callback == NULL) {
 | |
|         params.progress_callback_user_data = &cur_percentage;
 | |
|         params.progress_callback = [](float progress, void * ctx) {
 | |
|             unsigned * cur_percentage_p = (unsigned *) ctx;
 | |
|             unsigned percentage = (unsigned) (100 * progress);
 | |
|             while (percentage > *cur_percentage_p) {
 | |
|                 *cur_percentage_p = percentage;
 | |
|                 LLAMA_LOG_INFO(".");
 | |
|                 if (percentage >= 100) {
 | |
|                     LLAMA_LOG_INFO("\n");
 | |
|                 }
 | |
|             }
 | |
|             return true;
 | |
|         };
 | |
|     }
 | |
| 
 | |
|     int status = llama_model_load(path_model, *model, params);
 | |
|     GGML_ASSERT(status <= 0);
 | |
|     if (status < 0) {
 | |
|         if (status == -1) {
 | |
|             LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
 | |
|         } else if (status == -2) {
 | |
|             LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
 | |
|         }
 | |
|         delete model;
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     return model;
 | |
| }
 | |
| 
 | |
| void llama_free_model(struct llama_model * model) {
 | |
|     delete model;
 | |
| }
 | |
| 
 | |
| struct llama_context * llama_new_context_with_model(
 | |
|                  struct llama_model * model,
 | |
|         struct llama_context_params   params) {
 | |
| 
 | |
|     if (!model) {
 | |
|         LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     if (params.n_batch == 0 && params.n_ubatch == 0) {
 | |
|         LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
 | |
|         LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     llama_context * ctx = new llama_context(*model);
 | |
| 
 | |
|     const auto & hparams = model->hparams;
 | |
|     auto       & cparams = ctx->cparams;
 | |
| 
 | |
|     cparams.n_seq_max        = std::max(1u, params.n_seq_max);
 | |
|     cparams.n_threads        = params.n_threads;
 | |
|     cparams.n_threads_batch  = params.n_threads_batch;
 | |
|     cparams.yarn_ext_factor  = params.yarn_ext_factor;
 | |
|     cparams.yarn_attn_factor = params.yarn_attn_factor;
 | |
|     cparams.yarn_beta_fast   = params.yarn_beta_fast;
 | |
|     cparams.yarn_beta_slow   = params.yarn_beta_slow;
 | |
|     cparams.defrag_thold     = params.defrag_thold;
 | |
|     cparams.embeddings       = params.embeddings;
 | |
|     cparams.offload_kqv      = params.offload_kqv;
 | |
|     cparams.pooling_type     = params.pooling_type;
 | |
| 
 | |
|     cparams.n_ctx            = params.n_ctx           == 0    ? hparams.n_ctx_train           : params.n_ctx;
 | |
|     cparams.rope_freq_base   = params.rope_freq_base  == 0.0f ? hparams.rope_freq_base_train  : params.rope_freq_base;
 | |
|     cparams.rope_freq_scale  = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
 | |
| 
 | |
|     // this is necessary due to kv_self.n being padded later during inference
 | |
|     cparams.n_ctx = GGML_PAD(cparams.n_ctx, 32);
 | |
| 
 | |
|     // with causal attention, the batch size is limited by the context size
 | |
|     cparams.n_batch          = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
 | |
|     cparams.n_ubatch         = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
 | |
| 
 | |
| 
 | |
|     cparams.n_yarn_orig_ctx  = params.yarn_orig_ctx    != 0 ? params.yarn_orig_ctx    :
 | |
|                                hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx :
 | |
|                                                               hparams.n_ctx_train;
 | |
| 
 | |
|     cparams.cb_eval           = params.cb_eval;
 | |
|     cparams.cb_eval_user_data = params.cb_eval_user_data;
 | |
| 
 | |
|     auto rope_scaling_type = params.rope_scaling_type;
 | |
|     if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
 | |
|         rope_scaling_type = hparams.rope_scaling_type_train;
 | |
|     }
 | |
| 
 | |
|     if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
 | |
|         cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
 | |
|     }
 | |
| 
 | |
|     if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
 | |
|         cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
 | |
|     }
 | |
| 
 | |
|     cparams.causal_attn = hparams.causal_attn;
 | |
| 
 | |
|     if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
 | |
|         if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
 | |
|             cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
 | |
|         } else {
 | |
|             cparams.pooling_type = hparams.pooling_type;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (params.seed == LLAMA_DEFAULT_SEED) {
 | |
|         params.seed = time(NULL);
 | |
|     }
 | |
| 
 | |
|     LLAMA_LOG_INFO("%s: n_ctx      = %u\n",     __func__, cparams.n_ctx);
 | |
|     LLAMA_LOG_INFO("%s: n_batch    = %u\n",     __func__, cparams.n_batch);
 | |
|     LLAMA_LOG_INFO("%s: n_ubatch   = %u\n",     __func__, cparams.n_ubatch);
 | |
|     LLAMA_LOG_INFO("%s: freq_base  = %.1f\n",   __func__, cparams.rope_freq_base);
 | |
|     LLAMA_LOG_INFO("%s: freq_scale = %g\n",     __func__, cparams.rope_freq_scale);
 | |
| 
 | |
|     ctx->abort_callback      = params.abort_callback;
 | |
|     ctx->abort_callback_data = params.abort_callback_data;
 | |
| 
 | |
|     ctx->rng                 = std::mt19937(params.seed);
 | |
|     ctx->logits_all          = params.logits_all;
 | |
| 
 | |
|     uint32_t kv_size = cparams.n_ctx;
 | |
|     ggml_type type_k = params.type_k;
 | |
|     ggml_type type_v = params.type_v;
 | |
| 
 | |
|     // Mamba only needs a constant number of KV cache cells per sequence
 | |
|     if (model->arch == LLM_ARCH_MAMBA) {
 | |
|         // Mamba needs at least as many KV cells as there are sequences kept at any time
 | |
|         kv_size = std::max((uint32_t) 1, params.n_seq_max);
 | |
|         // it's probably best to keep as much precision as possible for the states
 | |
|         type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
 | |
|         type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
 | |
|     }
 | |
| 
 | |
|     GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
 | |
|     GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
 | |
| 
 | |
|     if (!hparams.vocab_only) {
 | |
|         // initialize backends
 | |
| #ifdef GGML_USE_METAL
 | |
|         if (model->n_gpu_layers > 0) {
 | |
|             ctx->backend_metal = ggml_backend_metal_init();
 | |
|             if (ctx->backend_metal == nullptr) {
 | |
|                 LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
 | |
|                 llama_free(ctx);
 | |
|                 return nullptr;
 | |
|             }
 | |
|             ctx->backends.push_back(ctx->backend_metal);
 | |
|         }
 | |
| #elif defined(GGML_USE_CUDA)
 | |
|         if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
 | |
|             // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
 | |
|             ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
 | |
|             if (backend == nullptr) {
 | |
|                 LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
 | |
|                 llama_free(ctx);
 | |
|                 return nullptr;
 | |
|             }
 | |
|             ctx->backends.push_back(backend);
 | |
|         } else {
 | |
|             // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
 | |
|             for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
 | |
|                 ggml_backend_t backend = ggml_backend_cuda_init(device);
 | |
|                 if (backend == nullptr) {
 | |
|                     LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
 | |
|                     llama_free(ctx);
 | |
|                     return nullptr;
 | |
|                 }
 | |
|                 ctx->backends.push_back(backend);
 | |
|             }
 | |
|         }
 | |
| #elif defined(GGML_USE_VULKAN)
 | |
|         if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
 | |
|             LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
 | |
|             llama_free(ctx);
 | |
|             return nullptr;
 | |
|         }
 | |
|         if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
 | |
|             ggml_backend_t backend = ggml_backend_vk_init(0);
 | |
|             if (backend == nullptr) {
 | |
|                 LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
 | |
|                 llama_free(ctx);
 | |
|                 return nullptr;
 | |
|             }
 | |
|             ctx->backends.push_back(backend);
 | |
|         } else {
 | |
|             for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
 | |
|                 ggml_backend_t backend = ggml_backend_vk_init(device);
 | |
|                 if (backend == nullptr) {
 | |
|                     LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
 | |
|                     llama_free(ctx);
 | |
|                     return nullptr;
 | |
|                 }
 | |
|                 ctx->backends.push_back(backend);
 | |
|             }
 | |
|         }
 | |
| #elif defined(GGML_USE_SYCL)
 | |
|         // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
 | |
|         if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
 | |
|             ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
 | |
|             if (backend == nullptr) {
 | |
|                 int main_gpu_id = ggml_backend_sycl_get_device_id(model->main_gpu);
 | |
|                 LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, main_gpu_id, model->main_gpu);
 | |
|                 llama_free(ctx);
 | |
|                 return nullptr;
 | |
|             }
 | |
|             ctx->backends.push_back(backend);
 | |
|         } else {
 | |
|             // LLAMA_SPLIT_LAYER requires a backend for each GPU
 | |
|             for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
 | |
|                 ggml_backend_t backend = ggml_backend_sycl_init(i);
 | |
|                 if (backend == nullptr) {
 | |
|                     int id_list[GGML_SYCL_MAX_DEVICES];
 | |
|                     ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
 | |
|                     LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i);
 | |
|                     llama_free(ctx);
 | |
|                     return nullptr;
 | |
|                 }
 | |
|                 ctx->backends.push_back(backend);
 | |
|             }
 | |
|         }
 | |
| #elif defined(GGML_USE_KOMPUTE)
 | |
|         if (model->n_gpu_layers > 0) {
 | |
|             auto * backend = ggml_backend_kompute_init(model->main_gpu);
 | |
|             if (backend == nullptr) {
 | |
|                 LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
 | |
|                 llama_free(ctx);
 | |
|                 return nullptr;
 | |
|             }
 | |
|             ctx->backends.push_back(backend);
 | |
|         }
 | |
| #endif
 | |
|         ctx->backend_cpu = ggml_backend_cpu_init();
 | |
|         if (ctx->backend_cpu == nullptr) {
 | |
|             LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
 | |
|             llama_free(ctx);
 | |
|             return nullptr;
 | |
|         }
 | |
|         ctx->backends.push_back(ctx->backend_cpu);
 | |
| 
 | |
|         if (!llama_kv_cache_init(ctx->kv_self, ctx->model, type_k, type_v, kv_size, cparams.offload_kqv)) {
 | |
|             LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
 | |
|             llama_free(ctx);
 | |
|             return nullptr;
 | |
|         }
 | |
| 
 | |
|         {
 | |
|             size_t memory_size_k = 0;
 | |
|             size_t memory_size_v = 0;
 | |
| 
 | |
|             for (auto & k : ctx->kv_self.k_l) {
 | |
|                 memory_size_k += ggml_nbytes(k);
 | |
|             }
 | |
| 
 | |
|             for (auto & v : ctx->kv_self.v_l) {
 | |
|                 memory_size_v += ggml_nbytes(v);
 | |
|             }
 | |
| 
 | |
|             LLAMA_LOG_INFO("%s: KV self size  = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
 | |
|                 (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
 | |
|                 ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
 | |
|                 ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
 | |
|         }
 | |
| 
 | |
|         // graph outputs buffer
 | |
|         {
 | |
|             // resized during inference when a batch uses more outputs
 | |
|             if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
 | |
|                 LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
 | |
|                 llama_free(ctx);
 | |
|                 return nullptr;
 | |
|             }
 | |
| 
 | |
|             LLAMA_LOG_INFO("%s: %10s  output buffer size = %8.2f MiB\n", __func__,
 | |
|                     ggml_backend_buffer_name(ctx->buf_output),
 | |
|                     ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
 | |
|         }
 | |
| 
 | |
|         // scheduler and compute buffers
 | |
|         {
 | |
|             // buffer types used for the compute buffer of each backend
 | |
|             std::vector<ggml_backend_buffer_type_t> backend_buft;
 | |
|             for (auto * backend : ctx->backends) {
 | |
|                 if (ggml_backend_is_cpu(backend)) {
 | |
|                     // use host buffers for the CPU backend compute buffer
 | |
|                     backend_buft.push_back(llama_default_buffer_type_cpu(true));
 | |
|                 } else {
 | |
|                     backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // buffer used to store the computation graph and the tensor meta data
 | |
|             ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
 | |
| 
 | |
|             // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
 | |
|             bool pipeline_parallel = llama_get_device_count() > 1 && model->n_gpu_layers > (int)model->hparams.n_layer && model->split_mode == LLAMA_SPLIT_MODE_LAYER;
 | |
| #ifndef GGML_USE_CUDA
 | |
|             // pipeline parallelism requires support for async compute and events
 | |
|             // currently this is only implemented in the CUDA backend
 | |
|             pipeline_parallel = false;
 | |
| #endif
 | |
|             ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel);
 | |
| 
 | |
|             if (pipeline_parallel) {
 | |
|                 LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
 | |
|             }
 | |
| 
 | |
|             // build worst-case graph
 | |
|             int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch);
 | |
|             int n_past = cparams.n_ctx - n_tokens;
 | |
|             llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
 | |
|             ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
 | |
| 
 | |
|             // initialize scheduler with the worst-case graph
 | |
|             if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
 | |
|                 LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
 | |
|                 llama_free(ctx);
 | |
|                 return nullptr;
 | |
|             }
 | |
| 
 | |
|             for (size_t i = 0; i < ctx->backends.size(); i++) {
 | |
|                 ggml_backend_t backend = ctx->backends[i];
 | |
|                 ggml_backend_buffer_type_t buft = backend_buft[i];
 | |
|                 size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
 | |
|                 if (size > 1) {
 | |
|                     LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
 | |
|                             ggml_backend_buft_name(buft),
 | |
|                             size / 1024.0 / 1024.0);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // note: the number of splits during measure is higher than during inference due to the kv shift
 | |
|             int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
 | |
|             LLAMA_LOG_INFO("%s: graph nodes  = %d\n", __func__, gf->n_nodes);
 | |
|             LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #ifdef GGML_USE_MPI
 | |
|     ctx->ctx_mpi = ggml_mpi_init();
 | |
| 
 | |
|     if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
 | |
|         // Enter a blocking eval loop with dummy input, letting rank=0 drive the process
 | |
|         // TODO: needs fix after #3228
 | |
|         GGML_ASSERT(false && "not implemented");
 | |
|         //const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx));
 | |
|         //while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
 | |
|         llama_backend_free();
 | |
|         exit(1);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return ctx;
 | |
| }
 | |
| 
 | |
| void llama_free(struct llama_context * ctx) {
 | |
|     delete ctx;
 | |
| }
 | |
| 
 | |
| const llama_model * llama_get_model(const struct llama_context * ctx) {
 | |
|     return &ctx->model;
 | |
| }
 | |
| 
 | |
| uint32_t llama_n_ctx(const struct llama_context * ctx) {
 | |
|     return ctx->cparams.n_ctx;
 | |
| }
 | |
| 
 | |
| uint32_t llama_n_batch(const struct llama_context * ctx) {
 | |
|     return ctx->cparams.n_batch;
 | |
| }
 | |
| 
 | |
| uint32_t llama_n_ubatch(const struct llama_context * ctx) {
 | |
|     return ctx->cparams.n_ubatch;
 | |
| }
 | |
| 
 | |
| uint32_t llama_n_seq_max(const struct llama_context * ctx) {
 | |
|     return ctx->kv_self.size;
 | |
| }
 | |
| 
 | |
| enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
 | |
|     return model->vocab.type;
 | |
| }
 | |
| 
 | |
| enum llama_rope_type llama_rope_type(const struct llama_model * model) {
 | |
|     switch (model->arch) {
 | |
|         // these models do not use RoPE
 | |
|         case LLM_ARCH_GPT2:
 | |
|         case LLM_ARCH_GPTJ:
 | |
|         case LLM_ARCH_GPTNEOX:
 | |
|         case LLM_ARCH_MPT:
 | |
|         case LLM_ARCH_REFACT:
 | |
|         case LLM_ARCH_BLOOM:
 | |
|         case LLM_ARCH_MAMBA:
 | |
|             return LLAMA_ROPE_TYPE_NONE;
 | |
| 
 | |
|         // use what we call a normal RoPE, operating on pairs of consecutive head values
 | |
|         case LLM_ARCH_LLAMA:
 | |
|         case LLM_ARCH_BAICHUAN:
 | |
|         case LLM_ARCH_STARCODER:
 | |
|         case LLM_ARCH_PLAMO:
 | |
|         case LLM_ARCH_CODESHELL:
 | |
|         case LLM_ARCH_ORION:
 | |
|         case LLM_ARCH_INTERNLM2:
 | |
|         case LLM_ARCH_MINICPM:
 | |
|         case LLM_ARCH_XVERSE:
 | |
|         case LLM_ARCH_COMMAND_R:
 | |
|         case LLM_ARCH_OLMO:
 | |
|             return LLAMA_ROPE_TYPE_NORM;
 | |
| 
 | |
|         // the pairs of head values are offset by n_rot/2
 | |
|         case LLM_ARCH_FALCON:
 | |
|         case LLM_ARCH_GROK:
 | |
|         case LLM_ARCH_DBRX:
 | |
|         case LLM_ARCH_PERSIMMON:
 | |
|         case LLM_ARCH_BERT:
 | |
|         case LLM_ARCH_NOMIC_BERT:
 | |
|         case LLM_ARCH_STABLELM:
 | |
|         case LLM_ARCH_QWEN:
 | |
|         case LLM_ARCH_QWEN2:
 | |
|         case LLM_ARCH_QWEN2MOE:
 | |
|         case LLM_ARCH_PHI2:
 | |
|         case LLM_ARCH_PHI3:
 | |
|         case LLM_ARCH_GEMMA:
 | |
|         case LLM_ARCH_STARCODER2:
 | |
|             return LLAMA_ROPE_TYPE_NEOX;
 | |
| 
 | |
|         // all model arches should be listed explicitly here
 | |
|         case LLM_ARCH_UNKNOWN:
 | |
|             GGML_ASSERT(false && "unknown architecture");
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     return LLAMA_ROPE_TYPE_NONE;
 | |
| }
 | |
| 
 | |
| enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
 | |
|     return ctx->cparams.pooling_type;
 | |
| }
 | |
| 
 | |
| int32_t llama_n_vocab(const struct llama_model * model) {
 | |
|     return model->hparams.n_vocab;
 | |
| }
 | |
| 
 | |
| int32_t llama_n_ctx_train(const struct llama_model * model) {
 | |
|     return model->hparams.n_ctx_train;
 | |
| }
 | |
| 
 | |
| int32_t llama_n_embd(const struct llama_model * model) {
 | |
|     return model->hparams.n_embd;
 | |
| }
 | |
| 
 | |
| int32_t llama_n_layer(const struct llama_model * model) {
 | |
|     return model->hparams.n_layer;
 | |
| }
 | |
| 
 | |
| float llama_rope_freq_scale_train(const struct llama_model * model) {
 | |
|     return model->hparams.rope_freq_scale_train;
 | |
| }
 | |
| 
 | |
| int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
 | |
|     const auto & it = model->gguf_kv.find(key);
 | |
|     if (it == model->gguf_kv.end()) {
 | |
|         if (buf_size > 0) {
 | |
|             buf[0] = '\0';
 | |
|         }
 | |
|         return -1;
 | |
|     }
 | |
|     return snprintf(buf, buf_size, "%s", it->second.c_str());
 | |
| }
 | |
| 
 | |
| int32_t llama_model_meta_count(const struct llama_model * model) {
 | |
|     return (int)model->gguf_kv.size();
 | |
| }
 | |
| 
 | |
| int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
 | |
|     if (i < 0 || i >= (int)model->gguf_kv.size()) {
 | |
|         if (buf_size > 0) {
 | |
|             buf[0] = '\0';
 | |
|         }
 | |
|         return -1;
 | |
|     }
 | |
|     auto it = model->gguf_kv.begin();
 | |
|     std::advance(it, i);
 | |
|     return snprintf(buf, buf_size, "%s", it->first.c_str());
 | |
| }
 | |
| 
 | |
| int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
 | |
|     if (i < 0 || i >= (int)model->gguf_kv.size()) {
 | |
|         if (buf_size > 0) {
 | |
|             buf[0] = '\0';
 | |
|         }
 | |
|         return -1;
 | |
|     }
 | |
|     auto it = model->gguf_kv.begin();
 | |
|     std::advance(it, i);
 | |
|     return snprintf(buf, buf_size, "%s", it->second.c_str());
 | |
| }
 | |
| 
 | |
| int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
 | |
|     return snprintf(buf, buf_size, "%s %s %s",
 | |
|             llama_model_arch_name(model->arch),
 | |
|             llama_model_type_name(model->type),
 | |
|             llama_model_ftype_name(model->ftype).c_str());
 | |
| }
 | |
| 
 | |
| uint64_t llama_model_size(const struct llama_model * model) {
 | |
|     uint64_t size = 0;
 | |
|     for (const auto & it : model->tensors_by_name) {
 | |
|         size += ggml_nbytes(it.second);
 | |
|     }
 | |
|     return size;
 | |
| }
 | |
| 
 | |
| uint64_t llama_model_n_params(const struct llama_model * model) {
 | |
|     uint64_t nparams = 0;
 | |
|     for (const auto & it : model->tensors_by_name) {
 | |
|         nparams += ggml_nelements(it.second);
 | |
|     }
 | |
|     return nparams;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
 | |
|     auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
 | |
|             [name](const std::pair<std::string, struct ggml_tensor *> & it) {
 | |
|                 return it.first == name;
 | |
|             });
 | |
|     if (it == model->tensors_by_name.end()) {
 | |
|         return nullptr;
 | |
|     }
 | |
|     return it->second;
 | |
| }
 | |
| 
 | |
| uint32_t llama_model_quantize(
 | |
|         const char * fname_inp,
 | |
|         const char * fname_out,
 | |
|         const llama_model_quantize_params * params) {
 | |
|     try {
 | |
|         llama_model_quantize_internal(fname_inp, fname_out, params);
 | |
|         return 0;
 | |
|     } catch (const std::exception & err) {
 | |
|         LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
 | |
|         return 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
 | |
|     try {
 | |
|         return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
 | |
|     } catch (const std::exception & err) {
 | |
|         LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
 | |
|         return 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
 | |
|     GGML_ASSERT(cvec.tensors.empty());
 | |
|     GGML_ASSERT(cvec.ctxs.empty());
 | |
|     GGML_ASSERT(cvec.bufs.empty());
 | |
| 
 | |
|     // count layer buffer types
 | |
|     std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
 | |
|     for (int64_t i = 0; i < model.hparams.n_layer; i++) {
 | |
|         buft_layer_count[model.buft_layer[i].buft]++;
 | |
|     }
 | |
| 
 | |
|     // allocate contexts
 | |
|     std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
 | |
|     for (auto & it : buft_layer_count) {
 | |
|         int n_layers = it.second;
 | |
|         struct ggml_init_params params = {
 | |
|             /*.mem_size   =*/ n_layers * ggml_tensor_overhead(),
 | |
|             /*.mem_buffer =*/ NULL,
 | |
|             /*.no_alloc   =*/ true,
 | |
|         };
 | |
|         ggml_context * ctx = ggml_init(params);
 | |
|         if (!ctx) {
 | |
|             LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
 | |
|             return 1;
 | |
|         }
 | |
|         ctx_map[it.first] = ctx;
 | |
|     }
 | |
| 
 | |
|     // make tensors
 | |
|     cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
 | |
|     for (size_t il = 1; il < model.hparams.n_layer; il++) {
 | |
|         struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
 | |
|         ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
 | |
|         cvec.tensors.push_back(tensor);
 | |
|     }
 | |
| 
 | |
|     // allocate tensors / buffers and zero
 | |
|     for (auto it : ctx_map) {
 | |
|         ggml_backend_buffer_type_t buft = it.first;
 | |
|         ggml_context * ctx = it.second;
 | |
|         ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
 | |
|         if (!buf) {
 | |
|             LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
 | |
|             return false;
 | |
|         }
 | |
|         ggml_backend_buffer_clear(buf, 0);
 | |
|         cvec.ctxs.push_back(ctx);
 | |
|         cvec.bufs.push_back(buf);
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
 | |
|     const llama_model & model = lctx->model;
 | |
|     llama_control_vector & cvec = lctx->cvec;
 | |
| 
 | |
|     if (data == nullptr) {
 | |
|         // disable the current control vector (but leave allocated for later)
 | |
|         cvec.layer_start = -1;
 | |
|         cvec.layer_end   = -1;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (n_embd != (int) model.hparams.n_embd) {
 | |
|         LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (cvec.tensors.empty()) {
 | |
|         if (!llama_control_vector_init(cvec, model)) {
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     cvec.layer_start = il_start;
 | |
|     cvec.layer_end   = il_end;
 | |
| 
 | |
|     for (size_t il = 1; il < model.hparams.n_layer; il++) {
 | |
|         assert(cvec.tensors[il] != nullptr);
 | |
| 
 | |
|         const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
 | |
|         if (off + n_embd <= len) {
 | |
|             ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
 | |
|     struct llama_kv_cache_view result = {
 | |
|         /*.n_cells            = */ 0,
 | |
|         /*.n_seq_max          = */ n_seq_max,
 | |
|         /*.token_count        = */ 0,
 | |
|         /*.used_cells         = */ llama_get_kv_cache_used_cells(ctx),
 | |
|         /*.max_contiguous     = */ 0,
 | |
|         /*.max_contiguous_idx = */ -1,
 | |
|         /*.cells              = */ nullptr,
 | |
|         /*.cells_sequences    = */ nullptr,
 | |
|     };
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
 | |
|     if (view->cells != nullptr) {
 | |
|         free(view->cells);
 | |
|         view->cells = nullptr;
 | |
|     }
 | |
|     if (view->cells_sequences != nullptr) {
 | |
|         free(view->cells_sequences);
 | |
|         view->cells_sequences = nullptr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
 | |
|     if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
 | |
|         view->n_cells = int32_t(ctx->kv_self.size);
 | |
|         void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
 | |
|         GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
 | |
|         view->cells = (struct llama_kv_cache_view_cell *)p;
 | |
|         p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
 | |
|         GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
 | |
|         view->cells_sequences = (llama_seq_id *)p;
 | |
|     }
 | |
| 
 | |
|     const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
 | |
|     llama_kv_cache_view_cell * c_curr = view->cells;
 | |
|     llama_seq_id * cs_curr = view->cells_sequences;
 | |
|     int32_t used_cells = 0;
 | |
|     int32_t token_count = 0;
 | |
|     int32_t curr_contig_idx = -1;
 | |
|     uint32_t max_contig = 0;
 | |
|     int32_t max_contig_idx = -1;
 | |
| 
 | |
|     for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
 | |
|         const size_t curr_size = kv_cells[i].seq_id.size();
 | |
|         token_count += curr_size;
 | |
|         c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
 | |
| 
 | |
|         if (curr_size > 0) {
 | |
|             if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
 | |
|                 max_contig = i - curr_contig_idx;
 | |
|                 max_contig_idx = curr_contig_idx;
 | |
|             }
 | |
|             curr_contig_idx = -1;
 | |
|         } else if (curr_contig_idx < 0) {
 | |
|             curr_contig_idx = i;
 | |
|         }
 | |
| 
 | |
|         int seq_idx = 0;
 | |
|         for (const llama_seq_id it : kv_cells[i].seq_id) {
 | |
|             if (seq_idx >= view->n_seq_max) {
 | |
|                 break;
 | |
|             }
 | |
|             cs_curr[seq_idx] = it;
 | |
|             seq_idx++;
 | |
|         }
 | |
|         if (seq_idx != 0) {
 | |
|             used_cells++;
 | |
|         }
 | |
|         for (; seq_idx < view->n_seq_max; seq_idx++) {
 | |
|             cs_curr[seq_idx] = -1;
 | |
|         }
 | |
|     }
 | |
|     if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
 | |
|         max_contig_idx = curr_contig_idx;
 | |
|         max_contig = kv_cells.size() - curr_contig_idx;
 | |
|     }
 | |
|     view->max_contiguous = max_contig;
 | |
|     view->max_contiguous_idx = max_contig_idx;
 | |
|     view->token_count = token_count;
 | |
|     view->used_cells = used_cells;
 | |
|     if (uint32_t(used_cells) != ctx->kv_self.used) {
 | |
|         LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
 | |
|             __func__, ctx->kv_self.used, used_cells);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
 | |
|     int result = 0;
 | |
| 
 | |
|     for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
 | |
|         result += ctx->kv_self.cells[i].seq_id.size();
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
 | |
|     return ctx->kv_self.used;
 | |
| }
 | |
| 
 | |
| void llama_kv_cache_clear(struct llama_context * ctx) {
 | |
|     llama_kv_cache_clear(ctx->kv_self);
 | |
| }
 | |
| 
 | |
| bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
 | |
|     return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
 | |
| }
 | |
| 
 | |
| void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
 | |
|     if (seq_id_src == seq_id_dst) {
 | |
|         return;
 | |
|     }
 | |
|     llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
 | |
| }
 | |
| 
 | |
| void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
 | |
|     llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
 | |
| }
 | |
| 
 | |
| void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
 | |
|     if (delta == 0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
 | |
| }
 | |
| 
 | |
| void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
 | |
|     if (d == 1) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
 | |
| }
 | |
| 
 | |
| llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
 | |
|     return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
 | |
| }
 | |
| 
 | |
| void llama_kv_cache_defrag(struct llama_context * ctx) {
 | |
|     llama_kv_cache_defrag(ctx->kv_self);
 | |
| }
 | |
| 
 | |
| void llama_kv_cache_update(struct llama_context * ctx) {
 | |
|     llama_kv_cache_update_internal(*ctx);
 | |
| }
 | |
| 
 | |
| // deprecated
 | |
| size_t llama_get_state_size(const struct llama_context * ctx) {
 | |
|     return llama_state_get_size(ctx);
 | |
| }
 | |
| 
 | |
| // deprecated
 | |
| size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
 | |
|     return llama_state_get_data(ctx, dst);
 | |
| }
 | |
| 
 | |
| // deprecated
 | |
| size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
 | |
|     return llama_state_set_data(ctx, src);
 | |
| }
 | |
| 
 | |
| // deprecated
 | |
| bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
 | |
|     return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
 | |
| }
 | |
| 
 | |
| // deprecated
 | |
| bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
 | |
|     return llama_state_save_file(ctx, path_session, tokens, n_token_count);
 | |
| }
 | |
| 
 | |
| // Returns the *maximum* size of the state
 | |
| size_t llama_state_get_size(const struct llama_context * ctx) {
 | |
|     const auto & cparams = ctx->cparams;
 | |
|     const auto & hparams = ctx->model.hparams;
 | |
| 
 | |
|     // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
 | |
|     // for reference, std::mt19937(1337) serializes to 6701 bytes.
 | |
|     const size_t s_rng_size        = sizeof(size_t);
 | |
|     const size_t s_rng             = LLAMA_MAX_RNG_STATE;
 | |
|     const size_t s_n_outputs       = sizeof(size_t);
 | |
|     // assume worst case for outputs although only currently set ones are serialized
 | |
|     const size_t s_output_pos      = ctx->cparams.n_batch * sizeof(int32_t);
 | |
|     const size_t s_logits_size     = sizeof(size_t);
 | |
|     const size_t s_logits          = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0;
 | |
|     const size_t s_embedding_size  = sizeof(size_t);
 | |
|     const size_t s_embedding       = ctx->embd_size   ? cparams.n_batch * hparams.n_embd  * sizeof(float) : 0;
 | |
|     const size_t s_kv_buf_size     = sizeof(size_t);
 | |
|     const size_t s_kv_head         = sizeof(uint32_t);
 | |
|     const size_t s_kv_size         = sizeof(uint32_t);
 | |
|     const size_t s_kv_used         = sizeof(uint32_t);
 | |
|     const size_t s_kv              = ctx->kv_self.total_size();
 | |
|     const size_t s_kv_cell         = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id);
 | |
|     const size_t s_kv_cells        = ctx->kv_self.size * s_kv_cell;
 | |
| 
 | |
|     const size_t s_total = (
 | |
|         + s_rng_size
 | |
|         + s_rng
 | |
|         + s_n_outputs
 | |
|         + s_output_pos
 | |
|         + s_logits_size
 | |
|         + s_logits
 | |
|         + s_embedding_size
 | |
|         + s_embedding
 | |
|         + s_kv_buf_size
 | |
|         + s_kv_head
 | |
|         + s_kv_size
 | |
|         + s_kv_used
 | |
|         + s_kv
 | |
|         + s_kv_cells
 | |
|     );
 | |
| 
 | |
|     return s_total;
 | |
| }
 | |
| 
 | |
| // llama_context_data
 | |
| struct llama_data_context {
 | |
|     virtual void write(const void * src, size_t size) = 0;
 | |
|     virtual size_t get_size_written() = 0;
 | |
|     virtual ~llama_data_context() = default;
 | |
| };
 | |
| 
 | |
| struct llama_data_buffer_context : llama_data_context {
 | |
|     uint8_t * ptr;
 | |
|     size_t size_written = 0;
 | |
| 
 | |
|     llama_data_buffer_context(uint8_t * p) : ptr(p) {}
 | |
| 
 | |
|     void write(const void * src, size_t size) override {
 | |
|         memcpy(ptr, src, size);
 | |
|         ptr += size;
 | |
|         size_written += size;
 | |
|     }
 | |
| 
 | |
|     size_t get_size_written() override {
 | |
|         return size_written;
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct llama_data_file_context : llama_data_context {
 | |
|     llama_file * file;
 | |
|     size_t size_written = 0;
 | |
| 
 | |
|     llama_data_file_context(llama_file * f) : file(f) {}
 | |
| 
 | |
|     void write(const void * src, size_t size) override {
 | |
|         file->write_raw(src, size);
 | |
|         size_written += size;
 | |
|     }
 | |
| 
 | |
|     size_t get_size_written() override {
 | |
|         return size_written;
 | |
|     }
 | |
| };
 | |
| 
 | |
| /** copy state data into either a buffer or file depending on the passed in context
 | |
|  *
 | |
|  * file context:
 | |
|  * llama_file file("/path", "wb");
 | |
|  * llama_data_file_context data_ctx(&file);
 | |
|  * llama_state_get_data(ctx, &data_ctx);
 | |
|  *
 | |
|  * buffer context:
 | |
|  * std::vector<uint8_t> buf(max_size, 0);
 | |
|  * llama_data_buffer_context data_ctx(&buf.data());
 | |
|  * llama_state_get_data(ctx, &data_ctx);
 | |
|  *
 | |
| */
 | |
| static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
 | |
|     llama_synchronize(ctx);
 | |
| 
 | |
|     // copy rng
 | |
|     {
 | |
|         std::ostringstream rng_ss;
 | |
|         rng_ss << ctx->rng;
 | |
| 
 | |
|         const std::string & rng_str  = rng_ss.str();
 | |
|         const size_t        rng_size = rng_str.size();
 | |
| 
 | |
|         GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
 | |
| 
 | |
|         data_ctx->write(&rng_size,      sizeof(rng_size));
 | |
|         data_ctx->write(rng_str.data(), rng_size);
 | |
|     }
 | |
| 
 | |
|     // copy outputs
 | |
|     {
 | |
|         // Can't use ctx->n_outputs because it's not for the
 | |
|         // entire last batch when n_ubatch is smaller than n_batch
 | |
|         size_t n_outputs = 0;
 | |
| 
 | |
|         // copy output ids
 | |
|         {
 | |
|             std::vector<int32_t> output_pos;
 | |
| 
 | |
|             const size_t    n_batch = ctx->cparams.n_batch;
 | |
|             const auto & output_ids = ctx->output_ids;
 | |
| 
 | |
|             output_pos.resize(ctx->output_size);
 | |
| 
 | |
|             // build a more compact representation of the output ids
 | |
|             for (size_t i = 0; i < n_batch; ++i) {
 | |
|                 // map an output id to a position in the batch
 | |
|                 int32_t pos = output_ids[i];
 | |
|                 if (pos >= 0) {
 | |
|                     if ((size_t) pos >= n_outputs) {
 | |
|                         n_outputs = pos + 1;
 | |
|                     }
 | |
|                     GGML_ASSERT((size_t) pos < ctx->output_size);
 | |
|                     output_pos[pos] = i;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             data_ctx->write(&n_outputs, sizeof(n_outputs));
 | |
| 
 | |
|             if (n_outputs) {
 | |
|                 data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // copy logits
 | |
|         {
 | |
|             const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab);
 | |
| 
 | |
|             data_ctx->write(&logits_size, sizeof(logits_size));
 | |
| 
 | |
|             if (logits_size) {
 | |
|                 data_ctx->write(ctx->logits, logits_size * sizeof(float));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // copy embeddings
 | |
|         {
 | |
|             const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd);
 | |
| 
 | |
|             data_ctx->write(&embeddings_size, sizeof(embeddings_size));
 | |
| 
 | |
|             if (embeddings_size) {
 | |
|                 data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // copy kv cache
 | |
|     {
 | |
|         const auto & kv_self = ctx->kv_self;
 | |
|         const auto & hparams = ctx->model.hparams;
 | |
| 
 | |
|         const uint32_t n_layer      = hparams.n_layer;
 | |
|         const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
 | |
|         const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
 | |
| 
 | |
|         // NOTE: kv_size and kv_buf_size are mostly used for sanity checks
 | |
|         const uint32_t kv_head     = llama_kv_cache_cell_max(kv_self);
 | |
|         const uint32_t kv_size     = kv_self.size;
 | |
|         const size_t   kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head;
 | |
|         const uint32_t kv_used     = kv_self.used;
 | |
| 
 | |
|         data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
 | |
|         data_ctx->write(&kv_head,     sizeof(kv_head));
 | |
|         data_ctx->write(&kv_size,     sizeof(kv_size));
 | |
|         data_ctx->write(&kv_used,     sizeof(kv_used));
 | |
| 
 | |
|         if (kv_buf_size) {
 | |
|             const size_t pre_kv_buf_size = data_ctx->get_size_written();
 | |
| 
 | |
|             std::vector<uint8_t> tmp_buf;
 | |
|             for (int il = 0; il < (int) n_layer; ++il) {
 | |
|                 const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
 | |
| 
 | |
|                 tmp_buf.resize(k_size);
 | |
|                 ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
 | |
|                 data_ctx->write(tmp_buf.data(), tmp_buf.size());
 | |
| 
 | |
|                 if (kv_self.recurrent) {
 | |
|                     // v is contiguous for recurrent models
 | |
|                     // TODO: use other tensors for state models than k and v
 | |
|                     const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
 | |
| 
 | |
|                     tmp_buf.resize(v_size);
 | |
|                     ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size());
 | |
|                     data_ctx->write(tmp_buf.data(), tmp_buf.size());
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 // v is not contiguous, copy row by row
 | |
|                 const size_t v_row_size   = ggml_row_size(kv_self.v_l[il]->type, kv_head);
 | |
|                 const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
 | |
| 
 | |
|                 tmp_buf.resize(v_row_size);
 | |
|                 for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
 | |
|                     ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
 | |
|                     data_ctx->write(tmp_buf.data(), tmp_buf.size());
 | |
|                 }
 | |
|             }
 | |
|             GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size);
 | |
|         }
 | |
| 
 | |
|         for (uint32_t i = 0; i < kv_head; ++i) {
 | |
|             const auto & cell = kv_self.cells[i];
 | |
| 
 | |
|             const llama_pos pos         = cell.pos;
 | |
|             const size_t    seq_id_size = cell.seq_id.size();
 | |
| 
 | |
|             data_ctx->write(&pos,         sizeof(pos));
 | |
|             data_ctx->write(&seq_id_size, sizeof(seq_id_size));
 | |
| 
 | |
|             for (auto seq_id : cell.seq_id) {
 | |
|                 data_ctx->write(&seq_id, sizeof(seq_id));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) {
 | |
|     llama_data_buffer_context data_ctx(dst);
 | |
|     llama_state_get_data_internal(ctx, &data_ctx);
 | |
| 
 | |
|     return data_ctx.get_size_written();
 | |
| }
 | |
| 
 | |
| // Sets the state reading from the specified source address
 | |
| size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) {
 | |
|     llama_synchronize(ctx);
 | |
| 
 | |
|     const uint8_t * inp = src;
 | |
| 
 | |
|     // set rng
 | |
|     {
 | |
|         size_t rng_size;
 | |
|         memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
 | |
| 
 | |
|         GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
 | |
| 
 | |
|         std::string rng_str((const char *)inp, rng_size); inp += rng_size;
 | |
| 
 | |
|         std::istringstream rng_ss(rng_str);
 | |
|         rng_ss >> ctx->rng;
 | |
| 
 | |
|         GGML_ASSERT(!rng_ss.fail());
 | |
|     }
 | |
| 
 | |
|     // set output ids
 | |
|     {
 | |
|         size_t n_outputs;
 | |
|         std::vector<int32_t> output_pos;
 | |
| 
 | |
|         memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs);
 | |
| 
 | |
|         GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs));
 | |
| 
 | |
|         if (n_outputs) {
 | |
|             output_pos.resize(n_outputs);
 | |
|             memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t));
 | |
|             inp += n_outputs * sizeof(int32_t);
 | |
| 
 | |
|             for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
 | |
|                 int32_t id = output_pos[i];
 | |
|                 GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch);
 | |
|                 ctx->output_ids[id] = i;
 | |
|             }
 | |
| 
 | |
|             ctx->n_outputs = n_outputs;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // set logits
 | |
|     {
 | |
|         size_t logits_size;
 | |
| 
 | |
|         memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
 | |
| 
 | |
|         GGML_ASSERT(ctx->logits_size >= logits_size);
 | |
| 
 | |
|         if (logits_size) {
 | |
|             memcpy(ctx->logits, inp, logits_size * sizeof(float));
 | |
|             inp += logits_size * sizeof(float);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // set embeddings
 | |
|     {
 | |
|         size_t embeddings_size;
 | |
| 
 | |
|         memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
 | |
| 
 | |
|         GGML_ASSERT(ctx->embd_size >= embeddings_size);
 | |
| 
 | |
|         if (embeddings_size) {
 | |
|             memcpy(ctx->embd, inp, embeddings_size * sizeof(float));
 | |
|             inp += embeddings_size * sizeof(float);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // set kv cache
 | |
|     {
 | |
|         const auto & kv_self = ctx->kv_self;
 | |
|         const auto & hparams = ctx->model.hparams;
 | |
| 
 | |
|         const uint32_t n_layer      = hparams.n_layer;
 | |
|         const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
 | |
|         const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
 | |
| 
 | |
|         size_t   kv_buf_size;
 | |
|         uint32_t kv_head;
 | |
|         uint32_t kv_size;
 | |
|         uint32_t kv_used;
 | |
| 
 | |
|         memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
 | |
|         memcpy(&kv_head,     inp, sizeof(kv_head));     inp += sizeof(kv_head);
 | |
|         memcpy(&kv_size,     inp, sizeof(kv_size));     inp += sizeof(kv_size);
 | |
|         memcpy(&kv_used,     inp, sizeof(kv_used));     inp += sizeof(kv_used);
 | |
| 
 | |
|         if (kv_self.size != kv_size) {
 | |
|             // the KV cache needs to be big enough to load all the KV cells from the saved state
 | |
|             GGML_ASSERT(kv_self.size >= kv_head);
 | |
| 
 | |
|             LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n",
 | |
|                 __func__, kv_head, kv_size, kv_self.size);
 | |
|         }
 | |
| 
 | |
|         if (kv_buf_size) {
 | |
|             const size_t pre_kv_buf_size = inp - src;
 | |
| 
 | |
|             GGML_ASSERT(kv_self.total_size() >= kv_buf_size);
 | |
| 
 | |
|             for (int il = 0; il < (int) n_layer; ++il) {
 | |
|                 const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
 | |
| 
 | |
|                 ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
 | |
|                 inp += k_size;
 | |
| 
 | |
|                 if (kv_self.recurrent) {
 | |
|                     // v is contiguous for recurrent models
 | |
|                     // TODO: use other tensors for state models than k and v
 | |
|                     const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
 | |
| 
 | |
|                     ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size);
 | |
|                     inp += v_size;
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 // v is not contiguous, copy row by row
 | |
|                 const size_t v_row_size   = ggml_row_size(kv_self.v_l[il]->type, kv_head);
 | |
|                 const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size);
 | |
| 
 | |
|                 for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
 | |
|                     ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
 | |
|                     inp += v_row_size;
 | |
|                 }
 | |
|             }
 | |
|             GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size);
 | |
|         }
 | |
| 
 | |
|         llama_kv_cache_clear(ctx);
 | |
| 
 | |
|         ctx->kv_self.head = kv_head;
 | |
|         ctx->kv_self.used = kv_used;
 | |
| 
 | |
|         for (uint32_t i = 0; i < kv_head; ++i) {
 | |
|             llama_pos pos;
 | |
|             size_t    seq_id_size;
 | |
| 
 | |
|             memcpy(&pos,         inp, sizeof(pos));         inp += sizeof(pos);
 | |
|             memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
 | |
| 
 | |
|             ctx->kv_self.cells[i].pos = pos;
 | |
| 
 | |
|             llama_seq_id seq_id;
 | |
| 
 | |
|             for (size_t j = 0; j < seq_id_size; ++j) {
 | |
|                 memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
 | |
|                 ctx->kv_self.cells[i].seq_id.insert(seq_id);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     const size_t nread    = inp - src;
 | |
|     const size_t max_size = llama_state_get_size(ctx);
 | |
| 
 | |
|     GGML_ASSERT(nread <= max_size);
 | |
| 
 | |
|     return nread;
 | |
| }
 | |
| 
 | |
| static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
 | |
|     llama_file file(path_session, "rb");
 | |
| 
 | |
|     // sanity checks
 | |
|     {
 | |
|         const uint32_t magic   = file.read_u32();
 | |
|         const uint32_t version = file.read_u32();
 | |
| 
 | |
|         if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
 | |
|             LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         llama_hparams session_hparams;
 | |
|         file.read_raw(&session_hparams, sizeof(llama_hparams));
 | |
| 
 | |
|         if (session_hparams != ctx->model.hparams) {
 | |
|             LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // load the prompt
 | |
|     {
 | |
|         const uint32_t n_token_count = file.read_u32();
 | |
| 
 | |
|         if (n_token_count > n_token_capacity) {
 | |
|             LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
 | |
|         *n_token_count_out = n_token_count;
 | |
|     }
 | |
| 
 | |
|     // restore the context state
 | |
|     {
 | |
|         const size_t n_state_size_cur = file.size - file.tell();
 | |
|         const size_t n_state_size_max = llama_state_get_size(ctx);
 | |
| 
 | |
|         if (n_state_size_cur > n_state_size_max) {
 | |
|             LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         std::vector<uint8_t> state_data(n_state_size_max);
 | |
|         file.read_raw(state_data.data(), n_state_size_cur);
 | |
| 
 | |
|         llama_state_set_data(ctx, state_data.data());
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
 | |
|     try {
 | |
|         return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
 | |
|     } catch (const std::exception & err) {
 | |
|         LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
 | |
|         return false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
 | |
|     llama_file file(path_session, "wb");
 | |
| 
 | |
|     file.write_u32(LLAMA_SESSION_MAGIC);
 | |
|     file.write_u32(LLAMA_SESSION_VERSION);
 | |
| 
 | |
|     file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
 | |
| 
 | |
|     // save the prompt
 | |
|     file.write_u32((uint32_t) n_token_count);
 | |
|     file.write_raw(tokens, sizeof(llama_token) * n_token_count);
 | |
| 
 | |
|     // save the context state using stream saving
 | |
|     llama_data_file_context data_ctx(&file);
 | |
|     llama_state_get_data_internal(ctx, &data_ctx);
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
 | |
|     try {
 | |
|         return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
 | |
|     } catch (const std::exception & err) {
 | |
|         LLAMA_LOG_ERROR("error saving session file: %s\n", err.what());
 | |
|         return false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) {
 | |
|     // save the size of size_t as a uint32_t for safety check
 | |
|     const size_t size_t_size_size = sizeof(uint32_t);
 | |
| 
 | |
|     // other values
 | |
|     const size_t s_cell_count_size = sizeof(uint32_t);
 | |
|     const size_t s_layer_count_size = sizeof(uint32_t);
 | |
|     const size_t n_embd_v_gqa_size = sizeof(uint32_t);
 | |
| 
 | |
|     size_t s_cell_count = 0;
 | |
|     size_t s_cell_data_size = 0;
 | |
|     const auto & kv_self = ctx->kv_self;
 | |
|     const auto & hparams = ctx->model.hparams;
 | |
| 
 | |
|     const uint32_t n_layer = hparams.n_layer;
 | |
|     const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
 | |
|     const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
 | |
| 
 | |
|     for (uint32_t i = 0; i < kv_self.size; ++i) {
 | |
|         const auto & cell = kv_self.cells[i];
 | |
|         if (cell.seq_id.count(seq_id) > 0) {
 | |
|             ++s_cell_count;
 | |
|             s_cell_data_size += sizeof(llama_pos);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (int il = 0; il < (int)n_layer; ++il) {
 | |
|         // types of keys and values
 | |
|         s_cell_data_size += sizeof(int32_t) * 2;
 | |
|         // k_size_row and v_size_el values of layer
 | |
|         s_cell_data_size += sizeof(size_t) * 2;
 | |
| 
 | |
|         // keys
 | |
|         const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
 | |
|         s_cell_data_size += k_size_row * s_cell_count;
 | |
| 
 | |
|         // values (transposed)
 | |
|         const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
 | |
|         s_cell_data_size += v_size_el * s_cell_count * n_embd_v_gqa;
 | |
|     }
 | |
| 
 | |
|     const size_t s_total = (
 | |
|         size_t_size_size +
 | |
|         s_cell_count_size +
 | |
|         s_layer_count_size +
 | |
|         n_embd_v_gqa_size +
 | |
|         s_cell_data_size
 | |
|         );
 | |
| 
 | |
|     return s_total;
 | |
| }
 | |
| 
 | |
| static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) {
 | |
|     llama_synchronize(ctx);
 | |
| 
 | |
|     const auto & kv_self = ctx->kv_self;
 | |
|     GGML_ASSERT(!kv_self.recurrent); // not implemented
 | |
| 
 | |
|     // Save the size of size_t as a uint32_t for safety check
 | |
|     const uint32_t size_t_size = sizeof(size_t);
 | |
|     data_ctx.write(&size_t_size, sizeof(size_t_size));
 | |
| 
 | |
|     std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
 | |
|     uint32_t cell_count = 0;
 | |
| 
 | |
|     // Count the number of cells with the specified seq_id
 | |
|     // Find all the ranges of cells with this seq id
 | |
|     {
 | |
|         uint32_t cell_range_begin = kv_self.size;
 | |
|         for (uint32_t i = 0; i < kv_self.size; ++i) {
 | |
|             const auto & cell = kv_self.cells[i];
 | |
|             if (cell.has_seq_id(seq_id)) {
 | |
|                 ++cell_count;
 | |
|                 if (cell_range_begin == kv_self.size) {
 | |
|                     cell_range_begin = i;
 | |
|                 }
 | |
|             }
 | |
|             else {
 | |
|                 if (cell_range_begin != kv_self.size) {
 | |
|                     cell_ranges.push_back({ cell_range_begin, i });
 | |
|                     cell_range_begin = kv_self.size;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         if (cell_range_begin != kv_self.size) {
 | |
|             cell_ranges.push_back({ cell_range_begin, kv_self.size });
 | |
|         }
 | |
| 
 | |
|         // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
 | |
|         uint32_t cell_count_check = 0;
 | |
|         for (const auto & range : cell_ranges) {
 | |
|             cell_count_check += range.second - range.first;
 | |
|         }
 | |
|         GGML_ASSERT(cell_count == cell_count_check);
 | |
|     }
 | |
| 
 | |
|     // Write the cell count
 | |
|     data_ctx.write(&cell_count, sizeof(cell_count));
 | |
| 
 | |
|     const auto & hparams = ctx->model.hparams;
 | |
|     const uint32_t n_layer = hparams.n_layer;
 | |
|     const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
 | |
|     const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
 | |
| 
 | |
|     // Write the layer count
 | |
|     data_ctx.write(&n_layer, sizeof(n_layer));
 | |
| 
 | |
|     // Write n_embd_v_gqa
 | |
|     data_ctx.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
 | |
| 
 | |
|     // Iterate the ranges and write all the pos (this is the token position in the prompt)
 | |
|     for (const auto & range : cell_ranges) {
 | |
|         for (uint32_t i = range.first; i < range.second; ++i) {
 | |
|             const auto & cell = kv_self.cells[i];
 | |
|             data_ctx.write(&cell.pos, sizeof(cell.pos));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Iterate and write all the keys first, each row is a cell
 | |
|     // Get whole range at a time
 | |
|     std::vector<uint8_t> tmp_buf;
 | |
|     for (int il = 0; il < (int)n_layer; ++il) {
 | |
|         // Write key type
 | |
|         const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
 | |
|         data_ctx.write(&k_type_i, sizeof(k_type_i));
 | |
| 
 | |
|         // Write row size of key
 | |
|         const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
 | |
|         data_ctx.write(&k_size_row, sizeof(k_size_row));
 | |
| 
 | |
|         // Read each range of cells of k_size length each into tmp_buf and write out
 | |
|         for (const auto & range : cell_ranges) {
 | |
|             const size_t range_size = range.second - range.first;
 | |
|             tmp_buf.resize(range_size * k_size_row);
 | |
|             ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row);
 | |
|             data_ctx.write(tmp_buf.data(), tmp_buf.size());
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // For the values, they are transposed, so we also need the element size and get the element ranges from each row
 | |
|     const uint32_t kv_size = kv_self.size;
 | |
|     for (int il = 0; il < (int)n_layer; ++il) {
 | |
|         // Write value type
 | |
|         const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
 | |
|         data_ctx.write(&v_type_i, sizeof(v_type_i));
 | |
| 
 | |
|         // Write element size
 | |
|         const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
 | |
|         data_ctx.write(&v_size_el, sizeof(v_size_el));
 | |
| 
 | |
|         // For each row, we get the element values of each cell
 | |
|         for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
 | |
|             // Read each range of cells of v_size_el length each into tmp_buf and write out
 | |
|             for (const auto & range : cell_ranges) {
 | |
|                 const size_t range_size = range.second - range.first;
 | |
|                 const size_t src_offset = (range.first + j * kv_size) * v_size_el;
 | |
|                 tmp_buf.resize(range_size * v_size_el);
 | |
|                 ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size());
 | |
|                 data_ctx.write(tmp_buf.data(), tmp_buf.size());
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return data_ctx.get_size_written();
 | |
| }
 | |
| 
 | |
| size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_seq_id seq_id) {
 | |
|     llama_data_buffer_context data_ctx(dst);
 | |
|     return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
 | |
| }
 | |
| 
 | |
| size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) {
 | |
|     llama_synchronize(ctx);
 | |
| 
 | |
|     auto & kv_self = ctx->kv_self;
 | |
|     GGML_ASSERT(!kv_self.recurrent); // not implemented
 | |
| 
 | |
|     // Wipe the slot
 | |
|     llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
 | |
| 
 | |
|     const uint8_t * inp = src;
 | |
| 
 | |
|     // Read size of size_t
 | |
|     uint32_t size_t_size;
 | |
|     memcpy(&size_t_size, inp, sizeof(size_t_size));
 | |
|     inp += sizeof(size_t_size);
 | |
|     if (size_t_size != sizeof(size_t)) {
 | |
|         LLAMA_LOG_ERROR("%s: size_t size mismatch\n", __func__);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     // Read the cell count
 | |
|     uint32_t cell_count;
 | |
|     memcpy(&cell_count, inp, sizeof(cell_count));
 | |
|     inp += sizeof(cell_count);
 | |
| 
 | |
|     // Read the layer count
 | |
|     uint32_t n_layer_ref;
 | |
|     memcpy(&n_layer_ref, inp, sizeof(n_layer_ref));
 | |
|     inp += sizeof(n_layer_ref);
 | |
| 
 | |
|     // Read n_embd_v_gqa
 | |
|     uint32_t n_embd_v_gqa_ref;
 | |
|     memcpy(&n_embd_v_gqa_ref, inp, sizeof(n_embd_v_gqa_ref));
 | |
|     inp += sizeof(n_embd_v_gqa_ref);
 | |
| 
 | |
|     // Sanity check model compatibility
 | |
|     const auto & hparams = ctx->model.hparams;
 | |
|     const uint32_t n_layer = hparams.n_layer;
 | |
|     const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
 | |
|     const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
 | |
|     if (n_layer != n_layer_ref) {
 | |
|         LLAMA_LOG_ERROR("%s: mismatched n_layer (%d != %d)\n", __func__, n_layer, n_layer_ref);
 | |
|         return 0;
 | |
|     }
 | |
|     if (n_embd_v_gqa != n_embd_v_gqa_ref) {
 | |
|         LLAMA_LOG_ERROR("%s: mismatched n_embd_v_gqa (%d != %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     // Allocate the new cells for the slot
 | |
|     if (cell_count) {
 | |
|         llama_batch batch = llama_batch_init(cell_count, 0, 1);
 | |
|         batch.n_tokens = cell_count;
 | |
|         for (uint32_t i = 0; i < cell_count; ++i) {
 | |
|             llama_pos pos;
 | |
|             memcpy(&pos, inp, sizeof(pos));
 | |
|             inp += sizeof(pos);
 | |
| 
 | |
|             batch.pos[i] = pos;
 | |
|             batch.n_seq_id[i] = 1;
 | |
|             batch.seq_id[i][0] = dest_seq_id;
 | |
|         }
 | |
|         if (!llama_kv_cache_find_slot(kv_self, batch)) {
 | |
|             llama_batch_free(batch);
 | |
|             LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
|         // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
 | |
|         // Assume that this is one contiguous block of cells
 | |
|         GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
 | |
|         GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
 | |
|         GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
 | |
|         GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
 | |
|         GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
 | |
| 
 | |
|         // Cleanup
 | |
|         llama_batch_free(batch);
 | |
|     }
 | |
| 
 | |
|     const uint32_t kv_size = kv_self.size;
 | |
|     const uint32_t kv_head = kv_self.head;
 | |
| 
 | |
|     // For each layer, read the keys for each cell, one row is one cell, read as one contiguous blo
 | |
|     for (int il = 0; il < (int)n_layer; ++il) {
 | |
|         // Read type of key
 | |
|         int32_t k_type_i_ref;
 | |
|         memcpy(&k_type_i_ref, inp, sizeof(k_type_i_ref));
 | |
|         inp += sizeof(k_type_i_ref);
 | |
|         const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
 | |
|         if (k_type_i != k_type_i_ref) {
 | |
|             llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
 | |
|             LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
|         // Read row size of key
 | |
|         size_t k_size_row_ref;
 | |
|         memcpy(&k_size_row_ref, inp, sizeof(k_size_row_ref));
 | |
|         inp += sizeof(k_size_row_ref);
 | |
|         const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
 | |
|         if (k_size_row != k_size_row_ref) {
 | |
|             llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
 | |
|             LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, k_size_row_ref, il);
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
|         if (cell_count) {
 | |
|             // Read and set the keys for the whole cell range
 | |
|             ggml_backend_tensor_set(kv_self.k_l[il], inp, kv_head * k_size_row, cell_count * k_size_row);
 | |
|             inp += cell_count * k_size_row;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // For each layer, read the values for each cell (transposed)
 | |
|     for (int il = 0; il < (int)n_layer; ++il) {
 | |
|         // Read type of value
 | |
|         int32_t v_type_i_ref;
 | |
|         memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
 | |
|         inp += sizeof(v_type_i_ref);
 | |
|         const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
 | |
|         if (v_type_i != v_type_i_ref) {
 | |
|             llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
 | |
|             LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
|         // Read element size of value
 | |
|         size_t v_size_el_ref;
 | |
|         memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref));
 | |
|         inp += sizeof(v_size_el_ref);
 | |
|         const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
 | |
|         if (v_size_el != v_size_el_ref) {
 | |
|             llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
 | |
|             LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il);
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
|         if (cell_count) {
 | |
|             // For each row in the transposed matrix, read the values for the whole cell range
 | |
|             for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
 | |
|                 const size_t dst_offset = (kv_head + j * kv_size) * v_size_el;
 | |
|                 ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el);
 | |
|                 inp += cell_count * v_size_el;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     const size_t nread = inp - src;
 | |
|     return nread;
 | |
| }
 | |
| 
 | |
| static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
 | |
|     llama_file file(filepath, "wb");
 | |
| 
 | |
|     file.write_u32(LLAMA_STATE_SEQ_MAGIC);
 | |
|     file.write_u32(LLAMA_STATE_SEQ_VERSION);
 | |
| 
 | |
|     // save the prompt
 | |
|     file.write_u32((uint32_t)n_token_count);
 | |
|     file.write_raw(tokens, sizeof(llama_token) * n_token_count);
 | |
| 
 | |
|     // save the context state using stream saving
 | |
|     llama_data_file_context data_ctx(&file);
 | |
|     llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
 | |
| 
 | |
|     const size_t res = file.tell();
 | |
|     GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
 | |
|     llama_file file(filepath, "rb");
 | |
| 
 | |
|     // version checks
 | |
|     {
 | |
|         const uint32_t magic   = file.read_u32();
 | |
|         const uint32_t version = file.read_u32();
 | |
| 
 | |
|         if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
 | |
|             LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // load the prompt
 | |
|     {
 | |
|         const uint32_t n_token_count = file.read_u32();
 | |
| 
 | |
|         if (n_token_count > n_token_capacity) {
 | |
|             LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
|         file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
 | |
|         *n_token_count_out = n_token_count;
 | |
|     }
 | |
| 
 | |
|     // restore the context state
 | |
|     {
 | |
|         const size_t state_size = file.size - file.tell();
 | |
|         std::vector<uint8_t> state_data(state_size);
 | |
|         file.read_raw(state_data.data(), state_size);
 | |
|         const size_t nread = llama_state_seq_set_data(ctx, state_data.data(), dest_seq_id);
 | |
|         if (!nread) {
 | |
|             LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
 | |
|             return 0;
 | |
|         }
 | |
|         GGML_ASSERT(nread <= state_size);
 | |
|         GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
 | |
|     }
 | |
| 
 | |
|     return file.tell();
 | |
| }
 | |
| 
 | |
| size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
 | |
|     try {
 | |
|         return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
 | |
|     } catch (const std::exception & err) {
 | |
|         LLAMA_LOG_ERROR("error saving sequence state file: %s\n", err.what());
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
 | |
|     try {
 | |
|         return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
 | |
|     } catch (const std::exception & err) {
 | |
|         LLAMA_LOG_ERROR("error loading sequence state file: %s\n", err.what());
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
 | |
|     ctx->cparams.n_threads       = n_threads;
 | |
|     ctx->cparams.n_threads_batch = n_threads_batch;
 | |
| }
 | |
| 
 | |
| void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
 | |
|     ctx->abort_callback      = abort_callback;
 | |
|     ctx->abort_callback_data = abort_callback_data;
 | |
| }
 | |
| 
 | |
| void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
 | |
|     ctx->cparams.causal_attn = causal_attn;
 | |
| }
 | |
| 
 | |
| struct llama_batch llama_batch_get_one(
 | |
|              llama_token * tokens,
 | |
|                  int32_t   n_tokens,
 | |
|                llama_pos   pos_0,
 | |
|             llama_seq_id   seq_id) {
 | |
|     return {
 | |
|         /*n_tokens       =*/ n_tokens,
 | |
|         /*tokens         =*/ tokens,
 | |
|         /*embd           =*/ nullptr,
 | |
|         /*pos            =*/ nullptr,
 | |
|         /*n_seq_id       =*/ nullptr,
 | |
|         /*seq_id         =*/ nullptr,
 | |
|         /*logits         =*/ nullptr,
 | |
|         /*all_pos_0      =*/ pos_0,
 | |
|         /*all_pos_1      =*/ 1,
 | |
|         /*all_seq_id     =*/ seq_id,
 | |
|     };
 | |
| }
 | |
| 
 | |
| struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
 | |
|     llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
 | |
| 
 | |
|     if (embd) {
 | |
|         batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
 | |
|     } else {
 | |
|         batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
 | |
|     }
 | |
| 
 | |
|     batch.pos      = (llama_pos *)     malloc(sizeof(llama_pos)      * n_tokens_alloc);
 | |
|     batch.n_seq_id = (int32_t *)       malloc(sizeof(int32_t)        * n_tokens_alloc);
 | |
|     batch.seq_id   = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
 | |
|     for (int i = 0; i < n_tokens_alloc; ++i) {
 | |
|         batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
 | |
|     }
 | |
|     batch.seq_id[n_tokens_alloc] = nullptr;
 | |
| 
 | |
|     batch.logits   = (int8_t *)        malloc(sizeof(int8_t)         * n_tokens_alloc);
 | |
| 
 | |
|     return batch;
 | |
| }
 | |
| 
 | |
| void llama_batch_free(struct llama_batch batch) {
 | |
|     if (batch.token)    free(batch.token);
 | |
|     if (batch.embd)     free(batch.embd);
 | |
|     if (batch.pos)      free(batch.pos);
 | |
|     if (batch.n_seq_id) free(batch.n_seq_id);
 | |
|     if (batch.seq_id) {
 | |
|         for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
 | |
|             free(batch.seq_id[i]);
 | |
|         }
 | |
|         free(batch.seq_id);
 | |
|     }
 | |
|     if (batch.logits)   free(batch.logits);
 | |
| }
 | |
| 
 | |
| int32_t llama_decode(
 | |
|         struct llama_context * ctx,
 | |
|           struct llama_batch   batch) {
 | |
|     const int ret = llama_decode_internal(*ctx, batch);
 | |
|     if (ret < 0) {
 | |
|         LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| void llama_synchronize(struct llama_context * ctx) {
 | |
|     ggml_backend_sched_synchronize(ctx->sched);
 | |
| 
 | |
|     // FIXME: if multiple single tokens are evaluated without a synchronization,
 | |
|     // the stats will be added to the prompt evaluation stats
 | |
|     // this should only happen when using batch size 1 to evaluate a batch
 | |
| 
 | |
|     // add the evaluation to the stats
 | |
|     if (ctx->n_queued_tokens == 1) {
 | |
|         ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
 | |
|         ctx->n_eval++;
 | |
|     } else if (ctx->n_queued_tokens > 1) {
 | |
|         ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
 | |
|         ctx->n_p_eval += ctx->n_queued_tokens;
 | |
|     }
 | |
| 
 | |
|     // get a more accurate load time, upon first eval
 | |
|     if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
 | |
|         ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
 | |
|         ctx->has_evaluated_once = true;
 | |
|     }
 | |
| 
 | |
|     ctx->n_queued_tokens = 0;
 | |
|     ctx->t_compute_start_us = 0;
 | |
| }
 | |
| 
 | |
| float * llama_get_logits(struct llama_context * ctx) {
 | |
|     llama_synchronize(ctx);
 | |
| 
 | |
|     return ctx->logits;
 | |
| }
 | |
| 
 | |
| float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
 | |
|     int32_t j = -1;
 | |
|     llama_synchronize(ctx);
 | |
| 
 | |
|     try {
 | |
|         if (ctx->logits == nullptr) {
 | |
|             throw std::runtime_error("no logits");
 | |
|         }
 | |
| 
 | |
|         if (i < 0) {
 | |
|             j = ctx->n_outputs + i;
 | |
|             if (j < 0) {
 | |
|                 throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
 | |
|             }
 | |
|         } else if ((size_t) i >= ctx->output_ids.size()) {
 | |
|             throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
 | |
|         } else {
 | |
|             j = ctx->output_ids[i];
 | |
|         }
 | |
| 
 | |
|         if (j < 0) {
 | |
|             throw std::runtime_error(format("batch.logits[%d] != true", i));
 | |
|         }
 | |
|         if (j >= ctx->n_outputs) {
 | |
|             // This should not happen
 | |
|             throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
 | |
|         }
 | |
| 
 | |
|         return ctx->logits + j*ctx->model.hparams.n_vocab;
 | |
|     } catch (const std::exception & err) {
 | |
|         LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
 | |
| #ifndef NDEBUG
 | |
|         GGML_ASSERT(false);
 | |
| #endif
 | |
|         return nullptr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| float * llama_get_embeddings(struct llama_context * ctx) {
 | |
|     llama_synchronize(ctx);
 | |
| 
 | |
|     return ctx->embd;
 | |
| }
 | |
| 
 | |
| float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
 | |
|     int32_t j = -1;
 | |
| 
 | |
|     llama_synchronize(ctx);
 | |
| 
 | |
|     try {
 | |
|         if (ctx->embd == nullptr) {
 | |
|             throw std::runtime_error("no embeddings");
 | |
|         }
 | |
| 
 | |
|         if (i < 0) {
 | |
|             j = ctx->n_outputs + i;
 | |
|             if (j < 0) {
 | |
|                 throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
 | |
|             }
 | |
|         } else if ((size_t) i >= ctx->output_ids.size()) {
 | |
|             throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
 | |
|         } else {
 | |
|             j = ctx->output_ids[i];
 | |
|         }
 | |
| 
 | |
|         if (j < 0) {
 | |
|             throw std::runtime_error(format("batch.logits[%d] != true", i));
 | |
|         }
 | |
|         if (j >= ctx->n_outputs) {
 | |
|             // This should not happen
 | |
|             throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
 | |
|         }
 | |
| 
 | |
|         return ctx->embd + j*ctx->model.hparams.n_embd;
 | |
|     } catch (const std::exception & err) {
 | |
|         LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
 | |
| #ifndef NDEBUG
 | |
|         GGML_ASSERT(false);
 | |
| #endif
 | |
|         return nullptr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
 | |
|     llama_synchronize(ctx);
 | |
| 
 | |
|     auto it = ctx->embd_seq.find(seq_id);
 | |
|     if (it == ctx->embd_seq.end()) {
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     return it->second.data();
 | |
| }
 | |
| 
 | |
| const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
 | |
|     GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
 | |
|     return model->vocab.id_to_token[token].text.c_str();
 | |
| }
 | |
| 
 | |
| float llama_token_get_score(const struct llama_model * model, llama_token token) {
 | |
|     GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
 | |
|     return model->vocab.id_to_token[token].score;
 | |
| }
 | |
| 
 | |
| llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token) {
 | |
|     GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
 | |
|     return model->vocab.id_to_token[token].type;
 | |
| }
 | |
| 
 | |
| bool llama_token_is_eog(const struct llama_model * model, llama_token token) {
 | |
|     return token != -1 && (
 | |
|         token == llama_token_eos(model) ||
 | |
|         token == llama_token_eot(model)
 | |
|     );
 | |
| }
 | |
| 
 | |
| llama_token llama_token_bos(const struct llama_model * model) {
 | |
|     return model->vocab.special_bos_id;
 | |
| }
 | |
| 
 | |
| llama_token llama_token_eos(const struct llama_model * model) {
 | |
|     return model->vocab.special_eos_id;
 | |
| }
 | |
| 
 | |
| llama_token llama_token_cls(const struct llama_model * model) {
 | |
|     return model->vocab.special_cls_id;
 | |
| }
 | |
| 
 | |
| llama_token llama_token_sep(const struct llama_model * model) {
 | |
|     return model->vocab.special_sep_id;
 | |
| }
 | |
| 
 | |
| llama_token llama_token_nl(const struct llama_model * model) {
 | |
|     return model->vocab.linefeed_id;
 | |
| }
 | |
| 
 | |
| int32_t llama_add_bos_token(const struct llama_model * model) {
 | |
|     return model->vocab.special_add_bos;
 | |
| }
 | |
| 
 | |
| int32_t llama_add_eos_token(const struct llama_model * model) {
 | |
|     return model->vocab.special_add_eos;
 | |
| }
 | |
| 
 | |
| llama_token llama_token_prefix(const struct llama_model * model) {
 | |
|     return model->vocab.special_prefix_id;
 | |
| }
 | |
| 
 | |
| llama_token llama_token_middle(const struct llama_model * model) {
 | |
|     return model->vocab.special_middle_id;
 | |
| }
 | |
| 
 | |
| llama_token llama_token_suffix(const struct llama_model * model) {
 | |
|     return model->vocab.special_suffix_id;
 | |
| }
 | |
| 
 | |
| llama_token llama_token_eot(const struct llama_model * model) {
 | |
|     return model->vocab.special_eot_id;
 | |
| }
 | |
| 
 | |
| int32_t llama_tokenize(
 | |
|     const struct llama_model * model,
 | |
|                   const char * text,
 | |
|                      int32_t   text_len,
 | |
|                  llama_token * tokens,
 | |
|                      int32_t   n_tokens_max,
 | |
|                         bool   add_special,
 | |
|                         bool   parse_special) {
 | |
|     auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_special, parse_special);
 | |
| 
 | |
|     if (n_tokens_max < (int) res.size()) {
 | |
|         // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
 | |
|         return -((int) res.size());
 | |
|     }
 | |
| 
 | |
|     for (size_t i = 0; i < res.size(); i++) {
 | |
|         tokens[i] = res[i];
 | |
|     }
 | |
| 
 | |
|     return res.size();
 | |
| }
 | |
| 
 | |
| static std::string llama_decode_text(const std::string & text) {
 | |
|     std::string decoded_text;
 | |
|     auto unicode_sequences = unicode_cpts_from_utf8(text);
 | |
|     for (auto & unicode_sequence : unicode_sequences) {
 | |
|         decoded_text += unicode_utf8_to_byte(unicode_cpt_to_utf8(unicode_sequence));
 | |
|     }
 | |
| 
 | |
|     return decoded_text;
 | |
| }
 | |
| 
 | |
| // does not write null-terminator to buf
 | |
| int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) {
 | |
|     if (0 <= token && token < llama_n_vocab(model)) {
 | |
|         switch (llama_vocab_get_type(model->vocab)) {
 | |
|         case LLAMA_VOCAB_TYPE_WPM:
 | |
|         case LLAMA_VOCAB_TYPE_SPM: {
 | |
|             // NOTE: we accept all unsupported token types,
 | |
|             // suppressing them like CONTROL tokens.
 | |
|             if (llama_is_normal_token(model->vocab, token)) {
 | |
|                 std::string result = model->vocab.id_to_token[token].text;
 | |
|                 llama_unescape_whitespace(result);
 | |
|                 if (length < (int) result.length()) {
 | |
|                     return -(int) result.length();
 | |
|                 }
 | |
|                 memcpy(buf, result.c_str(), result.length());
 | |
|                 return result.length();
 | |
|             } else if (
 | |
|                     (llama_is_user_defined_token(model->vocab, token)) ||
 | |
|                     (llama_is_control_token     (model->vocab, token) && special)) {
 | |
|                 std::string result = model->vocab.id_to_token[token].text;
 | |
|                 if (length < (int) result.length()) {
 | |
|                     return -(int) result.length();
 | |
|                 }
 | |
|                 memcpy(buf, result.c_str(), result.length());
 | |
|                 return result.length();
 | |
|             } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
 | |
|                 if (length < 3) {
 | |
|                     return -3;
 | |
|                 }
 | |
|                 memcpy(buf, "\xe2\x96\x85", 3);
 | |
|                 return 3;
 | |
|             } else if (llama_is_byte_token(model->vocab, token)) {
 | |
|                 if (length < 1) {
 | |
|                     return -1;
 | |
|                 }
 | |
|                 buf[0] = llama_token_to_byte(model->vocab, token);
 | |
|                 return 1;
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|         case LLAMA_VOCAB_TYPE_BPE: {
 | |
|             // NOTE: we accept all unsupported token types,
 | |
|             // suppressing them like CONTROL tokens.
 | |
|             if (llama_is_normal_token(model->vocab, token)) {
 | |
|                 std::string result = model->vocab.id_to_token[token].text;
 | |
|                 result = llama_decode_text(result);
 | |
|                 if (length < (int) result.length()) {
 | |
|                     return -(int) result.length();
 | |
|                 }
 | |
|                 memcpy(buf, result.c_str(), result.length());
 | |
|                 return result.length();
 | |
|             } else if (
 | |
|                     (llama_is_user_defined_token(model->vocab, token)) ||
 | |
|                     (llama_is_control_token     (model->vocab, token) && special)) {
 | |
|                 std::string result = model->vocab.id_to_token[token].text;
 | |
|                 if (length < (int) result.length()) {
 | |
|                     return -(int) result.length();
 | |
|                 }
 | |
|                 memcpy(buf, result.c_str(), result.length());
 | |
|                 return result.length();
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|         default:
 | |
|             GGML_ASSERT(false);
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| // trim whitespace from the beginning and end of a string
 | |
| static std::string trim(const std::string & str) {
 | |
|     size_t start = 0;
 | |
|     size_t end = str.size();
 | |
|     while (start < end && isspace(str[start])) {
 | |
|         start += 1;
 | |
|     }
 | |
|     while (end > start && isspace(str[end - 1])) {
 | |
|         end -= 1;
 | |
|     }
 | |
|     return str.substr(start, end - start);
 | |
| }
 | |
| 
 | |
| // Simple version of "llama_apply_chat_template" that only works with strings
 | |
| // This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
 | |
| static int32_t llama_chat_apply_template_internal(
 | |
|     const std::string & tmpl,
 | |
|     const std::vector<const llama_chat_message *> & chat,
 | |
|     std::string & dest, bool add_ass) {
 | |
|     // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
 | |
|     std::stringstream ss;
 | |
|     if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) {
 | |
|         // chatml template
 | |
|         for (auto message : chat) {
 | |
|             ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
 | |
|         }
 | |
|         if (add_ass) {
 | |
|             ss << "<|im_start|>assistant\n";
 | |
|         }
 | |
|     } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) {
 | |
|         // llama2 template and its variants
 | |
|         // [variant] support system message
 | |
|         bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos;
 | |
|         // [variant] space before + after response
 | |
|         bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
 | |
|         // [variant] add BOS inside history
 | |
|         bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos;
 | |
|         // [variant] trim spaces from the input message
 | |
|         bool strip_message = tmpl.find("content.strip()") != std::string::npos;
 | |
|         // construct the prompt
 | |
|         bool is_inside_turn = true; // skip BOS at the beginning
 | |
|         ss << "[INST] ";
 | |
|         for (auto message : chat) {
 | |
|             std::string content = strip_message ? trim(message->content) : message->content;
 | |
|             std::string role(message->role);
 | |
|             if (!is_inside_turn) {
 | |
|                 is_inside_turn = true;
 | |
|                 ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
 | |
|             }
 | |
|             if (role == "system") {
 | |
|                 if (support_system_message) {
 | |
|                     ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
 | |
|                 } else {
 | |
|                     // if the model does not support system message, we still include it in the first message, but without <<SYS>>
 | |
|                     ss << content << "\n";
 | |
|                 }
 | |
|             } else if (role == "user") {
 | |
|                 ss << content << " [/INST]";
 | |
|             } else {
 | |
|                 ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
 | |
|                 is_inside_turn = false;
 | |
|             }
 | |
|         }
 | |
|         // llama2 templates seem to not care about "add_generation_prompt"
 | |
|     } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) {
 | |
|         // zephyr template
 | |
|         for (auto message : chat) {
 | |
|             ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
 | |
|         }
 | |
|         if (add_ass) {
 | |
|             ss << "<|assistant|>\n";
 | |
|         }
 | |
|     } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) {
 | |
|         // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
 | |
|         for (auto message : chat) {
 | |
|             std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
 | |
|             ss << bos << message->role << "\n" << message->content << "</s>\n";
 | |
|         }
 | |
|         if (add_ass) {
 | |
|             ss << "<s>assistant\n";
 | |
|         }
 | |
|     } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
 | |
|         // google/gemma-7b-it
 | |
|         std::string system_prompt = "";
 | |
|         for (auto message : chat) {
 | |
|             std::string role(message->role);
 | |
|             if (role == "system") {
 | |
|                 // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
 | |
|                 system_prompt = trim(message->content);
 | |
|                 continue;
 | |
|             }
 | |
|             // in gemma, "assistant" is "model"
 | |
|             role = role == "assistant" ? "model" : message->role;
 | |
|             ss << "<start_of_turn>" << role << "\n";
 | |
|             if (!system_prompt.empty() && role != "model") {
 | |
|                 ss << system_prompt << "\n\n";
 | |
|                 system_prompt = "";
 | |
|             }
 | |
|             ss << trim(message->content) << "<end_of_turn>\n";
 | |
|         }
 | |
|         if (add_ass) {
 | |
|             ss << "<start_of_turn>model\n";
 | |
|         }
 | |
|     } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) {
 | |
|         // OrionStarAI/Orion-14B-Chat
 | |
|         std::string system_prompt = "";
 | |
|         for (auto message : chat) {
 | |
|             std::string role(message->role);
 | |
|             if (role == "system") {
 | |
|                 // there is no system message support, we will merge it with user prompt
 | |
|                 system_prompt = message->content;
 | |
|                 continue;
 | |
|             } else if (role == "user") {
 | |
|                 ss << "Human: ";
 | |
|                 if (!system_prompt.empty()) {
 | |
|                     ss << system_prompt << "\n\n";
 | |
|                     system_prompt = "";
 | |
|                 }
 | |
|                 ss << message->content << "\n\nAssistant: </s>";
 | |
|             } else {
 | |
|                 ss << message->content << "</s>";
 | |
|             }
 | |
|         }
 | |
|     } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) {
 | |
|         // openchat/openchat-3.5-0106,
 | |
|         for (auto message : chat) {
 | |
|             std::string role(message->role);
 | |
|             if (role == "system") {
 | |
|                 ss << message->content << "<|end_of_turn|>";
 | |
|             } else {
 | |
|                 role[0] = toupper(role[0]);
 | |
|                 ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
 | |
|             }
 | |
|         }
 | |
|         if (add_ass) {
 | |
|             ss << "GPT4 Correct Assistant:";
 | |
|         }
 | |
|     } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) {
 | |
|         // eachadea/vicuna-13b-1.1 (and Orca variant)
 | |
|         for (auto message : chat) {
 | |
|             std::string role(message->role);
 | |
|             if (role == "system") {
 | |
|                 // Orca-Vicuna variant uses a system prefix
 | |
|                 if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) {
 | |
|                     ss << "SYSTEM: " << message->content << "\n";
 | |
|                 } else {
 | |
|                     ss << message->content << "\n\n";
 | |
|                 }
 | |
|             } else if (role == "user") {
 | |
|                 ss << "USER: " << message->content << "\n";
 | |
|             } else if (role == "assistant") {
 | |
|                 ss << "ASSISTANT: " << message->content << "</s>\n";
 | |
|             }
 | |
|         }
 | |
|         if (add_ass) {
 | |
|             ss << "ASSISTANT:";
 | |
|         }
 | |
|     } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) {
 | |
|         // deepseek-ai/deepseek-coder-33b-instruct
 | |
|         for (auto message : chat) {
 | |
|             std::string role(message->role);
 | |
|             if (role == "system") {
 | |
|                 ss << message->content;
 | |
|             } else if (role == "user") {
 | |
|                 ss << "### Instruction:\n" << message->content << "\n";
 | |
|             } else if (role == "assistant") {
 | |
|                 ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
 | |
|             }
 | |
|         }
 | |
|         if (add_ass) {
 | |
|             ss << "### Response:\n";
 | |
|         }
 | |
|     } else if (tmpl == "command-r" || (tmpl.find("<|START_OF_TURN_TOKEN|>") != std::string::npos && tmpl.find("<|USER_TOKEN|>") != std::string::npos)) {
 | |
|         // CohereForAI/c4ai-command-r-plus
 | |
|         for (auto message : chat) {
 | |
|             std::string role(message->role);
 | |
|             if (role == "system") {
 | |
|                 ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
 | |
|             } else if (role == "user") {
 | |
|                 ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
 | |
|             } else if (role == "assistant") {
 | |
|                 ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
 | |
|             }
 | |
|         }
 | |
|         if (add_ass) {
 | |
|             ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
 | |
|         }
 | |
|     } else if (tmpl == "llama3" || (tmpl.find("<|start_header_id|>") != std::string::npos && tmpl.find("<|end_header_id|>") != std::string::npos)) {
 | |
|         // Llama 3
 | |
|         for (auto message : chat) {
 | |
|             std::string role(message->role);
 | |
|             ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
 | |
|         }
 | |
|         if (add_ass) {
 | |
|             ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
 | |
|         }
 | |
|     } else if (tmpl == "phi3" || (tmpl.find("<|assistant|>") != std::string::npos && tmpl.find("<|end|>") != std::string::npos )) {
 | |
|         // Phi 3
 | |
|         for (auto message : chat) {
 | |
|             std::string role(message->role);
 | |
|             ss << "<|" << role << "|>\n" << trim(message->content) << "<|end|>\n";
 | |
|         }
 | |
|         if (add_ass) {
 | |
|             ss << "<|assistant|>\n";
 | |
|         }
 | |
|     } else {
 | |
|         // template not supported
 | |
|         return -1;
 | |
|     }
 | |
|     dest = ss.str();
 | |
|     return dest.size();
 | |
| }
 | |
| 
 | |
| LLAMA_API int32_t llama_chat_apply_template(
 | |
|                 const struct llama_model * model,
 | |
|                               const char * tmpl,
 | |
|          const struct llama_chat_message * chat,
 | |
|                                   size_t   n_msg,
 | |
|                                     bool   add_ass,
 | |
|                                     char * buf,
 | |
|                                  int32_t   length) {
 | |
|     std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
 | |
|     if (tmpl == nullptr) {
 | |
|         GGML_ASSERT(model != nullptr);
 | |
|         // load template from model
 | |
|         std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
 | |
|         std::string template_key = "tokenizer.chat_template";
 | |
|         int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
 | |
|         if (res < 0) {
 | |
|             // worst case: there is no information about template, we will use chatml by default
 | |
|             curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
 | |
|         } else {
 | |
|             curr_tmpl = std::string(model_template.data(), model_template.size());
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // format the chat to string
 | |
|     std::vector<const llama_chat_message *> chat_vec;
 | |
|     chat_vec.resize(n_msg);
 | |
|     for (size_t i = 0; i < n_msg; i++) {
 | |
|         chat_vec[i] = &chat[i];
 | |
|     }
 | |
| 
 | |
|     std::string formatted_chat;
 | |
|     int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
 | |
|     if (res < 0) {
 | |
|         return res;
 | |
|     }
 | |
|     if (buf && length > 0) {
 | |
|         strncpy(buf, formatted_chat.c_str(), length);
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
 | |
|     static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
 | |
|     if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
 | |
|         return strlen(split_path);
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
 | |
|     std::string str_split_path(split_path);
 | |
|     char postfix[32];
 | |
|     snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
 | |
|     std::string str_postfix(postfix);
 | |
| 
 | |
|     // check if dest ends with postfix
 | |
|     int size_prefix = str_split_path.size() - str_postfix.size();
 | |
|     if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
 | |
|         snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
 | |
|         return size_prefix;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| struct llama_timings llama_get_timings(struct llama_context * ctx) {
 | |
|     struct llama_timings result = {
 | |
|         /*.t_start_ms  =*/ 1e-3 * ctx->t_start_us,
 | |
|         /*.t_end_ms    =*/ 1.00 * ggml_time_ms(),
 | |
|         /*.t_load_ms   =*/ 1e-3 * ctx->t_load_us,
 | |
|         /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
 | |
|         /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
 | |
|         /*.t_eval_ms   =*/ 1e-3 * ctx->t_eval_us,
 | |
| 
 | |
|         /*.n_sample =*/ std::max(1, ctx->n_sample),
 | |
|         /*.n_p_eval =*/ std::max(1, ctx->n_p_eval),
 | |
|         /*.n_eval   =*/ std::max(1, ctx->n_eval),
 | |
|     };
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| void llama_print_timings(struct llama_context * ctx) {
 | |
|     const llama_timings timings = llama_get_timings(ctx);
 | |
| 
 | |
|     LLAMA_LOG_INFO("\n");
 | |
|     LLAMA_LOG_INFO("%s:        load time = %10.2f ms\n", __func__, timings.t_load_ms);
 | |
|     LLAMA_LOG_INFO("%s:      sample time = %10.2f ms / %5d runs   (%8.2f ms per token, %8.2f tokens per second)\n",
 | |
|             __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
 | |
|     LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
 | |
|             __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
 | |
|     LLAMA_LOG_INFO("%s:        eval time = %10.2f ms / %5d runs   (%8.2f ms per token, %8.2f tokens per second)\n",
 | |
|             __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
 | |
|     LLAMA_LOG_INFO("%s:       total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
 | |
| }
 | |
| 
 | |
| void llama_reset_timings(struct llama_context * ctx) {
 | |
|     ctx->t_start_us = ggml_time_us();
 | |
|     ctx->t_sample_us = ctx->n_sample = 0;
 | |
|     ctx->t_eval_us   = ctx->n_eval   = 0;
 | |
|     ctx->t_p_eval_us = ctx->n_p_eval = 0;
 | |
| }
 | |
| 
 | |
| const char * llama_print_system_info(void) {
 | |
|     static std::string s;
 | |
| 
 | |
|     s  = "";
 | |
|     s += "AVX = "         + std::to_string(ggml_cpu_has_avx())         + " | ";
 | |
|     s += "AVX_VNNI = "    + std::to_string(ggml_cpu_has_avx_vnni())    + " | ";
 | |
|     s += "AVX2 = "        + std::to_string(ggml_cpu_has_avx2())        + " | ";
 | |
|     s += "AVX512 = "      + std::to_string(ggml_cpu_has_avx512())      + " | ";
 | |
|     s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
 | |
|     s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
 | |
|     s += "FMA = "         + std::to_string(ggml_cpu_has_fma())         + " | ";
 | |
|     s += "NEON = "        + std::to_string(ggml_cpu_has_neon())        + " | ";
 | |
|     s += "ARM_FMA = "     + std::to_string(ggml_cpu_has_arm_fma())     + " | ";
 | |
|     s += "F16C = "        + std::to_string(ggml_cpu_has_f16c())        + " | ";
 | |
|     s += "FP16_VA = "     + std::to_string(ggml_cpu_has_fp16_va())     + " | ";
 | |
|     s += "WASM_SIMD = "   + std::to_string(ggml_cpu_has_wasm_simd())   + " | ";
 | |
|     s += "BLAS = "        + std::to_string(ggml_cpu_has_blas())        + " | ";
 | |
|     s += "SSE3 = "        + std::to_string(ggml_cpu_has_sse3())        + " | ";
 | |
|     s += "SSSE3 = "       + std::to_string(ggml_cpu_has_ssse3())       + " | ";
 | |
|     s += "VSX = "         + std::to_string(ggml_cpu_has_vsx())         + " | ";
 | |
|     s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
 | |
| #ifdef GGML_USE_LLAMAFILE
 | |
|     s += "LAMMAFILE = 1 | ";
 | |
| #else
 | |
|     s += "LAMMAFILE = 0 | ";
 | |
| #endif
 | |
| 
 | |
|     return s.c_str();
 | |
| }
 | |
| 
 | |
| void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
 | |
|     fprintf(stream, "\n");
 | |
|     fprintf(stream, "###########\n");
 | |
|     fprintf(stream, "# Timings #\n");
 | |
|     fprintf(stream, "###########\n");
 | |
|     fprintf(stream, "\n");
 | |
| 
 | |
|     fprintf(stream, "mst_eval: %.2f  # ms / token during generation\n",
 | |
|             1.0e-3 * ctx->t_eval_us / ctx->n_eval);
 | |
|     fprintf(stream, "mst_p_eval: %.2f  # ms / token during prompt processing\n",
 | |
|             1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
 | |
|     fprintf(stream, "mst_sample: %.2f  # ms / token during sampling\n",
 | |
|             1.0e-3 * ctx->t_sample_us / ctx->n_sample);
 | |
|     fprintf(stream, "n_eval: %d  # number of tokens generated (excluding the first one)\n", ctx->n_eval);
 | |
|     fprintf(stream, "n_p_eval: %d  # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
 | |
|     fprintf(stream, "n_sample: %d  # number of sampled tokens\n", ctx->n_sample);
 | |
|     fprintf(stream, "t_eval_us: %" PRId64 "  # total microseconds spent generating tokens\n", ctx->t_eval_us);
 | |
|     fprintf(stream, "t_load_us: %" PRId64 "  # total microseconds spent loading the model\n", ctx->t_load_us);
 | |
|     fprintf(stream, "t_p_eval_us: %" PRId64 "  # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
 | |
|     fprintf(stream, "t_sample_us: %" PRId64 "  # total microseconds spent sampling\n", ctx->t_sample_us);
 | |
|     fprintf(stream, "ts_eval: %.2f  # tokens / second during generation\n",
 | |
|             1.0e6 * ctx->n_eval / ctx->t_eval_us);
 | |
|     fprintf(stream, "ts_p_eval: %.2f  # tokens / second during prompt processing\n",
 | |
|             1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
 | |
|     fprintf(stream, "ts_sample: %.2f  # tokens / second during sampling\n",
 | |
|             1.0e6 * ctx->n_sample / ctx->t_sample_us);
 | |
| }
 | |
| 
 | |
| // For internal test use
 | |
| const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
 | |
|     struct llama_context * ctx
 | |
| ) {
 | |
|     return ctx->model.tensors_by_name;
 | |
| }
 | |
| 
 | |
| void llama_log_set(ggml_log_callback log_callback, void * user_data) {
 | |
|     g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
 | |
|     g_state.log_callback_user_data = user_data;
 | |
| #ifdef GGML_USE_METAL
 | |
|     ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
 | |
|     va_list args_copy;
 | |
|     va_copy(args_copy, args);
 | |
|     char buffer[128];
 | |
|     int len = vsnprintf(buffer, 128, format, args);
 | |
|     if (len < 128) {
 | |
|         g_state.log_callback(level, buffer, g_state.log_callback_user_data);
 | |
|     } else {
 | |
|         char* buffer2 = new char[len+1];
 | |
|         vsnprintf(buffer2, len+1, format, args_copy);
 | |
|         buffer2[len] = 0;
 | |
|         g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
 | |
|         delete[] buffer2;
 | |
|     }
 | |
|     va_end(args_copy);
 | |
| }
 | |
| 
 | |
| static void llama_log_internal(ggml_log_level level, const char * format, ...) {
 | |
|     va_list args;
 | |
|     va_start(args, format);
 | |
|     llama_log_internal_v(level, format, args);
 | |
|     va_end(args);
 | |
| }
 | |
| 
 | |
| static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
 | |
|     (void) level;
 | |
|     (void) user_data;
 | |
|     fputs(text, stderr);
 | |
|     fflush(stderr);
 | |
| }
 | 
