mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			660 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			660 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
#include <cstddef>
 | 
						|
#include <cstdint>
 | 
						|
#include <stdint.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <atomic>
 | 
						|
 | 
						|
#include <cuda_runtime.h>
 | 
						|
#include <cublas_v2.h>
 | 
						|
#include <cuda_fp16.h>
 | 
						|
 | 
						|
#include "ggml-cuda.h"
 | 
						|
#include "ggml.h"
 | 
						|
 | 
						|
static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
 | 
						|
 | 
						|
#define CUDA_CHECK(err)                                                                 \
 | 
						|
    do {                                                                                \
 | 
						|
        cudaError_t err_ = (err);                                                       \
 | 
						|
        if (err_ != cudaSuccess) {                                                      \
 | 
						|
            fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__,   \
 | 
						|
                cudaGetErrorString(err_));                                              \
 | 
						|
            exit(1);                                                                    \
 | 
						|
        }                                                                               \
 | 
						|
    } while (0)
 | 
						|
 | 
						|
#define CUBLAS_CHECK(err)                                                               \
 | 
						|
    do {                                                                                \
 | 
						|
        cublasStatus_t err_ = (err);                                                    \
 | 
						|
        if (err_ != CUBLAS_STATUS_SUCCESS) {                                            \
 | 
						|
            fprintf(stderr, "cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__);    \
 | 
						|
            exit(1);                                                                    \
 | 
						|
        }                                                                               \
 | 
						|
    } while (0)
 | 
						|
 | 
						|
typedef void (*to_fp32_cuda_t)(const void * x, float * y, int k, cudaStream_t stream);
 | 
						|
 | 
						|
#define QK4_0 32
 | 
						|
typedef struct {
 | 
						|
    float   d;              // delta
 | 
						|
    uint8_t qs[QK4_0 / 2];  // nibbles / quants
 | 
						|
} block_q4_0;
 | 
						|
static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
 | 
						|
 | 
						|
#define QK4_1 32
 | 
						|
typedef struct {
 | 
						|
    float   d;              // delta
 | 
						|
    float   m;              // min
 | 
						|
    uint8_t qs[QK4_1 / 2];  // nibbles / quants
 | 
						|
} block_q4_1;
 | 
						|
static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
 | 
						|
 | 
						|
#define QK5_0 32
 | 
						|
typedef struct {
 | 
						|
    half d;                 // delta
 | 
						|
    uint8_t qh[4];          // 5-th bit of quants
 | 
						|
    uint8_t qs[QK5_0 / 2];  // nibbles / quants
 | 
						|
} block_q5_0;
 | 
						|
static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
 | 
						|
 | 
						|
#define QK5_1 32
 | 
						|
typedef struct {
 | 
						|
    half d;                 // delta
 | 
						|
    half m;                 // min
 | 
						|
    uint8_t qh[4];          // 5-th bit of quants
 | 
						|
    uint8_t qs[QK5_1 / 2];  // nibbles / quants
 | 
						|
} block_q5_1;
 | 
						|
static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
 | 
						|
 | 
						|
#define QK8_0 32
 | 
						|
typedef struct {
 | 
						|
    float   d;              // delta
 | 
						|
    int8_t  qs[QK8_0];      // quants
 | 
						|
} block_q8_0;
 | 
						|
static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
 | 
						|
 | 
						|
static __global__ void dequantize_block_q4_0(const void * vx, float * y) {
 | 
						|
    static const int qk = QK4_0;
 | 
						|
 | 
						|
    const block_q4_0 * x = (const block_q4_0 *) vx;
 | 
						|
 | 
						|
    const int i = blockIdx.x;
 | 
						|
 | 
						|
    const float d = x[i].d;
 | 
						|
 | 
						|
    for (int j = 0; j < qk/2; ++j) {
 | 
						|
        const int x0 = (x[i].qs[j] & 0xf) - 8;
 | 
						|
        const int x1 = (x[i].qs[j] >>  4) - 8;
 | 
						|
 | 
						|
        y[i*qk + j + 0   ] = x0*d;
 | 
						|
        y[i*qk + j + qk/2] = x1*d;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static __global__ void dequantize_block_q4_1(const void * vx, float * y) {
 | 
						|
    static const int qk = QK4_1;
 | 
						|
 | 
						|
    const block_q4_1 * x = (const block_q4_1 *) vx;
 | 
						|
 | 
						|
    const int i = blockIdx.x;
 | 
						|
 | 
						|
    const float d = x[i].d;
 | 
						|
    const float m = x[i].m;
 | 
						|
 | 
						|
    for (int j = 0; j < qk/2; ++j) {
 | 
						|
        const int x0 = (x[i].qs[j] & 0xf);
 | 
						|
        const int x1 = (x[i].qs[j] >>  4);
 | 
						|
 | 
						|
        y[i*qk + j + 0   ] = x0*d + m;
 | 
						|
        y[i*qk + j + qk/2] = x1*d + m;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static __global__ void dequantize_block_q5_0(const void * vx, float * y) {
 | 
						|
    static const int qk = QK5_0;
 | 
						|
 | 
						|
    const block_q5_0 * x = (const block_q5_0 *) vx;
 | 
						|
 | 
						|
    const int i = blockIdx.x;
 | 
						|
 | 
						|
    const float d = x[i].d;
 | 
						|
 | 
						|
    uint32_t qh;
 | 
						|
    memcpy(&qh, x[i].qh, sizeof(qh));
 | 
						|
 | 
						|
    for (int j = 0; j < qk/2; ++j) {
 | 
						|
        const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
 | 
						|
        const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
 | 
						|
 | 
						|
        const int32_t x0 = ((x[i].qs[j] & 0xf) | xh_0) - 16;
 | 
						|
        const int32_t x1 = ((x[i].qs[j] >>  4) | xh_1) - 16;
 | 
						|
 | 
						|
        y[i*qk + j + 0   ] = x0*d;
 | 
						|
        y[i*qk + j + qk/2] = x1*d;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static __global__ void dequantize_block_q5_1(const void * vx, float * y) {
 | 
						|
    static const int qk = QK5_1;
 | 
						|
 | 
						|
    const block_q5_1 * x = (const block_q5_1 *) vx;
 | 
						|
 | 
						|
    const int i = blockIdx.x;
 | 
						|
 | 
						|
    const float d = x[i].d;
 | 
						|
    const float m = x[i].m;
 | 
						|
 | 
						|
    uint32_t qh;
 | 
						|
    memcpy(&qh, x[i].qh, sizeof(qh));
 | 
						|
 | 
						|
    for (int j = 0; j < qk/2; ++j) {
 | 
						|
        const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
 | 
						|
        const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
 | 
						|
 | 
						|
        const int x0 = (x[i].qs[j] & 0xf) | xh_0;
 | 
						|
        const int x1 = (x[i].qs[j] >>  4) | xh_1;
 | 
						|
 | 
						|
        y[i*qk + j + 0   ] = x0*d + m;
 | 
						|
        y[i*qk + j + qk/2] = x1*d + m;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static __global__ void dequantize_block_q8_0(const void * vx, float * y) {
 | 
						|
    const block_q8_0 * x = (const block_q8_0 *) vx;
 | 
						|
 | 
						|
    const int i = blockIdx.x;
 | 
						|
 | 
						|
    const float d = x[i].d;
 | 
						|
 | 
						|
    const int8_t * pp = x[i].qs;
 | 
						|
 | 
						|
    for (int l = 0; l < QK8_0; l++) {
 | 
						|
        const int8_t vi = pp[l];
 | 
						|
 | 
						|
        y[i*QK8_0 + l] = vi*d;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
 | 
						|
    const int nb = k / QK4_0;
 | 
						|
    dequantize_block_q4_0<<<nb, 1, 0, stream>>>(vx, y);
 | 
						|
}
 | 
						|
 | 
						|
static void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
 | 
						|
    const int nb = k / QK4_1;
 | 
						|
    dequantize_block_q4_1<<<nb, 1, 0, stream>>>(vx, y);
 | 
						|
}
 | 
						|
 | 
						|
static void dequantize_row_q5_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
 | 
						|
    const int nb = k / QK5_0;
 | 
						|
    dequantize_block_q5_0<<<nb, 1, 0, stream>>>(vx, y);
 | 
						|
}
 | 
						|
 | 
						|
static void dequantize_row_q5_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
 | 
						|
    const int nb = k / QK5_1;
 | 
						|
    dequantize_block_q5_1<<<nb, 1, 0, stream>>>(vx, y);
 | 
						|
}
 | 
						|
 | 
						|
static void dequantize_row_q8_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
 | 
						|
    const int nb = k / QK8_0;
 | 
						|
    dequantize_block_q8_0<<<nb, 1, 0, stream>>>(vx, y);
 | 
						|
}
 | 
						|
 | 
						|
// TODO: optimize
 | 
						|
static __global__ void convert_fp16_to_fp32(const void * vx, float * y) {
 | 
						|
    const half * x = (const half *) vx;
 | 
						|
 | 
						|
    const int i = blockIdx.x;
 | 
						|
 | 
						|
    y[i] = __half2float(x[i]);
 | 
						|
}
 | 
						|
 | 
						|
static void convert_fp16_to_fp32_cuda(const void * x, float * y, int k, cudaStream_t stream) {
 | 
						|
    convert_fp16_to_fp32<<<k, 1, 0, stream>>>(x, y);
 | 
						|
}
 | 
						|
 | 
						|
static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
 | 
						|
    switch (type) {
 | 
						|
        case GGML_TYPE_Q4_0:
 | 
						|
            return dequantize_row_q4_0_cuda;
 | 
						|
        case GGML_TYPE_Q4_1:
 | 
						|
            return dequantize_row_q4_1_cuda;
 | 
						|
        case GGML_TYPE_Q5_0:
 | 
						|
            return dequantize_row_q5_0_cuda;
 | 
						|
        case GGML_TYPE_Q5_1:
 | 
						|
            return dequantize_row_q5_1_cuda;
 | 
						|
        case GGML_TYPE_Q8_0:
 | 
						|
            return dequantize_row_q8_0_cuda;
 | 
						|
        case GGML_TYPE_F16:
 | 
						|
            return convert_fp16_to_fp32_cuda;
 | 
						|
        default:
 | 
						|
            return nullptr;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// buffer pool for cuda
 | 
						|
#define MAX_CUDA_BUFFERS 16
 | 
						|
 | 
						|
struct scoped_spin_lock {
 | 
						|
    std::atomic_flag& lock;
 | 
						|
    scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
 | 
						|
        while (lock.test_and_set(std::memory_order_acquire)) {
 | 
						|
            ; // spin
 | 
						|
        }
 | 
						|
    }
 | 
						|
    ~scoped_spin_lock() {
 | 
						|
        lock.clear(std::memory_order_release);
 | 
						|
    }
 | 
						|
    scoped_spin_lock(const scoped_spin_lock&) = delete;
 | 
						|
    scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
 | 
						|
};
 | 
						|
 | 
						|
struct cuda_buffer {
 | 
						|
    void * ptr = nullptr;
 | 
						|
    size_t size = 0;
 | 
						|
};
 | 
						|
 | 
						|
static cuda_buffer g_cuda_buffer_pool[MAX_CUDA_BUFFERS];
 | 
						|
static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT;
 | 
						|
 | 
						|
static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
 | 
						|
    scoped_spin_lock lock(g_cuda_pool_lock);
 | 
						|
 | 
						|
    for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
 | 
						|
        cuda_buffer& b = g_cuda_buffer_pool[i];
 | 
						|
        if (b.size >= size && b.ptr != nullptr) {
 | 
						|
            void * ptr = b.ptr;
 | 
						|
            *actual_size = b.size;
 | 
						|
            b.ptr = nullptr;
 | 
						|
            b.size = 0;
 | 
						|
            return ptr;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    void * ptr;
 | 
						|
    CUDA_CHECK(cudaMalloc((void **) &ptr, size));
 | 
						|
    *actual_size = size;
 | 
						|
    return ptr;
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_cuda_pool_free(void * ptr, size_t size) {
 | 
						|
    scoped_spin_lock lock(g_cuda_pool_lock);
 | 
						|
 | 
						|
    for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
 | 
						|
        cuda_buffer& b = g_cuda_buffer_pool[i];
 | 
						|
        if (b.ptr == nullptr) {
 | 
						|
            b.ptr = ptr;
 | 
						|
            b.size = size;
 | 
						|
            return;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
 | 
						|
    CUDA_CHECK(cudaFree(ptr));
 | 
						|
}
 | 
						|
 | 
						|
#define GGML_CUDA_MAX_STREAMS 8 // Set this to 1 for reproducible matrix multiplication.
 | 
						|
#define GGML_CUDA_MAX_EVENTS 64
 | 
						|
static cublasHandle_t g_cublasH = nullptr;
 | 
						|
static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_STREAMS] = { nullptr };
 | 
						|
static cudaStream_t g_cudaStreams2[GGML_CUDA_MAX_STREAMS] = { nullptr };
 | 
						|
static cudaEvent_t g_cudaEvents[GGML_CUDA_MAX_EVENTS] = { nullptr };
 | 
						|
 | 
						|
void ggml_init_cublas() {
 | 
						|
    if (g_cublasH == nullptr) {
 | 
						|
        // create streams
 | 
						|
        for (int i = 0; i < GGML_CUDA_MAX_STREAMS; ++i) {
 | 
						|
            CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams[i], cudaStreamNonBlocking));
 | 
						|
            CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams2[i], cudaStreamNonBlocking));
 | 
						|
        }
 | 
						|
        // create events
 | 
						|
        for (int i = 0; i < GGML_CUDA_MAX_EVENTS; ++i) {
 | 
						|
            CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvents[i], cudaEventDisableTiming));
 | 
						|
        }
 | 
						|
 | 
						|
        // create cublas handle
 | 
						|
        CUBLAS_CHECK(cublasCreate(&g_cublasH));
 | 
						|
        CUBLAS_CHECK(cublasSetMathMode(g_cublasH, CUBLAS_TF32_TENSOR_OP_MATH));
 | 
						|
 | 
						|
        // configure logging to stdout
 | 
						|
        // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void * ggml_cuda_host_malloc(size_t size) {
 | 
						|
    if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    void * ptr = nullptr;
 | 
						|
    cudaError_t err = cudaMallocHost((void **) &ptr, size);
 | 
						|
    if (err != cudaSuccess) {
 | 
						|
        fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
 | 
						|
            size/1024.0/1024.0, cudaGetErrorString(err));
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    return ptr;
 | 
						|
}
 | 
						|
 | 
						|
void ggml_cuda_host_free(void * ptr) {
 | 
						|
    CUDA_CHECK(cudaFreeHost(ptr));
 | 
						|
}
 | 
						|
 | 
						|
static cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream) {
 | 
						|
    const uint64_t ne0 = src->ne[0];
 | 
						|
    const uint64_t ne1 = src->ne[1];
 | 
						|
    const uint64_t nb0 = src->nb[0];
 | 
						|
    const uint64_t nb1 = src->nb[1];
 | 
						|
    const uint64_t nb2 = src->nb[2];
 | 
						|
    const uint64_t nb3 = src->nb[3];
 | 
						|
    const enum ggml_type type = src->type;
 | 
						|
    const size_t ts = ggml_type_size(type);
 | 
						|
    const size_t bs = ggml_blck_size(type);
 | 
						|
 | 
						|
    const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3);
 | 
						|
    if (nb0 == ts && nb1 == ts*ne0/bs) {
 | 
						|
        return cudaMemcpyAsync(dst, x, ne1*nb1, cudaMemcpyHostToDevice, stream);
 | 
						|
    } else if (nb0 == ts) {
 | 
						|
        return cudaMemcpy2DAsync(dst, ts*ne0/bs, x, nb1, ts*ne0/bs, ne1, cudaMemcpyHostToDevice, stream);
 | 
						|
    } else {
 | 
						|
        for (uint64_t i1 = 0; i1 < ne1; i1++) {
 | 
						|
            const void * rx = (const void *) ((const char *) x + i1*nb1);
 | 
						|
            void * rd = (void *) ((char *) dst + i1*ts*ne0/bs);
 | 
						|
            // pretend the row is a matrix with cols=1
 | 
						|
            cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyHostToDevice, stream);
 | 
						|
            if (r != cudaSuccess) return r;
 | 
						|
        }
 | 
						|
        return cudaSuccess;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_cuda_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | 
						|
    const int64_t ne00 = src0->ne[0];
 | 
						|
    const int64_t ne01 = src0->ne[1];
 | 
						|
    const int64_t ne02 = src0->ne[2];
 | 
						|
    const int64_t ne03 = src0->ne[3];
 | 
						|
 | 
						|
    const int64_t ne10 = src1->ne[0];
 | 
						|
    const int64_t ne11 = src1->ne[1];
 | 
						|
 | 
						|
    const int nb2  = dst->nb[2];
 | 
						|
    const int nb3  = dst->nb[3];
 | 
						|
 | 
						|
    const float alpha = 1.0f;
 | 
						|
    const float beta = 0.0f;
 | 
						|
    const int x_ne = ne01 * ne00;
 | 
						|
    const int y_ne = ne11 * ne10;
 | 
						|
    const int d_ne = ne11 * ne01;
 | 
						|
    const int n_mm = ne03 * ne02;
 | 
						|
 | 
						|
    size_t x_size, y_size, d_size;
 | 
						|
    float * d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size);
 | 
						|
    float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size);
 | 
						|
    float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
 | 
						|
 | 
						|
    for (int64_t i03 = 0; i03 < ne03; i03++) {
 | 
						|
        for (int64_t i02 = 0; i02 < ne02; i02++) {
 | 
						|
            int i = i03*ne02 + i02;
 | 
						|
            cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
 | 
						|
 | 
						|
            float * c_X = d_X + i * x_ne;
 | 
						|
            float * c_Y = d_Y + i * y_ne;
 | 
						|
            float * c_D = d_D + i * d_ne;
 | 
						|
 | 
						|
            // copy data to device
 | 
						|
            CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream));
 | 
						|
            CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));
 | 
						|
 | 
						|
            // compute
 | 
						|
            CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
 | 
						|
            CUBLAS_CHECK(
 | 
						|
                cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
 | 
						|
                        ne01, ne11, ne10,
 | 
						|
                        &alpha, c_X, ne00,
 | 
						|
                                c_Y, ne10,
 | 
						|
                        &beta,  c_D, ne01));
 | 
						|
 | 
						|
            // copy dst to host
 | 
						|
            float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
 | 
						|
            CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    CUDA_CHECK(cudaDeviceSynchronize());
 | 
						|
    ggml_cuda_pool_free(d_X, x_size);
 | 
						|
    ggml_cuda_pool_free(d_Y, y_size);
 | 
						|
    ggml_cuda_pool_free(d_D, d_size);
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_cuda_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) {
 | 
						|
    const int64_t ne00 = src0->ne[0];
 | 
						|
    const int64_t ne01 = src0->ne[1];
 | 
						|
    const int64_t ne02 = src0->ne[2];
 | 
						|
    const int64_t ne03 = src0->ne[3];
 | 
						|
 | 
						|
    const int64_t ne10 = src1->ne[0];
 | 
						|
    const int64_t ne11 = src1->ne[1];
 | 
						|
 | 
						|
    const int nb10 = src1->nb[0];
 | 
						|
    const int nb11 = src1->nb[1];
 | 
						|
    const int nb12 = src1->nb[2];
 | 
						|
    const int nb13 = src1->nb[3];
 | 
						|
 | 
						|
    const int nb2  = dst->nb[2];
 | 
						|
    const int nb3  = dst->nb[3];
 | 
						|
 | 
						|
    const float alpha = 1.0f;
 | 
						|
    const float beta = 0.0f;
 | 
						|
    const int x_ne = ne01 * ne00;
 | 
						|
    const int y_ne = ne11 * ne10;
 | 
						|
    const int d_ne = ne11 * ne01;
 | 
						|
    const int n_mm = ne03 * ne02;
 | 
						|
 | 
						|
    size_t x_size, y_size, d_size;
 | 
						|
    half  * d_X =  (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * x_ne, &x_size);
 | 
						|
    half  * d_Y =  (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * y_ne, &y_size);
 | 
						|
    float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
 | 
						|
 | 
						|
    bool src1_cont_rows = nb10 == sizeof(float);
 | 
						|
    bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
 | 
						|
 | 
						|
    for (int64_t i03 = 0; i03 < ne03; i03++) {
 | 
						|
        for (int64_t i02 = 0; i02 < ne02; i02++) {
 | 
						|
            int i = i03*ne02 + i02;
 | 
						|
            cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
 | 
						|
 | 
						|
            half  * c_X = d_X + i * x_ne;
 | 
						|
            half  * c_Y = d_Y + i * y_ne;
 | 
						|
            float * c_D = d_D + i * d_ne;
 | 
						|
 | 
						|
            // copy src0 to device
 | 
						|
            CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream));
 | 
						|
 | 
						|
            // convert src1 to fp16
 | 
						|
            // TODO: use multiple threads
 | 
						|
            ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02);
 | 
						|
            char * src1i = (char *) src1->data + i03*nb13 + i02*nb12;
 | 
						|
            if (src1_cont_rows) {
 | 
						|
                if (src1_cont_cols) {
 | 
						|
                    ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
 | 
						|
                }
 | 
						|
                else {
 | 
						|
                    for (int64_t i01 = 0; i01 < ne11; i01++) {
 | 
						|
                        ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                for (int64_t i01 = 0; i01 < ne11; i01++) {
 | 
						|
                    for (int64_t i00 = 0; i00 < ne10; i00++) {
 | 
						|
                        // very slow due to no inlining
 | 
						|
                        tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10));
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            // copy src1 to device
 | 
						|
            CUDA_CHECK(cudaMemcpyAsync(c_Y, tmp, sizeof(half) * y_ne, cudaMemcpyHostToDevice, cudaStream));
 | 
						|
 | 
						|
            // compute
 | 
						|
            CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
 | 
						|
            CUBLAS_CHECK(
 | 
						|
                cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
 | 
						|
                        ne01, ne11, ne10,
 | 
						|
                        &alpha, c_X, CUDA_R_16F, ne00,
 | 
						|
                                c_Y, CUDA_R_16F, ne10,
 | 
						|
                        &beta,  c_D, CUDA_R_32F, ne01,
 | 
						|
                        CUBLAS_COMPUTE_32F_FAST_16F,
 | 
						|
                        CUBLAS_GEMM_DEFAULT));
 | 
						|
 | 
						|
            // copy dst to host
 | 
						|
            float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
 | 
						|
            CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    CUDA_CHECK(cudaDeviceSynchronize());
 | 
						|
    ggml_cuda_pool_free(d_X, x_size);
 | 
						|
    ggml_cuda_pool_free(d_Y, y_size);
 | 
						|
    ggml_cuda_pool_free(d_D, d_size);
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_cuda_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | 
						|
    const int64_t ne00 = src0->ne[0];
 | 
						|
    const int64_t ne01 = src0->ne[1];
 | 
						|
    const int64_t ne02 = src0->ne[2];
 | 
						|
    const int64_t ne03 = src0->ne[3];
 | 
						|
 | 
						|
    const int64_t ne10 = src1->ne[0];
 | 
						|
    const int64_t ne11 = src1->ne[1];
 | 
						|
 | 
						|
    const int nb2  = dst->nb[2];
 | 
						|
    const int nb3  = dst->nb[3];
 | 
						|
    const ggml_type type = src0->type;
 | 
						|
 | 
						|
    const float alpha = 1.0f;
 | 
						|
    const float beta = 0.0f;
 | 
						|
    const int x_ne = ne01 * ne00;
 | 
						|
    const int y_ne = ne11 * ne10;
 | 
						|
    const int d_ne = ne11 * ne01;
 | 
						|
    const int n_mm = ne03 * ne02;
 | 
						|
    const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type);
 | 
						|
 | 
						|
    size_t x_size, y_size, d_size, q_size;
 | 
						|
    float * d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size);
 | 
						|
    float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size);
 | 
						|
    float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
 | 
						|
    char  * d_Q = (char  *) ggml_cuda_pool_malloc(n_mm * q_sz, &q_size);
 | 
						|
 | 
						|
    const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(type);
 | 
						|
    GGML_ASSERT(to_fp32_cuda != nullptr);
 | 
						|
 | 
						|
    for (int64_t i03 = 0; i03 < ne03; i03++) {
 | 
						|
        for (int64_t i02 = 0; i02 < ne02; i02++) {
 | 
						|
            int i = i03*ne02 + i02;
 | 
						|
            cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
 | 
						|
            cudaStream_t cudaStream2 = g_cudaStreams2[i % GGML_CUDA_MAX_STREAMS];
 | 
						|
            cudaEvent_t  cudaEvent = g_cudaEvents[i % GGML_CUDA_MAX_EVENTS];
 | 
						|
 | 
						|
            float * c_X = d_X + i * x_ne;
 | 
						|
            float * c_Y = d_Y + i * y_ne;
 | 
						|
            float * c_D = d_D + i * d_ne;
 | 
						|
            char  * c_Q = d_Q + i * q_sz;
 | 
						|
 | 
						|
            // copy src0 and convert to fp32 on device
 | 
						|
            CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Q, src0, i03, i02, cudaStream2));
 | 
						|
            to_fp32_cuda(c_Q, c_X, x_ne, cudaStream2);
 | 
						|
            CUDA_CHECK(cudaGetLastError());
 | 
						|
            CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2));
 | 
						|
 | 
						|
            // copy src1 to device
 | 
						|
            CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));
 | 
						|
 | 
						|
            // wait for conversion
 | 
						|
            CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0));
 | 
						|
 | 
						|
            // compute
 | 
						|
            CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
 | 
						|
            CUBLAS_CHECK(
 | 
						|
                cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
 | 
						|
                        ne01, ne11, ne10,
 | 
						|
                        &alpha, c_X, ne00,
 | 
						|
                                c_Y, ne10,
 | 
						|
                        &beta,  c_D, ne01));
 | 
						|
 | 
						|
            // copy dst to host
 | 
						|
            float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
 | 
						|
            CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    CUDA_CHECK(cudaDeviceSynchronize());
 | 
						|
    ggml_cuda_pool_free(d_X, x_size);
 | 
						|
    ggml_cuda_pool_free(d_Y, y_size);
 | 
						|
    ggml_cuda_pool_free(d_D, d_size);
 | 
						|
    ggml_cuda_pool_free(d_Q, q_size);
 | 
						|
}
 | 
						|
 | 
						|
bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
 | 
						|
    const int64_t ne10 = src1->ne[0];
 | 
						|
 | 
						|
    const int64_t ne0 = dst->ne[0];
 | 
						|
    const int64_t ne1 = dst->ne[1];
 | 
						|
 | 
						|
    // TODO: find the optimal values for these
 | 
						|
    if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
 | 
						|
        src1->type == GGML_TYPE_F32 &&
 | 
						|
        dst->type == GGML_TYPE_F32 &&
 | 
						|
        (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
 | 
						|
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ggml_cuda_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) {
 | 
						|
    size_t src0_sz = ggml_nbytes(src0);
 | 
						|
    size_t src1_sz = ggml_nbytes(src1);
 | 
						|
 | 
						|
    // mul_mat_q: src0 is converted to fp32 on device
 | 
						|
    size_t mul_mat_q_transfer = src0_sz + src1_sz;
 | 
						|
 | 
						|
    // mul_mat_f16: src1 is converted to fp16 on cpu
 | 
						|
    size_t mul_mat_f16_transfer = src0_sz + sizeof(half) * ggml_nelements(src1);
 | 
						|
 | 
						|
    // choose the smaller one to transfer to the device
 | 
						|
    // TODO: this is not always the best choice due to the overhead of converting to fp16
 | 
						|
    return mul_mat_f16_transfer < mul_mat_q_transfer;
 | 
						|
}
 | 
						|
 | 
						|
void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) {
 | 
						|
    GGML_ASSERT(ggml_cuda_can_mul_mat(src0, src1, dst));
 | 
						|
 | 
						|
    if (src0->type == GGML_TYPE_F32) {
 | 
						|
        ggml_cuda_mul_mat_f32(src0, src1, dst);
 | 
						|
    }
 | 
						|
    else if (src0->type == GGML_TYPE_F16) {
 | 
						|
        if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) {
 | 
						|
            ggml_cuda_mul_mat_f16(src0, src1, dst, wdata, wsize);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            ggml_cuda_mul_mat_q_f32(src0, src1, dst);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else if (ggml_is_quantized(src0->type)) {
 | 
						|
        ggml_cuda_mul_mat_q_f32(src0, src1, dst);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        GGML_ASSERT(false);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
 | 
						|
    if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) {
 | 
						|
        return ggml_nelements(src1) * sizeof(ggml_fp16_t);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
}
 |