mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* llama : add inference support and model types for T5 and FLAN-T5 model families * llama : add new API functions to support encoder-decoder models: llama_encode(), llama_model_has_encoder(), llama_model_decoder_start_token() * common, llama-cli, llama-batched : add support for encoder-decoder models * convert-hf : handle shared token embeddings tensors in T5Model * convert-hf : add support for SentencePiece BPE tokenizer in T5Model (for Pile-T5 models) * convert-hf : add MT5ForConditionalGeneration and UMT5ForConditionalGeneration to architectures supported by T5Model * convert : add t5 tokenizer tests, use "slow" HF tokenizer for t5 --------- Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			260 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			260 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "common.h"
 | 
						|
#include "llama.h"
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <cmath>
 | 
						|
#include <cstdio>
 | 
						|
#include <string>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
static void print_usage(int argc, char ** argv, const gpt_params & params) {
 | 
						|
    gpt_params_print_usage(argc, argv, params);
 | 
						|
 | 
						|
    LOG_TEE("\nexample usage:\n");
 | 
						|
    LOG_TEE("\n    %s -m model.gguf -p \"Hello my name is\" -n 32 -np 4\n", argv[0]);
 | 
						|
    LOG_TEE("\n");
 | 
						|
}
 | 
						|
 | 
						|
int main(int argc, char ** argv) {
 | 
						|
    gpt_params params;
 | 
						|
 | 
						|
    params.prompt = "Hello my name is";
 | 
						|
    params.n_predict = 32;
 | 
						|
 | 
						|
    if (!gpt_params_parse(argc, argv, params)) {
 | 
						|
        print_usage(argc, argv, params);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    // number of parallel batches
 | 
						|
    int n_parallel = params.n_parallel;
 | 
						|
 | 
						|
    // total length of the sequences including the prompt
 | 
						|
    int n_predict = 32;
 | 
						|
 | 
						|
    // init LLM
 | 
						|
 | 
						|
    llama_backend_init();
 | 
						|
    llama_numa_init(params.numa);
 | 
						|
 | 
						|
    // initialize the model
 | 
						|
 | 
						|
    llama_model_params model_params = llama_model_params_from_gpt_params(params);
 | 
						|
 | 
						|
    llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
 | 
						|
 | 
						|
    if (model == NULL) {
 | 
						|
        fprintf(stderr , "%s: error: unable to load model\n" , __func__);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    // tokenize the prompt
 | 
						|
 | 
						|
    std::vector<llama_token> tokens_list;
 | 
						|
    tokens_list = ::llama_tokenize(model, params.prompt, true);
 | 
						|
 | 
						|
    const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size())*n_parallel;
 | 
						|
 | 
						|
    // initialize the context
 | 
						|
 | 
						|
    llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
 | 
						|
 | 
						|
    ctx_params.n_ctx   = n_kv_req;
 | 
						|
    ctx_params.n_batch = std::max(n_predict, n_parallel);
 | 
						|
 | 
						|
    llama_context * ctx = llama_new_context_with_model(model, ctx_params);
 | 
						|
 | 
						|
    if (ctx == NULL) {
 | 
						|
        fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    const int n_ctx = llama_n_ctx(ctx);
 | 
						|
 | 
						|
    LOG_TEE("\n%s: n_predict = %d, n_ctx = %d, n_batch = %u, n_parallel = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req);
 | 
						|
 | 
						|
    // make sure the KV cache is big enough to hold all the prompt and generated tokens
 | 
						|
    if (n_kv_req > n_ctx) {
 | 
						|
        LOG_TEE("%s: error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", __func__,  n_kv_req);
 | 
						|
        LOG_TEE("%s:        either reduce n_parallel or increase n_ctx\n", __func__);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    // print the prompt token-by-token
 | 
						|
 | 
						|
    fprintf(stderr, "\n");
 | 
						|
 | 
						|
    for (auto id : tokens_list) {
 | 
						|
        fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
 | 
						|
    }
 | 
						|
 | 
						|
    fflush(stderr);
 | 
						|
 | 
						|
    // create a llama_batch
 | 
						|
    // we use this object to submit token data for decoding
 | 
						|
    llama_batch batch = llama_batch_init(std::max(tokens_list.size(), (size_t) n_parallel), 0, n_parallel);
 | 
						|
 | 
						|
    std::vector<llama_seq_id> seq_ids(n_parallel, 0);
 | 
						|
    for (int32_t i = 0; i < n_parallel; ++i) {
 | 
						|
        seq_ids[i] = i;
 | 
						|
    }
 | 
						|
 | 
						|
    // evaluate the initial prompt
 | 
						|
    for (size_t i = 0; i < tokens_list.size(); ++i) {
 | 
						|
        llama_batch_add(batch, tokens_list[i], i, seq_ids, false);
 | 
						|
    }
 | 
						|
    GGML_ASSERT(batch.n_tokens == (int) tokens_list.size());
 | 
						|
 | 
						|
    if (llama_model_has_encoder(model)) {
 | 
						|
        if (llama_encode(ctx, batch)) {
 | 
						|
            LOG_TEE("%s : failed to eval\n", __func__);
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
 | 
						|
        llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
 | 
						|
        if (decoder_start_token_id == -1) {
 | 
						|
            decoder_start_token_id = llama_token_bos(model);
 | 
						|
        }
 | 
						|
 | 
						|
        llama_batch_clear(batch);
 | 
						|
        llama_batch_add(batch, decoder_start_token_id, 0, seq_ids, false);
 | 
						|
    }
 | 
						|
 | 
						|
    // llama_decode will output logits only for the last token of the prompt
 | 
						|
    batch.logits[batch.n_tokens - 1] = true;
 | 
						|
 | 
						|
    if (llama_decode(ctx, batch) != 0) {
 | 
						|
        LOG_TEE("%s: llama_decode() failed\n", __func__);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    //// assign the system KV cache to all parallel sequences
 | 
						|
    //// this way, the parallel sequences will "reuse" the prompt tokens without having to copy them
 | 
						|
    //for (int32_t i = 1; i < n_parallel; ++i) {
 | 
						|
    //    llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
 | 
						|
    //}
 | 
						|
 | 
						|
    if (n_parallel > 1) {
 | 
						|
        LOG_TEE("\n\n%s: generating %d sequences ...\n", __func__, n_parallel);
 | 
						|
    }
 | 
						|
 | 
						|
    // main loop
 | 
						|
 | 
						|
    // we will store the parallel decoded sequences in this vector
 | 
						|
    std::vector<std::string> streams(n_parallel);
 | 
						|
 | 
						|
    // remember the batch index of the last token for each parallel sequence
 | 
						|
    // we need this to determine which logits to sample from
 | 
						|
    std::vector<int32_t> i_batch(n_parallel, batch.n_tokens - 1);
 | 
						|
 | 
						|
    int n_cur    = batch.n_tokens;
 | 
						|
    int n_decode = 0;
 | 
						|
 | 
						|
    const auto t_main_start = ggml_time_us();
 | 
						|
 | 
						|
    while (n_cur <= n_predict) {
 | 
						|
        // prepare the next batch
 | 
						|
        llama_batch_clear(batch);
 | 
						|
 | 
						|
        // sample the next token for each parallel sequence / stream
 | 
						|
        for (int32_t i = 0; i < n_parallel; ++i) {
 | 
						|
            if (i_batch[i] < 0) {
 | 
						|
                // the stream has already finished
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
 | 
						|
            auto   n_vocab = llama_n_vocab(model);
 | 
						|
            auto * logits  = llama_get_logits_ith(ctx, i_batch[i]);
 | 
						|
 | 
						|
            std::vector<llama_token_data> candidates;
 | 
						|
            candidates.reserve(n_vocab);
 | 
						|
 | 
						|
            for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
 | 
						|
                candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
 | 
						|
            }
 | 
						|
 | 
						|
            llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
 | 
						|
 | 
						|
            const int   top_k = 40;
 | 
						|
            const float top_p = 0.9f;
 | 
						|
            const float temp  = 0.4f;
 | 
						|
 | 
						|
            llama_sample_top_k(ctx, &candidates_p, top_k, 1);
 | 
						|
            llama_sample_top_p(ctx, &candidates_p, top_p, 1);
 | 
						|
            llama_sample_temp (ctx, &candidates_p, temp);
 | 
						|
 | 
						|
            const llama_token new_token_id = llama_sample_token(ctx, &candidates_p);
 | 
						|
 | 
						|
            //const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
 | 
						|
 | 
						|
            // is it an end of generation? -> mark the stream as finished
 | 
						|
            if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) {
 | 
						|
                i_batch[i] = -1;
 | 
						|
                LOG_TEE("\n");
 | 
						|
                if (n_parallel > 1) {
 | 
						|
                    LOG_TEE("%s: stream %d finished at n_cur = %d", __func__, i, n_cur);
 | 
						|
                }
 | 
						|
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
 | 
						|
            // if there is only one stream, we print immediately to stdout
 | 
						|
            if (n_parallel == 1) {
 | 
						|
                LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
 | 
						|
                fflush(stdout);
 | 
						|
            }
 | 
						|
 | 
						|
            streams[i] += llama_token_to_piece(ctx, new_token_id);
 | 
						|
 | 
						|
            i_batch[i] = batch.n_tokens;
 | 
						|
 | 
						|
            // push this new token for next evaluation
 | 
						|
            llama_batch_add(batch, new_token_id, n_cur, { i }, true);
 | 
						|
 | 
						|
            n_decode += 1;
 | 
						|
        }
 | 
						|
 | 
						|
        // all streams are finished
 | 
						|
        if (batch.n_tokens == 0) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        n_cur += 1;
 | 
						|
 | 
						|
        // evaluate the current batch with the transformer model
 | 
						|
        if (llama_decode(ctx, batch)) {
 | 
						|
            fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    LOG_TEE("\n");
 | 
						|
 | 
						|
    if (n_parallel > 1) {
 | 
						|
        LOG_TEE("\n");
 | 
						|
 | 
						|
        for (int32_t i = 0; i < n_parallel; ++i) {
 | 
						|
            LOG_TEE("sequence %d:\n\n%s%s\n\n", i, params.prompt.c_str(), streams[i].c_str());
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    const auto t_main_end = ggml_time_us();
 | 
						|
 | 
						|
    LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
 | 
						|
            __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
 | 
						|
 | 
						|
    llama_print_timings(ctx);
 | 
						|
 | 
						|
    fprintf(stderr, "\n");
 | 
						|
 | 
						|
    llama_batch_free(batch);
 | 
						|
 | 
						|
    llama_free(ctx);
 | 
						|
    llama_free_model(model);
 | 
						|
 | 
						|
    llama_backend_free();
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 |