mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* CUDA multi GPU + scratch ggml_cuda_compute_forward Tensor parallelism ggml_cuda_add ggml_cuda_rms_norm ggml_cuda_silu CUDA scratch buffer --main-gpu CLI option
		
			
				
	
	
		
			791 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			791 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include <httplib.h>
 | 
						|
#include <json.hpp>
 | 
						|
#include "common.h"
 | 
						|
#include "llama.h"
 | 
						|
 | 
						|
struct server_params
 | 
						|
{
 | 
						|
  std::string hostname = "127.0.0.1";
 | 
						|
  int32_t port = 8080;
 | 
						|
};
 | 
						|
 | 
						|
struct llama_server_context
 | 
						|
{
 | 
						|
  bool as_loop = false;
 | 
						|
  bool has_next_token = false;
 | 
						|
  std::string generated_text = "";
 | 
						|
 | 
						|
  int32_t num_tokens_predicted = 0;
 | 
						|
  int32_t n_past = 0;
 | 
						|
  int32_t n_consumed = 0;
 | 
						|
  int32_t n_session_consumed = 0;
 | 
						|
  int32_t n_remain = 0;
 | 
						|
 | 
						|
  std::vector<llama_token> embd;
 | 
						|
  std::vector<llama_token> last_n_tokens;
 | 
						|
  std::vector<llama_token> processed_tokens;
 | 
						|
  std::vector<llama_token> llama_token_newline;
 | 
						|
  std::vector<llama_token> embd_inp;
 | 
						|
  std::vector<std::vector<llama_token>> no_show_words;
 | 
						|
  std::vector<llama_token> tokens_predicted;
 | 
						|
 | 
						|
  llama_context *ctx;
 | 
						|
  gpt_params params;
 | 
						|
 | 
						|
  void rewind() {
 | 
						|
    as_loop = false;
 | 
						|
    params.antiprompt.clear();
 | 
						|
    no_show_words.clear();
 | 
						|
    num_tokens_predicted = 0;
 | 
						|
    generated_text = "";
 | 
						|
  }
 | 
						|
 | 
						|
  bool loadModel(gpt_params params_)
 | 
						|
  {
 | 
						|
    params = params_;
 | 
						|
    ctx = llama_init_from_gpt_params(params);
 | 
						|
    if (ctx == NULL)
 | 
						|
    {
 | 
						|
      fprintf(stderr, "%s: error: unable to load model\n", __func__);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    // determine newline token
 | 
						|
    llama_token_newline = ::llama_tokenize(ctx, "\n", false);
 | 
						|
    last_n_tokens.resize(params.n_ctx);
 | 
						|
    std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool loadPrompt() {
 | 
						|
    params.prompt.insert(0, 1, ' '); // always add a first space
 | 
						|
    std::vector<llama_token> prompt_tokens = ::llama_tokenize(ctx, params.prompt, true);
 | 
						|
    // compare the evaluated prompt with the new prompt
 | 
						|
    int new_prompt_len = 0;
 | 
						|
    for (size_t i = 0; i < prompt_tokens.size(); i++) {
 | 
						|
      if (i < processed_tokens.size() &&
 | 
						|
        processed_tokens[i] == prompt_tokens[i])
 | 
						|
      {
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        embd_inp.push_back(prompt_tokens[i]);
 | 
						|
        if(new_prompt_len == 0) {
 | 
						|
          if(int32_t(i) - 1 < n_past) {
 | 
						|
            processed_tokens.erase(processed_tokens.begin() + i, processed_tokens.end());
 | 
						|
          }
 | 
						|
          // Evaluate the new fragment prompt from the last token processed.
 | 
						|
          n_past = processed_tokens.size();
 | 
						|
        }
 | 
						|
        new_prompt_len ++;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if(n_past > 0 && params.interactive) {
 | 
						|
      n_remain -= new_prompt_len;
 | 
						|
    }
 | 
						|
    if ((int)embd_inp.size() > params.n_ctx - 4)
 | 
						|
    {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    has_next_token = true;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  void beginCompletion()
 | 
						|
  {
 | 
						|
    if(n_remain == 0) {
 | 
						|
      // number of tokens to keep when resetting context
 | 
						|
      if (params.n_keep < 0 || params.n_keep > (int)embd_inp.size())
 | 
						|
      {
 | 
						|
        params.n_keep = (int)embd_inp.size();
 | 
						|
      }
 | 
						|
    }
 | 
						|
    n_remain = params.n_predict;
 | 
						|
  }
 | 
						|
 | 
						|
  llama_token nextToken() {
 | 
						|
    llama_token result = -1;
 | 
						|
    if (embd.size() > 0)
 | 
						|
    {
 | 
						|
      if (n_past + (int)embd.size() > params.n_ctx)
 | 
						|
      {
 | 
						|
        // Reset context
 | 
						|
        const int n_left = n_past - params.n_keep;
 | 
						|
        n_past = std::max(1, params.n_keep);
 | 
						|
        processed_tokens.erase(processed_tokens.begin() + n_past, processed_tokens.end());
 | 
						|
        embd.insert(embd.begin(), last_n_tokens.begin() + params.n_ctx - n_left / 2 - embd.size(), last_n_tokens.end() - embd.size());
 | 
						|
      }
 | 
						|
      for (int i = 0; i < (int)embd.size(); i += params.n_batch)
 | 
						|
      {
 | 
						|
        int n_eval = (int)embd.size() - i;
 | 
						|
        if (n_eval > params.n_batch)
 | 
						|
        {
 | 
						|
          n_eval = params.n_batch;
 | 
						|
        }
 | 
						|
        if (llama_eval(ctx, &embd[i], n_eval, n_past, params.n_threads))
 | 
						|
        {
 | 
						|
          fprintf(stderr, "%s : failed to eval\n", __func__);
 | 
						|
          has_next_token = false;
 | 
						|
          return result;
 | 
						|
        }
 | 
						|
        n_past += n_eval;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    embd.clear();
 | 
						|
    if ((int)embd_inp.size() <= n_consumed && has_next_token)
 | 
						|
    {
 | 
						|
      // out of user input, sample next token
 | 
						|
      const float temp = params.temp;
 | 
						|
      // const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
 | 
						|
      const float top_p = params.top_p;
 | 
						|
      const float tfs_z = params.tfs_z;
 | 
						|
      const float typical_p = params.typical_p;
 | 
						|
      const int32_t repeat_last_n = params.repeat_last_n < 0 ? params.n_ctx : params.repeat_last_n;
 | 
						|
      const float repeat_penalty = params.repeat_penalty;
 | 
						|
      const float alpha_presence = params.presence_penalty;
 | 
						|
      const float alpha_frequency = params.frequency_penalty;
 | 
						|
      const int mirostat = params.mirostat;
 | 
						|
      const float mirostat_tau = params.mirostat_tau;
 | 
						|
      const float mirostat_eta = params.mirostat_eta;
 | 
						|
      const bool penalize_nl = params.penalize_nl;
 | 
						|
      llama_token id = 0;
 | 
						|
      {
 | 
						|
        auto logits = llama_get_logits(ctx);
 | 
						|
        auto n_vocab = llama_n_vocab(ctx);
 | 
						|
 | 
						|
        // Apply params.logit_bias map
 | 
						|
        for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++)
 | 
						|
        {
 | 
						|
          logits[it->first] += it->second;
 | 
						|
        }
 | 
						|
 | 
						|
        std::vector<llama_token_data> candidates;
 | 
						|
        candidates.reserve(n_vocab);
 | 
						|
        for (llama_token token_id = 0; token_id < n_vocab; token_id++)
 | 
						|
        {
 | 
						|
          candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
 | 
						|
        }
 | 
						|
 | 
						|
        llama_token_data_array candidates_p = {candidates.data(), candidates.size(), false};
 | 
						|
 | 
						|
        // Apply penalties
 | 
						|
        float nl_logit = logits[llama_token_nl()];
 | 
						|
        auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), params.n_ctx);
 | 
						|
        llama_sample_repetition_penalty(ctx, &candidates_p,
 | 
						|
                                        last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
 | 
						|
                                        last_n_repeat, repeat_penalty);
 | 
						|
        llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
 | 
						|
                                                      last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
 | 
						|
                                                      last_n_repeat, alpha_frequency, alpha_presence);
 | 
						|
        if (!penalize_nl)
 | 
						|
        {
 | 
						|
          logits[llama_token_nl()] = nl_logit;
 | 
						|
        }
 | 
						|
 | 
						|
        if (temp <= 0)
 | 
						|
        {
 | 
						|
          // Greedy sampling
 | 
						|
          id = llama_sample_token_greedy(ctx, &candidates_p);
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
          if (mirostat == 1)
 | 
						|
          {
 | 
						|
            static float mirostat_mu = 2.0f * mirostat_tau;
 | 
						|
            const int mirostat_m = 100;
 | 
						|
            llama_sample_temperature(ctx, &candidates_p, temp);
 | 
						|
            id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
 | 
						|
          }
 | 
						|
          else if (mirostat == 2)
 | 
						|
          {
 | 
						|
            static float mirostat_mu = 2.0f * mirostat_tau;
 | 
						|
            llama_sample_temperature(ctx, &candidates_p, temp);
 | 
						|
            id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
 | 
						|
          }
 | 
						|
          else
 | 
						|
          {
 | 
						|
            // Temperature sampling
 | 
						|
            llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1);
 | 
						|
            llama_sample_typical(ctx, &candidates_p, typical_p, 1);
 | 
						|
            llama_sample_top_p(ctx, &candidates_p, top_p, 1);
 | 
						|
            llama_sample_temperature(ctx, &candidates_p, temp);
 | 
						|
            id = llama_sample_token(ctx, &candidates_p);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        last_n_tokens.erase(last_n_tokens.begin());
 | 
						|
        last_n_tokens.push_back(id);
 | 
						|
        processed_tokens.push_back(id);
 | 
						|
        num_tokens_predicted++;
 | 
						|
      }
 | 
						|
 | 
						|
      // replace end of text token with newline token when in interactive mode
 | 
						|
      if (id == llama_token_eos() && params.interactive)
 | 
						|
      {
 | 
						|
        id = llama_token_newline.front();
 | 
						|
        if (params.antiprompt.size() != 0)
 | 
						|
        {
 | 
						|
          // tokenize and inject first reverse prompt
 | 
						|
          const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false);
 | 
						|
          embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // add it to the context
 | 
						|
      embd.push_back(id);
 | 
						|
      for (auto id : embd)
 | 
						|
      {
 | 
						|
        result = id;
 | 
						|
      }
 | 
						|
      // decrement remaining sampling budget
 | 
						|
      --n_remain;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      // some user input remains from prompt or interaction, forward it to processing
 | 
						|
      while ((int)embd_inp.size() > n_consumed)
 | 
						|
      {
 | 
						|
        embd.push_back(embd_inp[n_consumed]);
 | 
						|
        last_n_tokens.erase(last_n_tokens.begin());
 | 
						|
        last_n_tokens.push_back(embd_inp[n_consumed]);
 | 
						|
        processed_tokens.push_back(embd_inp[n_consumed]);
 | 
						|
        ++n_consumed;
 | 
						|
        if ((int)embd.size() >= params.n_batch)
 | 
						|
        {
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (params.interactive && (int)embd_inp.size() <= n_consumed)
 | 
						|
    {
 | 
						|
      // check for reverse prompt
 | 
						|
      if (params.antiprompt.size())
 | 
						|
      {
 | 
						|
        std::string last_output;
 | 
						|
        for (auto id : last_n_tokens)
 | 
						|
        {
 | 
						|
          last_output += llama_token_to_str(ctx, id);
 | 
						|
        }
 | 
						|
        has_next_token = true;
 | 
						|
        // Check if each of the reverse prompts appears at the end of the output.
 | 
						|
        for (std::string &antiprompt : params.antiprompt)
 | 
						|
        {
 | 
						|
          if (last_output.find(antiprompt.c_str(), last_output.length() - antiprompt.length(), antiprompt.length()) != std::string::npos)
 | 
						|
          {
 | 
						|
            has_next_token = false;
 | 
						|
            return result;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (n_past > 0)
 | 
						|
      {
 | 
						|
        has_next_token = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!embd.empty() && embd.back() == llama_token_eos()) {
 | 
						|
        has_next_token = false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (params.interactive && n_remain <= 0 && params.n_predict != -1)
 | 
						|
    {
 | 
						|
      n_remain = params.n_predict;
 | 
						|
    }
 | 
						|
    has_next_token = n_remain != 0;
 | 
						|
    return result;
 | 
						|
  }
 | 
						|
 | 
						|
  std::string doCompletion()
 | 
						|
  {
 | 
						|
    llama_token token = nextToken();
 | 
						|
    if (token == -1) {
 | 
						|
      return "";
 | 
						|
    }
 | 
						|
    tokens_predicted.clear();
 | 
						|
    tokens_predicted.push_back(token);
 | 
						|
 | 
						|
    // Avoid add the no show words to the response
 | 
						|
    for (std::vector<llama_token> word_tokens : no_show_words)
 | 
						|
    {
 | 
						|
      size_t match_token = 1;
 | 
						|
      if (tokens_predicted.front() == word_tokens.front())
 | 
						|
      {
 | 
						|
        bool execute_matching = true;
 | 
						|
        if (tokens_predicted.size() > 1) { // if previus tokens had been tested
 | 
						|
          for (size_t i = 1; i < word_tokens.size(); i++)
 | 
						|
          {
 | 
						|
            if (i >= tokens_predicted.size()) {
 | 
						|
              match_token = i;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
            if (tokens_predicted[i] == word_tokens[i])
 | 
						|
            {
 | 
						|
              continue;
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
              execute_matching = false;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
        while (execute_matching) {
 | 
						|
          if (match_token == word_tokens.size()) {
 | 
						|
            return "";
 | 
						|
          }
 | 
						|
          token = nextToken();
 | 
						|
          tokens_predicted.push_back(token);
 | 
						|
          if (token == word_tokens[match_token])
 | 
						|
          { // the token follow the sequence
 | 
						|
            match_token++;
 | 
						|
          }
 | 
						|
          else if (match_token < word_tokens.size())
 | 
						|
          { // no complete all word sequence
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if(as_loop) {
 | 
						|
      generated_text = "";
 | 
						|
    }
 | 
						|
    for (llama_token tkn : tokens_predicted)
 | 
						|
    {
 | 
						|
      generated_text += llama_token_to_str(ctx, tkn);
 | 
						|
    }
 | 
						|
    return generated_text;
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<float> embedding(std::string content, int threads) {
 | 
						|
    content.insert(0, 1, ' ');
 | 
						|
    std::vector<llama_token> tokens = ::llama_tokenize(ctx, content, true);
 | 
						|
    if (tokens.size() > 0)
 | 
						|
    {
 | 
						|
      if (llama_eval(ctx, tokens.data(), tokens.size(), 0, threads))
 | 
						|
      {
 | 
						|
        fprintf(stderr, "%s : failed to eval\n", __func__);
 | 
						|
        std::vector<float> embeddings_;
 | 
						|
        return embeddings_;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    const int n_embd = llama_n_embd(ctx);
 | 
						|
    const auto embeddings = llama_get_embeddings(ctx);
 | 
						|
    std::vector<float> embeddings_(embeddings, embeddings + n_embd);
 | 
						|
    return embeddings_;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
using namespace httplib;
 | 
						|
 | 
						|
using json = nlohmann::json;
 | 
						|
 | 
						|
void server_print_usage(int /*argc*/, char **argv, const gpt_params ¶ms)
 | 
						|
{
 | 
						|
  fprintf(stderr, "usage: %s [options]\n", argv[0]);
 | 
						|
  fprintf(stderr, "\n");
 | 
						|
  fprintf(stderr, "options:\n");
 | 
						|
  fprintf(stderr, "  -h, --help            show this help message and exit\n");
 | 
						|
  fprintf(stderr, "  -s SEED, --seed SEED  RNG seed (default: -1, use random seed for < 0)\n");
 | 
						|
  fprintf(stderr, "  -c N, --ctx-size N    size of the prompt context (default: %d)\n", params.n_ctx);
 | 
						|
  fprintf(stderr, "  --memory-f32          use f32 instead of f16 for memory key+value (default: disabled)\n");
 | 
						|
  fprintf(stderr, "                        not recommended: doubles context memory required and no measurable increase in quality\n");
 | 
						|
  fprintf(stderr, "  --embedding           enable embedding mode\n");
 | 
						|
  fprintf(stderr, "  --keep                number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
 | 
						|
  if (llama_mlock_supported())
 | 
						|
  {
 | 
						|
    fprintf(stderr, "  --mlock               force system to keep model in RAM rather than swapping or compressing\n");
 | 
						|
  }
 | 
						|
  if (llama_mmap_supported())
 | 
						|
  {
 | 
						|
    fprintf(stderr, "  --no-mmap             do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
 | 
						|
  }
 | 
						|
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
 | 
						|
  fprintf(stderr, "  -ngl N, --n-gpu-layers N\n");
 | 
						|
  fprintf(stderr, "                        number of layers to store in VRAM\n");
 | 
						|
  fprintf(stderr, "  -ts SPLIT --tensor-split SPLIT\n");
 | 
						|
  fprintf(stderr, "                        how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
 | 
						|
  fprintf(stderr, "                        how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
 | 
						|
  fprintf(stderr, "  -mg i, --main-gpu i   the GPU to use for scratch and small tensors\n" );
 | 
						|
#endif
 | 
						|
  fprintf(stderr, "  -m FNAME, --model FNAME\n");
 | 
						|
  fprintf(stderr, "                        model path (default: %s)\n", params.model.c_str());
 | 
						|
  fprintf(stderr, "  -a ALIAS, --alias ALIAS\n");
 | 
						|
  fprintf(stderr, "                        set an alias for the model, will be added as `model` field in completion response\n");
 | 
						|
  fprintf(stderr, "  --host                ip address to listen (default 127.0.0.1)\n");
 | 
						|
  fprintf(stderr, "  --port PORT           port to listen (default 8080)\n");
 | 
						|
  fprintf(stderr, "\n");
 | 
						|
}
 | 
						|
 | 
						|
bool server_params_parse(int argc, char **argv, server_params &sparams, gpt_params ¶ms)
 | 
						|
{
 | 
						|
  gpt_params default_params;
 | 
						|
  std::string arg;
 | 
						|
  bool invalid_param = false;
 | 
						|
 | 
						|
  for (int i = 1; i < argc; i++)
 | 
						|
  {
 | 
						|
    arg = argv[i];
 | 
						|
    if (arg == "--port")
 | 
						|
    {
 | 
						|
      if (++i >= argc)
 | 
						|
      {
 | 
						|
        invalid_param = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      sparams.port = std::stoi(argv[i]);
 | 
						|
    }
 | 
						|
    else if (arg == "--host")
 | 
						|
    {
 | 
						|
      if (++i >= argc)
 | 
						|
      {
 | 
						|
        invalid_param = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      sparams.hostname = argv[i];
 | 
						|
    }
 | 
						|
    else if (arg == "-s" || arg == "--seed")
 | 
						|
    {
 | 
						|
#if defined(GGML_USE_CUBLAS)
 | 
						|
      fprintf(stderr, "WARNING: when using cuBLAS generation results are NOT guaranteed to be reproducible.\n");
 | 
						|
#endif
 | 
						|
      if (++i >= argc)
 | 
						|
      {
 | 
						|
        invalid_param = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      params.seed = std::stoi(argv[i]);
 | 
						|
    }
 | 
						|
    else if (arg == "-m" || arg == "--model")
 | 
						|
    {
 | 
						|
      if (++i >= argc)
 | 
						|
      {
 | 
						|
        invalid_param = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      params.model = argv[i];
 | 
						|
    }
 | 
						|
    else if (arg == "-a" || arg == "--alias")
 | 
						|
    {
 | 
						|
      if (++i >= argc)
 | 
						|
      {
 | 
						|
        invalid_param = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      params.model_alias = argv[i];
 | 
						|
    }
 | 
						|
    else if (arg == "--embedding")
 | 
						|
    {
 | 
						|
      params.embedding = true;
 | 
						|
    }
 | 
						|
    else if (arg == "-h" || arg == "--help")
 | 
						|
    {
 | 
						|
      server_print_usage(argc, argv, default_params);
 | 
						|
      exit(0);
 | 
						|
    }
 | 
						|
    else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size")
 | 
						|
    {
 | 
						|
      if (++i >= argc)
 | 
						|
      {
 | 
						|
        invalid_param = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      params.n_ctx = std::stoi(argv[i]);
 | 
						|
    }
 | 
						|
    else if (arg == "--memory-f32" || arg == "--memory_f32")
 | 
						|
    {
 | 
						|
      params.memory_f16 = false;
 | 
						|
    }
 | 
						|
    else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers")
 | 
						|
    {
 | 
						|
      if (++i >= argc)
 | 
						|
      {
 | 
						|
        invalid_param = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
 | 
						|
      params.n_gpu_layers = std::stoi(argv[i]);
 | 
						|
#else
 | 
						|
      fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
 | 
						|
      fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    else if (arg == "--tensor-split" || arg == "-ts")
 | 
						|
    {
 | 
						|
      if (++i >= argc)
 | 
						|
      {
 | 
						|
        invalid_param = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
#ifdef GGML_USE_CUBLAS
 | 
						|
      std::string arg_next = argv[i];
 | 
						|
 | 
						|
      // split string by , and /
 | 
						|
      const std::regex regex{R"([,/]+)"};
 | 
						|
      std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
 | 
						|
      std::vector<std::string> split_arg{it, {}};
 | 
						|
      GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
 | 
						|
 | 
						|
      for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i)
 | 
						|
      {
 | 
						|
        if (i < split_arg.size())
 | 
						|
        {
 | 
						|
          params.tensor_split[i] = std::stof(split_arg[i]);
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
          params.tensor_split[i] = 0.0f;
 | 
						|
        }
 | 
						|
      }
 | 
						|
#else
 | 
						|
      fprintf(stderr, "WARNING: llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n");
 | 
						|
#endif // GGML_USE_CUBLAS
 | 
						|
    }
 | 
						|
    else if (arg == "--main-gpu" || arg == "-mg")
 | 
						|
    {
 | 
						|
      if (++i >= argc)
 | 
						|
      {
 | 
						|
        invalid_param = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
#ifdef GGML_USE_CUBLAS
 | 
						|
      params.main_gpu = std::stoi(argv[i]);
 | 
						|
#else
 | 
						|
      fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.\n");
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
 | 
						|
      server_print_usage(argc, argv, default_params);
 | 
						|
      exit(1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (invalid_param)
 | 
						|
  {
 | 
						|
    fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
 | 
						|
    server_print_usage(argc, argv, default_params);
 | 
						|
    exit(1);
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool parse_options_completion(json body, llama_server_context& llama, Response &res) {
 | 
						|
  if (!body["threads"].is_null())
 | 
						|
  {
 | 
						|
    llama.params.n_threads = body["threads"].get<int>();
 | 
						|
  }
 | 
						|
  if (!body["n_predict"].is_null())
 | 
						|
  {
 | 
						|
    llama.params.n_predict = body["n_predict"].get<int>();
 | 
						|
  }
 | 
						|
  if (!body["top_k"].is_null())
 | 
						|
  {
 | 
						|
    llama.params.top_k = body["top_k"].get<int>();
 | 
						|
  }
 | 
						|
  if (!body["top_p"].is_null())
 | 
						|
  {
 | 
						|
    llama.params.top_p = body["top_p"].get<float>();
 | 
						|
  }
 | 
						|
  if (!body["temperature"].is_null())
 | 
						|
  {
 | 
						|
    llama.params.temp = body["temperature"].get<float>();
 | 
						|
  }
 | 
						|
  if (!body["batch_size"].is_null())
 | 
						|
  {
 | 
						|
    llama.params.n_batch = body["batch_size"].get<int>();
 | 
						|
  }
 | 
						|
  if (!body["n_keep"].is_null())
 | 
						|
  {
 | 
						|
    llama.params.n_keep = body["n_keep"].get<int>();
 | 
						|
  }
 | 
						|
  if (!body["as_loop"].is_null())
 | 
						|
  {
 | 
						|
    llama.as_loop = body["as_loop"].get<bool>();
 | 
						|
  }
 | 
						|
  if (!body["interactive"].is_null())
 | 
						|
  {
 | 
						|
    llama.params.interactive = body["interactive"].get<bool>();
 | 
						|
  }
 | 
						|
  if (!body["prompt"].is_null())
 | 
						|
  {
 | 
						|
    llama.params.prompt = body["prompt"].get<std::string>();
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    json data = {
 | 
						|
        {"status", "error"},
 | 
						|
        {"reason", "You need to pass the prompt"}};
 | 
						|
    res.set_content(data.dump(), "application/json");
 | 
						|
    res.status = 400;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  if (!body["stop"].is_null())
 | 
						|
  {
 | 
						|
    std::vector<std::string> stop_words = body["stop"].get<std::vector<std::string>>();
 | 
						|
    for (std::string stop_word : stop_words)
 | 
						|
    {
 | 
						|
      llama.params.antiprompt.push_back(stop_word);
 | 
						|
      llama.no_show_words.push_back(::llama_tokenize(llama.ctx, stop_word, false));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!body["exclude"].is_null())
 | 
						|
  {
 | 
						|
    std::vector<std::string> no_show_words = body["exclude"].get<std::vector<std::string>>();
 | 
						|
    for (std::string no_show : no_show_words)
 | 
						|
    {
 | 
						|
      llama.no_show_words.push_back(::llama_tokenize(llama.ctx, no_show, false));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
int main(int argc, char **argv)
 | 
						|
{
 | 
						|
  // own arguments required by this example
 | 
						|
  gpt_params params;
 | 
						|
  server_params sparams;
 | 
						|
 | 
						|
  // struct that contains llama context and inference
 | 
						|
  llama_server_context llama;
 | 
						|
  params.model = "ggml-model.bin";
 | 
						|
 | 
						|
  if (server_params_parse(argc, argv, sparams, params) == false)
 | 
						|
  {
 | 
						|
    return 1;
 | 
						|
  }
 | 
						|
 | 
						|
  if (params.seed <= 0)
 | 
						|
  {
 | 
						|
    params.seed = time(NULL);
 | 
						|
  }
 | 
						|
 | 
						|
  fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
 | 
						|
 | 
						|
  // load the model
 | 
						|
  if (!llama.loadModel(params))
 | 
						|
  {
 | 
						|
    return 1;
 | 
						|
  }
 | 
						|
 | 
						|
  Server svr;
 | 
						|
 | 
						|
  svr.Get("/", [](const Request &, Response &res)
 | 
						|
          { res.set_content("<h1>llama.cpp server works</h1>", "text/html"); });
 | 
						|
 | 
						|
  svr.Post("/completion", [&llama](const Request &req, Response &res)
 | 
						|
            {
 | 
						|
              if(llama.params.embedding) {
 | 
						|
                json data = {
 | 
						|
                    {"status", "error"},
 | 
						|
                    {"reason", "To use completion function disable embedding mode"}};
 | 
						|
                res.set_content(data.dump(), "application/json");
 | 
						|
                res.status = 400;
 | 
						|
                return;
 | 
						|
              }
 | 
						|
 | 
						|
              llama.rewind();
 | 
						|
 | 
						|
              if(parse_options_completion(json::parse(req.body), llama, res) == false){
 | 
						|
                return;
 | 
						|
              }
 | 
						|
 | 
						|
              if (!llama.loadPrompt())
 | 
						|
              {
 | 
						|
                json data = {
 | 
						|
                    {"status", "error"},
 | 
						|
                    {"reason", "Context too long, please be more specific"}};
 | 
						|
                res.set_content(data.dump(), "application/json");
 | 
						|
                res.status = 400;
 | 
						|
                return;
 | 
						|
              }
 | 
						|
 | 
						|
              llama.beginCompletion();
 | 
						|
              if(llama.as_loop) {
 | 
						|
                json data = {
 | 
						|
                    {"status", "done" } };
 | 
						|
                return res.set_content(data.dump(), "application/json");
 | 
						|
              } else {
 | 
						|
                // loop inference until finish completion
 | 
						|
                while (llama.has_next_token)
 | 
						|
                {
 | 
						|
                  llama.doCompletion();
 | 
						|
                }
 | 
						|
                try
 | 
						|
                {
 | 
						|
                  json data = {
 | 
						|
                      {"model", llama.params.model_alias },
 | 
						|
                      {"content", llama.generated_text },
 | 
						|
                      {"tokens_predicted", llama.num_tokens_predicted}};
 | 
						|
                  return res.set_content(data.dump(), "application/json");
 | 
						|
                }
 | 
						|
                catch (const json::exception &e)
 | 
						|
                {
 | 
						|
                  // Some tokens have bad UTF-8 strings, the json parser is very sensitive
 | 
						|
                  json data = {
 | 
						|
                      {"content", "Bad encoding token"},
 | 
						|
                      {"tokens_predicted", 0}};
 | 
						|
                  return res.set_content(data.dump(), "application/json");
 | 
						|
                }
 | 
						|
              } });
 | 
						|
 | 
						|
  svr.Post("/tokenize", [&llama](const Request &req, Response &res)
 | 
						|
            {
 | 
						|
              json body = json::parse(req.body);
 | 
						|
              json data = {
 | 
						|
                    {"tokens", ::llama_tokenize(llama.ctx, body["content"].get<std::string>(), false) } };
 | 
						|
                return res.set_content(data.dump(), "application/json");
 | 
						|
            });
 | 
						|
 | 
						|
  svr.Post("/embedding", [&llama](const Request &req, Response &res)
 | 
						|
            {
 | 
						|
              if(!llama.params.embedding) {
 | 
						|
                std::vector<float> empty;
 | 
						|
                json data = {
 | 
						|
                    {"embedding", empty}};
 | 
						|
                fprintf(stderr, "[llama-server] : You need enable embedding mode adding: --embedding option\n");
 | 
						|
                return res.set_content(data.dump(), "application/json");
 | 
						|
              }
 | 
						|
              json body = json::parse(req.body);
 | 
						|
              std::string content = body["content"].get<std::string>();
 | 
						|
              int threads = body["threads"].get<int>();
 | 
						|
              json data = {
 | 
						|
                    {"embedding", llama.embedding(content, threads) } };
 | 
						|
              return res.set_content(data.dump(), "application/json");
 | 
						|
            });
 | 
						|
 | 
						|
  svr.Get("/next-token", [&llama](const Request &req, Response &res)
 | 
						|
          {
 | 
						|
            if(llama.params.embedding) {
 | 
						|
                res.set_content("{}", "application/json");
 | 
						|
                return;
 | 
						|
            }
 | 
						|
            std::string result = "";
 | 
						|
            if (req.has_param("stop")) {
 | 
						|
                llama.has_next_token = false;
 | 
						|
            } else {
 | 
						|
              result = llama.doCompletion(); // inference next token
 | 
						|
            }
 | 
						|
            try {
 | 
						|
              json data = {
 | 
						|
                        {"content", result },
 | 
						|
                        {"stop", !llama.has_next_token }};
 | 
						|
              return res.set_content(data.dump(), "application/json");
 | 
						|
            } catch (const json::exception &e) {
 | 
						|
              // Some tokens have bad UTF-8 strings, the json parser is very sensitive
 | 
						|
              json data = {
 | 
						|
                        {"content", "" },
 | 
						|
                        {"stop", !llama.has_next_token }};
 | 
						|
              return res.set_content(data.dump(), "application/json");
 | 
						|
            }
 | 
						|
          });
 | 
						|
 | 
						|
  fprintf(stderr, "%s: http server Listening at http://%s:%i\n", __func__, sparams.hostname.c_str(), sparams.port);
 | 
						|
 | 
						|
  if(params.embedding) {
 | 
						|
    fprintf(stderr, "NOTE: Mode embedding enabled. Completion function doesn't work in this mode.\n");
 | 
						|
  }
 | 
						|
 | 
						|
  // change hostname and port
 | 
						|
  svr.listen(sparams.hostname, sparams.port);
 | 
						|
}
 |