mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	 6ff13987ad
			
		
	
	6ff13987ad
	
	
	
		
			
			* common : normalize naming style ggml-ci * common : match declaration / definition order * zig : try to fix build
		
			
				
	
	
		
			221 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			221 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "common.h"
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <ctime>
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #pragma warning(disable: 4244 4267) // possible loss of data
 | |
| #endif
 | |
| 
 | |
| static std::vector<std::string> split_lines(const std::string & s) {
 | |
|     std::string line;
 | |
|     std::vector<std::string> lines;
 | |
|     std::stringstream ss(s);
 | |
|     while (std::getline(ss, line)) {
 | |
|         lines.push_back(line);
 | |
|     }
 | |
|     return lines;
 | |
| }
 | |
| 
 | |
| static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, int seq_id) {
 | |
|     for (size_t i = 0; i < tokens.size(); i++) {
 | |
|         llama_batch_add(batch, tokens[i], i, { seq_id }, i == tokens.size() - 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
 | |
|     // clear previous kv_cache values (irrelevant for embeddings)
 | |
|     llama_kv_cache_clear(ctx);
 | |
| 
 | |
|     // run model
 | |
|     fprintf(stderr, "%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
 | |
|     if (llama_decode(ctx, batch) < 0) {
 | |
|         fprintf(stderr, "%s : failed to decode\n", __func__);
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < batch.n_tokens; i++) {
 | |
|         if (!batch.logits[i]) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         // try to get sequence embeddings - supported only when pooling_type is not NONE
 | |
|         const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
 | |
|         if (embd == NULL) {
 | |
|             embd = llama_get_embeddings_ith(ctx, i);
 | |
|             if (embd == NULL) {
 | |
|                 fprintf(stderr, "%s: failed to get embeddings for token %d\n", __func__, i);
 | |
|                 continue;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         float * out = output + batch.seq_id[i][0] * n_embd;
 | |
|         //TODO: I would also add a parameter here to enable normalization or not.
 | |
|         /*fprintf(stdout, "unnormalized_embedding:");
 | |
|         for (int hh = 0; hh < n_embd; hh++) {
 | |
|             fprintf(stdout, "%9.6f ", embd[hh]);
 | |
|         }
 | |
|         fprintf(stdout, "\n");*/
 | |
|         llama_embd_normalize(embd, out, n_embd);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     gpt_params params;
 | |
| 
 | |
|     if (!gpt_params_parse(argc, argv, params)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     params.embedding = true;
 | |
|     // For non-causal models, batch size must be equal to ubatch size
 | |
|     params.n_ubatch = params.n_batch;
 | |
| 
 | |
|     print_build_info();
 | |
| 
 | |
|     if (params.seed == LLAMA_DEFAULT_SEED) {
 | |
|         params.seed = time(NULL);
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "%s: seed  = %u\n", __func__, params.seed);
 | |
| 
 | |
|     std::mt19937 rng(params.seed);
 | |
|     if (params.random_prompt) {
 | |
|         params.prompt = string_random_prompt(rng);
 | |
|     }
 | |
| 
 | |
|     llama_backend_init();
 | |
|     llama_numa_init(params.numa);
 | |
| 
 | |
|     llama_model * model;
 | |
|     llama_context * ctx;
 | |
| 
 | |
|     // load the model
 | |
|     std::tie(model, ctx) = llama_init_from_gpt_params(params);
 | |
|     if (model == NULL) {
 | |
|         fprintf(stderr, "%s: error: unable to load model\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     const int n_ctx_train = llama_n_ctx_train(model);
 | |
|     const int n_ctx = llama_n_ctx(ctx);
 | |
| 
 | |
|     if (n_ctx > n_ctx_train) {
 | |
|         fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
 | |
|                 __func__, n_ctx_train, n_ctx);
 | |
|     }
 | |
| 
 | |
|     // print system information
 | |
|     {
 | |
|         fprintf(stderr, "\n");
 | |
|         fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
 | |
|     }
 | |
| 
 | |
|     // split the prompt into lines
 | |
|     std::vector<std::string> prompts = split_lines(params.prompt);
 | |
| 
 | |
|     // max batch size
 | |
|     const uint64_t n_batch = params.n_batch;
 | |
|     GGML_ASSERT(params.n_batch >= params.n_ctx);
 | |
| 
 | |
|     // tokenize the prompts and trim
 | |
|     std::vector<std::vector<int32_t>> inputs;
 | |
|     for (const auto & prompt : prompts) {
 | |
|         auto inp = ::llama_tokenize(ctx, prompt, true, false);
 | |
|         if (inp.size() > n_batch) {
 | |
|             fprintf(stderr, "%s: error: number of tokens in input line (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
 | |
|                     __func__, (long long int) inp.size(), (long long int) n_batch);
 | |
|             return 1;
 | |
|         }
 | |
|         inputs.push_back(inp);
 | |
|     }
 | |
| 
 | |
|     // check if the last token is SEP
 | |
|     // it should be automatically added by the tokenizer when 'tokenizer.ggml.add_eos_token' is set to 'true'
 | |
|     for (auto & inp : inputs) {
 | |
|         if (inp.empty() || inp.back() != llama_token_sep(model)) {
 | |
|             fprintf(stderr, "%s: warning: last token in the prompt is not SEP\n", __func__);
 | |
|             fprintf(stderr, "%s:          'tokenizer.ggml.add_eos_token' should be set to 'true' in the GGUF header\n", __func__);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // tokenization stats
 | |
|     if (params.verbose_prompt) {
 | |
|         for (int i = 0; i < (int) inputs.size(); i++) {
 | |
|             fprintf(stderr, "%s: prompt %d: '%s'\n", __func__, i, prompts[i].c_str());
 | |
|             fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, inputs[i].size());
 | |
|             for (int j = 0; j < (int) inputs[i].size(); j++) {
 | |
|                 fprintf(stderr, "%6d -> '%s'\n", inputs[i][j], llama_token_to_piece(ctx, inputs[i][j]).c_str());
 | |
|             }
 | |
|             fprintf(stderr, "\n\n");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // initialize batch
 | |
|     const int n_prompts = prompts.size();
 | |
|     struct llama_batch batch = llama_batch_init(n_batch, 0, 1);
 | |
| 
 | |
|     // allocate output
 | |
|     const int n_embd = llama_n_embd(model);
 | |
|     std::vector<float> embeddings(n_prompts * n_embd, 0);
 | |
|     float * emb = embeddings.data();
 | |
| 
 | |
|     // break into batches
 | |
|     int p = 0; // number of prompts processed already
 | |
|     int s = 0; // number of prompts in current batch
 | |
|     for (int k = 0; k < n_prompts; k++) {
 | |
|         // clamp to n_batch tokens
 | |
|         auto & inp = inputs[k];
 | |
| 
 | |
|         const uint64_t n_toks = inp.size();
 | |
| 
 | |
|         // encode if at capacity
 | |
|         if (batch.n_tokens + n_toks > n_batch) {
 | |
|             float * out = emb + p * n_embd;
 | |
|             batch_decode(ctx, batch, out, s, n_embd);
 | |
|             llama_batch_clear(batch);
 | |
|             p += s;
 | |
|             s = 0;
 | |
|         }
 | |
| 
 | |
|         // add to batch
 | |
|         batch_add_seq(batch, inp, s);
 | |
|         s += 1;
 | |
|     }
 | |
| 
 | |
|     // final batch
 | |
|     float * out = emb + p * n_embd;
 | |
|     batch_decode(ctx, batch, out, s, n_embd);
 | |
| 
 | |
|     // print the first part of the embeddings or for a single prompt, the full embedding
 | |
|     fprintf(stdout, "\n");
 | |
|     for (int j = 0; j < n_prompts; j++) {
 | |
|         fprintf(stdout, "embedding %d: ", j);
 | |
|         for (int i = 0; i < (n_prompts > 1 ? std::min(16, n_embd) : n_embd); i++) {
 | |
|             fprintf(stdout, "%9.6f ", emb[j * n_embd + i]);
 | |
|         }
 | |
|         fprintf(stdout, "\n");
 | |
|     }
 | |
| 
 | |
|     // print cosine similarity matrix
 | |
|     if (n_prompts > 1) {
 | |
|         fprintf(stdout, "\n");
 | |
|         printf("cosine similarity matrix:\n\n");
 | |
|         for (int i = 0; i < n_prompts; i++) {
 | |
|             for (int j = 0; j < n_prompts; j++) {
 | |
|                 float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
 | |
|                 fprintf(stdout, "%6.2f ", sim);
 | |
|             }
 | |
|             fprintf(stdout, "\n");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // clean up
 | |
|     llama_print_timings(ctx);
 | |
|     llama_batch_free(batch);
 | |
|     llama_free(ctx);
 | |
|     llama_free_model(model);
 | |
|     llama_backend_free();
 | |
| 
 | |
|     return 0;
 | |
| }
 |