mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-28 08:31:25 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1067 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1067 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "clip.h"
 | |
| #include "clip-impl.h"
 | |
| #include "mtmd.h"
 | |
| #include "mtmd-audio.h"
 | |
| 
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cerrno>
 | |
| #include <cstdio>
 | |
| #include <cstdlib>
 | |
| #include <cstring>
 | |
| #include <limits>
 | |
| #include <vector>
 | |
| 
 | |
| // represents raw image data, layout is RGBRGBRGB...
 | |
| // length of data must be nx * ny * 3
 | |
| struct mtmd_bitmap {
 | |
|     uint32_t nx;
 | |
|     uint32_t ny;
 | |
|     std::vector<unsigned char> data;
 | |
|     std::string id; // optional user-defined id, for ex: can be set to image hash, useful for KV cache tracking
 | |
|     bool is_audio = false; // true if the bitmap is audio
 | |
| };
 | |
| 
 | |
| struct mtmd_image_tokens {
 | |
|     uint32_t nx; // number of tokens in x direction
 | |
|     uint32_t ny; // number of tokens in y direction
 | |
|     bool use_mrope_pos = false; // use M-RoPE position counting (the whole image is 1 temporal position)
 | |
|     uint32_t n_tokens() const { return nx * ny; }
 | |
|     clip_image_f32_batch batch_f32; // preprocessed image patches
 | |
|     std::string id; // optional user-defined ID, useful for KV cache tracking
 | |
| 
 | |
|     mtmd_image_tokens clone() {
 | |
|         return mtmd_image_tokens{
 | |
|             nx,
 | |
|             ny,
 | |
|             use_mrope_pos,
 | |
|             batch_f32.clone(),
 | |
|             id
 | |
|         };
 | |
|     }
 | |
| };
 | |
| using mtmd_image_tokens_ptr = std::unique_ptr<mtmd_image_tokens>;
 | |
| 
 | |
| struct mtmd_audio_tokens {
 | |
|     uint32_t n_tokens; // number of tokens
 | |
|     clip_image_f32_batch batch_f32; // preprocessed image patches
 | |
|     std::string id; // optional user-defined ID, useful for KV cache tracking
 | |
| 
 | |
|     mtmd_audio_tokens clone() {
 | |
|         return mtmd_audio_tokens{
 | |
|             n_tokens,
 | |
|             batch_f32.clone(),
 | |
|             id
 | |
|         };
 | |
|     }
 | |
| };
 | |
| using mtmd_audio_tokens_ptr = std::unique_ptr<mtmd_audio_tokens>;
 | |
| 
 | |
| struct mtmd_input_chunk {
 | |
|     mtmd_input_chunk_type type;
 | |
|     std::vector<llama_token> tokens_text;
 | |
|     mtmd_image_tokens_ptr tokens_image;
 | |
|     mtmd_audio_tokens_ptr tokens_audio;
 | |
| };
 | |
| 
 | |
| struct mtmd_input_chunks {
 | |
|     std::vector<mtmd_input_chunk> entries;
 | |
| };
 | |
| 
 | |
| // slice template, used by some llava-uhd models to correctly place the special tokens around image embeddings
 | |
| // models not having it (llava-1.6) will process embeddings without any special tokens in-between
 | |
| enum mtmd_slice_tmpl {
 | |
|     MTMD_SLICE_TMPL_NONE,
 | |
|     MTMD_SLICE_TMPL_MINICPMV_2_5,
 | |
|     MTMD_SLICE_TMPL_MINICPMV_2_6,
 | |
|     MTMD_SLICE_TMPL_LLAMA4,
 | |
|     // TODO @ngxson : add support for idefics (SmolVLM)
 | |
| };
 | |
| 
 | |
| const char * mtmd_default_marker() {
 | |
|     return "<__media__>";
 | |
| }
 | |
| 
 | |
| mtmd_context_params mtmd_context_params_default() {
 | |
|     mtmd_context_params params;
 | |
|     params.use_gpu = true;
 | |
|     params.print_timings = true;
 | |
|     params.n_threads = 4;
 | |
|     params.verbosity = GGML_LOG_LEVEL_INFO;
 | |
|     params.image_marker = MTMD_DEFAULT_IMAGE_MARKER;
 | |
|     params.media_marker = mtmd_default_marker();
 | |
|     return params;
 | |
| }
 | |
| 
 | |
| struct mtmd_context {
 | |
|     struct clip_ctx * ctx_v; // vision
 | |
|     struct clip_ctx * ctx_a; // audio
 | |
|     const struct llama_model * text_model;
 | |
|     std::vector<float> image_embd_v; // image embedding vector
 | |
| 
 | |
|     bool print_timings;
 | |
|     int n_threads;
 | |
|     std::string media_marker;
 | |
|     const int n_embd_text;
 | |
| 
 | |
|     // these are not token, but strings used to mark the beginning and end of image/audio embeddings
 | |
|     std::string img_beg;
 | |
|     std::string img_end;
 | |
|     std::string aud_beg;
 | |
|     std::string aud_end;
 | |
| 
 | |
|     // for llava-uhd style models, we need special tokens in-between slices
 | |
|     // minicpmv calls them "slices", llama 4 calls them "tiles"
 | |
|     mtmd_slice_tmpl slice_tmpl    = MTMD_SLICE_TMPL_NONE;
 | |
|     llama_token tok_ov_img_start  = LLAMA_TOKEN_NULL; // overview image
 | |
|     llama_token tok_ov_img_end    = LLAMA_TOKEN_NULL; // overview image
 | |
|     llama_token tok_slices_start  = LLAMA_TOKEN_NULL; // start of all slices
 | |
|     llama_token tok_slices_end    = LLAMA_TOKEN_NULL; // end of all slices
 | |
|     llama_token tok_sli_img_start = LLAMA_TOKEN_NULL; // single slice start
 | |
|     llama_token tok_sli_img_end   = LLAMA_TOKEN_NULL; // single slice end
 | |
|     llama_token tok_sli_img_mid   = LLAMA_TOKEN_NULL; // between 2 slices
 | |
|     llama_token tok_row_end       = LLAMA_TOKEN_NULL; // end of row
 | |
|     bool        tok_row_end_trail = false;
 | |
|     bool        ov_img_first      = false;
 | |
| 
 | |
|     bool use_mrope = false; // for Qwen2VL, we need to use M-RoPE
 | |
| 
 | |
|     // for whisper, we pre-calculate the mel filter bank
 | |
|     whisper_preprocessor::whisper_filters w_filters;
 | |
| 
 | |
|     // TODO @ngxson : add timings
 | |
| 
 | |
|     mtmd_context(const char * mmproj_fname,
 | |
|                    const llama_model * text_model,
 | |
|                    const mtmd_context_params & ctx_params) :
 | |
|         text_model   (text_model),
 | |
|         print_timings(ctx_params.print_timings),
 | |
|         n_threads    (ctx_params.n_threads),
 | |
|         media_marker (ctx_params.media_marker),
 | |
|         n_embd_text  (llama_model_n_embd(text_model))
 | |
|     {
 | |
|         if (std::string(ctx_params.image_marker) != MTMD_DEFAULT_IMAGE_MARKER) {
 | |
|             throw std::runtime_error("custom image_marker is not supported anymore, use media_marker instead");
 | |
|         }
 | |
| 
 | |
|         if (media_marker.empty()) {
 | |
|             throw std::runtime_error("media_marker must not be empty");
 | |
|         }
 | |
| 
 | |
|         clip_context_params ctx_clip_params;
 | |
|         ctx_clip_params.use_gpu   = ctx_params.use_gpu;
 | |
|         ctx_clip_params.verbosity = ctx_params.verbosity;
 | |
|         auto res = clip_init(mmproj_fname, ctx_clip_params);
 | |
|         ctx_v = res.ctx_v;
 | |
|         ctx_a = res.ctx_a;
 | |
|         if (!ctx_v && !ctx_a) {
 | |
|             throw std::runtime_error(string_format("Failed to load CLIP model from %s\n", mmproj_fname));
 | |
|         }
 | |
| 
 | |
|         // if both vision and audio mmproj are present, we need to validate their n_embd
 | |
|         if (ctx_v && ctx_a) {
 | |
|             int n_embd_v = clip_n_mmproj_embd(ctx_v);
 | |
|             int n_embd_a = clip_n_mmproj_embd(ctx_a);
 | |
|             if (n_embd_v != n_embd_a) {
 | |
|                 throw std::runtime_error(string_format(
 | |
|                     "mismatch between vision and audio mmproj (n_embd_v = %d, n_embd_a = %d)\n",
 | |
|                     n_embd_v, n_embd_a));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // since we already validate n_embd of vision and audio mmproj,
 | |
|         // we can safely assume that they are the same
 | |
|         int n_embd_clip = clip_n_mmproj_embd(ctx_v ? ctx_v : ctx_a);
 | |
|         if (n_embd_text != n_embd_clip) {
 | |
|             throw std::runtime_error(string_format(
 | |
|                 "mismatch between text model (n_embd = %d) and mmproj (n_embd = %d)\n"
 | |
|                 "hint: you may be using wrong mmproj\n",
 | |
|                 n_embd_text, n_embd_clip));
 | |
|         }
 | |
|         if (ctx_v) {
 | |
|             init_vision();
 | |
|         }
 | |
|         if (ctx_a) {
 | |
|             init_audio();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void init_vision() {
 | |
|         GGML_ASSERT(ctx_v != nullptr);
 | |
|         use_mrope = clip_is_qwen2vl(ctx_v);
 | |
| 
 | |
|         projector_type proj = clip_get_projector_type(ctx_v);
 | |
|         int minicpmv_version = clip_is_minicpmv(ctx_v);
 | |
|         if (minicpmv_version == 2) {
 | |
|             // minicpmv 2.5 format:
 | |
|             // <image> (overview) </image><slice><image> (slice) </image><image> (slice) </image>\n ... </slice>
 | |
|             slice_tmpl        = MTMD_SLICE_TMPL_MINICPMV_2_5;
 | |
|             tok_ov_img_start  = lookup_token("<image>");
 | |
|             tok_ov_img_end    = lookup_token("</image>");
 | |
|             tok_slices_start  = lookup_token("<slice>");
 | |
|             tok_slices_end    = lookup_token("</slice>");
 | |
|             tok_sli_img_start = tok_ov_img_start;
 | |
|             tok_sli_img_end   = tok_ov_img_end;
 | |
|             tok_row_end       = lookup_token("\n");
 | |
|             tok_row_end_trail = false; // no trailing end-of-row token
 | |
|             ov_img_first      = true;
 | |
| 
 | |
|         } else if (minicpmv_version == 3 || minicpmv_version == 4 || minicpmv_version == 5 || minicpmv_version == 6) {
 | |
|             // minicpmv 2.6 format:
 | |
|             // <image> (overview) </image><slice> (slice) </slice><slice> (slice) </slice>\n ...
 | |
|             slice_tmpl        = MTMD_SLICE_TMPL_MINICPMV_2_6;
 | |
|             tok_ov_img_start  = lookup_token("<image>");
 | |
|             tok_ov_img_end    = lookup_token("</image>");
 | |
|             tok_sli_img_start = lookup_token("<slice>");
 | |
|             tok_sli_img_end   = lookup_token("</slice>");
 | |
|             tok_row_end       = lookup_token("\n");
 | |
|             tok_row_end_trail = false; // no trailing end-of-row token
 | |
|             ov_img_first      = true;
 | |
| 
 | |
|         } else if (minicpmv_version != 0) {
 | |
|             GGML_ASSERT(false && "unsupported minicpmv version");
 | |
|         } else if (proj == PROJECTOR_TYPE_LLAMA4) {
 | |
|             // llama 4 format:
 | |
|             // <|image_start|>
 | |
|             //     (slice) <|tile_x_separator|> (slice) <|tile_x_separator|> ... <|tile_y_separator|>
 | |
|             //     (slice) <|tile_x_separator|> (slice) <|tile_x_separator|> ... <|tile_y_separator|>
 | |
|             //     ... <|tile_y_separator|>   <-- trailing end-of-row token
 | |
|             // <|image|> (overview)           <-- overview image is last
 | |
|             // <|image_end|>
 | |
|             slice_tmpl        = MTMD_SLICE_TMPL_LLAMA4;
 | |
|             tok_ov_img_start  = lookup_token("<|image|>");
 | |
|             tok_sli_img_mid   = lookup_token("<|tile_x_separator|>");
 | |
|             tok_row_end       = lookup_token("<|tile_y_separator|>");
 | |
|             tok_row_end_trail = true; // add trailing end-of-row token
 | |
|             ov_img_first      = false; // overview image is last
 | |
|         }
 | |
| 
 | |
|         // set boi/eoi
 | |
|         if (proj == PROJECTOR_TYPE_GEMMA3) {
 | |
|             // <start_of_image> ... (image embeddings) ... <end_of_image>
 | |
|             img_beg = "<start_of_image>";
 | |
|             img_end = "<end_of_image>";
 | |
| 
 | |
|         } else if (proj == PROJECTOR_TYPE_IDEFICS3) {
 | |
|             // https://github.com/huggingface/transformers/blob/a42ba80fa520c784c8f11a973ca9034e5f859b79/src/transformers/models/idefics3/processing_idefics3.py#L192-L215
 | |
|             img_beg = "<fake_token_around_image><global-img>";
 | |
|             img_end = "<fake_token_around_image>";
 | |
| 
 | |
|         } else if (proj == PROJECTOR_TYPE_PIXTRAL) {
 | |
|             // https://github.com/huggingface/transformers/blob/1cd110c6cb6a6237614130c470e9a902dbc1a4bd/docs/source/en/model_doc/pixtral.md
 | |
|             img_end = "[IMG_END]";
 | |
| 
 | |
|         } else if (proj == PROJECTOR_TYPE_QWEN2VL || proj == PROJECTOR_TYPE_QWEN25VL) {
 | |
|             // <|vision_start|> ... (image embeddings) ... <|vision_end|>
 | |
|             img_beg = "<|vision_start|>";
 | |
|             img_end = "<|vision_end|>";
 | |
| 
 | |
|         } else if (proj == PROJECTOR_TYPE_LLAMA4) {
 | |
|             // (more details in mtmd_context constructor)
 | |
|             img_beg = "<|image_start|>";
 | |
|             img_end = "<|image_end|>";
 | |
|             LOG_WRN("%s: llama 4 vision is known to have degraded quality:\n"
 | |
|                     "    https://github.com/ggml-org/llama.cpp/pull/13282\n", __func__);
 | |
| 
 | |
|         } else if (proj == PROJECTOR_TYPE_INTERNVL) {
 | |
|             // <img> ... (image embeddings) ... </img>
 | |
|             img_beg = "<img>";
 | |
|             img_end = "</img>";
 | |
| 
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void init_audio() {
 | |
|         GGML_ASSERT(ctx_a != nullptr);
 | |
|         projector_type proj = clip_get_projector_type(ctx_a);
 | |
| 
 | |
|         if (clip_has_whisper_encoder(ctx_a)) {
 | |
|             // TODO @ngxson : check if model n_mel is 128 or 80
 | |
|             w_filters = whisper_precalc_filters::get_128_bins();
 | |
|         }
 | |
| 
 | |
|         LOG_WRN("%s: audio input is in experimental stage and may have reduced quality:\n"
 | |
|                 "    https://github.com/ggml-org/llama.cpp/discussions/13759\n", __func__);
 | |
| 
 | |
|         if (proj == PROJECTOR_TYPE_QWEN2A) {
 | |
|             // <|audio_bos|> ... (embeddings) ... <|audio_eos|>
 | |
|             aud_beg = "<|audio_bos|>";
 | |
|             aud_end = "<|audio_eos|>";
 | |
| 
 | |
|         } else if (proj == PROJECTOR_TYPE_ULTRAVOX) {
 | |
|             // [BEGIN_AUDIO] ... (embeddings) ...
 | |
|             aud_beg = "[BEGIN_AUDIO]";
 | |
| 
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // get clip ctx based on chunk type
 | |
|     clip_ctx * get_clip_ctx(const mtmd_input_chunk * chunk) const {
 | |
|         if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
 | |
|             return ctx_v;
 | |
|         } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_AUDIO) {
 | |
|             return ctx_a;
 | |
|         }
 | |
|         GGML_ABORT("unknown chunk type");
 | |
|     }
 | |
| 
 | |
|     projector_type proj_type_v() const {
 | |
|         return ctx_v ? clip_get_projector_type(ctx_v) : PROJECTOR_TYPE_UNKNOWN;
 | |
|     }
 | |
| 
 | |
|     projector_type proj_type_a() const {
 | |
|         return ctx_a ? clip_get_projector_type(ctx_a) : PROJECTOR_TYPE_UNKNOWN;
 | |
|     }
 | |
| 
 | |
|     ~mtmd_context() {
 | |
|         clip_free(ctx_a);
 | |
|         clip_free(ctx_v);
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     llama_token lookup_token(const std::string & token_text) {
 | |
|         const llama_vocab * vocab = llama_model_get_vocab(text_model);
 | |
|         const int n_vocab = llama_vocab_n_tokens(vocab);
 | |
|         for (int i = 0; i < n_vocab; i++) {
 | |
|             if (token_to_piece(vocab, i, true) == token_text) {
 | |
|                 return i;
 | |
|             }
 | |
|         }
 | |
|         return LLAMA_TOKEN_NULL;
 | |
|     }
 | |
| 
 | |
|     std::string token_to_piece(const llama_vocab * vocab, llama_token token, bool special) {
 | |
|         std::string piece;
 | |
|         piece.resize(piece.capacity());  // using string internal cache, 15 bytes + '\n'
 | |
|         const int n_chars = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
 | |
|         if (n_chars < 0) {
 | |
|             piece.resize(-n_chars);
 | |
|             int check = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
 | |
|             GGML_ASSERT(check == -n_chars);
 | |
|         } else {
 | |
|             piece.resize(n_chars);
 | |
|         }
 | |
|         return piece;
 | |
|     }
 | |
| };
 | |
| 
 | |
| mtmd_context * mtmd_init_from_file(const char * mmproj_fname,
 | |
|         const struct llama_model * text_model,
 | |
|         const struct mtmd_context_params ctx_params) {
 | |
|     try {
 | |
|         return new mtmd_context(mmproj_fname, text_model, ctx_params);
 | |
|     } catch (const std::exception & e) {
 | |
|         LOG_ERR("%s: error: %s\n", __func__, e.what());
 | |
|         return nullptr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void mtmd_free(mtmd_context * ctx) {
 | |
|     if (ctx) {
 | |
|         delete ctx;
 | |
|     }
 | |
| }
 | |
| 
 | |
| struct mtmd_tokenizer {
 | |
|     mtmd_context * ctx;
 | |
|     std::vector<const mtmd_bitmap *> bitmaps;
 | |
| 
 | |
|     std::string input_text;
 | |
|     bool add_special;
 | |
|     bool parse_special;
 | |
|     const llama_vocab * vocab;
 | |
| 
 | |
|     mtmd_input_chunks cur;
 | |
| 
 | |
|     mtmd_tokenizer(mtmd_context * ctx,
 | |
|             const mtmd_input_text * text,
 | |
|             const mtmd_bitmap ** bitmaps,
 | |
|             size_t n_bitmaps) : ctx(ctx), bitmaps(bitmaps, bitmaps + n_bitmaps) {
 | |
|         add_special   = text->add_special;
 | |
|         parse_special = text->parse_special;
 | |
|         input_text    = text->text;
 | |
|         vocab         = llama_model_get_vocab(ctx->text_model);
 | |
| 
 | |
|         // for compatibility, we convert image marker to media marker
 | |
|         string_replace_all(input_text, MTMD_DEFAULT_IMAGE_MARKER, ctx->media_marker);
 | |
|     }
 | |
| 
 | |
|     int32_t tokenize(mtmd_input_chunks * output) {
 | |
|         cur.entries.clear();
 | |
|         std::vector<std::string> parts = split_text(input_text, ctx->media_marker);
 | |
|         size_t i_bm = 0; // index of the current bitmap
 | |
|         for (auto & part : parts) {
 | |
|             if (part == ctx->media_marker) {
 | |
|                 // this is a marker, we should add the next bitmap
 | |
|                 if (i_bm >= bitmaps.size()) {
 | |
|                     LOG_ERR("%s: error: number of bitmaps (%zu) does not match number of markers (%zu)\n",
 | |
|                             __func__, bitmaps.size(), parts.size() - 1);
 | |
|                     return 1;
 | |
|                 }
 | |
|                 const mtmd_bitmap * bitmap = bitmaps[i_bm++];
 | |
|                 int32_t res = add_media(bitmap);
 | |
|                 if (res != 0) {
 | |
|                     return res;
 | |
|                 }
 | |
|             } else {
 | |
|                 // this is a text part, we should add it as text
 | |
|                 add_text(part, parse_special);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (add_special && llama_vocab_get_add_bos(vocab)) {
 | |
|             // if first chunk is text, we add BOS token to first text chunk
 | |
|             // otherwise, create a new text chunk with BOS token
 | |
|             if (!cur.entries.empty() && cur.entries[0].type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
 | |
|                 // add BOS token to the beginning of first text chunk
 | |
|                 cur.entries[0].tokens_text.insert(cur.entries[0].tokens_text.begin(), llama_vocab_bos(vocab));
 | |
|             } else {
 | |
|                 // create a new text chunk with BOS token at the beginning
 | |
|                 mtmd_input_chunk bos_chunk{
 | |
|                     MTMD_INPUT_CHUNK_TYPE_TEXT,
 | |
|                     {llama_vocab_bos(vocab)},
 | |
|                     nullptr, // image tokens
 | |
|                     nullptr, // audio tokens
 | |
|                 };
 | |
|                 cur.entries.insert(cur.entries.begin(), std::move(bos_chunk));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (add_special && llama_vocab_get_add_eos(vocab)) {
 | |
|             // if last chunk is text, we add EOS token to it
 | |
|             add_text({llama_vocab_eos(vocab)});
 | |
|         }
 | |
| 
 | |
|         if (i_bm != bitmaps.size()) {
 | |
|             LOG_ERR("%s: error: number of bitmaps (%zu) does not match number of markers (%zu)\n",
 | |
|                     __func__, bitmaps.size(), parts.size() - 1);
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         *output = std::move(cur);
 | |
| 
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     void add_text(const std::string & txt, bool parse_special) {
 | |
|         LOG_DBG("%s: %s\n", __func__, txt.c_str());
 | |
|         auto tokens = mtmd_tokenize_text_internal(vocab, txt, /* add_special */ false, parse_special);
 | |
|         add_text(tokens);
 | |
|     }
 | |
| 
 | |
|     void add_text(const std::vector<llama_token> & tokens) {
 | |
|         if (tokens.empty()) {
 | |
|             return;
 | |
|         }
 | |
|         // if last entry is also a text chunk, add tokens to it instead of creating new chunk
 | |
|         if (!cur.entries.empty() && cur.entries.back().type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
 | |
|             cur.entries.back().tokens_text.insert(
 | |
|                                             cur.entries.back().tokens_text.end(),
 | |
|                                             tokens.begin(),
 | |
|                                             tokens.end());
 | |
|         } else {
 | |
|             mtmd_input_chunk chunk{
 | |
|                 MTMD_INPUT_CHUNK_TYPE_TEXT,
 | |
|                 tokens,
 | |
|                 nullptr, // image tokens
 | |
|                 nullptr, // audio tokens
 | |
|             };
 | |
|             cur.entries.emplace_back(std::move(chunk));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     int32_t add_media(const mtmd_bitmap * bitmap) {
 | |
|         if (!bitmap->is_audio) {
 | |
|             // handle image
 | |
| 
 | |
|             if (!ctx->ctx_v) {
 | |
|                 LOG_ERR("%s: error: model does not support vision input\n", __func__);
 | |
|                 return 2;
 | |
|             }
 | |
| 
 | |
|             if (!ctx->img_beg.empty()) {
 | |
|                 add_text(ctx->img_beg, true); // add image begin token
 | |
|             }
 | |
| 
 | |
|             // convert mtmd_bitmap to clip_image_u8
 | |
|             clip_image_u8_ptr img_u8(clip_image_u8_init());
 | |
|             img_u8->nx = bitmap->nx;
 | |
|             img_u8->ny = bitmap->ny;
 | |
|             img_u8->buf.resize(bitmap->data.size());
 | |
|             std::memcpy(img_u8->buf.data(), bitmap->data.data(), img_u8->nx * img_u8->ny * 3);
 | |
| 
 | |
|             // preprocess image
 | |
|             clip_image_f32_batch batch_f32;
 | |
|             bool ok = clip_image_preprocess(ctx->ctx_v, img_u8.get(), &batch_f32);
 | |
|             if (!ok) {
 | |
|                 LOG_ERR("Unable to preprocess image\n");
 | |
|                 return 2;
 | |
|             }
 | |
| 
 | |
|             // handle llava-uhd style preprocessing
 | |
|             if (
 | |
|                 ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_5
 | |
|                 || ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_6
 | |
|                 || ctx->slice_tmpl == MTMD_SLICE_TMPL_LLAMA4
 | |
|             ) {
 | |
|                 const int n_col = batch_f32.grid_x;
 | |
|                 const int n_row = batch_f32.grid_y;
 | |
|                 // split batch into chunks of single images
 | |
|                 // NOTE: batch_f32 will be invalidated after this call
 | |
|                 auto chunks = split_batch_to_chunk(std::move(batch_f32), bitmap->id);
 | |
|                 GGML_ASSERT(chunks.size() > 0);
 | |
| 
 | |
|                 auto ov_chunk = std::move(chunks.front());
 | |
|                 chunks.erase(chunks.begin());
 | |
| 
 | |
|                 // add overview image (first)
 | |
|                 if (ctx->ov_img_first) {
 | |
|                     if (ctx->tok_ov_img_start != LLAMA_TOKEN_NULL) {
 | |
|                         add_text({ctx->tok_ov_img_start});
 | |
|                     }
 | |
|                     cur.entries.emplace_back(std::move(ov_chunk));
 | |
|                     if (ctx->tok_ov_img_end != LLAMA_TOKEN_NULL) {
 | |
|                         add_text({ctx->tok_ov_img_end});
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 // add slices (or tiles)
 | |
|                 if (!chunks.empty()) {
 | |
|                     GGML_ASSERT((int)chunks.size() == n_row * n_col);
 | |
|                     if (ctx->tok_slices_start != LLAMA_TOKEN_NULL) {
 | |
|                         add_text({ctx->tok_slices_start});
 | |
|                     }
 | |
|                     for (int y = 0; y < n_row; y++) {
 | |
|                         for (int x = 0; x < n_col; x++) {
 | |
|                             const bool is_last_in_row = (x == n_col - 1);
 | |
|                             if (ctx->tok_sli_img_start != LLAMA_TOKEN_NULL) {
 | |
|                                 add_text({ctx->tok_sli_img_start});
 | |
|                             }
 | |
|                             cur.entries.emplace_back(std::move(chunks[y * n_col + x]));
 | |
|                             if (ctx->tok_sli_img_end != LLAMA_TOKEN_NULL) {
 | |
|                                 add_text({ctx->tok_sli_img_end});
 | |
|                             }
 | |
|                             if (!is_last_in_row && ctx->tok_sli_img_mid != LLAMA_TOKEN_NULL) {
 | |
|                                 add_text({ctx->tok_sli_img_mid});
 | |
|                             }
 | |
|                         }
 | |
|                         if ((y != n_row - 1 || ctx->tok_row_end_trail) && ctx->tok_row_end != LLAMA_TOKEN_NULL) {
 | |
|                             add_text({ctx->tok_row_end});
 | |
|                         }
 | |
|                     }
 | |
|                     if (ctx->tok_slices_end != LLAMA_TOKEN_NULL) {
 | |
|                         add_text({ctx->tok_slices_end});
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 // add overview image (last)
 | |
|                 if (!ctx->ov_img_first) {
 | |
|                     if (ctx->tok_ov_img_start != LLAMA_TOKEN_NULL) {
 | |
|                         add_text({ctx->tok_ov_img_start});
 | |
|                     }
 | |
|                     cur.entries.emplace_back(std::move(ov_chunk));
 | |
|                     if (ctx->tok_ov_img_end != LLAMA_TOKEN_NULL) {
 | |
|                         add_text({ctx->tok_ov_img_end});
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|             } else {
 | |
|                 size_t n_tokens = 0;
 | |
|                 for (const auto & entry : batch_f32.entries) {
 | |
|                     n_tokens += clip_n_output_tokens(ctx->ctx_v, entry.get());
 | |
|                 }
 | |
| 
 | |
|                 mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens);
 | |
|                 if (ctx->use_mrope) {
 | |
|                     // for Qwen2VL, we need this information for M-RoPE decoding positions
 | |
|                     image_tokens->nx = clip_n_output_tokens_x(ctx->ctx_v, batch_f32.entries[0].get());
 | |
|                     image_tokens->ny = clip_n_output_tokens_y(ctx->ctx_v, batch_f32.entries[0].get());
 | |
|                     image_tokens->use_mrope_pos = true;
 | |
|                 } else {
 | |
|                     // other models, we only need the total number of tokens
 | |
|                     image_tokens->nx = n_tokens;
 | |
|                     image_tokens->ny = 1;
 | |
|                 }
 | |
|                 image_tokens->batch_f32 = std::move(batch_f32);
 | |
|                 image_tokens->id = bitmap->id; // optional
 | |
| 
 | |
|                 LOG_DBG("image_tokens->nx = %d\n", image_tokens->nx);
 | |
|                 LOG_DBG("image_tokens->ny = %d\n", image_tokens->ny);
 | |
|                 LOG_DBG("batch_f32 size = %d\n", (int)image_tokens->batch_f32.entries.size());
 | |
| 
 | |
|                 mtmd_input_chunk chunk{
 | |
|                     MTMD_INPUT_CHUNK_TYPE_IMAGE,
 | |
|                     {}, // text tokens
 | |
|                     std::move(image_tokens),
 | |
|                     nullptr, // audio tokens
 | |
|                 };
 | |
|                 cur.entries.emplace_back(std::move(chunk));
 | |
|             }
 | |
| 
 | |
|             if (!ctx->img_end.empty()) {
 | |
|                 add_text(ctx->img_end, true); // add image end token
 | |
|             }
 | |
| 
 | |
|         } else {
 | |
|             // handle audio
 | |
| 
 | |
|             if (!ctx->ctx_a) {
 | |
|                 LOG_ERR("%s: error: model does not support audio input\n", __func__);
 | |
|                 return 2;
 | |
|             }
 | |
| 
 | |
|             if (bitmap->data.size() == 0) {
 | |
|                 LOG_ERR("%s: error: empty audio data\n", __func__);
 | |
|                 return 2;
 | |
|             }
 | |
| 
 | |
|             if (!ctx->aud_beg.empty()) {
 | |
|                 add_text(ctx->aud_beg, true); // add audio begin token
 | |
|             }
 | |
| 
 | |
|             // preprocess audio
 | |
|             GGML_ASSERT(ctx->w_filters.n_mel); // make sure we have filter preloaded
 | |
|             std::vector<whisper_preprocessor::whisper_mel> mel_spec_chunks;
 | |
|             const float * samples = (const float *)bitmap->data.data();
 | |
|             size_t n_samples = bitmap->data.size() / sizeof(float);
 | |
|             bool ok = whisper_preprocessor::preprocess_audio(samples, n_samples, ctx->w_filters, mel_spec_chunks);
 | |
|             if (!ok) {
 | |
|                 LOG_ERR("Unable to preprocess audio\n");
 | |
|                 return 2;
 | |
|             }
 | |
| 
 | |
|             // consider each mel_spec as a separate audio chunk
 | |
|             // TODO: maybe support batching, but this may come with memory cost
 | |
|             for (auto & mel_spec : mel_spec_chunks) {
 | |
|                 clip_image_f32_ptr mel_f32(clip_image_f32_init());
 | |
|                 mel_f32->nx  = mel_spec.n_len;
 | |
|                 mel_f32->ny  = mel_spec.n_mel;
 | |
|                 mel_f32->buf = std::move(mel_spec.data);
 | |
|                 size_t n_tokens = clip_n_output_tokens(ctx->ctx_a, mel_f32.get());
 | |
| 
 | |
|                 clip_image_f32_batch batch_f32;
 | |
|                 batch_f32.is_audio = true;
 | |
|                 batch_f32.entries.push_back(std::move(mel_f32));
 | |
| 
 | |
|                 mtmd_audio_tokens_ptr audio_tokens(new mtmd_audio_tokens);
 | |
|                 audio_tokens->n_tokens = n_tokens;
 | |
|                 audio_tokens->batch_f32 = std::move(batch_f32);
 | |
|                 audio_tokens->id = bitmap->id; // optional
 | |
| 
 | |
|                 LOG_DBG("audio_tokens->n_tokens = %d\n", audio_tokens->n_tokens);
 | |
| 
 | |
|                 mtmd_input_chunk chunk{
 | |
|                     MTMD_INPUT_CHUNK_TYPE_AUDIO,
 | |
|                     {}, // text tokens
 | |
|                     nullptr, // image tokens
 | |
|                     std::move(audio_tokens),
 | |
|                 };
 | |
|                 cur.entries.emplace_back(std::move(chunk));
 | |
|             }
 | |
| 
 | |
|             if (!ctx->aud_end.empty()) {
 | |
|                 add_text(ctx->aud_end, true); // add audio end token
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     std::vector<mtmd_input_chunk> split_batch_to_chunk(clip_image_f32_batch && batch_f32, const std::string & id) {
 | |
|         std::vector<mtmd_input_chunk> chunks;
 | |
| 
 | |
|         for (auto & entry : batch_f32.entries) {
 | |
|             mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens);
 | |
|             image_tokens->nx = clip_n_output_tokens(ctx->ctx_v, entry.get());
 | |
|             image_tokens->ny = 1;
 | |
|             image_tokens->batch_f32.entries.push_back(std::move(entry));
 | |
|             image_tokens->id = id;
 | |
| 
 | |
|             mtmd_input_chunk chunk{
 | |
|                 MTMD_INPUT_CHUNK_TYPE_IMAGE,
 | |
|                 {}, // text tokens
 | |
|                 std::move(image_tokens),
 | |
|                 nullptr, // audio tokens
 | |
|             };
 | |
|             chunks.emplace_back(std::move(chunk));
 | |
|         }
 | |
| 
 | |
|         return chunks;
 | |
|     }
 | |
| 
 | |
|     // for example: "a <__media__> b <__media__> c" --> "a", "<__media__>", "b", "<__media__>", "c"
 | |
|     static std::vector<std::string> split_text(const std::string & input, const std::string & delimiter) {
 | |
|         std::vector<std::string> result;
 | |
|         if (input.empty()) {
 | |
|             return result;
 | |
|         }
 | |
|         size_t start = 0;
 | |
|         size_t pos = 0;
 | |
|         while ((pos = input.find(delimiter, start)) != std::string::npos) {
 | |
|             if (pos > start) {
 | |
|                 result.push_back(input.substr(start, pos - start));
 | |
|             }
 | |
|             result.push_back(delimiter);
 | |
|             start = pos + delimiter.length();
 | |
|         }
 | |
|         if (start < input.length()) {
 | |
|             result.push_back(input.substr(start));
 | |
|         }
 | |
|         return result;
 | |
|     }
 | |
| 
 | |
|     // copied from common_tokenize
 | |
|     static std::vector<llama_token> mtmd_tokenize_text_internal(
 | |
|         const struct llama_vocab * vocab,
 | |
|                const std::string & text,
 | |
|                             bool   add_special,
 | |
|                             bool   parse_special) {
 | |
|         // upper limit for the number of tokens
 | |
|         int n_tokens = text.length() + 2 * add_special;
 | |
|         std::vector<llama_token> result(n_tokens);
 | |
|         n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
 | |
|         if (n_tokens < 0) {
 | |
|             result.resize(-n_tokens);
 | |
|             int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
 | |
|             GGML_ASSERT(check == -n_tokens);
 | |
|         } else {
 | |
|             result.resize(n_tokens);
 | |
|         }
 | |
|         return result;
 | |
|     }
 | |
| };
 | |
| 
 | |
| int32_t mtmd_tokenize(mtmd_context * ctx,
 | |
|             mtmd_input_chunks * output,
 | |
|             const mtmd_input_text * text,
 | |
|             const mtmd_bitmap ** bitmaps,
 | |
|             size_t n_bitmaps) {
 | |
|     mtmd_tokenizer tokenizer(ctx, text, bitmaps, n_bitmaps);
 | |
|     return tokenizer.tokenize(output);
 | |
| }
 | |
| 
 | |
| int32_t mtmd_encode_chunk(mtmd_context * ctx, const mtmd_input_chunk * chunk) {
 | |
|     if (chunk->type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
 | |
|         LOG_WRN("mtmd_encode_chunk has no effect for text chunks\n");
 | |
|         return 0;
 | |
|     } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
 | |
|         if (!ctx->ctx_v) {
 | |
|             LOG_ERR("%s: model does not support vision input\n", __func__);
 | |
|             return 1;
 | |
|         }
 | |
|         return mtmd_encode(ctx, chunk->tokens_image.get());
 | |
|     } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_AUDIO) {
 | |
|         if (!ctx->ctx_a) {
 | |
|             LOG_ERR("%s: model does not support audio input\n", __func__);
 | |
|             return 1;
 | |
|         }
 | |
|         int n_mmproj_embd = ctx->n_embd_text;
 | |
|         ctx->image_embd_v.resize(chunk->tokens_audio->n_tokens * n_mmproj_embd);
 | |
|         bool ok = clip_image_batch_encode(
 | |
|             ctx->ctx_a,
 | |
|             ctx->n_threads,
 | |
|             &chunk->tokens_audio->batch_f32,
 | |
|             ctx->image_embd_v.data());
 | |
|         return ok ? 0 : 1;
 | |
|     }
 | |
| 
 | |
|     LOG_ERR("%s: unknown chunk type %d\n", __func__, (int)chunk->type);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int32_t mtmd_encode(mtmd_context * ctx, const mtmd_image_tokens * image_tokens) {
 | |
|     clip_ctx * ctx_clip = ctx->ctx_v;
 | |
|     if (!ctx_clip) {
 | |
|         LOG_ERR("%s: this API does not support non-vision input, please use mtmd_encode_chunk instead\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
|     int n_mmproj_embd = clip_n_mmproj_embd(ctx_clip);
 | |
|     ctx->image_embd_v.resize(image_tokens->n_tokens() * n_mmproj_embd);
 | |
|     bool ok = false;
 | |
| 
 | |
|     if (clip_is_llava(ctx_clip) || clip_is_minicpmv(ctx_clip) || clip_is_glm(ctx_clip)) {
 | |
|         // TODO @ngxson : llava does not support batched encoding ; this should be fixed inside clip_image_batch_encode()
 | |
|         const auto & entries = image_tokens->batch_f32.entries;
 | |
|         for (size_t i = 0; i < entries.size(); i++) {
 | |
|             int n_tokens_per_image = clip_n_output_tokens(ctx_clip, entries[i].get());
 | |
|             ok = clip_image_encode(
 | |
|                 ctx_clip,
 | |
|                 ctx->n_threads,
 | |
|                 entries[i].get(),
 | |
|                 ctx->image_embd_v.data() + i*n_mmproj_embd*n_tokens_per_image);
 | |
|         }
 | |
|     } else {
 | |
|         ok = clip_image_batch_encode(
 | |
|             ctx_clip,
 | |
|             ctx->n_threads,
 | |
|             &image_tokens->batch_f32,
 | |
|             ctx->image_embd_v.data());
 | |
|     }
 | |
| 
 | |
|     return ok ? 0 : 1;
 | |
| }
 | |
| 
 | |
| float * mtmd_get_output_embd(mtmd_context * ctx) {
 | |
|     return ctx->image_embd_v.data();
 | |
| }
 | |
| 
 | |
| bool mtmd_decode_use_non_causal(mtmd_context * ctx) {
 | |
|     if (ctx->ctx_v && clip_get_projector_type(ctx->ctx_v) == PROJECTOR_TYPE_GEMMA3) {
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool mtmd_decode_use_mrope(mtmd_context * ctx) {
 | |
|     return ctx->use_mrope;
 | |
| }
 | |
| 
 | |
| bool mtmd_support_vision(mtmd_context * ctx) {
 | |
|     return ctx->ctx_v != nullptr;
 | |
| }
 | |
| 
 | |
| bool mtmd_support_audio(mtmd_context * ctx) {
 | |
|     return ctx->ctx_a != nullptr;
 | |
| }
 | |
| 
 | |
| int mtmd_get_audio_bitrate(mtmd_context * ctx) {
 | |
|     if (!ctx->ctx_a) {
 | |
|         return -1;
 | |
|     }
 | |
|     // for now, we assume that all audio models have the same bitrate
 | |
|     return 16000; // 16kHz
 | |
| }
 | |
| 
 | |
| //
 | |
| // public API functions
 | |
| //
 | |
| 
 | |
| // mtmd_bitmap
 | |
| 
 | |
| mtmd_bitmap * mtmd_bitmap_init(uint32_t nx,
 | |
|                                uint32_t ny,
 | |
|                                const unsigned char * data) {
 | |
|     mtmd_bitmap * bitmap = new mtmd_bitmap;
 | |
|     bitmap->nx = nx;
 | |
|     bitmap->ny = ny;
 | |
|     size_t data_size = (size_t)nx * ny * 3;
 | |
|     bitmap->data.resize(data_size);
 | |
|     std::memcpy(bitmap->data.data(), data, data_size);
 | |
|     return bitmap;
 | |
| }
 | |
| 
 | |
| mtmd_bitmap * mtmd_bitmap_init_from_audio(size_t n_samples,
 | |
|                                           const float * data) {
 | |
|     mtmd_bitmap * bitmap = new mtmd_bitmap;
 | |
|     bitmap->nx = n_samples;
 | |
|     bitmap->ny = 1;
 | |
|     bitmap->is_audio = true;
 | |
|     size_t data_size = n_samples * sizeof(float);
 | |
|     bitmap->data.resize(data_size);
 | |
|     std::memcpy(bitmap->data.data(), data, data_size);
 | |
|     return bitmap;
 | |
| }
 | |
| 
 | |
| uint32_t mtmd_bitmap_get_nx(const mtmd_bitmap * bitmap) {
 | |
|     return bitmap->nx;
 | |
| }
 | |
| 
 | |
| uint32_t mtmd_bitmap_get_ny(const mtmd_bitmap * bitmap) {
 | |
|     return bitmap->ny;
 | |
| }
 | |
| 
 | |
| const unsigned char * mtmd_bitmap_get_data(const mtmd_bitmap * bitmap) {
 | |
|     return bitmap->data.data();
 | |
| }
 | |
| 
 | |
| size_t mtmd_bitmap_get_n_bytes(const mtmd_bitmap * bitmap) {
 | |
|     return bitmap->data.size();
 | |
| }
 | |
| 
 | |
| bool mtmd_bitmap_is_audio(const mtmd_bitmap * bitmap) {
 | |
|     return bitmap->is_audio;
 | |
| }
 | |
| 
 | |
| const char * mtmd_bitmap_get_id(const mtmd_bitmap * bitmap) {
 | |
|     return bitmap->id.c_str();
 | |
| }
 | |
| 
 | |
| void mtmd_bitmap_set_id(mtmd_bitmap * bitmap, const char * id) {
 | |
|     if (id) {
 | |
|         bitmap->id = std::string(id);
 | |
|     } else {
 | |
|         bitmap->id.clear();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void mtmd_bitmap_free(mtmd_bitmap * bitmap) {
 | |
|     if (bitmap) {
 | |
|         delete bitmap;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // mtmd_input_chunks
 | |
| 
 | |
| mtmd_input_chunks * mtmd_input_chunks_init() {
 | |
|     return new mtmd_input_chunks;
 | |
| }
 | |
| 
 | |
| size_t mtmd_input_chunks_size(const mtmd_input_chunks * chunks) {
 | |
|     return chunks->entries.size();
 | |
| }
 | |
| 
 | |
| const mtmd_input_chunk * mtmd_input_chunks_get(const mtmd_input_chunks * chunks, size_t idx) {
 | |
|     if (idx >= chunks->entries.size()) {
 | |
|         return nullptr;
 | |
|     }
 | |
|     return &chunks->entries[idx];
 | |
| }
 | |
| 
 | |
| void mtmd_input_chunks_free(mtmd_input_chunks * chunks) {
 | |
|     if (chunks) {
 | |
|         delete chunks;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // mtmd_input_chunk
 | |
| 
 | |
| enum mtmd_input_chunk_type mtmd_input_chunk_get_type(const mtmd_input_chunk * chunk) {
 | |
|     return chunk->type;
 | |
| }
 | |
| 
 | |
| const llama_token * mtmd_input_chunk_get_tokens_text(const mtmd_input_chunk * chunk, size_t * n_tokens_output) {
 | |
|     if (chunk->type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
 | |
|         *n_tokens_output = chunk->tokens_text.size();
 | |
|         return chunk->tokens_text.data();
 | |
|     }
 | |
|     *n_tokens_output = 0;
 | |
|     return nullptr;
 | |
| }
 | |
| 
 | |
| const mtmd_image_tokens * mtmd_input_chunk_get_tokens_image(const mtmd_input_chunk * chunk) {
 | |
|     if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
 | |
|         return chunk->tokens_image.get();
 | |
|     }
 | |
|     return nullptr;
 | |
| }
 | |
| 
 | |
| size_t mtmd_input_chunk_get_n_tokens(const mtmd_input_chunk * chunk) {
 | |
|     if (chunk->type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
 | |
|         return chunk->tokens_text.size();
 | |
|     } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
 | |
|         return mtmd_image_tokens_get_n_tokens(chunk->tokens_image.get());
 | |
|     } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_AUDIO) {
 | |
|         return chunk->tokens_audio->n_tokens;
 | |
|     } else {
 | |
|         GGML_ABORT("invalid chunk type");
 | |
|     }
 | |
| }
 | |
| 
 | |
| llama_pos mtmd_input_chunk_get_n_pos(const mtmd_input_chunk * chunk) {
 | |
|     if (chunk->type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
 | |
|         return chunk->tokens_text.size();
 | |
|     } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
 | |
|         return mtmd_image_tokens_get_n_pos(chunk->tokens_image.get());
 | |
|     } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_AUDIO) {
 | |
|         return chunk->tokens_audio->n_tokens;
 | |
|     } else {
 | |
|         GGML_ABORT("invalid chunk type");
 | |
|     }
 | |
| }
 | |
| 
 | |
| const char * mtmd_input_chunk_get_id(const mtmd_input_chunk * chunk) {
 | |
|     if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
 | |
|         return chunk->tokens_image->id.c_str();
 | |
|     } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_AUDIO) {
 | |
|         return chunk->tokens_audio->id.c_str();
 | |
|     }
 | |
|     return nullptr;
 | |
| }
 | |
| 
 | |
| mtmd_input_chunk * mtmd_input_chunk_copy(const mtmd_input_chunk * chunk) {
 | |
|     mtmd_input_chunk * copy = new mtmd_input_chunk{
 | |
|         chunk->type,
 | |
|         chunk->tokens_text,
 | |
|         nullptr,
 | |
|         nullptr,
 | |
|     };
 | |
|     if (chunk->tokens_image) {
 | |
|         // copy the image tokens
 | |
|         copy->tokens_image = mtmd_image_tokens_ptr(new mtmd_image_tokens());
 | |
|         *copy->tokens_image = chunk->tokens_image->clone();
 | |
|     }
 | |
|     if (chunk->tokens_audio) {
 | |
|         // copy the audio tokens
 | |
|         copy->tokens_audio = mtmd_audio_tokens_ptr(new mtmd_audio_tokens());
 | |
|         *copy->tokens_audio = chunk->tokens_audio->clone();
 | |
|     }
 | |
|     return copy;
 | |
| }
 | |
| 
 | |
| void mtmd_input_chunk_free(mtmd_input_chunk * chunk) {
 | |
|     if (chunk) {
 | |
|         delete chunk;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // mtmd_image_tokens
 | |
| 
 | |
| size_t mtmd_image_tokens_get_n_tokens(const mtmd_image_tokens * image_tokens) {
 | |
|     return image_tokens->n_tokens();
 | |
| }
 | |
| 
 | |
| size_t mtmd_image_tokens_get_nx(const mtmd_image_tokens * image_tokens) {
 | |
|     return image_tokens->nx;
 | |
| }
 | |
| 
 | |
| size_t mtmd_image_tokens_get_ny(const mtmd_image_tokens * image_tokens) {
 | |
|     return image_tokens->ny;
 | |
| }
 | |
| 
 | |
| const char * mtmd_image_tokens_get_id(const mtmd_image_tokens * image_tokens) {
 | |
|     return image_tokens->id.c_str();
 | |
| }
 | |
| 
 | |
| llama_pos mtmd_image_tokens_get_n_pos(const mtmd_image_tokens * image_tokens) {
 | |
|     if (image_tokens->use_mrope_pos) {
 | |
|         return 1; // for M-RoPE, the whole image is 1 in temporal dimension
 | |
|     }
 | |
|     return image_tokens->n_tokens();
 | |
| }
 | |
| 
 | |
| // test function
 | |
| 
 | |
| mtmd_input_chunks * mtmd_test_create_input_chunks() {
 | |
|     mtmd_input_chunks * chunks = mtmd_input_chunks_init();
 | |
|     if (!chunks) {
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     // create a text chunk
 | |
|     std::vector<llama_token> tokens_text = { 1, 2, 3, 4, 5 };
 | |
|     mtmd_input_chunk chunk_text{
 | |
|         MTMD_INPUT_CHUNK_TYPE_TEXT,
 | |
|         std::move(tokens_text),
 | |
|         nullptr, // image tokens
 | |
|         nullptr, // audio tokens
 | |
|     };
 | |
|     chunks->entries.emplace_back(std::move(chunk_text));
 | |
| 
 | |
|     // create an image chunk
 | |
|     mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens);
 | |
|     image_tokens->nx = 4;
 | |
|     image_tokens->ny = 4;
 | |
|     image_tokens->batch_f32.entries.resize(16);
 | |
|     image_tokens->id = "image_1";
 | |
|     mtmd_input_chunk chunk_image{
 | |
|         MTMD_INPUT_CHUNK_TYPE_IMAGE,
 | |
|         {}, // text tokens
 | |
|         std::move(image_tokens),
 | |
|         nullptr, // audio tokens
 | |
|     };
 | |
|     chunks->entries.emplace_back(std::move(chunk_image));
 | |
| 
 | |
|     return chunks;
 | |
| }
 | 
