Files
llama.cpp/gguf-py
Piotr Wilkin (ilintar) 34fcc5a4ac model : Apertus model implementation (#15852)
* First attempt

* No permute during convert (fixes qk tensors), proper norm application.

* RoPE = NeoX

* Coherence!

* Migrate xielu params from tensors to hyperparameters

* Simple CUDA kernel

* Revert stupid LLM refactorings

* Chat template support

* configchecker / flake8 errors

* Reorder unary.cu

* I do conclude that LLMs are, in fact, stupid.

* Fix after merge

* Final newline

* Make xIELU an UNARY_OP

* Final newline

* Correctly account for parameter shift

* Argh.

* Update ggml/src/ggml-cpu/unary-ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Refactor: remove unused methods, inline and factorize softplus, add const modifiers

* Revert CUDA changes, implement xIELU as a separate OP

* Pesky newline

* Add float2half / half2float for F16 inputs/outputs

* CUDA variants, attempt 2

* Actually, attempt 3

* Update ggml/src/ggml-cuda/unary.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Missing convert header

* Proper formula and reference for xIELU in the comments.

* Modify unary-ops.cpp to add the functor-based logic besides the template system to retain optimizations

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Add tensor mappings for Apertus to global list instead

* Fix lazy on scalars

* Update ggml/src/ggml-cuda/unary.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Add comment about the constraints on positive/negative alpha

* Change `softplus` to `ggml_softplus`

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-10-02 20:43:22 +03:00
..
2023-08-25 09:26:05 +03:00

gguf

This is a Python package for writing binary files in the GGUF (GGML Universal File) format.

See convert_hf_to_gguf.py as an example for its usage.

Installation

pip install gguf

Optionally, you can install gguf with the extra 'gui' to enable the visual GGUF editor.

pip install gguf[gui]

API Examples/Simple Tools

examples/writer.py — Generates example.gguf in the current directory to demonstrate generating a GGUF file. Note that this file cannot be used as a model.

examples/reader.py — Extracts and displays key-value pairs and tensor details from a GGUF file in a readable format.

gguf/scripts/gguf_dump.py — Dumps a GGUF file's metadata to the console.

gguf/scripts/gguf_set_metadata.py — Allows changing simple metadata values in a GGUF file by key.

gguf/scripts/gguf_convert_endian.py — Allows converting the endianness of GGUF files.

gguf/scripts/gguf_new_metadata.py — Copies a GGUF file with added/modified/removed metadata values.

gguf/scripts/gguf_editor_gui.py — Allows for viewing, editing, adding, or removing metadata values within a GGUF file as well as viewing its tensors with a Qt interface.

Development

Maintainers who participate in development of this package are advised to install it in editable mode:

cd /path/to/llama.cpp/gguf-py

pip install --editable .

Note: This may require to upgrade your Pip installation, with a message saying that editable installation currently requires setup.py. In this case, upgrade Pip to the latest:

pip install --upgrade pip

Automatic publishing with CI

There's a GitHub workflow to make a release automatically upon creation of tags in a specified format.

  1. Bump the version in pyproject.toml.
  2. Create a tag named gguf-vx.x.x where x.x.x is the semantic version number.
git tag -a gguf-v1.0.0 -m "Version 1.0 release"
  1. Push the tags.
git push origin --tags

Manual publishing

If you want to publish the package manually for any reason, you need to have twine and build installed:

pip install build twine

Then, follow these steps to release a new version:

  1. Bump the version in pyproject.toml.
  2. Build the package:
python -m build
  1. Upload the generated distribution archives:
python -m twine upload dist/*

Run Unit Tests

From root of this repository you can run this command to run all the unit tests

python -m unittest discover ./gguf-py -v

TODO

  • Include conversion scripts as command line entry points in this package.