mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	* merged the changes from deepseeker models to main branch
* Moved regex patterns to unicode.cpp and updated unicode.h
* Moved header files
* Resolved issues
* added and refactored unicode_regex_split and related functions
* Updated/merged the deepseek coder pr
* Refactored code
* Adding unicode regex mappings
* Adding unicode regex function
* Added needed functionality, testing remains
* Fixed issues
* Fixed issue with gpt2 regex custom preprocessor
* unicode : fix? unicode_wstring_to_utf8
* lint : fix whitespaces
* tests : add tokenizer tests for numbers
* unicode : remove redundant headers
* tests : remove and rename tokenizer test scripts
* tests : add sample usage
* gguf-py : reader prints warnings on duplicate keys
* llama : towards llama3 tokenization support (wip)
* unicode : shot in the dark to fix tests on Windows
* unicode : first try custom implementations
* convert : add "tokenizer.ggml.pre" GGUF KV (wip)
* llama : use new pre-tokenizer type
* convert : fix pre-tokenizer type writing
* lint : fix
* make : add test-tokenizer-0-llama-v3
* wip
* models : add llama v3 vocab file
* llama : adapt punctuation regex + add llama 3 regex
* minor
* unicode : set bomb
* unicode : set bomb
* unicode : always use std::wregex
* unicode : support \p{N}, \p{L} and \p{P} natively
* unicode : try fix windows
* unicode : category support via std::regex
* unicode : clean-up
* unicode : simplify
* convert : add convert-hf-to-gguf-update.py
ggml-ci
* lint : update
* convert : add falcon
ggml-ci
* unicode : normalize signatures
* lint : fix
* lint : fix
* convert : remove unused functions
* convert : add comments
* convert : exercise contractions
ggml-ci
* lint : fix
* cmake : refactor test targets
* tests : refactor vocab tests
ggml-ci
* tests : add more vocabs and tests
ggml-ci
* unicode : cleanup
* scripts : ignore new update script in check-requirements.sh
* models : add phi-3, mpt, gpt-2, starcoder
* tests : disable obsolete
ggml-ci
* tests : use faster bpe test
ggml-ci
* llama : more prominent warning for old BPE models
* tests : disable test-tokenizer-1-bpe due to slowness
ggml-ci
---------
Co-authored-by: Jaggzh <jaggz.h@gmail.com>
Co-authored-by: Kazim Abrar Mahi <kazimabrarmahi135@gmail.com>
		
	
		
			
				
	
	
		
			276 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			276 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# This script downloads the tokenizer models of the specified models from Huggingface and
 | 
						||
# generates the get_vocab_base_pre() function for convert-hf-to-gguf.py
 | 
						||
#
 | 
						||
# This is necessary in order to analyze the type of pre-tokenizer used by the model and
 | 
						||
# provide the necessary information to llama.cpp via the GGUF header in order to implement
 | 
						||
# the same pre-tokenizer.
 | 
						||
#
 | 
						||
# ref: https://github.com/ggerganov/llama.cpp/pull/6920
 | 
						||
#
 | 
						||
# Instructions:
 | 
						||
#
 | 
						||
# - Add a new model to the "models" list
 | 
						||
# - Run the script with your huggingface token:
 | 
						||
#
 | 
						||
#   python3 convert-hf-to-gguf-update.py <huggingface_token>
 | 
						||
#
 | 
						||
# - Copy-paste the generated get_vocab_base_pre() function into convert-hf-to-gguf.py
 | 
						||
# - Update llama.cpp with the new pre-tokenizer if necessary
 | 
						||
#
 | 
						||
# TODO: generate tokenizer tests for llama.cpp
 | 
						||
# TODO: automate the update of convert-hf-to-gguf.py
 | 
						||
#
 | 
						||
 | 
						||
import os
 | 
						||
import requests
 | 
						||
import sys
 | 
						||
import json
 | 
						||
 | 
						||
from hashlib import sha256
 | 
						||
from enum import IntEnum, auto
 | 
						||
 | 
						||
class TOKENIZER_TYPE(IntEnum):
 | 
						||
    SPM = auto()
 | 
						||
    BPE = auto()
 | 
						||
    WPM = auto()
 | 
						||
 | 
						||
# TODO: this string has to exercise as much pre-tokenizer functionality as possible
 | 
						||
#       will be updated with time - contributions welcome
 | 
						||
chktxt = '\n \n\n \n\n\n \t \t\t \t\n  \n   \n    \n     \n🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
 | 
						||
 | 
						||
if len(sys.argv) == 2:
 | 
						||
    token = sys.argv[1]
 | 
						||
else:
 | 
						||
    print("Usage: python convert-hf-to-gguf-update.py <huggingface_token>")
 | 
						||
    sys.exit(1)
 | 
						||
 | 
						||
# TODO: add models here, base models preferred
 | 
						||
models = [
 | 
						||
        { "name": "llama-spm",      "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", },
 | 
						||
        { "name": "llama-bpe",      "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", },
 | 
						||
        { "name": "phi-3",          "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", },
 | 
						||
        { "name": "deepseek-llm",   "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", },
 | 
						||
        { "name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", },
 | 
						||
        { "name": "falcon",         "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", },
 | 
						||
        { "name": "bert-bge",       "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", },
 | 
						||
        { "name": "mpt",            "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", },
 | 
						||
        { "name": "starcoder",      "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
 | 
						||
        { "name": "gpt-2",          "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", },
 | 
						||
        ]
 | 
						||
 | 
						||
# make directory "models/tokenizers" if it doesn't exist
 | 
						||
if not os.path.exists("models/tokenizers"):
 | 
						||
    os.makedirs("models/tokenizers")
 | 
						||
 | 
						||
def download_file_with_auth(url, token, save_path):
 | 
						||
    headers = {"Authorization": f"Bearer {token}"}
 | 
						||
    response = requests.get(url, headers=headers)
 | 
						||
    if response.status_code == 200:
 | 
						||
        with open(save_path, 'wb') as f:
 | 
						||
            f.write(response.content)
 | 
						||
        print(f"File {save_path} downloaded successfully")
 | 
						||
    else:
 | 
						||
        print(f"Failed to download file. Status code: {response.status_code}")
 | 
						||
 | 
						||
# download the tokenizer models
 | 
						||
for model in models:
 | 
						||
    name = model["name"]
 | 
						||
    repo = model["repo"]
 | 
						||
    tokt = model["tokt"]
 | 
						||
 | 
						||
    if not os.path.exists(f"models/tokenizers/{name}"):
 | 
						||
        os.makedirs(f"models/tokenizers/{name}")
 | 
						||
    else:
 | 
						||
        print(f"Directory models/tokenizers/{name} already exists - skipping")
 | 
						||
        continue
 | 
						||
 | 
						||
    print(f"Downloading {name} to models/tokenizers/{name}")
 | 
						||
 | 
						||
    url = f"{repo}/raw/main/config.json"
 | 
						||
    save_path = f"models/tokenizers/{name}/config.json"
 | 
						||
    download_file_with_auth(url, token, save_path)
 | 
						||
 | 
						||
    url = f"{repo}/raw/main/tokenizer.json"
 | 
						||
    save_path = f"models/tokenizers/{name}/tokenizer.json"
 | 
						||
    download_file_with_auth(url, token, save_path)
 | 
						||
 | 
						||
    if tokt == TOKENIZER_TYPE.SPM:
 | 
						||
        url = f"{repo}/resolve/main/tokenizer.model"
 | 
						||
        save_path = f"models/tokenizers/{name}/tokenizer.model"
 | 
						||
        download_file_with_auth(url, token, save_path)
 | 
						||
 | 
						||
    url = f"{repo}/raw/main/tokenizer_config.json"
 | 
						||
    save_path = f"models/tokenizers/{name}/tokenizer_config.json"
 | 
						||
    download_file_with_auth(url, token, save_path)
 | 
						||
 | 
						||
# generate the source code for the convert-hf-to-gguf.py:get_vocab_base_pre() function:
 | 
						||
# TODO: auto-update convert-hf-to-gguf.py with the generated function
 | 
						||
 | 
						||
src_ifs = ""
 | 
						||
for model in models:
 | 
						||
    name = model["name"]
 | 
						||
    tokt = model["tokt"]
 | 
						||
 | 
						||
    if tokt == TOKENIZER_TYPE.SPM:
 | 
						||
        continue
 | 
						||
 | 
						||
    # create the tokenizer
 | 
						||
    from transformers import AutoTokenizer
 | 
						||
    tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
 | 
						||
 | 
						||
    chktok = tokenizer.encode(chktxt)
 | 
						||
    chkhsh = sha256(str(chktok).encode()).hexdigest()
 | 
						||
 | 
						||
    print(f"model: {name}")
 | 
						||
    print(f"tokt: {tokt}")
 | 
						||
    print(f"repo: {model['repo']}")
 | 
						||
    print(f"chktok: {chktok}")
 | 
						||
    print(f"chkhsh: {chkhsh}")
 | 
						||
 | 
						||
    # print the "pre_tokenizer" content from the tokenizer.json
 | 
						||
    with open(f"models/tokenizers/{name}/tokenizer.json", "r") as f:
 | 
						||
        cfg = json.load(f)
 | 
						||
        pre_tokenizer = cfg["pre_tokenizer"]
 | 
						||
        print("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4))
 | 
						||
 | 
						||
    print(f"\n")
 | 
						||
 | 
						||
    src_ifs += f"        if chkhsh == \"{chkhsh}\":\n"
 | 
						||
    src_ifs += f"            # ref: {model['repo']}\n"
 | 
						||
    src_ifs += f"            res = \"{name}\"\n"
 | 
						||
 | 
						||
src_func = ""
 | 
						||
src_func +=  "    def get_vocab_base_pre(self, tokenizer) -> str:\n"
 | 
						||
src_func +=  "        # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that\n"
 | 
						||
src_func +=  "        # is specific for the BPE pre-tokenizer used by the model\n"
 | 
						||
src_func +=  "        # we will use this unique identifier to write a \"tokenizer.ggml.pre\" entry in the GGUF file which we can\n"
 | 
						||
src_func +=  "        # use in llama.cpp to implement the same pre-tokenizer\n"
 | 
						||
src_func +=  "\n"
 | 
						||
src_func += f"        chktxt = {repr(chktxt)}\n"
 | 
						||
src_func +=  "\n"
 | 
						||
src_func +=  "        chktok = tokenizer.encode(chktxt)\n"
 | 
						||
src_func +=  "        chkhsh = sha256(str(chktok).encode()).hexdigest()\n"
 | 
						||
src_func +=  "\n"
 | 
						||
src_func +=  "        print(f\"chktok: {chktok}\")\n"
 | 
						||
src_func +=  "        print(f\"chkhsh: {chkhsh}\")\n"
 | 
						||
src_func +=  "\n"
 | 
						||
src_func +=  "        res = None\n"
 | 
						||
src_func +=  "\n"
 | 
						||
src_func +=  "        # NOTE: if you get an error here, you need to add the model to the if-elif chain below\n"
 | 
						||
src_func +=  "        #       don't do this manually - use the convert-hf-to-gguf-update.py script!\n"
 | 
						||
src_func += f"{src_ifs}\n"
 | 
						||
src_func +=  "        if res is None:\n"
 | 
						||
src_func +=  "            print(\"\\n\")\n"
 | 
						||
src_func +=  "            print(\"**************************************************************************************\")\n"
 | 
						||
src_func +=  "            print(\"** WARNING: The BPE pre-tokenizer was not recognized!\")\n"
 | 
						||
src_func +=  "            print(\"**          This means that it was not added yet or you are using an older version.\")\n"
 | 
						||
src_func +=  "            print(\"**          Check convert-hf-to-gguf-update.py and update it accordingly.\")\n"
 | 
						||
src_func +=  "            print(\"**\")\n"
 | 
						||
src_func +=  "            print(f\"** chkhsh:  {chkhsh}\")\n"
 | 
						||
src_func +=  "            print(\"**************************************************************************************\")\n"
 | 
						||
src_func +=  "            print(\"\\n\")\n"
 | 
						||
src_func +=  "            raise NotImplementedError(\"BPE pre-tokenizer was not recognized - update get_vocab_base_pre()\")\n"
 | 
						||
src_func +=  "\n"
 | 
						||
src_func +=  "        print(f\"tokenizer.ggml.pre: {res}\")\n"
 | 
						||
src_func +=  "        print(f\"chkhsh: {chkhsh}\")\n"
 | 
						||
src_func +=  "\n"
 | 
						||
src_func +=  "        return res\n"
 | 
						||
 | 
						||
print(src_func)
 | 
						||
 | 
						||
print("\n")
 | 
						||
print("!!! Copy-paste the function above into convert-hf-to-gguf.py !!!")
 | 
						||
print("\n")
 | 
						||
 | 
						||
# generate tests for each tokenizer model
 | 
						||
 | 
						||
tests = [
 | 
						||
    "",
 | 
						||
    " ",
 | 
						||
    "  ",
 | 
						||
    "   ",
 | 
						||
    "\t",
 | 
						||
    "\n",
 | 
						||
    "\n\n",
 | 
						||
    "\n\n\n",
 | 
						||
    "\t\n",
 | 
						||
    "Hello world",
 | 
						||
    " Hello world",
 | 
						||
    "Hello World",
 | 
						||
    " Hello World",
 | 
						||
    " Hello World!",
 | 
						||
    "Hello, world!",
 | 
						||
    " Hello, world!",
 | 
						||
    " this is 🦙.cpp",
 | 
						||
    "w048 7tuijk dsdfhu",
 | 
						||
    "нещо на Български",
 | 
						||
    "កាន់តែពិសេសអាចខលចេញ",
 | 
						||
    "🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
 | 
						||
    "Hello",
 | 
						||
    " Hello",
 | 
						||
    "  Hello",
 | 
						||
    "   Hello",
 | 
						||
    "    Hello",
 | 
						||
    "    Hello\n    Hello",
 | 
						||
    " (",
 | 
						||
    "\n =",
 | 
						||
    "' era",
 | 
						||
    "Hello, y'all! How are you 😁 ?我想在apple工作1314151天~",
 | 
						||
    "3",
 | 
						||
    "33",
 | 
						||
    "333",
 | 
						||
    "3333",
 | 
						||
    "33333",
 | 
						||
    "333333",
 | 
						||
    "3333333",
 | 
						||
    "33333333",
 | 
						||
    "333333333",
 | 
						||
    chktxt,
 | 
						||
]
 | 
						||
 | 
						||
# write the tests to ./models/ggml-vocab-{name}.gguf.inp
 | 
						||
# the format is:
 | 
						||
#
 | 
						||
# test0
 | 
						||
# __ggml_vocab_test__
 | 
						||
# test1
 | 
						||
# __ggml_vocab_test__
 | 
						||
# ...
 | 
						||
#
 | 
						||
 | 
						||
# with each model, encode all tests and write the results in ./models/ggml-vocab-{name}.gguf.out
 | 
						||
# for each test, write the resulting tokens on a separate line
 | 
						||
 | 
						||
for model in models:
 | 
						||
    name = model["name"]
 | 
						||
    tokt = model["tokt"]
 | 
						||
 | 
						||
    # create the tokenizer
 | 
						||
    from transformers import AutoTokenizer
 | 
						||
    tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
 | 
						||
 | 
						||
    with open(f"models/ggml-vocab-{name}.gguf.inp", "w") as f:
 | 
						||
        for text in tests:
 | 
						||
            f.write(f"{text}")
 | 
						||
            f.write("\n__ggml_vocab_test__\n")
 | 
						||
 | 
						||
    with open(f"models/ggml-vocab-{name}.gguf.out", "w") as f:
 | 
						||
        for text in tests:
 | 
						||
            res = tokenizer.encode(text, add_special_tokens=False)
 | 
						||
            for r in res:
 | 
						||
                f.write(f" {r}")
 | 
						||
            f.write("\n")
 | 
						||
 | 
						||
    print(f"Tests for {name} written in ./models/ggml-vocab-{name}.gguf.*")
 | 
						||
 | 
						||
# generate commands for creating vocab files
 | 
						||
 | 
						||
print("\nRun the following commands to generate the vocab files for testing:\n")
 | 
						||
 | 
						||
for model in models:
 | 
						||
    name = model["name"]
 | 
						||
 | 
						||
    print(f"python3 convert-hf-to-gguf.py models/tokenizers/{name}/ --outfile models/ggml-vocab-{name}.gguf --vocab-only")
 | 
						||
 | 
						||
print("\n")
 |