mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			2255 lines
		
	
	
		
			75 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2255 lines
		
	
	
		
			75 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Defines fileno on msys:
 | |
| #ifndef _GNU_SOURCE
 | |
| #define _GNU_SOURCE
 | |
| #include <cstdint>
 | |
| #include <cstdio>
 | |
| #endif
 | |
| 
 | |
| #include "llama_util.h"
 | |
| #include "llama.h"
 | |
| 
 | |
| #include "ggml.h"
 | |
| 
 | |
| #include <array>
 | |
| #include <ctime>
 | |
| #include <cinttypes>
 | |
| #include <fstream>
 | |
| #include <random>
 | |
| #include <map>
 | |
| #include <unordered_map>
 | |
| #include <queue>
 | |
| #include <cassert>
 | |
| #include <cstring>
 | |
| #include <climits>
 | |
| #include <memory>
 | |
| #include <algorithm>
 | |
| #include <initializer_list>
 | |
| #include <thread>
 | |
| #include <atomic>
 | |
| #include <mutex>
 | |
| 
 | |
| #define LLAMA_USE_SCRATCH
 | |
| #define LLAMA_MAX_SCRATCH_BUFFERS 16
 | |
| 
 | |
| 
 | |
| // available llama models
 | |
| enum e_model {
 | |
|     MODEL_UNKNOWN,
 | |
|     MODEL_7B,
 | |
|     MODEL_13B,
 | |
|     MODEL_30B,
 | |
|     MODEL_65B,
 | |
| };
 | |
| 
 | |
| static const size_t MB = 1024*1024;
 | |
| 
 | |
| // computed for n_ctx == 2048
 | |
| // TODO: dynamically determine these sizes
 | |
| //       needs modifications in ggml
 | |
| 
 | |
| static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0()
 | |
| {
 | |
|     static std::map<e_model, size_t> _MEM_REQ_SCRATCH0 = {
 | |
|         { MODEL_7B,    512ull * MB },
 | |
|         { MODEL_13B,   512ull * MB },
 | |
|         { MODEL_30B,   512ull * MB },
 | |
|         { MODEL_65B,   512ull * MB },
 | |
|     };
 | |
|     return _MEM_REQ_SCRATCH0;
 | |
| }
 | |
| 
 | |
| static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1()
 | |
| {
 | |
|     static std::map<e_model, size_t> _MEM_REQ_SCRATCH1 = {
 | |
|         { MODEL_7B,    512ull * MB },
 | |
|         { MODEL_13B,   512ull * MB },
 | |
|         { MODEL_30B,   512ull * MB },
 | |
|         { MODEL_65B,   512ull * MB },
 | |
|     };
 | |
|     return _MEM_REQ_SCRATCH1;
 | |
| };
 | |
| 
 | |
| // 2*n_embd*n_ctx*n_layer*sizeof(float16)
 | |
| static const std::map<e_model, size_t> & MEM_REQ_KV_SELF()
 | |
| {
 | |
|     static std::map<e_model, size_t> _MEM_REQ_KV_SELF = {
 | |
|         { MODEL_7B,   1026ull * MB },
 | |
|         { MODEL_13B,  1608ull * MB },
 | |
|         { MODEL_30B,  3124ull * MB },
 | |
|         { MODEL_65B,  5120ull * MB },
 | |
|     };
 | |
|     return _MEM_REQ_KV_SELF;
 | |
| };
 | |
| 
 | |
| // this is mostly needed for temporary mul_mat buffers to dequantize the data
 | |
| // not actually needed if BLAS is disabled
 | |
| static const std::map<e_model, size_t> & MEM_REQ_EVAL()
 | |
| {
 | |
|     static std::map<e_model, size_t> _MEM_REQ_EVAL = {
 | |
|         { MODEL_7B,   768ull * MB },
 | |
|         { MODEL_13B, 1024ull * MB },
 | |
|         { MODEL_30B, 1280ull * MB },
 | |
|         { MODEL_65B, 1536ull * MB },
 | |
|     };
 | |
|     return _MEM_REQ_EVAL;
 | |
| };
 | |
| 
 | |
| // default hparams (LLaMA 7B)
 | |
| struct llama_hparams {
 | |
|     uint32_t n_vocab = 32000;
 | |
|     uint32_t n_ctx   = 512;   // this is provided as user input?
 | |
|     uint32_t n_embd  = 4096;
 | |
|     uint32_t n_mult  = 256;
 | |
|     uint32_t n_head  = 32;
 | |
|     uint32_t n_layer = 32;
 | |
|     uint32_t n_rot   = 64;
 | |
|     enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16;
 | |
| 
 | |
|     bool operator!=(const llama_hparams & other) const {
 | |
|         return memcmp(this, &other, sizeof(llama_hparams));
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct llama_layer {
 | |
|     // normalization
 | |
|     struct ggml_tensor * attention_norm;
 | |
| 
 | |
|     // attention
 | |
|     struct ggml_tensor * wq;
 | |
|     struct ggml_tensor * wk;
 | |
|     struct ggml_tensor * wv;
 | |
|     struct ggml_tensor * wo;
 | |
| 
 | |
|     // normalization
 | |
|     struct ggml_tensor * ffn_norm;
 | |
| 
 | |
|     // ff
 | |
|     struct ggml_tensor * w1;
 | |
|     struct ggml_tensor * w2;
 | |
|     struct ggml_tensor * w3;
 | |
| };
 | |
| 
 | |
| struct llama_kv_cache {
 | |
|     struct ggml_tensor * k;
 | |
|     struct ggml_tensor * v;
 | |
| 
 | |
|     struct ggml_context * ctx = NULL;
 | |
| 
 | |
|     llama_buffer buf;
 | |
| 
 | |
|     int n; // number of tokens currently in the cache
 | |
| 
 | |
|     ~llama_kv_cache() {
 | |
|         if (ctx) {
 | |
|             ggml_free(ctx);
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct llama_model {
 | |
|     e_model type = MODEL_UNKNOWN;
 | |
| 
 | |
|     llama_hparams hparams;
 | |
| 
 | |
|     struct ggml_tensor * tok_embeddings;
 | |
| 
 | |
|     struct ggml_tensor * norm;
 | |
|     struct ggml_tensor * output;
 | |
| 
 | |
|     std::vector<llama_layer> layers;
 | |
| 
 | |
|     // context
 | |
|     struct ggml_context * ctx = NULL;
 | |
| 
 | |
|     // key + value cache for the self attention
 | |
|     // TODO: move to llama_state
 | |
|     struct llama_kv_cache kv_self;
 | |
| 
 | |
|     // the model memory buffer
 | |
|     llama_buffer buf;
 | |
| 
 | |
|     // model memory mapped file
 | |
|     std::unique_ptr<llama_mmap> mapping;
 | |
| 
 | |
|     // objects representing data potentially being locked in memory
 | |
|     llama_mlock mlock_buf;
 | |
|     llama_mlock mlock_mmap;
 | |
| 
 | |
|     // for quantize-stats only
 | |
|     std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
 | |
| 
 | |
|     ~llama_model() {
 | |
|         if (ctx) {
 | |
|             ggml_free(ctx);
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct llama_vocab {
 | |
|     using id    = int32_t;
 | |
|     using token = std::string;
 | |
| 
 | |
|     struct token_score {
 | |
|         token tok;
 | |
|         float score;
 | |
|     };
 | |
| 
 | |
|     std::unordered_map<token, id> token_to_id;
 | |
|     std::vector<token_score> id_to_token;
 | |
| };
 | |
| 
 | |
| struct llama_context {
 | |
|     std::mt19937 rng;
 | |
| 
 | |
|     int64_t t_load_us = 0;
 | |
|     int64_t t_start_us = 0;
 | |
|     bool has_evaluated_once = false;
 | |
| 
 | |
|     int64_t t_sample_us = 0;
 | |
|     int64_t t_eval_us   = 0;
 | |
|     int64_t t_p_eval_us = 0;
 | |
| 
 | |
|     int32_t n_sample = 0; // number of tokens sampled
 | |
|     int32_t n_eval   = 0; // number of eval calls
 | |
|     int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
 | |
| 
 | |
|     llama_model model;
 | |
|     llama_vocab vocab;
 | |
| 
 | |
|     size_t mem_per_token = 0;
 | |
| 
 | |
|     // decode output (2-dimensional array: [n_tokens][n_vocab])
 | |
|     std::vector<float> logits;
 | |
|     bool logits_all = false;
 | |
| 
 | |
|     // input embedding (1-dimensional array: [n_embd])
 | |
|     std::vector<float> embedding;
 | |
| 
 | |
|     // memory buffers used to evaluate the model
 | |
|     // TODO: move in llama_state
 | |
|     llama_buffer buf_compute;
 | |
|     llama_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS];
 | |
| 
 | |
|     int    buf_last = 0;
 | |
|     size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 };
 | |
| 
 | |
|     void use_buf(struct ggml_context * ctx, int i) {
 | |
| #if defined(LLAMA_USE_SCRATCH)
 | |
|         size_t last_size = 0;
 | |
| 
 | |
|         if (i == -1) {
 | |
|             last_size = ggml_set_scratch(ctx, { 0, 0, nullptr, });
 | |
|         } else {
 | |
|             auto & buf = buf_scratch[i];
 | |
|             last_size = ggml_set_scratch(ctx, { 0, buf.size, buf.addr, });
 | |
|         }
 | |
| 
 | |
|         if (buf_last >= 0) {
 | |
|             buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size);
 | |
|         }
 | |
| 
 | |
|         buf_last = i;
 | |
| #else
 | |
|         (void) i;
 | |
|         (void) ctx;
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     size_t get_buf_max_mem(int i) const {
 | |
| #if defined(LLAMA_USE_SCRATCH)
 | |
|         return buf_max_size[i];
 | |
| #else
 | |
|         (void) i;
 | |
|         return 0;
 | |
| #endif
 | |
|     }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| static T checked_mul(T a, T b) {
 | |
|     T ret = a * b;
 | |
|     if (a != 0 && ret / a != b) {
 | |
|         throw format("overflow multiplying %llu * %llu",
 | |
|                      (unsigned long long) a, (unsigned long long) b);
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static size_t checked_div(size_t a, size_t b) {
 | |
|     if (b == 0 || a % b != 0) {
 | |
|         throw format("error dividing %zu / %zu", a, b);
 | |
|     }
 | |
|     return a / b;
 | |
| }
 | |
| 
 | |
| static std::string llama_format_tensor_shape(const std::vector<uint32_t> & ne) {
 | |
|     char buf[256];
 | |
|     snprintf(buf, sizeof(buf), "%5u", ne.at(0));
 | |
|     for (size_t i = 1; i < ne.size(); i++) {
 | |
|         snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " x %5u", ne.at(i));
 | |
|     }
 | |
|     return buf;
 | |
| }
 | |
| 
 | |
| static size_t llama_calc_tensor_size(const std::vector<uint32_t> & ne, enum ggml_type type) {
 | |
|     size_t size = ggml_type_size(type);
 | |
|     for (uint32_t dim : ne) {
 | |
|         size = checked_mul<size_t>(size, dim);
 | |
|     }
 | |
|     return size / ggml_blck_size(type);
 | |
| }
 | |
| 
 | |
| struct llama_load_tensor_shard {
 | |
|     std::vector<uint32_t> ne;
 | |
|     size_t size;
 | |
|     enum ggml_type type;
 | |
|     size_t file_idx;
 | |
|     size_t file_off;
 | |
| 
 | |
|     void calc_size() {
 | |
|         size = llama_calc_tensor_size(ne, type);
 | |
|     }
 | |
| };
 | |
| 
 | |
| enum llama_split_type {
 | |
|     SPLIT_NONE,
 | |
|     SPLIT_BY_COLUMNS,
 | |
|     SPLIT_BY_ROWS
 | |
| };
 | |
| 
 | |
| struct llama_load_tensor {
 | |
|     std::vector<llama_load_tensor_shard> shards;
 | |
| 
 | |
|     std::string name;
 | |
|     enum ggml_type type = GGML_TYPE_F32;
 | |
|     llama_split_type split_type = SPLIT_NONE;
 | |
|     std::vector<uint32_t> ne;
 | |
|     size_t size;
 | |
|     struct ggml_tensor * ggml_tensor = NULL;
 | |
|     uint8_t * data;
 | |
| 
 | |
|     llama_load_tensor(const std::string & name) : name(name) {}
 | |
| 
 | |
|     void calc_all() {
 | |
|         calc_type();
 | |
|         calc_split_type();
 | |
|         calc_ne();
 | |
|         calc_size();
 | |
|     }
 | |
| 
 | |
|     void calc_type() {
 | |
|         const auto & first_shard = shards.at(0);
 | |
|         for (const auto & shard : shards) {
 | |
|             if (shard.type != first_shard.type) {
 | |
|                 throw format("inconsistent tensor shard type in '%s'", name.c_str());
 | |
|             }
 | |
|         }
 | |
|         type = first_shard.type;
 | |
|     }
 | |
| 
 | |
|     void calc_split_type() {
 | |
|         if (shards.at(0).ne.size() == 1 || // 1D tensors are just duplicated in every file
 | |
|             shards.size() == 1) { // only one file?
 | |
|             split_type = SPLIT_NONE;
 | |
|         } else if (name.find("tok_embeddings.") == 0 ||
 | |
|             name.find(".attention.wo.weight") != std::string::npos ||
 | |
|             name.find(".feed_forward.w2.weight") != std::string::npos) {
 | |
|             split_type = SPLIT_BY_COLUMNS;
 | |
|         } else {
 | |
|             split_type = SPLIT_BY_ROWS;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void calc_ne() {
 | |
|         const auto & first_shard = shards.at(0);
 | |
|         for (const auto & shard : shards) {
 | |
|             if (shard.ne != first_shard.ne) {
 | |
|                 throw format("inconsistent tensor shard shape in '%s': first was %s, other was %s",
 | |
|                              name.c_str(), llama_format_tensor_shape(first_shard.ne).c_str(), llama_format_tensor_shape(shard.ne).c_str());
 | |
|             }
 | |
|         }
 | |
|         ne = first_shard.ne;
 | |
|         LLAMA_ASSERT(shards.size() <= UINT32_MAX);
 | |
|         uint32_t n_shards = (uint32_t) shards.size();
 | |
|         switch (split_type) {
 | |
|             case SPLIT_NONE:
 | |
|                 ne = first_shard.ne;
 | |
|                 break;
 | |
|             case SPLIT_BY_COLUMNS:
 | |
|                 ne = {checked_mul<uint32_t>(first_shard.ne[0], n_shards),
 | |
|                       first_shard.ne[1]};
 | |
|                 break;
 | |
|             case SPLIT_BY_ROWS:
 | |
|                 ne = {first_shard.ne[0],
 | |
|                       checked_mul<uint32_t>(first_shard.ne[1], n_shards)};
 | |
|                 break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void calc_size() {
 | |
|         size = llama_calc_tensor_size(ne, type);
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct llama_load_tensors_map {
 | |
|     // tensors is kept in a separate vector to preserve file order
 | |
|     std::vector<llama_load_tensor> tensors;
 | |
|     std::unordered_map<std::string, size_t> name_to_idx;
 | |
| };
 | |
| 
 | |
| enum llama_file_version {
 | |
|     LLAMA_FILE_VERSION_GGML,
 | |
|     LLAMA_FILE_VERSION_GGMF_V1, // added version field and scores in vocab
 | |
|     LLAMA_FILE_VERSION_GGJT_V1, // added padding
 | |
| };
 | |
| 
 | |
| struct llama_file_loader {
 | |
|     llama_file file;
 | |
|     llama_file_version file_version;
 | |
|     llama_hparams hparams;
 | |
|     llama_vocab vocab;
 | |
| 
 | |
|     llama_file_loader(const char * fname, size_t file_idx, llama_load_tensors_map & tensors_map)
 | |
|         : file(fname, "rb") {
 | |
|         fprintf(stderr, "llama.cpp: loading model from %s\n", fname);
 | |
|         read_magic();
 | |
|         read_hparams();
 | |
|         read_vocab();
 | |
|         read_tensor_metadata(file_idx, tensors_map);
 | |
|     }
 | |
|     void read_magic() {
 | |
|         uint32_t magic = file.read_u32();
 | |
|         uint32_t version = 0;
 | |
| 
 | |
|         if (magic != 'ggml') {
 | |
|             version = file.read_u32();
 | |
|         }
 | |
| 
 | |
|         if (magic == 'ggml' && version == 0) {
 | |
|             file_version = LLAMA_FILE_VERSION_GGML;
 | |
|         } else if (magic == 'ggmf' && version == 1) {
 | |
|             file_version = LLAMA_FILE_VERSION_GGMF_V1;
 | |
|         } else if (magic == 'ggjt' && version == 1) {
 | |
|             file_version = LLAMA_FILE_VERSION_GGJT_V1;
 | |
|         } else {
 | |
|             throw format("unknown (magic, version) combination: %08x, %08x; is this really a GGML file?",
 | |
|                          magic, version);
 | |
|         }
 | |
|     }
 | |
|     void read_hparams() {
 | |
|         hparams.n_vocab = file.read_u32();
 | |
|         hparams.n_embd = file.read_u32();
 | |
|         hparams.n_mult = file.read_u32();
 | |
|         hparams.n_head = file.read_u32();
 | |
|         hparams.n_layer = file.read_u32();
 | |
|         hparams.n_rot = file.read_u32();
 | |
|         hparams.ftype = (enum llama_ftype) file.read_u32();
 | |
|     }
 | |
|     void read_vocab() {
 | |
|         vocab.id_to_token.resize(hparams.n_vocab);
 | |
| 
 | |
|         for (uint32_t i = 0; i < hparams.n_vocab; i++) {
 | |
|             uint32_t len = file.read_u32();
 | |
|             std::string word = file.read_string(len);
 | |
| 
 | |
|             float score = 0.0f;
 | |
|             if (file_version >= LLAMA_FILE_VERSION_GGMF_V1) {
 | |
|                 file.read_raw(&score, sizeof(score));
 | |
|             }
 | |
| 
 | |
|             vocab.token_to_id[word] = i;
 | |
| 
 | |
|             auto & tok_score = vocab.id_to_token[i];
 | |
|             tok_score.tok = std::move(word);
 | |
|             tok_score.score = score;
 | |
|         }
 | |
|     }
 | |
|     void read_tensor_metadata(size_t file_idx, llama_load_tensors_map & tensors_map) {
 | |
|         while (file.tell() < file.size) {
 | |
|             llama_load_tensor_shard shard;
 | |
|             uint32_t n_dims = file.read_u32();
 | |
|             uint32_t name_len = file.read_u32();
 | |
|             shard.type = (enum ggml_type) file.read_u32();
 | |
|             shard.ne.resize(n_dims);
 | |
|             file.read_raw(shard.ne.data(), sizeof(shard.ne[0]) * n_dims);
 | |
|             std::string name = file.read_string(name_len);
 | |
|             if (n_dims < 1 || n_dims > 2) {
 | |
|                 throw format("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims);
 | |
|             }
 | |
|             switch (shard.type) {
 | |
|                 case GGML_TYPE_F32:
 | |
|                 case GGML_TYPE_F16:
 | |
|                 case GGML_TYPE_Q4_0:
 | |
|                 case GGML_TYPE_Q4_1:
 | |
|                 case GGML_TYPE_Q4_2:
 | |
|                 case GGML_TYPE_Q4_3:
 | |
|                     break;
 | |
|                 default: {
 | |
|                     throw format("unrecognized tensor type %u\n", shard.type);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (file_version >= LLAMA_FILE_VERSION_GGJT_V1) {
 | |
|                 // skip to the next multiple of 32 bytes
 | |
|                 file.seek(-file.tell() & 31, SEEK_CUR);
 | |
|             }
 | |
|             shard.file_idx = file_idx;
 | |
|             shard.file_off = file.tell();
 | |
| 
 | |
|             shard.calc_size();
 | |
|             file.seek(shard.size, SEEK_CUR);
 | |
| 
 | |
|             auto it = tensors_map.name_to_idx.find(name);
 | |
|             size_t idx;
 | |
|             if (it != tensors_map.name_to_idx.end()) {
 | |
|                 idx = it->second;
 | |
|             } else {
 | |
|                 tensors_map.tensors.emplace_back(name);
 | |
|                 idx = tensors_map.tensors.size() - 1;
 | |
|                 tensors_map.name_to_idx.emplace(name, idx);
 | |
|             }
 | |
|             tensors_map.tensors.at(idx).shards.push_back(shard);
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct llama_file_saver {
 | |
|     llama_file file;
 | |
|     llama_file_loader * any_file_loader;
 | |
|     llama_file_saver(const char * fname, llama_file_loader * any_file_loader, enum llama_ftype new_ftype)
 | |
|         : file(fname, "wb"), any_file_loader(any_file_loader) {
 | |
|         fprintf(stderr, "llama.cpp: saving model to %s\n", fname);
 | |
|         write_magic();
 | |
|         write_hparams(new_ftype);
 | |
|         write_vocab();
 | |
|     }
 | |
|     void write_magic() {
 | |
|         file.write_u32('ggjt'); // magic
 | |
|         file.write_u32(1); // version
 | |
|     }
 | |
|     void write_hparams(enum llama_ftype new_ftype) {
 | |
|         const llama_hparams & hparams = any_file_loader->hparams;
 | |
|         file.write_u32(hparams.n_vocab);
 | |
|         file.write_u32(hparams.n_embd);
 | |
|         file.write_u32(hparams.n_mult);
 | |
|         file.write_u32(hparams.n_head);
 | |
|         file.write_u32(hparams.n_layer);
 | |
|         file.write_u32(hparams.n_rot);
 | |
|         file.write_u32(new_ftype);
 | |
|     }
 | |
|     void write_vocab() {
 | |
|         if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) {
 | |
|             fprintf(stderr, "llama.cpp: WARNING: input is an old file that doesn't have scores; will add dummy scores\n");
 | |
|         }
 | |
|         uint32_t n_vocab = any_file_loader->hparams.n_vocab;
 | |
|         for (uint32_t i = 0; i < n_vocab; i++) {
 | |
|             const auto & token_score = any_file_loader->vocab.id_to_token.at(i);
 | |
|             file.write_u32((uint32_t) token_score.tok.size());
 | |
|             file.write_raw(token_score.tok.data(), token_score.tok.size());
 | |
|             file.write_raw(&token_score.score, sizeof(token_score.score));
 | |
|         }
 | |
|     }
 | |
|     void write_tensor(llama_load_tensor & tensor, enum ggml_type new_type, const void * new_data, size_t new_size) {
 | |
|         switch (new_type) {
 | |
|             case GGML_TYPE_F32:
 | |
|             case GGML_TYPE_F16:
 | |
|             case GGML_TYPE_Q4_0:
 | |
|             case GGML_TYPE_Q4_1:
 | |
|             case GGML_TYPE_Q4_2:
 | |
|             case GGML_TYPE_Q4_3:
 | |
|                 break;
 | |
|             default: LLAMA_ASSERT(false);
 | |
|         }
 | |
|         file.write_u32((uint32_t) tensor.ne.size());
 | |
|         file.write_u32((uint32_t) tensor.name.size());
 | |
|         file.write_u32(new_type);
 | |
|         file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size());
 | |
|         file.write_raw(tensor.name.data(), tensor.name.size());
 | |
|         file.seek(-file.tell() & 31, SEEK_CUR);
 | |
|         LLAMA_ASSERT(new_size == llama_calc_tensor_size(tensor.ne, new_type));
 | |
|         file.write_raw(new_data, new_size);
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct llama_model_loader {
 | |
|     std::vector<std::unique_ptr<llama_file_loader>> file_loaders;
 | |
|     llama_load_tensors_map tensors_map;
 | |
|     bool use_mmap;
 | |
|     size_t num_ggml_tensors_created = 0;
 | |
|     struct ggml_context * ggml_ctx = NULL;
 | |
|     std::unique_ptr<llama_mmap> mapping;
 | |
| 
 | |
|     llama_model_loader(const std::string & fname_base, bool use_mmap, bool vocab_only) {
 | |
|         auto first_file = new llama_file_loader(fname_base.c_str(), 0, tensors_map);
 | |
|         file_loaders.emplace_back(first_file);
 | |
|         uint32_t n_parts = vocab_only ? 1 : guess_n_parts();
 | |
|         for (uint32_t i = 1; i < n_parts; i++) {
 | |
|             std::string fname = fname_base + "." + std::to_string(i);
 | |
|             auto ith_file = new llama_file_loader(fname.c_str(), i, tensors_map);
 | |
|             file_loaders.emplace_back(ith_file);
 | |
|             if (ith_file->hparams != first_file->hparams) {
 | |
|                 throw format("llama.cpp: hparams inconsistent between files");
 | |
|             }
 | |
|         }
 | |
|         if (!llama_mmap::SUPPORTED) {
 | |
|             use_mmap = false;
 | |
|         }
 | |
|         if (use_mmap && alignment_prevents_mmap()) {
 | |
|             fprintf(stderr, "llama.cpp: can't use mmap because tensors are not aligned; convert to new format to avoid this\n");
 | |
|             use_mmap = false;
 | |
|         }
 | |
|         this->use_mmap = use_mmap;
 | |
|         for (llama_load_tensor & lt : tensors_map.tensors) {
 | |
|             lt.calc_all();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     bool alignment_prevents_mmap() {
 | |
|         for (const llama_load_tensor & lt : tensors_map.tensors) {
 | |
|             for (const llama_load_tensor_shard & shard : lt.shards) {
 | |
|                 if (shard.file_off & 3) {
 | |
|                     return true;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     uint32_t guess_n_parts() const {
 | |
|         auto it = tensors_map.name_to_idx.find("tok_embeddings.weight");
 | |
|         if (it == tensors_map.name_to_idx.end()) {
 | |
|             throw std::string("missing tok_embeddings.weight");
 | |
|         }
 | |
|         const llama_load_tensor & lt = tensors_map.tensors.at(it->second);
 | |
|         return file_loaders.at(0)->hparams.n_embd / lt.shards.at(0).ne.at(0);
 | |
|     }
 | |
| 
 | |
|     void calc_sizes(size_t * ctx_size_p, size_t * mmapped_size_p) const {
 | |
|         *ctx_size_p = *mmapped_size_p = 0;
 | |
|         for (const llama_load_tensor & lt : tensors_map.tensors) {
 | |
|             *ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
 | |
|             *(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * get_tensor(const std::string & name, std::vector<uint32_t> ne) {
 | |
|         auto it = tensors_map.name_to_idx.find(name);
 | |
|         if (it == tensors_map.name_to_idx.end()) {
 | |
|             throw format("llama.cpp: tensor '%s' is missing from model", name.c_str());
 | |
|         }
 | |
|         llama_load_tensor & lt = tensors_map.tensors.at(it->second);
 | |
|         if (lt.ne != ne) {
 | |
|             throw format("llama.cpp: tensor '%s' has wrong shape; expected %s, got %s",
 | |
|                          name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(lt.ne).c_str());
 | |
|         }
 | |
| 
 | |
|         return get_tensor_for(lt);
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * get_tensor_for(llama_load_tensor & lt) {
 | |
|         struct ggml_tensor * tensor;
 | |
|         if (lt.ne.size() == 2) {
 | |
|             tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1));
 | |
|         } else {
 | |
|             LLAMA_ASSERT(lt.ne.size() == 1);
 | |
|             tensor = ggml_new_tensor_1d(ggml_ctx, lt.type, lt.ne.at(0));
 | |
|         }
 | |
|         LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor
 | |
|         lt.ggml_tensor = tensor;
 | |
|         num_ggml_tensors_created++;
 | |
|         return tensor;
 | |
|     }
 | |
| 
 | |
|     void done_getting_tensors() {
 | |
|         if (num_ggml_tensors_created != tensors_map.tensors.size()) {
 | |
|             throw std::string("llama.cpp: file contained more tensors than expected");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void load_all_data(llama_progress_callback progress_callback, void *  progress_callback_user_data, llama_mlock * lmlock) {
 | |
|         size_t data_size = 0;
 | |
|         for (const llama_load_tensor & lt : tensors_map.tensors) {
 | |
|             data_size += lt.size;
 | |
|         }
 | |
| 
 | |
|         if (use_mmap) {
 | |
|             mapping.reset(new llama_mmap(&file_loaders.at(0)->file));
 | |
|             if (!lmlock) {
 | |
|                 // Don't call the callback since the actual loading will be lazy
 | |
|                 // and we can't measure it.
 | |
|                 progress_callback = NULL;
 | |
|             }
 | |
|             if (lmlock) {
 | |
|                 lmlock->init(mapping->addr);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         size_t done_size = 0;
 | |
|         for (llama_load_tensor & lt : tensors_map.tensors) {
 | |
|             if (progress_callback) {
 | |
|                 progress_callback((float) done_size / data_size, progress_callback_user_data);
 | |
|             }
 | |
|             LLAMA_ASSERT(lt.ggml_tensor); // unused tensors should have been caught by load_data already
 | |
|             lt.data = (uint8_t *) lt.ggml_tensor->data;
 | |
|             load_data_for(lt);
 | |
|             lt.ggml_tensor->data = lt.data;
 | |
|             done_size += lt.size;
 | |
|             if (use_mmap && lmlock) {
 | |
|                 lmlock->grow_to(done_size);
 | |
|             }
 | |
|         }
 | |
|         if (progress_callback) {
 | |
|             progress_callback(1.0f, progress_callback_user_data);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void load_data_for(llama_load_tensor & lt) {
 | |
|         if (use_mmap) {
 | |
|             LLAMA_ASSERT(lt.shards.size() == 1);
 | |
|             lt.data = (uint8_t *) mapping->addr + lt.shards.at(0).file_off;
 | |
|         } else if (lt.split_type == SPLIT_NONE) {
 | |
|             llama_file & file = file_loaders.at(lt.shards.at(0).file_idx)->file;
 | |
|             file.seek(lt.shards.at(0).file_off, SEEK_SET);
 | |
|             file.read_raw(lt.data, lt.size);
 | |
|         } else if (lt.split_type == SPLIT_BY_ROWS) {
 | |
|             size_t offset = 0;
 | |
|             for (llama_load_tensor_shard & shard : lt.shards) {
 | |
|                 llama_file & file = file_loaders.at(shard.file_idx)->file;
 | |
|                 file.seek(shard.file_off, SEEK_SET);
 | |
|                 file.read_raw(lt.data + offset, shard.size);
 | |
|                 offset += shard.size;
 | |
|             }
 | |
|             LLAMA_ASSERT(offset == lt.size);
 | |
|         } else if (lt.split_type == SPLIT_BY_COLUMNS) {
 | |
|             // Let's load the data into temporary buffers to ensure the OS performs large loads.
 | |
|             std::vector<llama_buffer> tmp_bufs;
 | |
|             tmp_bufs.resize(lt.shards.size());
 | |
|             for (size_t i = 0; i < lt.shards.size(); i++) {
 | |
|                 llama_load_tensor_shard & shard = lt.shards.at(i);
 | |
|                 llama_file & file = file_loaders.at(shard.file_idx)->file;
 | |
|                 file.seek(shard.file_off, SEEK_SET);
 | |
|                 tmp_bufs.at(i).resize(shard.size);
 | |
|                 file.read_raw(tmp_bufs.at(i).addr, shard.size);
 | |
|             }
 | |
|             // Then reshape.
 | |
|             size_t num_rows = lt.ne.at(1);
 | |
|             size_t per_shard_row_size = lt.shards.at(0).size / num_rows;
 | |
|             size_t out_offset = 0;
 | |
|             for (size_t row = 0; row < num_rows; row++) {
 | |
|                 for (llama_buffer & tmp_buf : tmp_bufs) {
 | |
|                     memcpy(lt.data + out_offset,
 | |
|                            tmp_buf.addr + row * per_shard_row_size,
 | |
|                            per_shard_row_size);
 | |
|                     out_offset += per_shard_row_size;
 | |
|                 }
 | |
|             }
 | |
|             LLAMA_ASSERT(out_offset == lt.size);
 | |
|         }
 | |
|         if (0) {
 | |
|             print_checksum(lt);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     static void print_checksum(llama_load_tensor & lt) {
 | |
|         uint32_t sum = 0;
 | |
|         for (size_t i = 0; i < lt.size; i++) {
 | |
|             uint8_t byte = lt.data[i];
 | |
|             sum = byte + (sum << 6) + (sum << 16) - sum; // sdbm hash
 | |
|         }
 | |
|         fprintf(stderr, "%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum,
 | |
|                 llama_format_tensor_shape(lt.ne).c_str(), lt.size);
 | |
|     }
 | |
| 
 | |
| };
 | |
| 
 | |
| 
 | |
| //
 | |
| // kv cache
 | |
| //
 | |
| 
 | |
| static bool kv_cache_init(
 | |
|         const struct llama_hparams & hparams,
 | |
|              struct llama_kv_cache & cache,
 | |
|                          ggml_type   wtype,
 | |
|                                int   n_ctx) {
 | |
|     const int n_embd  = hparams.n_embd;
 | |
|     const int n_layer = hparams.n_layer;
 | |
| 
 | |
|     const int64_t n_mem      = (int64_t)n_layer*n_ctx;
 | |
|     const int64_t n_elements = n_embd*n_mem;
 | |
| 
 | |
|     cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
 | |
| 
 | |
|     struct ggml_init_params params;
 | |
|     params.mem_size   = cache.buf.size;
 | |
|     params.mem_buffer = cache.buf.addr;
 | |
|     params.no_alloc   = false;
 | |
| 
 | |
|     cache.ctx = ggml_init(params);
 | |
| 
 | |
|     if (!cache.ctx) {
 | |
|         fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
 | |
|     cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| struct llama_context_params llama_context_default_params() {
 | |
|     struct llama_context_params result = {
 | |
|         /*.n_ctx                       =*/ 512,
 | |
|         /*.n_parts                     =*/ -1,
 | |
|         /*.seed                        =*/ 0,
 | |
|         /*.f16_kv                      =*/ false,
 | |
|         /*.logits_all                  =*/ false,
 | |
|         /*.vocab_only                  =*/ false,
 | |
|         /*.use_mmap                    =*/ true,
 | |
|         /*.use_mlock                   =*/ false,
 | |
|         /*.embedding                   =*/ false,
 | |
|         /*.progress_callback           =*/ nullptr,
 | |
|         /*.progress_callback_user_data =*/ nullptr,
 | |
|     };
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| bool llama_mmap_supported() {
 | |
|     return llama_mmap::SUPPORTED;
 | |
| }
 | |
| 
 | |
| bool llama_mlock_supported() {
 | |
|     return llama_mlock::SUPPORTED;
 | |
| }
 | |
| 
 | |
| //
 | |
| // model loading
 | |
| //
 | |
| 
 | |
| static const char *llama_file_version_name(llama_file_version version) {
 | |
|     switch (version) {
 | |
|         case LLAMA_FILE_VERSION_GGML: return "'ggml' (old version with low tokenizer quality and no mmap support)";
 | |
|         case LLAMA_FILE_VERSION_GGMF_V1: return "ggmf v1 (old version with no mmap support)";
 | |
|         case LLAMA_FILE_VERSION_GGJT_V1: return "ggjt v1 (latest)";
 | |
|         default: LLAMA_ASSERT(false);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const char *llama_ftype_name(enum llama_ftype ftype) {
 | |
|     switch (ftype) {
 | |
|         case LLAMA_FTYPE_ALL_F32:     return "all F32";
 | |
|         case LLAMA_FTYPE_MOSTLY_F16:  return "mostly F16";
 | |
|         case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0";
 | |
|         case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1";
 | |
|         case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
 | |
|                                       return "mostly Q4_1, some F16";
 | |
|         case LLAMA_FTYPE_MOSTLY_Q4_2: return "mostly Q4_2";
 | |
|         case LLAMA_FTYPE_MOSTLY_Q4_3: return "mostly Q4_3";
 | |
|         default:                      return "unknown, may not work";
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const char *llama_model_type_name(e_model type) {
 | |
|     switch (type) {
 | |
|         case MODEL_7B: return "7B";
 | |
|         case MODEL_13B: return "13B";
 | |
|         case MODEL_30B: return "30B";
 | |
|         case MODEL_65B: return "65B";
 | |
|         default: LLAMA_ASSERT(false);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void llama_model_load_internal(
 | |
|         const std::string & fname,
 | |
|         llama_context & lctx,
 | |
|         int n_ctx,
 | |
|         ggml_type memory_type,
 | |
|         bool use_mmap,
 | |
|         bool use_mlock,
 | |
|         bool vocab_only,
 | |
|         llama_progress_callback progress_callback,
 | |
|         void * progress_callback_user_data) {
 | |
| 
 | |
|     lctx.t_start_us = ggml_time_us();
 | |
| 
 | |
|     std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap, vocab_only));
 | |
| 
 | |
|     lctx.vocab = std::move(ml->file_loaders.at(0)->vocab);
 | |
|     auto & model = lctx.model;
 | |
|     model.hparams = ml->file_loaders.at(0)->hparams;
 | |
|     llama_file_version file_version = ml->file_loaders.at(0)->file_version;
 | |
|     auto & hparams = model.hparams;
 | |
|     uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
 | |
| 
 | |
|     {
 | |
|         switch (hparams.n_layer) {
 | |
|             case 32: model.type = e_model::MODEL_7B; break;
 | |
|             case 40: model.type = e_model::MODEL_13B; break;
 | |
|             case 60: model.type = e_model::MODEL_30B; break;
 | |
|             case 80: model.type = e_model::MODEL_65B; break;
 | |
|         }
 | |
| 
 | |
|         hparams.n_ctx = n_ctx;
 | |
|     }
 | |
| 
 | |
|     {
 | |
|         fprintf(stderr, "%s: format     = %s\n",  __func__, llama_file_version_name(file_version));
 | |
|         fprintf(stderr, "%s: n_vocab    = %u\n",  __func__, hparams.n_vocab);
 | |
|         fprintf(stderr, "%s: n_ctx      = %u\n",  __func__, hparams.n_ctx);
 | |
|         fprintf(stderr, "%s: n_embd     = %u\n",  __func__, hparams.n_embd);
 | |
|         fprintf(stderr, "%s: n_mult     = %u\n",  __func__, hparams.n_mult);
 | |
|         fprintf(stderr, "%s: n_head     = %u\n",  __func__, hparams.n_head);
 | |
|         fprintf(stderr, "%s: n_layer    = %u\n",  __func__, hparams.n_layer);
 | |
|         fprintf(stderr, "%s: n_rot      = %u\n",  __func__, hparams.n_rot);
 | |
|         fprintf(stderr, "%s: ftype      = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype));
 | |
|         fprintf(stderr, "%s: n_ff       = %u\n",  __func__, n_ff);
 | |
|         fprintf(stderr, "%s: n_parts    = %zu\n", __func__, ml->file_loaders.size());
 | |
|         fprintf(stderr, "%s: model size = %s\n",  __func__, llama_model_type_name(model.type));
 | |
|     }
 | |
| 
 | |
|     if (vocab_only) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     auto & ctx = model.ctx;
 | |
| 
 | |
|     size_t ctx_size, mmapped_size;
 | |
|     ml->calc_sizes(&ctx_size, &mmapped_size);
 | |
|     fprintf(stderr, "%s: ggml ctx size = %6.2f KB\n", __func__, ctx_size/1024.0);
 | |
| 
 | |
|     // print memory requirements
 | |
|     {
 | |
|         const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;
 | |
| 
 | |
|         // this is the total memory required to run the inference
 | |
|         const size_t mem_required =
 | |
|             ctx_size +
 | |
|             mmapped_size +
 | |
|             MEM_REQ_SCRATCH0().at(model.type) +
 | |
|             MEM_REQ_SCRATCH1().at(model.type) +
 | |
|             MEM_REQ_EVAL().at(model.type);
 | |
| 
 | |
|         // this is the memory required by one llama_state
 | |
|         const size_t mem_required_state =
 | |
|             scale*MEM_REQ_KV_SELF().at(model.type);
 | |
| 
 | |
|         fprintf(stderr, "%s: mem required  = %7.2f MB (+ %7.2f MB per state)\n", __func__,
 | |
|                 mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
 | |
|     }
 | |
| 
 | |
|     // create the ggml context
 | |
|     {
 | |
|         lctx.model.buf.resize(ctx_size);
 | |
|         if (use_mlock) {
 | |
|             lctx.model.mlock_buf.init(lctx.model.buf.addr);
 | |
|             lctx.model.mlock_buf.grow_to(lctx.model.buf.size);
 | |
|         }
 | |
| 
 | |
|         struct ggml_init_params params = {
 | |
|             /*.mem_size   =*/ lctx.model.buf.size,
 | |
|             /*.mem_buffer =*/ lctx.model.buf.addr,
 | |
|             /*.no_alloc   =*/ ml->use_mmap,
 | |
|         };
 | |
| 
 | |
|         model.ctx = ggml_init(params);
 | |
|         if (!model.ctx) {
 | |
|             throw format("ggml_init() failed");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // prepare memory for the weights
 | |
|     {
 | |
|         const auto & hparams = model.hparams;
 | |
| 
 | |
|         const uint32_t n_embd  = hparams.n_embd;
 | |
|         const uint32_t n_layer = hparams.n_layer;
 | |
|         const uint32_t n_vocab = hparams.n_vocab;
 | |
| 
 | |
|         ml->ggml_ctx = ctx;
 | |
| 
 | |
|         model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab});
 | |
|         model.norm           = ml->get_tensor("norm.weight",           {n_embd});
 | |
|         model.output         = ml->get_tensor("output.weight",         {n_embd, n_vocab});
 | |
| 
 | |
|         model.layers.resize(n_layer);
 | |
|         for (uint32_t i = 0; i < n_layer; ++i) {
 | |
|             auto & layer = model.layers[i];
 | |
| 
 | |
|             std::string layers_i = "layers." + std::to_string(i);
 | |
| 
 | |
|             layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd});
 | |
| 
 | |
|             layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd});
 | |
|             layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd});
 | |
|             layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd});
 | |
|             layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd});
 | |
| 
 | |
|             layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd});
 | |
| 
 | |
|             layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd,   n_ff});
 | |
|             layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", {  n_ff,   n_embd});
 | |
|             layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd,   n_ff});
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ml->done_getting_tensors();
 | |
| 
 | |
|     // populate `tensors_by_name`
 | |
|     for (llama_load_tensor & lt : ml->tensors_map.tensors) {
 | |
|         model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor);
 | |
|     }
 | |
| 
 | |
|     ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL);
 | |
| 
 | |
|     model.mapping = std::move(ml->mapping);
 | |
| 
 | |
|     // loading time will be recalculate after the first eval, so
 | |
|     // we take page faults deferred by mmap() into consideration
 | |
|     lctx.t_load_us = ggml_time_us() - lctx.t_start_us;
 | |
| }
 | |
| 
 | |
| static bool llama_model_load(
 | |
|         const std::string & fname,
 | |
|         llama_context & lctx,
 | |
|         int n_ctx,
 | |
|         ggml_type memory_type,
 | |
|         bool use_mmap,
 | |
|         bool use_mlock,
 | |
|         bool vocab_only,
 | |
|         llama_progress_callback progress_callback,
 | |
|         void *progress_callback_user_data) {
 | |
|     try {
 | |
|         llama_model_load_internal(fname, lctx, n_ctx, memory_type, use_mmap, use_mlock,
 | |
|                                   vocab_only, progress_callback, progress_callback_user_data);
 | |
|         return true;
 | |
|     } catch (const std::string & err) {
 | |
|         fprintf(stderr, "error loading model: %s\n", err.c_str());
 | |
|         return false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // evaluate the transformer
 | |
| //
 | |
| //   - lctx:      llama context
 | |
| //   - tokens:    new batch of tokens to process
 | |
| //   - n_past:    the context size so far
 | |
| //   - n_threads: number of threads to use
 | |
| //
 | |
| static bool llama_eval_internal(
 | |
|         llama_context & lctx,
 | |
|     const llama_token * tokens,
 | |
|             const int   n_tokens,
 | |
|             const int   n_past,
 | |
|             const int   n_threads) {
 | |
|     const int64_t t_start_us = ggml_time_us();
 | |
| 
 | |
|     const int N = n_tokens;
 | |
| 
 | |
|     const auto & model   = lctx.model;
 | |
|     const auto & hparams = model.hparams;
 | |
| 
 | |
|     auto & kv_self = model.kv_self;
 | |
| 
 | |
|     LLAMA_ASSERT(!!kv_self.ctx);
 | |
| 
 | |
|     const int n_embd  = hparams.n_embd;
 | |
|     const int n_layer = hparams.n_layer;
 | |
|     const int n_ctx   = hparams.n_ctx;
 | |
|     const int n_head  = hparams.n_head;
 | |
|     const int n_vocab = hparams.n_vocab;
 | |
|     const int n_rot   = hparams.n_embd/hparams.n_head;
 | |
| 
 | |
|     auto & mem_per_token = lctx.mem_per_token;
 | |
|     auto & buf_compute   = lctx.buf_compute;
 | |
| 
 | |
|     struct ggml_init_params params = {
 | |
|         /*.mem_size   =*/ buf_compute.size,
 | |
|         /*.mem_buffer =*/ buf_compute.addr,
 | |
|         /*.no_alloc   =*/ false,
 | |
|     };
 | |
| 
 | |
|     struct ggml_context * ctx0 = ggml_init(params);
 | |
| 
 | |
|     // for big prompts, if BLAS is enabled, it is better to use only one thread
 | |
|     // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
 | |
|     ggml_cgraph gf = {};
 | |
|     gf.n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_cublas() ? 1 : n_threads;
 | |
| 
 | |
|     struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
 | |
|     memcpy(embd->data, tokens, N*ggml_element_size(embd));
 | |
| 
 | |
|     struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);
 | |
| 
 | |
|     for (int il = 0; il < n_layer; ++il) {
 | |
|         struct ggml_tensor * inpSA = inpL;
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
| 
 | |
|         lctx.use_buf(ctx0, 0);
 | |
| 
 | |
|         // norm
 | |
|         {
 | |
|             cur = ggml_rms_norm(ctx0, inpL);
 | |
| 
 | |
|             // cur = attention_norm*cur
 | |
|             cur = ggml_mul(ctx0,
 | |
|                         ggml_repeat(ctx0, model.layers[il].attention_norm, cur),
 | |
|                         cur);
 | |
|         }
 | |
| 
 | |
|         // self-attention
 | |
|         {
 | |
|             // compute Q and K and RoPE them
 | |
|             struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
 | |
|             struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
 | |
| 
 | |
|             // store key and value to memory
 | |
|             {
 | |
|                 // compute the transposed [N, n_embd] V matrix
 | |
|                 struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), n_embd, N));
 | |
| 
 | |
|                 struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
 | |
|                 struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
 | |
|                         (   n_ctx)*ggml_element_size(kv_self.v),
 | |
|                         (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
 | |
| 
 | |
|                 // important: storing RoPE-ed version of K in the KV cache!
 | |
|                 ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
 | |
|                 ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
 | |
|             }
 | |
| 
 | |
|             struct ggml_tensor * Q =
 | |
|                 ggml_permute(ctx0,
 | |
|                         Qcur,
 | |
|                         0, 2, 1, 3);
 | |
| 
 | |
|             struct ggml_tensor * K =
 | |
|                 ggml_permute(ctx0,
 | |
|                         ggml_reshape_3d(ctx0,
 | |
|                             ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd),
 | |
|                             n_embd/n_head, n_head, n_past + N),
 | |
|                         0, 2, 1, 3);
 | |
| 
 | |
|             // K * Q
 | |
|             struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
 | |
| 
 | |
|             // KQ_scaled = KQ / sqrt(n_embd/n_head)
 | |
|             struct ggml_tensor * KQ_scaled =
 | |
|                 ggml_scale(ctx0,
 | |
|                         KQ,
 | |
|                         ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));
 | |
| 
 | |
|             // KQ_masked = mask_past(KQ_scaled)
 | |
|             struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
 | |
| 
 | |
|             // KQ = soft_max(KQ_masked)
 | |
|             struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
 | |
| 
 | |
|             // split cached V into n_head heads
 | |
|             struct ggml_tensor * V =
 | |
|                 ggml_view_3d(ctx0, kv_self.v,
 | |
|                         n_past + N, n_embd/n_head, n_head,
 | |
|                         n_ctx*ggml_element_size(kv_self.v),
 | |
|                         n_ctx*ggml_element_size(kv_self.v)*n_embd/n_head,
 | |
|                         il*n_ctx*ggml_element_size(kv_self.v)*n_embd);
 | |
| 
 | |
| #if 1
 | |
|             struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
 | |
| #else
 | |
|             // make V contiguous in memory to speed up the matmul, however we waste time on the copy
 | |
|             // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
 | |
|             // is there a better way?
 | |
|             struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head));
 | |
|             struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
 | |
| #endif
 | |
| 
 | |
|             // KQV_merged = KQV.permute(0, 2, 1, 3)
 | |
|             struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
 | |
| 
 | |
|             // cur = KQV_merged.contiguous().view(n_embd, N)
 | |
|             cur = ggml_cpy(ctx0,
 | |
|                     KQV_merged,
 | |
|                     ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
 | |
| 
 | |
|             // projection (no bias)
 | |
|             cur = ggml_mul_mat(ctx0,
 | |
|                     model.layers[il].wo,
 | |
|                     cur);
 | |
|         }
 | |
| 
 | |
|         lctx.use_buf(ctx0, 1);
 | |
| 
 | |
|         struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
 | |
| 
 | |
|         // feed-forward network
 | |
|         {
 | |
|             // norm
 | |
|             {
 | |
|                 cur = ggml_rms_norm(ctx0, inpFF);
 | |
| 
 | |
|                 // cur = ffn_norm*cur
 | |
|                 cur = ggml_mul(ctx0,
 | |
|                         ggml_repeat(ctx0, model.layers[il].ffn_norm, cur),
 | |
|                         cur);
 | |
|             }
 | |
| 
 | |
|             struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
 | |
|                     model.layers[il].w3,
 | |
|                     cur);
 | |
| 
 | |
|             cur = ggml_mul_mat(ctx0,
 | |
|                     model.layers[il].w1,
 | |
|                     cur);
 | |
| 
 | |
|             // SILU activation
 | |
|             cur = ggml_silu(ctx0, cur);
 | |
| 
 | |
|             cur = ggml_mul(ctx0, cur, tmp);
 | |
| 
 | |
|             cur = ggml_mul_mat(ctx0,
 | |
|                     model.layers[il].w2,
 | |
|                     cur);
 | |
|         }
 | |
| 
 | |
|         cur = ggml_add(ctx0, cur, inpFF);
 | |
| 
 | |
|         // input for next layer
 | |
|         inpL = cur;
 | |
|     }
 | |
| 
 | |
|     lctx.use_buf(ctx0, 0);
 | |
| 
 | |
|     // used at the end to optionally extract the embeddings
 | |
|     struct ggml_tensor * embeddings = NULL;
 | |
| 
 | |
|     // norm
 | |
|     {
 | |
| 
 | |
|         inpL = ggml_rms_norm(ctx0, inpL);
 | |
| 
 | |
|         // inpL = norm*inpL
 | |
|         inpL = ggml_mul(ctx0,
 | |
|                     ggml_repeat(ctx0, model.norm, inpL),
 | |
|                     inpL);
 | |
| 
 | |
|         embeddings = inpL;
 | |
|     }
 | |
| 
 | |
|     // lm_head
 | |
|     inpL = ggml_mul_mat(ctx0, model.output, inpL);
 | |
| 
 | |
|     lctx.use_buf(ctx0, -1);
 | |
| 
 | |
|     // logits -> probs
 | |
|     //inpL = ggml_soft_max(ctx0, inpL);
 | |
| 
 | |
|     // run the computation
 | |
|     ggml_build_forward_expand(&gf, inpL);
 | |
|     ggml_graph_compute       (ctx0, &gf);
 | |
| 
 | |
|     // print timing information per ggml operation (for debugging purposes)
 | |
|     // requires GGML_PERF to be defined
 | |
|     //ggml_graph_print(&gf);
 | |
| 
 | |
|     // plot the computation graph in dot format (for debugging purposes)
 | |
|     //if (n_past%100 == 0) {
 | |
|     //    ggml_graph_dump_dot(&gf, NULL, "llama.dot");
 | |
|     //}
 | |
| 
 | |
|     //embd_w.resize(n_vocab*N);
 | |
|     //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
 | |
| 
 | |
|     // extract logits
 | |
|     {
 | |
|         auto & logits_out = lctx.logits;
 | |
| 
 | |
|         if (lctx.logits_all) {
 | |
|             logits_out.resize(n_vocab * N);
 | |
|             memcpy(logits_out.data(), (float *) ggml_get_data(inpL), sizeof(float)*n_vocab*N);
 | |
|         } else {
 | |
|             // return result for just the last token
 | |
|             logits_out.resize(n_vocab);
 | |
|             memcpy(logits_out.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // extract embeddings
 | |
|     if (lctx.embedding.size()) {
 | |
|         auto & embedding_out = lctx.embedding;
 | |
| 
 | |
|         embedding_out.resize(n_embd);
 | |
|         memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd);
 | |
|     }
 | |
| 
 | |
|     if (mem_per_token == 0) {
 | |
|         mem_per_token = ggml_used_mem(ctx0)/N;
 | |
|     }
 | |
| 
 | |
| #if 0
 | |
|     printf("\n%s: used_mem = %.3f MB, scratch -- %.3f MB %.3f MB\n", __func__,
 | |
|             ggml_used_mem(ctx0)/1024.0/1024.0,
 | |
|             lctx.get_buf_max_mem(0)/1024.0/1024.0,
 | |
|             lctx.get_buf_max_mem(1)/1024.0/1024.0);
 | |
| #endif
 | |
| 
 | |
|     ggml_free(ctx0);
 | |
| 
 | |
|     // measure the performance only for the single-token evals
 | |
|     if (N == 1) {
 | |
|         lctx.t_eval_us += ggml_time_us() - t_start_us;
 | |
|         lctx.n_eval++;
 | |
|     }
 | |
|     else if (N > 1) {
 | |
|         lctx.t_p_eval_us += ggml_time_us() - t_start_us;
 | |
|         lctx.n_p_eval += N;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| //
 | |
| // tokenizer
 | |
| //
 | |
| 
 | |
| static size_t utf8_len(char src) {
 | |
|     const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
 | |
|     uint8_t highbits = static_cast<uint8_t>(src) >> 4;
 | |
|     return lookup[highbits];
 | |
| }
 | |
| 
 | |
| struct llama_sp_symbol {
 | |
|     using index = int;
 | |
|     index prev;
 | |
|     index next;
 | |
|     const char * text;
 | |
|     size_t n;
 | |
| };
 | |
| 
 | |
| struct llama_sp_bigram {
 | |
|     struct comparator {
 | |
|         bool operator()(llama_sp_bigram & l, llama_sp_bigram & r) {
 | |
|             return (l.score < r.score) || (l.score == r.score && l.left > r.left);
 | |
|         }
 | |
|     };
 | |
|     using queue_storage = std::vector<llama_sp_bigram>;
 | |
|     using queue = std::priority_queue<llama_sp_bigram, queue_storage, comparator>;
 | |
|     llama_sp_symbol::index left;
 | |
|     llama_sp_symbol::index right;
 | |
|     float score;
 | |
|     size_t size;
 | |
| };
 | |
| 
 | |
| // original implementation:
 | |
| // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
 | |
| struct llama_tokenizer {
 | |
|     llama_tokenizer(const llama_vocab & vocab): vocab_(vocab) {}
 | |
| 
 | |
|     void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
 | |
|         // split string into utf8 chars
 | |
|         int index = 0;
 | |
|         size_t offs = 0;
 | |
|         while (offs < text.size()) {
 | |
|             llama_sp_symbol sym;
 | |
|             size_t char_len = std::min(text.size() - offs, utf8_len(text[offs]));
 | |
|             sym.text = text.c_str() + offs;
 | |
|             sym.n = char_len;
 | |
|             offs += char_len;
 | |
|             sym.prev = index - 1;
 | |
|             sym.next = offs == text.size() ? -1 : index + 1;
 | |
|             index++;
 | |
|             symbols_.emplace_back(std::move(sym));
 | |
|         }
 | |
| 
 | |
|         // seed the work queue with all possible 2-character tokens.
 | |
|         for (size_t i = 1; i < symbols_.size(); ++i) {
 | |
|             try_add_bigram(i - 1, i);
 | |
|         }
 | |
| 
 | |
|         // keep substituting the highest frequency pairs for as long as we can.
 | |
|         while (!work_queue_.empty()) {
 | |
|             auto bigram = work_queue_.top();
 | |
|             work_queue_.pop();
 | |
| 
 | |
|             auto & left_sym = symbols_[bigram.left];
 | |
|             auto & right_sym = symbols_[bigram.right];
 | |
| 
 | |
|             // if one of the symbols already got merged, skip it.
 | |
|             if (left_sym.n == 0 || right_sym.n == 0 ||
 | |
|                 left_sym.n + right_sym.n != bigram.size) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             // merge the right sym into the left one
 | |
|             left_sym.n += right_sym.n;
 | |
|             right_sym.n = 0;
 | |
| 
 | |
|             //printf("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
 | |
| 
 | |
|             // remove the right sym from the chain
 | |
|             left_sym.next = right_sym.next;
 | |
|             if (right_sym.next >= 0) {
 | |
|                 symbols_[right_sym.next].prev = bigram.left;
 | |
|             }
 | |
| 
 | |
|             // find more substitutions
 | |
|             try_add_bigram(left_sym.prev, bigram.left);
 | |
|             try_add_bigram(bigram.left, left_sym.next);
 | |
|         }
 | |
| 
 | |
|         for (int i = 0; i != -1; i = symbols_[i].next) {
 | |
|             auto & symbol = symbols_[i];
 | |
|             auto token = vocab_.token_to_id.find(std::string(symbol.text, symbol.n));
 | |
| 
 | |
|             if (token == vocab_.token_to_id.end()) {
 | |
|                 // output any symbols that did not form tokens as bytes.
 | |
|                 for (int j = 0; j < (int) symbol.n; ++j) {
 | |
|                     llama_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3;
 | |
|                     output.push_back(token_id);
 | |
|                 }
 | |
|             } else {
 | |
|                 output.push_back((*token).second);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     void try_add_bigram(int left, int right) {
 | |
|         if (left == -1 || right == -1) {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         const std::string text = std::string(symbols_[left].text, symbols_[left].n + symbols_[right].n);
 | |
|         auto token = vocab_.token_to_id.find(text);
 | |
| 
 | |
|         if (token == vocab_.token_to_id.end()) {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if (static_cast<size_t>((*token).second) >= vocab_.id_to_token.size()) {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         const auto &tok_score = vocab_.id_to_token[(*token).second];
 | |
| 
 | |
|         llama_sp_bigram bigram;
 | |
|         bigram.left = left;
 | |
|         bigram.right = right;
 | |
|         bigram.score = tok_score.score;
 | |
|         bigram.size = text.size();
 | |
|         work_queue_.push(bigram);
 | |
|     }
 | |
| 
 | |
|     const llama_vocab & vocab_;
 | |
|     std::vector<llama_sp_symbol> symbols_;
 | |
|     llama_sp_bigram::queue work_queue_;
 | |
| };
 | |
| 
 | |
| static std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos) {
 | |
|     llama_tokenizer tokenizer(vocab);
 | |
|     std::vector<llama_vocab::id> output;
 | |
| 
 | |
|     if (text.size() == 0) {
 | |
|         return output;
 | |
|     }
 | |
| 
 | |
|     if (bos) {
 | |
|         output.push_back(1);
 | |
|     }
 | |
| 
 | |
|     tokenizer.tokenize(text, output);
 | |
|     return output;
 | |
| }
 | |
| 
 | |
| //
 | |
| // sampling
 | |
| //
 | |
| 
 | |
| static void sample_top_k(std::vector<std::pair<float, llama_vocab::id>> & logits_id, int top_k) {
 | |
|     // find the top k tokens
 | |
|     std::partial_sort(
 | |
|             logits_id.begin(),
 | |
|             logits_id.begin() + top_k, logits_id.end(),
 | |
|             [](const std::pair<float, llama_vocab::id> & a, const std::pair<float, llama_vocab::id> & b) {
 | |
|         return a.first > b.first;
 | |
|     });
 | |
| 
 | |
|     logits_id.resize(top_k);
 | |
| }
 | |
| 
 | |
| static llama_vocab::id llama_sample_top_p_top_k(
 | |
|         llama_context & lctx,
 | |
|         const std::vector<llama_vocab::id> & last_n_tokens,
 | |
|         int top_k,
 | |
|         float top_p,
 | |
|         float temp,
 | |
|         float repeat_penalty) {
 | |
|     auto & rng = lctx.rng;
 | |
| 
 | |
|     const int n_logits = lctx.model.hparams.n_vocab;
 | |
| 
 | |
|     const auto & logits = lctx.logits;
 | |
|     const auto * plogits = logits.data() + logits.size() - n_logits;
 | |
| 
 | |
|     if (temp <= 0) {
 | |
|         // select the token with the highest logit directly
 | |
|         float max_logit = plogits[0];
 | |
|         llama_vocab::id max_id = 0;
 | |
| 
 | |
|         for (int i = 1; i < n_logits; ++i) {
 | |
|             if (plogits[i] > max_logit) {
 | |
|                 max_logit = plogits[i];
 | |
|                 max_id = i;
 | |
|             }
 | |
|         }
 | |
|         return max_id;
 | |
|     }
 | |
| 
 | |
|     std::vector<std::pair<float, llama_vocab::id>> logits_id;
 | |
|     logits_id.reserve(n_logits);
 | |
| 
 | |
|     {
 | |
|         const float scale = 1.0f/temp;
 | |
|         for (int i = 0; i < n_logits; ++i) {
 | |
|             // repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)
 | |
|             // credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
 | |
|             if (std::find(last_n_tokens.begin(), last_n_tokens.end(), i) != last_n_tokens.end()) {
 | |
|                 // if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
 | |
|                 if (plogits[i] < 0.0f) {
 | |
|                     logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i));
 | |
|                 } else {
 | |
|                     logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i));
 | |
|                 }
 | |
|             } else {
 | |
|                 logits_id.push_back(std::make_pair(plogits[i]*scale, i));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     sample_top_k(logits_id, top_k > 0 ? std::min(top_k, n_logits) : n_logits);
 | |
| 
 | |
|     // compute probs for the top k tokens
 | |
|     std::vector<float> probs;
 | |
|     probs.reserve(logits_id.size());
 | |
| 
 | |
|     float maxl = logits_id[0].first;
 | |
|     double sum = 0.0;
 | |
|     for (const auto & kv : logits_id) {
 | |
|         const float p = expf(kv.first - maxl);
 | |
|         probs.push_back(p);
 | |
|         sum += p;
 | |
|     }
 | |
| 
 | |
|     // normalize the probs
 | |
|     for (auto & p : probs) {
 | |
|         p /= sum;
 | |
|     }
 | |
| 
 | |
|     if (top_p < 1.0) {
 | |
|         double cumsum = 0.0;
 | |
|         for (int i = 0; i < (int) probs.size(); i++) {
 | |
|             cumsum += probs[i];
 | |
|             if (cumsum >= top_p) {
 | |
|                 probs.resize(i + 1);
 | |
|                 logits_id.resize(i + 1);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     //printf("\n");
 | |
|     //for (int i = 0; i < (int) 10; i++) {
 | |
|     //    printf("%d: '%s' %f\n", i, lctx.vocab.id_to_token.at(logits_id[i].second).tok.c_str(), probs[i]);
 | |
|     //}
 | |
|     //printf("\n\n");
 | |
|     //exit(0);
 | |
| 
 | |
|     std::discrete_distribution<> dist(probs.begin(), probs.end());
 | |
|     int idx = dist(rng);
 | |
| 
 | |
|     return logits_id[idx].second;
 | |
| }
 | |
| 
 | |
| //
 | |
| // quantization
 | |
| //
 | |
| 
 | |
| static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, enum llama_ftype ftype, int nthread) {
 | |
|     ggml_type quantized_type;
 | |
|     switch (ftype) {
 | |
|         case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
 | |
|         case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
 | |
|         case LLAMA_FTYPE_MOSTLY_Q4_2: quantized_type = GGML_TYPE_Q4_2; break;
 | |
|         case LLAMA_FTYPE_MOSTLY_Q4_3: quantized_type = GGML_TYPE_Q4_3; break;
 | |
|         default: throw format("invalid output file type %d\n", ftype);
 | |
|     };
 | |
| 
 | |
|     if (nthread <= 0) {
 | |
|         nthread = std::thread::hardware_concurrency();
 | |
|     }
 | |
| 
 | |
|     std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp.c_str(), /*use_mmap*/ false,
 | |
|                                                                             /*vocab_only*/ false));
 | |
|     llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), ftype);
 | |
| 
 | |
|     size_t total_size_org = 0;
 | |
|     size_t total_size_new = 0;
 | |
|     std::vector<int64_t> hist_all(1 << 4, 0);
 | |
| 
 | |
|     std::vector<std::thread> workers;
 | |
|     std::mutex mutex;
 | |
| 
 | |
|     size_t idx = 0;
 | |
|     for (llama_load_tensor & tensor : model_loader->tensors_map.tensors) {
 | |
|         llama_buffer read_data;
 | |
|         read_data.resize(tensor.size);
 | |
|         tensor.data = read_data.addr;
 | |
|         model_loader->load_data_for(tensor);
 | |
| 
 | |
|         printf("[%4zu/%4zu] %36s - %16s, type = %6s, ",
 | |
|                ++idx, model_loader->tensors_map.tensors.size(),
 | |
|                tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(),
 | |
|                ggml_type_name(tensor.type));
 | |
| 
 | |
|         // This used to be a regex, but <regex> has an extreme cost to compile times.
 | |
|         bool quantize = tensor.name.rfind("weight") == tensor.name.size() - 6; // ends with 'weight'?
 | |
| 
 | |
|         // quantize only 2D tensors
 | |
|         quantize &= (tensor.ne.size() == 2);
 | |
| 
 | |
|         // uncomment this to keep the output layer in FP16
 | |
|         //if (tensor.name == "output.weight") {
 | |
|         //    quantize = false;
 | |
|         //}
 | |
| 
 | |
|         enum ggml_type new_type;
 | |
|         void * new_data;
 | |
|         size_t new_size;
 | |
|         llama_buffer work;
 | |
| 
 | |
|         if (!quantize) {
 | |
|             new_type = tensor.type;
 | |
|             new_data = tensor.data;
 | |
|             new_size = tensor.size;
 | |
|             printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0);
 | |
|         } else {
 | |
|             new_type = quantized_type;
 | |
|             float * f32_data;
 | |
|             size_t nelements = tensor.ne.at(0) * tensor.ne.at(1);
 | |
|             llama_buffer f32_conv_buf;
 | |
|             if (tensor.type == GGML_TYPE_F32) {
 | |
|                 f32_data = (float *) tensor.data;
 | |
|             } else if (tensor.type == GGML_TYPE_F16) {
 | |
|                 f32_conv_buf.resize(nelements * sizeof(float));
 | |
|                 f32_data = (float *) f32_conv_buf.addr;
 | |
|                 auto f16_data = (const ggml_fp16_t *) tensor.data;
 | |
|                 for (size_t i = 0; i < nelements; i++) {
 | |
|                     f32_data[i] = ggml_fp16_to_fp32(f16_data[i]);
 | |
|                 }
 | |
|             } else {
 | |
|                 throw format("type %s unsupported for integer quantization", ggml_type_name(tensor.type));
 | |
|             }
 | |
| 
 | |
|             printf("quantizing .. ");
 | |
|             fflush(stdout);
 | |
| 
 | |
|             work.resize(nelements * 4); // upper bound on size
 | |
|             new_data = work.addr;
 | |
|             std::vector<int64_t> hist_cur(1 << 4, 0);
 | |
| 
 | |
|             int chunk_size = 32 * 512;
 | |
|             const int nchunk = (nelements + chunk_size - 1)/chunk_size;
 | |
|             const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
 | |
|             if (nthread_use < 2) {
 | |
|                 new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data());
 | |
|             } else {
 | |
|                 size_t counter = 0;
 | |
|                 new_size = 0;
 | |
|                 auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements, chunk_size] () {
 | |
|                     std::vector<int64_t> local_hist;
 | |
|                     size_t local_size = 0;
 | |
|                     while (true) {
 | |
|                         std::unique_lock<std::mutex> lock(mutex);
 | |
|                         size_t first = counter; counter += chunk_size;
 | |
|                         if (first >= nelements) {
 | |
|                             if (!local_hist.empty()) {
 | |
|                                 for (int j=0; j<int(local_hist.size()); ++j) hist_cur[j] += local_hist[j];
 | |
|                                 new_size += local_size;
 | |
|                             }
 | |
|                             break;
 | |
|                         }
 | |
|                         lock.unlock();
 | |
|                         size_t last = std::min(nelements, first + chunk_size);
 | |
|                         if (local_hist.empty()) local_hist.resize(hist_cur.size(), 0);
 | |
|                         local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
 | |
|                     }
 | |
|                 };
 | |
|                 if (int(workers.size()) < nthread_use - 1) workers.resize(nthread_use - 1);
 | |
|                 for (int it = 0; it < nthread_use - 1; ++it) workers[it] = std::thread(compute);
 | |
|                 compute();
 | |
|                 for (int it = 0; it < nthread_use - 1; ++it) workers[it].join();
 | |
|             }
 | |
| 
 | |
|             printf("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0);
 | |
|             for (size_t i = 0; i < hist_cur.size(); i++) {
 | |
|                 hist_all[i] += hist_cur[i];
 | |
|             }
 | |
| 
 | |
|             for (size_t i = 0; i < hist_cur.size(); i++) {
 | |
|                 printf("%5.3f ", hist_cur[i] / float(nelements));
 | |
|             }
 | |
|             printf("\n");
 | |
|         }
 | |
|         total_size_org += tensor.size;
 | |
|         total_size_new += new_size;
 | |
|         file_saver.write_tensor(tensor, new_type, new_data, new_size);
 | |
|     }
 | |
| 
 | |
|     printf("%s: model size  = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
 | |
|     printf("%s: quant size  = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
 | |
| 
 | |
|     {
 | |
|         int64_t sum_all = 0;
 | |
|         for (size_t i = 0; i < hist_all.size(); i++) {
 | |
|             sum_all += hist_all[i];
 | |
|         }
 | |
| 
 | |
|         printf("%s: hist: ", __func__);
 | |
|         for (size_t i = 0; i < hist_all.size(); i++) {
 | |
|             printf("%5.3f ", hist_all[i] / float(sum_all));
 | |
|         }
 | |
|         printf("\n");
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // interface implementation
 | |
| //
 | |
| 
 | |
| struct llama_context * llama_init_from_file(
 | |
|                              const char * path_model,
 | |
|             struct llama_context_params   params) {
 | |
|     ggml_time_init();
 | |
| 
 | |
|     llama_context * ctx = new llama_context;
 | |
| 
 | |
|     if (params.seed <= 0) {
 | |
|         params.seed = time(NULL);
 | |
|     }
 | |
| 
 | |
|     unsigned cur_percentage = 0;
 | |
|     if (params.progress_callback == NULL) {
 | |
|         params.progress_callback_user_data = &cur_percentage;
 | |
|         params.progress_callback = [](float progress, void * ctx) {
 | |
|             unsigned * cur_percentage_p = (unsigned *) ctx;
 | |
|             unsigned percentage = (unsigned) (100 * progress);
 | |
|             while (percentage > *cur_percentage_p) {
 | |
|                 ++*cur_percentage_p;
 | |
|                 fprintf(stderr, ".");
 | |
|                 fflush(stderr);
 | |
|                 if (percentage >= 100) {
 | |
|                     fprintf(stderr, "\n");
 | |
|                 }
 | |
|             }
 | |
|         };
 | |
|     }
 | |
| 
 | |
|     ctx->rng = std::mt19937(params.seed);
 | |
|     ctx->logits_all = params.logits_all;
 | |
| 
 | |
|     ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
 | |
| 
 | |
|     if (!llama_model_load(path_model, *ctx, params.n_ctx, memory_type,
 | |
|                           params.use_mmap, params.use_mlock, params.vocab_only,
 | |
|                           params.progress_callback, params.progress_callback_user_data)) {
 | |
|         fprintf(stderr, "%s: failed to load model\n", __func__);
 | |
|         llama_free(ctx);
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     // reserve memory for context buffers
 | |
|     if (!params.vocab_only) {
 | |
|         if (!kv_cache_init(ctx->model.hparams, ctx->model.kv_self, memory_type, ctx->model.hparams.n_ctx)) {
 | |
|             fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
 | |
|             llama_free(ctx);
 | |
|             return nullptr;
 | |
|         }
 | |
| 
 | |
|         {
 | |
|             const size_t memory_size = ggml_nbytes(ctx->model.kv_self.k) + ggml_nbytes(ctx->model.kv_self.v);
 | |
|             fprintf(stderr, "%s: kv self size  = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
 | |
|         }
 | |
| 
 | |
|         const auto & hparams = ctx->model.hparams;
 | |
| 
 | |
|         // resized during inference
 | |
|         if (params.logits_all) {
 | |
|             ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab);
 | |
|         } else {
 | |
|             ctx->logits.reserve(hparams.n_ctx);
 | |
|         }
 | |
| 
 | |
|         if (params.embedding){
 | |
|             ctx->embedding.resize(hparams.n_embd);
 | |
|         }
 | |
| 
 | |
|         ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type));
 | |
| 
 | |
|         ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0().at(ctx->model.type));
 | |
|         ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type));
 | |
|     }
 | |
| 
 | |
|     return ctx;
 | |
| }
 | |
| 
 | |
| void llama_free(struct llama_context * ctx) {
 | |
|     delete ctx;
 | |
| }
 | |
| 
 | |
| int llama_model_quantize(
 | |
|         const char * fname_inp,
 | |
|         const char * fname_out,
 | |
|   enum llama_ftype   ftype,
 | |
|         int          nthread) {
 | |
|     try {
 | |
|         llama_model_quantize_internal(fname_inp, fname_out, ftype, nthread);
 | |
|         return 0;
 | |
|     } catch (const std::string & err) {
 | |
|         fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.c_str());
 | |
|         return 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
 | |
|     fprintf(stderr, "%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
 | |
| 
 | |
|     auto & model = ctx->model;
 | |
| 
 | |
|     const int64_t t_start_lora_us = ggml_time_us();
 | |
| 
 | |
|     auto fin = std::ifstream(path_lora, std::ios::binary);
 | |
|     if (!fin) {
 | |
|         fprintf(stderr, "%s: failed to open '%s'\n", __func__, path_lora);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // verify magic and version
 | |
|     {
 | |
|         uint32_t magic;
 | |
|         fin.read((char *) &magic, sizeof(magic));
 | |
|         if (magic != 'ggla') {
 | |
|             fprintf(stderr, "%s: bad file magic\n", __func__);
 | |
|             return 1;
 | |
|         }
 | |
|         uint32_t format_version;
 | |
|         fin.read((char *) &format_version, sizeof(format_version));
 | |
| 
 | |
|         if (format_version != 1) {
 | |
|             fprintf(stderr, "%s: unsupported file version\n", __func__ );
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     int32_t lora_r;
 | |
|     int32_t lora_alpha;
 | |
|     fin.read((char *) &lora_r, sizeof(lora_r));
 | |
|     fin.read((char *) &lora_alpha, sizeof(lora_alpha));
 | |
|     float scaling = (float)lora_alpha / (float)lora_r;
 | |
| 
 | |
|     fprintf(stderr, "%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
 | |
| 
 | |
| 
 | |
|     // create a temporary ggml context to store the lora tensors
 | |
|     // todo: calculate size from biggest possible tensor
 | |
|     std::vector<uint8_t> lora_buf(1024ull * 1024ull * 1024ull);
 | |
|     struct ggml_init_params params;
 | |
|     params.mem_size   = lora_buf.size();
 | |
|     params.mem_buffer = lora_buf.data();
 | |
|     params.no_alloc   = false;
 | |
| 
 | |
|     ggml_context * lora_ctx = ggml_init(params);
 | |
|     std::unordered_map<std::string, struct ggml_tensor *> lora_tensors;
 | |
| 
 | |
|     // create a name -> tensor map of the model to accelerate lookups
 | |
|     std::unordered_map<std::string, struct ggml_tensor*> model_tensors;
 | |
|     for (auto & kv: model.tensors_by_name) {
 | |
|         model_tensors.insert(kv);
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // load base model
 | |
|     std::unique_ptr<llama_model_loader> model_loader;
 | |
|     ggml_context * base_ctx = NULL;
 | |
|     llama_buffer base_buf;
 | |
|     if (path_base_model) {
 | |
|         fprintf(stderr, "%s: loading base model from '%s'\n", __func__, path_base_model);
 | |
|         model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*vocab_only*/ false));
 | |
| 
 | |
|         size_t ctx_size, mmapped_size;
 | |
|         model_loader->calc_sizes(&ctx_size, &mmapped_size);
 | |
|         base_buf.resize(ctx_size);
 | |
| 
 | |
|         ggml_init_params base_params;
 | |
|         base_params.mem_size   = base_buf.size;
 | |
|         base_params.mem_buffer = base_buf.addr;
 | |
|         base_params.no_alloc   = model_loader->use_mmap;
 | |
| 
 | |
|         base_ctx = ggml_init(base_params);
 | |
| 
 | |
|         model_loader->ggml_ctx = base_ctx;
 | |
| 
 | |
|         // maybe this should in llama_model_loader
 | |
|         if (model_loader->use_mmap) {
 | |
|             model_loader->mapping.reset(new llama_mmap(&model_loader->file_loaders.at(0)->file, /* prefetch */ false));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // read tensors and apply
 | |
|     bool warned = false;
 | |
|     int n_tensors = 0;
 | |
|     while (true) {
 | |
|         int32_t n_dims;
 | |
|         int32_t length;
 | |
|         int32_t ftype;
 | |
| 
 | |
|         fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
 | |
|         fin.read(reinterpret_cast<char *>(&length), sizeof(length));
 | |
|         fin.read(reinterpret_cast<char *>(&ftype),  sizeof(ftype));
 | |
|         if (fin.eof()) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         int32_t ne[2] = { 1, 1 };
 | |
|         for (int i = 0; i < n_dims; ++i) {
 | |
|             fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
 | |
|         }
 | |
| 
 | |
|         std::string name(length, 0);
 | |
|         fin.read(&name[0], length);
 | |
| 
 | |
|         // check for lora suffix and get the type of tensor
 | |
|         const std::string lora_suffix = ".lora";
 | |
|         size_t pos = name.rfind(lora_suffix);
 | |
|         if (pos == std::string::npos) {
 | |
|             fprintf(stderr, "%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         std::string lora_type = name.substr(pos + lora_suffix.length());
 | |
|         std::string base_name = name;
 | |
|         base_name.erase(pos);
 | |
|         // fprintf(stderr, "%s: %s => %s (lora type %s) ", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
 | |
| 
 | |
|         if (model_tensors.find(base_name.data()) == model_tensors.end()) {
 | |
|             fprintf(stderr, "%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         // create ggml tensor
 | |
|         ggml_type wtype;
 | |
|         switch (ftype) {
 | |
|             case 0: wtype = GGML_TYPE_F32;  break;
 | |
|             case 1: wtype = GGML_TYPE_F16;  break;
 | |
|             default:
 | |
|                     {
 | |
|                         fprintf(stderr, "%s: invalid tensor data type '%d'\n",
 | |
|                                 __func__, ftype);
 | |
|                         return false;
 | |
|                     }
 | |
|         }
 | |
|         ggml_tensor* lora_tensor;
 | |
|         if (n_dims == 2) {
 | |
|             lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
 | |
|         }
 | |
|         else {
 | |
|             fprintf(stderr, "%s: unsupported tensor dimension %d\n", __func__, n_dims);
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         // load tensor data
 | |
|         size_t offset = fin.tellg();
 | |
|         size_t tensor_data_size = ggml_nbytes(lora_tensor);
 | |
|         offset = (offset + 31) & -32;
 | |
|         fin.seekg(offset);
 | |
|         fin.read((char*)lora_tensor->data, tensor_data_size);
 | |
| 
 | |
|         lora_tensors[name] = lora_tensor;
 | |
| 
 | |
|         // check if we have both A and B tensors and apply
 | |
|         if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() &&
 | |
|             lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) {
 | |
| 
 | |
|             ggml_tensor * dest_t = model_tensors[base_name];
 | |
|             ggml_tensor * base_t;
 | |
|             if (model_loader) {
 | |
|                 // load from base model
 | |
|                 if (model_loader->tensors_map.name_to_idx.find(base_name) == model_loader->tensors_map.name_to_idx.end()) {
 | |
|                     fprintf(stderr, "%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
 | |
|                     return 1;
 | |
|                 }
 | |
|                 size_t idx = model_loader->tensors_map.name_to_idx[base_name];
 | |
|                 llama_load_tensor & lt = model_loader->tensors_map.tensors[idx];
 | |
|                 base_t = model_loader->get_tensor(base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] });
 | |
|                 lt.data = (uint8_t *) lt.ggml_tensor->data;
 | |
|                 model_loader->load_data_for(lt);
 | |
|                 lt.ggml_tensor->data = lt.data;
 | |
|             }
 | |
|             else {
 | |
|                 base_t = dest_t;
 | |
|             }
 | |
| 
 | |
|             if (ggml_is_quantized(base_t->type)) {
 | |
|                 if (!warned) {
 | |
|                     fprintf(stderr, "%s: warning: using a lora adapter with a quantized model may result in poor quality, "
 | |
|                                     "use a f16 or f32 base model with --lora-base\n", __func__);
 | |
|                     warned = true;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             ggml_tensor * loraA = lora_tensors[base_name + ".loraA"];
 | |
|             ggml_tensor * loraB = lora_tensors[base_name + ".loraB"];
 | |
| 
 | |
|             if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
 | |
|                 fprintf(stderr, "%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
 | |
|                                " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
 | |
|                 return 1;
 | |
|             }
 | |
| 
 | |
|             // w = w + BA*s
 | |
|             ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
 | |
| 
 | |
|             if (scaling != 1.0f) {
 | |
|                 ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling);
 | |
|                 BA = ggml_scale(lora_ctx, BA, scale_tensor);
 | |
|             }
 | |
| 
 | |
|             ggml_tensor * r;
 | |
|             if (base_t == dest_t) {
 | |
|                 r = ggml_add_inplace(lora_ctx, dest_t, BA);
 | |
|             }
 | |
|             else {
 | |
|                 r = ggml_add(lora_ctx, base_t, BA);
 | |
|                 r = ggml_cpy(lora_ctx, r, dest_t);
 | |
|             }
 | |
| 
 | |
|             struct ggml_cgraph gf = ggml_build_forward(r);
 | |
|             gf.n_threads = n_threads;
 | |
|             ggml_graph_compute(lora_ctx, &gf);
 | |
| 
 | |
|             // we won't need these tensors again, reset the context to save memory
 | |
|             ggml_free(lora_ctx);
 | |
|             lora_ctx = ggml_init(params);
 | |
|             lora_tensors.clear();
 | |
| 
 | |
|             n_tensors++;
 | |
|             if (n_tensors % 4 == 0)
 | |
|                 fprintf(stderr, ".");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // TODO: this should be in a destructor, it will leak on failure
 | |
|     ggml_free(lora_ctx);
 | |
|     if (base_ctx) {
 | |
|         ggml_free(base_ctx);
 | |
|     }
 | |
| 
 | |
|     const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
 | |
|     fprintf(stderr, " done (%.2f ms)\n", t_lora_us / 1000.0);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
 | |
|     try {
 | |
|         return llama_apply_lora_from_file_internal(ctx, path_lora, path_base_model, n_threads);
 | |
|     } catch (const std::string & err) {
 | |
|         fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.c_str());
 | |
|         return 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Returns the KV cache that will contain the context for the
 | |
| // ongoing prediction with the model.
 | |
| const uint8_t * llama_get_kv_cache(struct llama_context * ctx) {
 | |
|     return ctx->model.kv_self.buf.addr;
 | |
| }
 | |
| 
 | |
| // Returns the size of the KV cache
 | |
| size_t llama_get_kv_cache_size(struct llama_context * ctx) {
 | |
|     return ctx->model.kv_self.buf.size;
 | |
| }
 | |
| 
 | |
| int llama_get_kv_cache_token_count(struct llama_context * ctx) {
 | |
|     return ctx->model.kv_self.n;
 | |
| }
 | |
| 
 | |
| // Sets the KV cache containing the current context for the model
 | |
| void llama_set_kv_cache(
 | |
|         struct llama_context * ctx,
 | |
|                const uint8_t * kv_cache,
 | |
|                       size_t   n_size,
 | |
|                          int   n_token_count) {
 | |
|     // Make sure we have the same kv cache setup
 | |
|     LLAMA_ASSERT(ctx->model.kv_self.buf.size == n_size);
 | |
|     void * k_data = ctx->model.kv_self.k->data; // remember data pointers
 | |
|     void * v_data = ctx->model.kv_self.v->data; // because their value is stored in buf and overwritten by memcpy
 | |
|     memcpy(ctx->model.kv_self.buf.addr, kv_cache, n_size);
 | |
|     ctx->model.kv_self.k->data = k_data; // restore correct data pointers
 | |
|     ctx->model.kv_self.v->data = v_data;
 | |
|     ctx->model.kv_self.n = n_token_count;
 | |
| }
 | |
| 
 | |
| int llama_eval(
 | |
|         struct llama_context * ctx,
 | |
|            const llama_token * tokens,
 | |
|                          int   n_tokens,
 | |
|                          int   n_past,
 | |
|                          int   n_threads) {
 | |
|     if (!llama_eval_internal(*ctx, tokens, n_tokens, n_past, n_threads)) {
 | |
|         fprintf(stderr, "%s: failed to eval\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
|     // get a more accurate load time, upon first eval
 | |
|     if (!ctx->has_evaluated_once) {
 | |
|         ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
 | |
|         ctx->has_evaluated_once = true;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int llama_tokenize(
 | |
|         struct llama_context * ctx,
 | |
|                   const char * text,
 | |
|                  llama_token * tokens,
 | |
|                          int   n_max_tokens,
 | |
|                         bool   add_bos) {
 | |
|     auto res = llama_tokenize(ctx->vocab, text, add_bos);
 | |
| 
 | |
|     if (n_max_tokens < (int) res.size()) {
 | |
|         fprintf(stderr, "%s: too many tokens\n", __func__);
 | |
|         return -((int) res.size());
 | |
|     }
 | |
| 
 | |
|     for (size_t i = 0; i < res.size(); i++) {
 | |
|         tokens[i] = res[i];
 | |
|     }
 | |
| 
 | |
|     return res.size();
 | |
| }
 | |
| 
 | |
| int llama_n_vocab(struct llama_context * ctx) {
 | |
|     return ctx->vocab.id_to_token.size();
 | |
| }
 | |
| 
 | |
| int llama_n_ctx(struct llama_context * ctx) {
 | |
|     return ctx->model.hparams.n_ctx;
 | |
| }
 | |
| 
 | |
| int llama_n_embd(struct llama_context * ctx) {
 | |
|     return ctx->model.hparams.n_embd;
 | |
| }
 | |
| 
 | |
| float * llama_get_logits(struct llama_context * ctx) {
 | |
|     return ctx->logits.data();
 | |
| }
 | |
| 
 | |
| float * llama_get_embeddings(struct llama_context * ctx) {
 | |
|     return ctx->embedding.data();
 | |
| }
 | |
| 
 | |
| const char * llama_token_to_str(struct llama_context * ctx, llama_token token) {
 | |
|     if (token >= llama_n_vocab(ctx)) {
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     return ctx->vocab.id_to_token[token].tok.c_str();
 | |
| }
 | |
| 
 | |
| llama_token llama_token_bos() {
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| llama_token llama_token_eos() {
 | |
|     return 2;
 | |
| }
 | |
| 
 | |
| llama_token llama_sample_top_p_top_k(
 | |
|           llama_context * ctx,
 | |
|       const llama_token * last_n_tokens_data,
 | |
|                     int   last_n_tokens_size,
 | |
|                     int   top_k,
 | |
|                   float   top_p,
 | |
|                   float   temp,
 | |
|                   float   repeat_penalty) {
 | |
|     const int64_t t_start_sample_us = ggml_time_us();
 | |
| 
 | |
|     llama_token result = 0;
 | |
| 
 | |
|     // TODO: avoid this ...
 | |
|     const auto last_n_tokens = std::vector<llama_token>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_size);
 | |
| 
 | |
|     result = llama_sample_top_p_top_k(
 | |
|             *ctx,
 | |
|             last_n_tokens,
 | |
|             top_k,
 | |
|             top_p,
 | |
|             temp,
 | |
|             repeat_penalty);
 | |
| 
 | |
|     ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
 | |
|     ctx->n_sample++;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| void llama_print_timings(struct llama_context * ctx) {
 | |
|     const int64_t t_end_us = ggml_time_us();
 | |
| 
 | |
|     const int32_t n_sample = std::max(1, ctx->n_sample);
 | |
|     const int32_t n_eval   = std::max(1, ctx->n_eval);
 | |
|     const int32_t n_p_eval = std::max(1, ctx->n_p_eval);
 | |
| 
 | |
|     fprintf(stderr, "\n");
 | |
|     fprintf(stderr, "%s:        load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0);
 | |
|     fprintf(stderr, "%s:      sample time = %8.2f ms / %5d runs   (%8.2f ms per run)\n",   __func__, 1e-3 * ctx->t_sample_us, n_sample, 1e-3 * ctx->t_sample_us / n_sample);
 | |
|     fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_p_eval_us, n_p_eval, 1e-3 * ctx->t_p_eval_us / n_p_eval);
 | |
|     fprintf(stderr, "%s:        eval time = %8.2f ms / %5d runs   (%8.2f ms per run)\n",   __func__, 1e-3 * ctx->t_eval_us,   n_eval,   1e-3 * ctx->t_eval_us   / n_eval);
 | |
|     fprintf(stderr, "%s:       total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0);
 | |
| }
 | |
| 
 | |
| void llama_reset_timings(struct llama_context * ctx) {
 | |
|     ctx->t_start_us = ggml_time_us();
 | |
|     ctx->t_sample_us = ctx->n_sample = 0;
 | |
|     ctx->t_eval_us   = ctx->n_eval   = 0;
 | |
|     ctx->t_p_eval_us = ctx->n_p_eval = 0;
 | |
| }
 | |
| 
 | |
| const char * llama_print_system_info(void) {
 | |
|     static std::string s;
 | |
| 
 | |
|     s  = "";
 | |
|     s += "AVX = "         + std::to_string(ggml_cpu_has_avx())         + " | ";
 | |
|     s += "AVX2 = "        + std::to_string(ggml_cpu_has_avx2())        + " | ";
 | |
|     s += "AVX512 = "      + std::to_string(ggml_cpu_has_avx512())      + " | ";
 | |
|     s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
 | |
|     s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
 | |
|     s += "FMA = "         + std::to_string(ggml_cpu_has_fma())         + " | ";
 | |
|     s += "NEON = "        + std::to_string(ggml_cpu_has_neon())        + " | ";
 | |
|     s += "ARM_FMA = "     + std::to_string(ggml_cpu_has_arm_fma())     + " | ";
 | |
|     s += "F16C = "        + std::to_string(ggml_cpu_has_f16c())        + " | ";
 | |
|     s += "FP16_VA = "     + std::to_string(ggml_cpu_has_fp16_va())     + " | ";
 | |
|     s += "WASM_SIMD = "   + std::to_string(ggml_cpu_has_wasm_simd())   + " | ";
 | |
|     s += "BLAS = "        + std::to_string(ggml_cpu_has_blas())        + " | ";
 | |
|     s += "SSE3 = "        + std::to_string(ggml_cpu_has_sse3())        + " | ";
 | |
|     s += "VSX = "         + std::to_string(ggml_cpu_has_vsx())         + " | ";
 | |
| 
 | |
|     return s.c_str();
 | |
| }
 | |
| 
 | |
| // For internal test use
 | |
| std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
 | |
|     return ctx->model.tensors_by_name;
 | |
| }
 | 
