Files
llama.cpp/src/llama.cpp
Daniel Bevenius 86587da03b llama : check returned fn ptrs from ggml_backend_reg_get_proc_address (#15893)
This commit adds check for two function pointers returned from
ggml_backend_reg_get_proc_address.

The motivation for this is that the function pointer could be nullptr if
the get proc address function changes in the future. This is also
consistent with all the other calls to ggml_backend_reg_get_proc_address
in the code base.
2025-09-10 05:33:58 +02:00

373 lines
12 KiB
C++

#include "llama-impl.h"
#include "llama-chat.h"
#include "llama-mmap.h"
#include "llama-vocab.h"
#include "llama-model-loader.h"
#include "llama-model-saver.h"
#include "llama-model.h"
#include "ggml.h"
#include "ggml-backend.h"
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstring>
#include <ctime>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
//
// interface implementation
//
const char * llama_flash_attn_type_name(enum llama_flash_attn_type flash_attn_type) {
switch (flash_attn_type) {
case LLAMA_FLASH_ATTN_TYPE_AUTO:
return "auto";
case LLAMA_FLASH_ATTN_TYPE_DISABLED:
return "disabled";
case LLAMA_FLASH_ATTN_TYPE_ENABLED:
return "enabled";
}
GGML_ABORT("fatal error");
}
struct llama_sampler_chain_params llama_sampler_chain_default_params() {
struct llama_sampler_chain_params result = {
/*.no_perf =*/ true,
};
return result;
}
size_t llama_max_devices(void) {
return 16;
}
bool llama_supports_mmap(void) {
return llama_mmap::SUPPORTED;
}
bool llama_supports_mlock(void) {
return llama_mlock::SUPPORTED;
}
bool llama_supports_gpu_offload(void) {
return ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_GPU) != nullptr ||
llama_supports_rpc();
}
bool llama_supports_rpc(void) {
return ggml_backend_reg_by_name("RPC") != nullptr;
}
void llama_backend_init(void) {
ggml_time_init();
// needed to initialize f16 tables
{
struct ggml_init_params params = { 0, NULL, false };
struct ggml_context * ctx = ggml_init(params);
ggml_free(ctx);
}
}
void llama_numa_init(enum ggml_numa_strategy numa) {
if (numa != GGML_NUMA_STRATEGY_DISABLED) {
auto * dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
GGML_ASSERT(dev && "CPU backend is not loaded");
auto * reg = ggml_backend_dev_backend_reg(dev);
auto * numa_init_fn = (decltype(ggml_numa_init) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_numa_init");
if (numa_init_fn) {
numa_init_fn(numa);
}
}
}
void llama_backend_free(void) {
ggml_quantize_free();
}
int64_t llama_time_us(void) {
return ggml_time_us();
}
// Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
static int llama_model_load(const std::string & fname, std::vector<std::string> & splits, llama_model & model, llama_model_params & params) {
// loading time will be recalculated after the first eval, so
// we take page faults deferred by mmap() into consideration
model.t_load_us = 0;
time_meas tm(model.t_load_us);
model.t_start_us = tm.t_start_us;
try {
llama_model_loader ml(fname, splits, params.use_mmap, params.check_tensors, params.kv_overrides, params.tensor_buft_overrides);
ml.print_info();
model.hparams.vocab_only = params.vocab_only;
try {
model.load_arch(ml);
} catch(const std::exception & e) {
throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
}
try {
model.load_hparams(ml);
} catch(const std::exception & e) {
throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
}
try {
model.load_vocab(ml);
} catch(const std::exception & e) {
throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
}
model.load_stats(ml);
model.print_info();
if (params.vocab_only) {
LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
return 0;
}
if (!model.load_tensors(ml)) {
return -2;
}
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
return -1;
}
return 0;
}
static struct llama_model * llama_model_load_from_file_impl(
const std::string & path_model,
std::vector<std::string> & splits,
struct llama_model_params params) {
ggml_time_init();
if (!params.vocab_only && ggml_backend_reg_count() == 0) {
LLAMA_LOG_ERROR("%s: no backends are loaded. hint: use ggml_backend_load() or ggml_backend_load_all() to load a backend before calling this function\n", __func__);
return nullptr;
}
unsigned cur_percentage = 0;
if (params.progress_callback == NULL) {
params.progress_callback_user_data = &cur_percentage;
params.progress_callback = [](float progress, void * ctx) {
unsigned * cur_percentage_p = (unsigned *) ctx;
unsigned percentage = (unsigned) (100 * progress);
while (percentage > *cur_percentage_p) {
*cur_percentage_p = percentage;
LLAMA_LOG_CONT(".");
if (percentage >= 100) {
LLAMA_LOG_CONT("\n");
}
}
return true;
};
}
llama_model * model = new llama_model(params);
// create list of devices to use with this model
if (params.devices) {
for (ggml_backend_dev_t * dev = params.devices; *dev; ++dev) {
model->devices.push_back(*dev);
}
} else {
std::vector<ggml_backend_dev_t> rpc_servers;
// use all available devices
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
ggml_backend_dev_t dev = ggml_backend_dev_get(i);
switch (ggml_backend_dev_type(dev)) {
case GGML_BACKEND_DEVICE_TYPE_CPU:
case GGML_BACKEND_DEVICE_TYPE_ACCEL:
// skip CPU backends since they are handled separately
break;
case GGML_BACKEND_DEVICE_TYPE_GPU:
ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
if (ggml_backend_reg_name(reg) == std::string("RPC")) {
rpc_servers.push_back(dev);
} else {
model->devices.push_back(dev);
}
break;
}
}
// add RPC servers at the front of the list
if (!rpc_servers.empty()) {
model->devices.insert(model->devices.begin(), rpc_servers.begin(), rpc_servers.end());
}
}
// if using single GPU mode, remove all except the main GPU
if (params.split_mode == LLAMA_SPLIT_MODE_NONE) {
if (params.main_gpu < 0) {
model->devices.clear();
} else {
if (params.main_gpu >= (int)model->devices.size()) {
LLAMA_LOG_ERROR("%s: invalid value for main_gpu: %d (available devices: %zu)\n", __func__, params.main_gpu, model->devices.size());
llama_model_free(model);
return nullptr;
}
ggml_backend_dev_t main_gpu = model->devices[params.main_gpu];
model->devices.clear();
model->devices.push_back(main_gpu);
}
}
for (auto * dev : model->devices) {
size_t free, total; // NOLINT
ggml_backend_dev_memory(dev, &free, &total);
LLAMA_LOG_INFO("%s: using device %s (%s) - %zu MiB free\n", __func__, ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), free/1024/1024);
}
const int status = llama_model_load(path_model, splits, *model, params);
GGML_ASSERT(status <= 0);
if (status < 0) {
if (status == -1) {
LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
} else if (status == -2) {
LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
}
llama_model_free(model);
return nullptr;
}
return model;
}
// deprecated
struct llama_model * llama_load_model_from_file(
const char * path_model,
struct llama_model_params params) {
return llama_model_load_from_file(path_model, params);
}
struct llama_model * llama_model_load_from_file(
const char * path_model,
struct llama_model_params params) {
std::vector<std::string> splits = {};
return llama_model_load_from_file_impl(path_model, splits, params);
}
struct llama_model * llama_model_load_from_splits(
const char ** paths,
size_t n_paths,
struct llama_model_params params) {
std::vector<std::string> splits;
if (n_paths == 0) {
LLAMA_LOG_ERROR("%s: list of splits is empty\n", __func__);
return nullptr;
}
for (size_t i = 0; i < n_paths; ++i) {
splits.push_back(paths[i]);
}
return llama_model_load_from_file_impl(splits.front(), splits, params);
}
void llama_model_save_to_file(const struct llama_model * model, const char * path_model) {
llama_model_saver ms(*model);
ms.add_kv_from_model();
ms.add_tensors_from_model();
ms.save(path_model);
}
//
// chat templates
//
int32_t llama_chat_apply_template(
const char * tmpl,
const struct llama_chat_message * chat,
size_t n_msg,
bool add_ass,
char * buf,
int32_t length) {
const std::string curr_tmpl(tmpl == nullptr ? "chatml" : tmpl);
// format the chat to string
std::vector<const llama_chat_message *> chat_vec;
chat_vec.resize(n_msg);
for (size_t i = 0; i < n_msg; i++) {
chat_vec[i] = &chat[i];
}
std::string formatted_chat;
llm_chat_template detected_tmpl = llm_chat_detect_template(curr_tmpl);
if (detected_tmpl == LLM_CHAT_TEMPLATE_UNKNOWN) {
return -1;
}
int32_t res = llm_chat_apply_template(detected_tmpl, chat_vec, formatted_chat, add_ass);
if (res < 0) {
return res;
}
if (buf && length > 0) {
strncpy(buf, formatted_chat.c_str(), length);
}
return res;
}
//
// model split
//
int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
return strlen(split_path);
}
return 0;
}
int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count) {
std::string str_split_path(split_path);
char postfix[32];
snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
std::string str_postfix(postfix);
// check if split_prefix ends with postfix
int size_prefix = str_split_path.size() - str_postfix.size();
if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
snprintf(split_prefix, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
return size_prefix;
}
return 0;
}
const char * llama_print_system_info(void) {
static std::string s;
s.clear(); // Clear the string, since it's static, otherwise it will accumulate data from previous calls.
for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
auto * reg = ggml_backend_reg_get(i);
auto * get_features_fn = (ggml_backend_get_features_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_get_features");
if (get_features_fn) {
ggml_backend_feature * features = get_features_fn(reg);
s += ggml_backend_reg_name(reg);
s += " : ";
for (; features->name; features++) {
s += features->name;
s += " = ";
s += features->value;
s += " | ";
}
}
}
return s.c_str();
}