mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			197 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			197 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| #include "concat.cuh"
 | |
| 
 | |
| // contiguous kernels
 | |
| static __global__ void concat_f32_dim0(const float * x, const float * y, float * dst, const int ne0, const int ne00) {
 | |
|     int nidx = threadIdx.x + blockIdx.x * blockDim.x;
 | |
|     if (nidx >= ne0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     int offset_dst =
 | |
|         nidx +
 | |
|         blockIdx.y * ne0 +
 | |
|         blockIdx.z * ne0 * gridDim.y;
 | |
| 
 | |
|     if (nidx < ne00) { // src0
 | |
|         int offset_src =
 | |
|             nidx +
 | |
|             blockIdx.y * ne00 +
 | |
|             blockIdx.z * ne00 * gridDim.y;
 | |
|         dst[offset_dst] = x[offset_src];
 | |
|     } else {
 | |
|         int offset_src =
 | |
|             (nidx - ne00) +
 | |
|             blockIdx.y * (ne0 - ne00) +
 | |
|             blockIdx.z * (ne0 - ne00) * gridDim.y;
 | |
|         dst[offset_dst] = y[offset_src];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __global__ void concat_f32_dim1(const float * x, const float * y, float * dst, const int ne0, const int ne01) {
 | |
|     int nidx = threadIdx.x + blockIdx.x * blockDim.x;
 | |
|     if (nidx >= ne0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     int offset_dst =
 | |
|         nidx +
 | |
|         blockIdx.y * ne0 +
 | |
|         blockIdx.z * ne0 * gridDim.y;
 | |
| 
 | |
|     if (blockIdx.y < ne01) { // src0
 | |
|         int offset_src =
 | |
|             nidx +
 | |
|             blockIdx.y * ne0 +
 | |
|             blockIdx.z * ne0 * ne01;
 | |
|         dst[offset_dst] = x[offset_src];
 | |
|     } else {
 | |
|         int offset_src =
 | |
|             nidx +
 | |
|             (blockIdx.y - ne01) * ne0 +
 | |
|             blockIdx.z * ne0 * (gridDim.y - ne01);
 | |
|         dst[offset_dst] = y[offset_src];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __global__ void concat_f32_dim2(const float * x, const float * y, float * dst, const int ne0, const int ne02) {
 | |
|     int nidx = threadIdx.x + blockIdx.x * blockDim.x;
 | |
|     if (nidx >= ne0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     int offset_dst =
 | |
|         nidx +
 | |
|         blockIdx.y * ne0 +
 | |
|         blockIdx.z * ne0 * gridDim.y;
 | |
| 
 | |
|     if (blockIdx.z < ne02) { // src0
 | |
|         int offset_src =
 | |
|             nidx +
 | |
|             blockIdx.y * ne0 +
 | |
|             blockIdx.z * ne0 * gridDim.y;
 | |
|         dst[offset_dst] = x[offset_src];
 | |
|     } else {
 | |
|         int offset_src =
 | |
|             nidx +
 | |
|             blockIdx.y * ne0 +
 | |
|             (blockIdx.z - ne02) * ne0 *  gridDim.y;
 | |
|         dst[offset_dst] = y[offset_src];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void concat_f32_cuda(const float * x, const float * y, float * dst, int ne00, int ne01, int ne02, int ne0, int ne1, int ne2, int dim, cudaStream_t stream) {
 | |
|     int num_blocks = (ne0 + CUDA_CONCAT_BLOCK_SIZE - 1) / CUDA_CONCAT_BLOCK_SIZE;
 | |
|     dim3 gridDim(num_blocks, ne1, ne2);
 | |
|     if (dim == 0) {
 | |
|         concat_f32_dim0<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne00);
 | |
|         return;
 | |
|     }
 | |
|     if (dim == 1) {
 | |
|         concat_f32_dim1<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne01);
 | |
|         return;
 | |
|     }
 | |
|     concat_f32_dim2<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02);
 | |
| }
 | |
| 
 | |
| // non-contiguous kernel (slow)
 | |
| static __global__ void concat_f32_non_cont(
 | |
|         const char * src0,
 | |
|         const char * src1,
 | |
|               char * dst,
 | |
|            int64_t   ne00,
 | |
|            int64_t   ne01,
 | |
|            int64_t   ne02,
 | |
|            int64_t   ne03,
 | |
|           uint64_t   nb00,
 | |
|           uint64_t   nb01,
 | |
|           uint64_t   nb02,
 | |
|           uint64_t   nb03,
 | |
|            int64_t /*ne10*/,
 | |
|            int64_t /*ne11*/,
 | |
|            int64_t /*ne12*/,
 | |
|            int64_t /*ne13*/,
 | |
|           uint64_t   nb10,
 | |
|           uint64_t   nb11,
 | |
|           uint64_t   nb12,
 | |
|           uint64_t   nb13,
 | |
|            int64_t   ne0,
 | |
|            int64_t /*ne1*/,
 | |
|            int64_t /*ne2*/,
 | |
|            int64_t /*ne3*/,
 | |
|           uint64_t   nb0,
 | |
|           uint64_t   nb1,
 | |
|           uint64_t   nb2,
 | |
|           uint64_t   nb3,
 | |
|           int32_t   dim) {
 | |
|     const int64_t i3 = blockIdx.z;
 | |
|     const int64_t i2 = blockIdx.y;
 | |
|     const int64_t i1 = blockIdx.x;
 | |
| 
 | |
|     int64_t o[4] = {0, 0, 0, 0};
 | |
|     o[dim] = dim == 0 ? ne00 : (dim == 1 ? ne01 : (dim == 2 ? ne02 : ne03));
 | |
| 
 | |
|     const float * x;
 | |
| 
 | |
|     for (int i0 = threadIdx.x; i0 < ne0; i0 += blockDim.x) {
 | |
|         if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
 | |
|             x = (const float *)(src0 + (i3       )*nb03 + (i2       )*nb02 + (i1       )*nb01 + (i0       )*nb00);
 | |
|         } else {
 | |
|             x = (const float *)(src1 + (i3 - o[3])*nb13 + (i2 - o[2])*nb12 + (i1 - o[1])*nb11 + (i0 - o[0])*nb10);
 | |
|         }
 | |
| 
 | |
|         float * y = (float *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
 | |
| 
 | |
|         *y = *x;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
 | |
|     const ggml_tensor * src0 = dst->src[0];
 | |
|     const ggml_tensor * src1 = dst->src[1];
 | |
| 
 | |
|     cudaStream_t stream = ctx.stream();
 | |
| 
 | |
|     const int32_t dim = ((int32_t *) dst->op_params)[0];
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT(dst->type  == GGML_TYPE_F32);
 | |
| 
 | |
|     if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
 | |
|         const float * src0_d = (const float *)src0->data;
 | |
|         const float * src1_d = (const float *)src1->data;
 | |
| 
 | |
|         float * dst_d = (float *)dst->data;
 | |
| 
 | |
|         if (dim != 3) {
 | |
|             for (int i3 = 0; i3 < dst->ne[3]; i3++) {
 | |
|                 concat_f32_cuda(
 | |
|                         src0_d + i3 * (src0->nb[3] / 4),
 | |
|                         src1_d + i3 * (src1->nb[3] / 4),
 | |
|                         dst_d + i3 * ( dst->nb[3] / 4),
 | |
|                         src0->ne[0], src0->ne[1], src0->ne[2],
 | |
|                         dst->ne[0],  dst->ne[1],  dst->ne[2], dim, stream);
 | |
|             }
 | |
|         } else {
 | |
|             const size_t size0 = ggml_nbytes(src0);
 | |
|             const size_t size1 = ggml_nbytes(src1);
 | |
| 
 | |
|             CUDA_CHECK(cudaMemcpyAsync(dst_d,           src0_d, size0, cudaMemcpyDeviceToDevice, stream));
 | |
|             CUDA_CHECK(cudaMemcpyAsync(dst_d + size0/4, src1_d, size1, cudaMemcpyDeviceToDevice, stream));
 | |
|         }
 | |
|     } else {
 | |
|         dim3 grid_dim(dst->ne[1], dst->ne[2], dst->ne[3]);
 | |
|         concat_f32_non_cont<<<grid_dim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(
 | |
|                 (const char *)src0->data,
 | |
|                 (const char *)src1->data,
 | |
|                 (      char *)dst->data,
 | |
|                 src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
 | |
|                 src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
 | |
|                 src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3],
 | |
|                 src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3],
 | |
|                 dst->ne[0],  dst->ne[1],  dst->ne[2],  dst->ne[3],
 | |
|                 dst->nb[0],  dst->nb[1],  dst->nb[2],  dst->nb[3], dim);
 | |
|     }
 | |
| }
 | 
