mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	 f30ea47a87
			
		
	
	f30ea47a87
	
	
	
		
			
			* llama : add pipeline parallelism support for batch processing with multiple CUDA GPUs ggml-ci * server : add -ub, --ubatch-size parameter * fix server embedding test * llama : fix Mamba inference for pipeline parallelism Tested to work correctly with both `main` and `parallel` examples. * llama : limit max batch size to n_batch * add LLAMA_SCHED_MAX_COPIES to configure the number of input copies for pipeline parallelism default increase to 4 (from 2) changing this value may improve performance for some systems, but increases memory usage * fix hip build * fix sycl build (disable cpy_tensor_async) * fix hip build * llama : limit n_batch and n_ubatch to n_ctx during context creation * llama : fix norm backend * batched-bench : sync after decode * swiftui : sync after decode * ggml : allow ggml_get_rows to use multiple threads if they are available * check n_ubatch >= n_tokens with non-casual attention * llama : do not limit n_batch to n_ctx with non-casual attn * server : construct batch with size of llama_n_batch * ggml_backend_cpu_graph_compute : fix return value when alloc fails * llama : better n_batch and n_ubatch comment * fix merge * small fix * reduce default n_batch to 2048 --------- Co-authored-by: Francis Couture-Harpin <git@compilade.net> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			342 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Swift
		
	
	
	
	
	
			
		
		
	
	
			342 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Swift
		
	
	
	
	
	
| import Foundation
 | |
| import llama
 | |
| 
 | |
| enum LlamaError: Error {
 | |
|     case couldNotInitializeContext
 | |
| }
 | |
| 
 | |
| func llama_batch_clear(_ batch: inout llama_batch) {
 | |
|     batch.n_tokens = 0
 | |
| }
 | |
| 
 | |
| func llama_batch_add(_ batch: inout llama_batch, _ id: llama_token, _ pos: llama_pos, _ seq_ids: [llama_seq_id], _ logits: Bool) {
 | |
|     batch.token   [Int(batch.n_tokens)] = id
 | |
|     batch.pos     [Int(batch.n_tokens)] = pos
 | |
|     batch.n_seq_id[Int(batch.n_tokens)] = Int32(seq_ids.count)
 | |
|     for i in 0..<seq_ids.count {
 | |
|         batch.seq_id[Int(batch.n_tokens)]![Int(i)] = seq_ids[i]
 | |
|     }
 | |
|     batch.logits  [Int(batch.n_tokens)] = logits ? 1 : 0
 | |
| 
 | |
|     batch.n_tokens += 1
 | |
| }
 | |
| 
 | |
| actor LlamaContext {
 | |
|     private var model: OpaquePointer
 | |
|     private var context: OpaquePointer
 | |
|     private var batch: llama_batch
 | |
|     private var tokens_list: [llama_token]
 | |
| 
 | |
|     /// This variable is used to store temporarily invalid cchars
 | |
|     private var temporary_invalid_cchars: [CChar]
 | |
| 
 | |
|     var n_len: Int32 = 64
 | |
|     var n_cur: Int32 = 0
 | |
| 
 | |
|     var n_decode: Int32 = 0
 | |
| 
 | |
|     init(model: OpaquePointer, context: OpaquePointer) {
 | |
|         self.model = model
 | |
|         self.context = context
 | |
|         self.tokens_list = []
 | |
|         self.batch = llama_batch_init(512, 0, 1)
 | |
|         self.temporary_invalid_cchars = []
 | |
|     }
 | |
| 
 | |
|     deinit {
 | |
|         llama_batch_free(batch)
 | |
|         llama_free(context)
 | |
|         llama_free_model(model)
 | |
|         llama_backend_free()
 | |
|     }
 | |
| 
 | |
|     static func create_context(path: String) throws -> LlamaContext {
 | |
|         llama_backend_init()
 | |
|         var model_params = llama_model_default_params()
 | |
| 
 | |
| #if targetEnvironment(simulator)
 | |
|         model_params.n_gpu_layers = 0
 | |
|         print("Running on simulator, force use n_gpu_layers = 0")
 | |
| #endif
 | |
|         let model = llama_load_model_from_file(path, model_params)
 | |
|         guard let model else {
 | |
|             print("Could not load model at \(path)")
 | |
|             throw LlamaError.couldNotInitializeContext
 | |
|         }
 | |
| 
 | |
|         let n_threads = max(1, min(8, ProcessInfo.processInfo.processorCount - 2))
 | |
|         print("Using \(n_threads) threads")
 | |
| 
 | |
|         var ctx_params = llama_context_default_params()
 | |
|         ctx_params.seed  = 1234
 | |
|         ctx_params.n_ctx = 2048
 | |
|         ctx_params.n_threads       = UInt32(n_threads)
 | |
|         ctx_params.n_threads_batch = UInt32(n_threads)
 | |
| 
 | |
|         let context = llama_new_context_with_model(model, ctx_params)
 | |
|         guard let context else {
 | |
|             print("Could not load context!")
 | |
|             throw LlamaError.couldNotInitializeContext
 | |
|         }
 | |
| 
 | |
|         return LlamaContext(model: model, context: context)
 | |
|     }
 | |
| 
 | |
|     func model_info() -> String {
 | |
|         let result = UnsafeMutablePointer<Int8>.allocate(capacity: 256)
 | |
|         result.initialize(repeating: Int8(0), count: 256)
 | |
|         defer {
 | |
|             result.deallocate()
 | |
|         }
 | |
| 
 | |
|         // TODO: this is probably very stupid way to get the string from C
 | |
| 
 | |
|         let nChars = llama_model_desc(model, result, 256)
 | |
|         let bufferPointer = UnsafeBufferPointer(start: result, count: Int(nChars))
 | |
| 
 | |
|         var SwiftString = ""
 | |
|         for char in bufferPointer {
 | |
|             SwiftString.append(Character(UnicodeScalar(UInt8(char))))
 | |
|         }
 | |
| 
 | |
|         return SwiftString
 | |
|     }
 | |
| 
 | |
|     func get_n_tokens() -> Int32 {
 | |
|         return batch.n_tokens;
 | |
|     }
 | |
| 
 | |
|     func completion_init(text: String) {
 | |
|         print("attempting to complete \"\(text)\"")
 | |
| 
 | |
|         tokens_list = tokenize(text: text, add_bos: true)
 | |
|         temporary_invalid_cchars = []
 | |
| 
 | |
|         let n_ctx = llama_n_ctx(context)
 | |
|         let n_kv_req = tokens_list.count + (Int(n_len) - tokens_list.count)
 | |
| 
 | |
|         print("\n n_len = \(n_len), n_ctx = \(n_ctx), n_kv_req = \(n_kv_req)")
 | |
| 
 | |
|         if n_kv_req > n_ctx {
 | |
|             print("error: n_kv_req > n_ctx, the required KV cache size is not big enough")
 | |
|         }
 | |
| 
 | |
|         for id in tokens_list {
 | |
|             print(String(cString: token_to_piece(token: id) + [0]))
 | |
|         }
 | |
| 
 | |
|         llama_batch_clear(&batch)
 | |
| 
 | |
|         for i1 in 0..<tokens_list.count {
 | |
|             let i = Int(i1)
 | |
|             llama_batch_add(&batch, tokens_list[i], Int32(i), [0], false)
 | |
|         }
 | |
|         batch.logits[Int(batch.n_tokens) - 1] = 1 // true
 | |
| 
 | |
|         if llama_decode(context, batch) != 0 {
 | |
|             print("llama_decode() failed")
 | |
|         }
 | |
| 
 | |
|         n_cur = batch.n_tokens
 | |
|     }
 | |
| 
 | |
|     func completion_loop() -> String {
 | |
|         var new_token_id: llama_token = 0
 | |
| 
 | |
|         let n_vocab = llama_n_vocab(model)
 | |
|         let logits = llama_get_logits_ith(context, batch.n_tokens - 1)
 | |
| 
 | |
|         var candidates = Array<llama_token_data>()
 | |
|         candidates.reserveCapacity(Int(n_vocab))
 | |
| 
 | |
|         for token_id in 0..<n_vocab {
 | |
|             candidates.append(llama_token_data(id: token_id, logit: logits![Int(token_id)], p: 0.0))
 | |
|         }
 | |
|         candidates.withUnsafeMutableBufferPointer() { buffer in
 | |
|             var candidates_p = llama_token_data_array(data: buffer.baseAddress, size: buffer.count, sorted: false)
 | |
| 
 | |
|             new_token_id = llama_sample_token_greedy(context, &candidates_p)
 | |
|         }
 | |
| 
 | |
|         if new_token_id == llama_token_eos(model) || n_cur == n_len {
 | |
|             print("\n")
 | |
|             let new_token_str = String(cString: temporary_invalid_cchars + [0])
 | |
|             temporary_invalid_cchars.removeAll()
 | |
|             return new_token_str
 | |
|         }
 | |
| 
 | |
|         let new_token_cchars = token_to_piece(token: new_token_id)
 | |
|         temporary_invalid_cchars.append(contentsOf: new_token_cchars)
 | |
|         let new_token_str: String
 | |
|         if let string = String(validatingUTF8: temporary_invalid_cchars + [0]) {
 | |
|             temporary_invalid_cchars.removeAll()
 | |
|             new_token_str = string
 | |
|         } else if (0 ..< temporary_invalid_cchars.count).contains(where: {$0 != 0 && String(validatingUTF8: Array(temporary_invalid_cchars.suffix($0)) + [0]) != nil}) {
 | |
|             // in this case, at least the suffix of the temporary_invalid_cchars can be interpreted as UTF8 string
 | |
|             let string = String(cString: temporary_invalid_cchars + [0])
 | |
|             temporary_invalid_cchars.removeAll()
 | |
|             new_token_str = string
 | |
|         } else {
 | |
|             new_token_str = ""
 | |
|         }
 | |
|         print(new_token_str)
 | |
|         // tokens_list.append(new_token_id)
 | |
| 
 | |
|         llama_batch_clear(&batch)
 | |
|         llama_batch_add(&batch, new_token_id, n_cur, [0], true)
 | |
| 
 | |
|         n_decode += 1
 | |
|         n_cur    += 1
 | |
| 
 | |
|         if llama_decode(context, batch) != 0 {
 | |
|             print("failed to evaluate llama!")
 | |
|         }
 | |
| 
 | |
|         return new_token_str
 | |
|     }
 | |
| 
 | |
|     func bench(pp: Int, tg: Int, pl: Int, nr: Int = 1) -> String {
 | |
|         var pp_avg: Double = 0
 | |
|         var tg_avg: Double = 0
 | |
| 
 | |
|         var pp_std: Double = 0
 | |
|         var tg_std: Double = 0
 | |
| 
 | |
|         for _ in 0..<nr {
 | |
|             // bench prompt processing
 | |
| 
 | |
|             llama_batch_clear(&batch)
 | |
| 
 | |
|             let n_tokens = pp
 | |
| 
 | |
|             for i in 0..<n_tokens {
 | |
|                 llama_batch_add(&batch, 0, Int32(i), [0], false)
 | |
|             }
 | |
|             batch.logits[Int(batch.n_tokens) - 1] = 1 // true
 | |
| 
 | |
|             llama_kv_cache_clear(context)
 | |
| 
 | |
|             let t_pp_start = ggml_time_us()
 | |
| 
 | |
|             if llama_decode(context, batch) != 0 {
 | |
|                 print("llama_decode() failed during prompt")
 | |
|             }
 | |
|             llama_synchronize(context)
 | |
| 
 | |
|             let t_pp_end = ggml_time_us()
 | |
| 
 | |
|             // bench text generation
 | |
| 
 | |
|             llama_kv_cache_clear(context)
 | |
| 
 | |
|             let t_tg_start = ggml_time_us()
 | |
| 
 | |
|             for i in 0..<tg {
 | |
|                 llama_batch_clear(&batch)
 | |
| 
 | |
|                 for j in 0..<pl {
 | |
|                     llama_batch_add(&batch, 0, Int32(i), [Int32(j)], true)
 | |
|                 }
 | |
| 
 | |
|                 if llama_decode(context, batch) != 0 {
 | |
|                     print("llama_decode() failed during text generation")
 | |
|                 }
 | |
|                 llama_synchronize(context)
 | |
|             }
 | |
| 
 | |
|             let t_tg_end = ggml_time_us()
 | |
| 
 | |
|             llama_kv_cache_clear(context)
 | |
| 
 | |
|             let t_pp = Double(t_pp_end - t_pp_start) / 1000000.0
 | |
|             let t_tg = Double(t_tg_end - t_tg_start) / 1000000.0
 | |
| 
 | |
|             let speed_pp = Double(pp)    / t_pp
 | |
|             let speed_tg = Double(pl*tg) / t_tg
 | |
| 
 | |
|             pp_avg += speed_pp
 | |
|             tg_avg += speed_tg
 | |
| 
 | |
|             pp_std += speed_pp * speed_pp
 | |
|             tg_std += speed_tg * speed_tg
 | |
| 
 | |
|             print("pp \(speed_pp) t/s, tg \(speed_tg) t/s")
 | |
|         }
 | |
| 
 | |
|         pp_avg /= Double(nr)
 | |
|         tg_avg /= Double(nr)
 | |
| 
 | |
|         if nr > 1 {
 | |
|             pp_std = sqrt(pp_std / Double(nr - 1) - pp_avg * pp_avg * Double(nr) / Double(nr - 1))
 | |
|             tg_std = sqrt(tg_std / Double(nr - 1) - tg_avg * tg_avg * Double(nr) / Double(nr - 1))
 | |
|         } else {
 | |
|             pp_std = 0
 | |
|             tg_std = 0
 | |
|         }
 | |
| 
 | |
|         let model_desc     = model_info();
 | |
|         let model_size     = String(format: "%.2f GiB", Double(llama_model_size(model)) / 1024.0 / 1024.0 / 1024.0);
 | |
|         let model_n_params = String(format: "%.2f B", Double(llama_model_n_params(model)) / 1e9);
 | |
|         let backend        = "Metal";
 | |
|         let pp_avg_str     = String(format: "%.2f", pp_avg);
 | |
|         let tg_avg_str     = String(format: "%.2f", tg_avg);
 | |
|         let pp_std_str     = String(format: "%.2f", pp_std);
 | |
|         let tg_std_str     = String(format: "%.2f", tg_std);
 | |
| 
 | |
|         var result = ""
 | |
| 
 | |
|         result += String("| model | size | params | backend | test | t/s |\n")
 | |
|         result += String("| --- | --- | --- | --- | --- | --- |\n")
 | |
|         result += String("| \(model_desc) | \(model_size) | \(model_n_params) | \(backend) | pp \(pp) | \(pp_avg_str) ± \(pp_std_str) |\n")
 | |
|         result += String("| \(model_desc) | \(model_size) | \(model_n_params) | \(backend) | tg \(tg) | \(tg_avg_str) ± \(tg_std_str) |\n")
 | |
| 
 | |
|         return result;
 | |
|     }
 | |
| 
 | |
|     func clear() {
 | |
|         tokens_list.removeAll()
 | |
|         temporary_invalid_cchars.removeAll()
 | |
|         llama_kv_cache_clear(context)
 | |
|     }
 | |
| 
 | |
|     private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
 | |
|         let utf8Count = text.utf8.count
 | |
|         let n_tokens = utf8Count + (add_bos ? 1 : 0) + 1
 | |
|         let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
 | |
|         let tokenCount = llama_tokenize(model, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, false)
 | |
| 
 | |
|         var swiftTokens: [llama_token] = []
 | |
|         for i in 0..<tokenCount {
 | |
|             swiftTokens.append(tokens[Int(i)])
 | |
|         }
 | |
| 
 | |
|         tokens.deallocate()
 | |
| 
 | |
|         return swiftTokens
 | |
|     }
 | |
| 
 | |
|     /// - note: The result does not contain null-terminator
 | |
|     private func token_to_piece(token: llama_token) -> [CChar] {
 | |
|         let result = UnsafeMutablePointer<Int8>.allocate(capacity: 8)
 | |
|         result.initialize(repeating: Int8(0), count: 8)
 | |
|         defer {
 | |
|             result.deallocate()
 | |
|         }
 | |
|         let nTokens = llama_token_to_piece(model, token, result, 8)
 | |
| 
 | |
|         if nTokens < 0 {
 | |
|             let newResult = UnsafeMutablePointer<Int8>.allocate(capacity: Int(-nTokens))
 | |
|             newResult.initialize(repeating: Int8(0), count: Int(-nTokens))
 | |
|             defer {
 | |
|                 newResult.deallocate()
 | |
|             }
 | |
|             let nNewTokens = llama_token_to_piece(model, token, newResult, -nTokens)
 | |
|             let bufferPointer = UnsafeBufferPointer(start: newResult, count: Int(nNewTokens))
 | |
|             return Array(bufferPointer)
 | |
|         } else {
 | |
|             let bufferPointer = UnsafeBufferPointer(start: result, count: Int(nTokens))
 | |
|             return Array(bufferPointer)
 | |
|         }
 | |
|     }
 | |
| }
 |