mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-28 08:31:25 +00:00 
			
		
		
		
	 dd7eff57d8
			
		
	
	dd7eff57d8
	
	
	
		
			
			* Sample interface, new samplers. New samplers: - locally typical sampling - tail free sampling - frequency and presence penalty - mirostat Ignore EOS fix: -inf should be used. * mirostat * Added --logit-bias and --no-penalize-nl, removed std::span * Use C++11, clarify llama API documentation, rename Mirostat parameters to --mirostat_lr and --mirostat_ent, add temperature sampling for Mirostat, simplify Mirostat sampling API parameters (removed N and *k) Use C++11, clarify llama API documentation, rename Mirostat parameters to --mirostat_lr and --mirostat_ent, add temperature sampling for Mirostat, simplify Mirostat sampling API parameters (removed N and *k) * Save and load example adjust * Tests * Windows build fix * Windows test fix
		
			
				
	
	
		
			258 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			258 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #ifndef LLAMA_H
 | |
| #define LLAMA_H
 | |
| 
 | |
| #include <stddef.h>
 | |
| #include <stdint.h>
 | |
| #include <stdbool.h>
 | |
| 
 | |
| #ifdef LLAMA_SHARED
 | |
| #    if defined(_WIN32) && !defined(__MINGW32__)
 | |
| #        ifdef LLAMA_BUILD
 | |
| #            define LLAMA_API __declspec(dllexport)
 | |
| #        else
 | |
| #            define LLAMA_API __declspec(dllimport)
 | |
| #        endif
 | |
| #    else
 | |
| #        define LLAMA_API __attribute__ ((visibility ("default")))
 | |
| #    endif
 | |
| #else
 | |
| #    define LLAMA_API
 | |
| #endif
 | |
| 
 | |
| #define LLAMA_FILE_VERSION 1
 | |
| #define LLAMA_FILE_MAGIC 0x67676a74 // 'ggjt' in hex
 | |
| #define LLAMA_FILE_MAGIC_UNVERSIONED 0x67676d6c // pre-versioned files
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| extern "C" {
 | |
| #endif
 | |
| 
 | |
|     //
 | |
|     // C interface
 | |
|     //
 | |
|     // TODO: show sample usage
 | |
|     //
 | |
| 
 | |
|     struct llama_context;
 | |
| 
 | |
|     typedef int llama_token;
 | |
| 
 | |
|     typedef struct llama_token_data {
 | |
|         llama_token id;  // token id
 | |
|         float logit; // log-odds of the token
 | |
|         float p;     // probability of the token
 | |
|     } llama_token_data;
 | |
| 
 | |
|     typedef struct llama_token_data_array {
 | |
|         llama_token_data * data;
 | |
|         size_t size;
 | |
|         bool sorted;
 | |
|     } llama_token_data_array;
 | |
| 
 | |
|     typedef void (*llama_progress_callback)(float progress, void *ctx);
 | |
| 
 | |
|     struct llama_context_params {
 | |
|         int n_ctx;   // text context
 | |
|         int n_parts; // -1 for default
 | |
|         int seed;    // RNG seed, 0 for random
 | |
| 
 | |
|         bool f16_kv;     // use fp16 for KV cache
 | |
|         bool logits_all; // the llama_eval() call computes all logits, not just the last one
 | |
|         bool vocab_only; // only load the vocabulary, no weights
 | |
|         bool use_mmap;   // use mmap if possible
 | |
|         bool use_mlock;  // force system to keep model in RAM
 | |
|         bool embedding;  // embedding mode only
 | |
| 
 | |
|         // called with a progress value between 0 and 1, pass NULL to disable
 | |
|         llama_progress_callback progress_callback;
 | |
|         // context pointer passed to the progress callback
 | |
|         void * progress_callback_user_data;
 | |
|     };
 | |
| 
 | |
|     // model file types
 | |
|     enum llama_ftype {
 | |
|         LLAMA_FTYPE_ALL_F32     = 0,
 | |
|         LLAMA_FTYPE_MOSTLY_F16  = 1,  // except 1d tensors
 | |
|         LLAMA_FTYPE_MOSTLY_Q4_0 = 2,  // except 1d tensors
 | |
|         LLAMA_FTYPE_MOSTLY_Q4_1 = 3,  // except 1d tensors
 | |
|         LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
 | |
|         LLAMA_FTYPE_MOSTLY_Q4_2 = 5,  // except 1d tensors
 | |
|         // LLAMA_FTYPE_MOSTLY_Q4_3 (6) support has been removed
 | |
|         LLAMA_FTYPE_MOSTLY_Q8_0 = 7,  // except 1d tensors
 | |
|         LLAMA_FTYPE_MOSTLY_Q5_0 = 8,  // except 1d tensors
 | |
|         LLAMA_FTYPE_MOSTLY_Q5_1 = 9,  // except 1d tensors
 | |
|     };
 | |
| 
 | |
|     LLAMA_API struct llama_context_params llama_context_default_params();
 | |
| 
 | |
|     LLAMA_API bool llama_mmap_supported();
 | |
|     LLAMA_API bool llama_mlock_supported();
 | |
| 
 | |
|     // Various functions for loading a ggml llama model.
 | |
|     // Allocate (almost) all memory needed for the model.
 | |
|     // Return NULL on failure
 | |
|     LLAMA_API struct llama_context * llama_init_from_file(
 | |
|                              const char * path_model,
 | |
|             struct llama_context_params   params);
 | |
| 
 | |
|     // Frees all allocated memory
 | |
|     LLAMA_API void llama_free(struct llama_context * ctx);
 | |
| 
 | |
|     // TODO: not great API - very likely to change
 | |
|     // Returns 0 on success
 | |
|     // nthread - how many threads to use. If <=0, will use std::thread::hardware_concurrency(), else the number given
 | |
|     LLAMA_API int llama_model_quantize(
 | |
|             const char * fname_inp,
 | |
|             const char * fname_out,
 | |
|       enum llama_ftype   ftype,
 | |
|             int          nthread);
 | |
| 
 | |
|     // Apply a LoRA adapter to a loaded model
 | |
|     // path_base_model is the path to a higher quality model to use as a base for
 | |
|     // the layers modified by the adapter. Can be NULL to use the current loaded model.
 | |
|     // The model needs to be reloaded before applying a new adapter, otherwise the adapter
 | |
|     // will be applied on top of the previous one
 | |
|     // Returns 0 on success
 | |
|     LLAMA_API int llama_apply_lora_from_file(
 | |
|             struct llama_context * ctx,
 | |
|                       const char * path_lora,
 | |
|                       const char * path_base_model,
 | |
|                              int   n_threads);
 | |
| 
 | |
|     // Returns the number of tokens in the KV cache
 | |
|     LLAMA_API int llama_get_kv_cache_token_count(struct llama_context * ctx);
 | |
| 
 | |
|     // Sets the current rng seed.
 | |
|     LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, int seed);
 | |
| 
 | |
|     // Returns the size in bytes of the state (rng, logits, embedding and kv_cache)
 | |
|     LLAMA_API size_t llama_get_state_size(struct llama_context * ctx);
 | |
| 
 | |
|     // Copies the state to the specified destination address.
 | |
|     // Destination needs to have allocated enough memory.
 | |
|     // Returns the number of bytes copied
 | |
|     LLAMA_API size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dest);
 | |
| 
 | |
|     // Set the state reading from the specified address
 | |
|     // Returns the number of bytes read
 | |
|     LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src);
 | |
| 
 | |
|     // Save/load session file
 | |
|     LLAMA_API size_t llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out);
 | |
|     LLAMA_API size_t llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count);
 | |
| 
 | |
|     // Run the llama inference to obtain the logits and probabilities for the next token.
 | |
|     // tokens + n_tokens is the provided batch of new tokens to process
 | |
|     // n_past is the number of tokens to use from previous eval calls
 | |
|     // Returns 0 on success
 | |
|     LLAMA_API int llama_eval(
 | |
|             struct llama_context * ctx,
 | |
|                const llama_token * tokens,
 | |
|                              int   n_tokens,
 | |
|                              int   n_past,
 | |
|                              int   n_threads);
 | |
| 
 | |
|     // Convert the provided text into tokens.
 | |
|     // The tokens pointer must be large enough to hold the resulting tokens.
 | |
|     // Returns the number of tokens on success, no more than n_max_tokens
 | |
|     // Returns a negative number on failure - the number of tokens that would have been returned
 | |
|     // TODO: not sure if correct
 | |
|     LLAMA_API int llama_tokenize(
 | |
|             struct llama_context * ctx,
 | |
|                       const char * text,
 | |
|                      llama_token * tokens,
 | |
|                              int   n_max_tokens,
 | |
|                             bool   add_bos);
 | |
| 
 | |
|     LLAMA_API int llama_n_vocab(struct llama_context * ctx);
 | |
|     LLAMA_API int llama_n_ctx  (struct llama_context * ctx);
 | |
|     LLAMA_API int llama_n_embd (struct llama_context * ctx);
 | |
| 
 | |
|     // Token logits obtained from the last call to llama_eval()
 | |
|     // The logits for the last token are stored in the last row
 | |
|     // Can be mutated in order to change the probabilities of the next token
 | |
|     // Rows: n_tokens
 | |
|     // Cols: n_vocab
 | |
|     LLAMA_API float * llama_get_logits(struct llama_context * ctx);
 | |
| 
 | |
|     // Get the embeddings for the input
 | |
|     // shape: [n_embd] (1-dimensional)
 | |
|     LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
 | |
| 
 | |
|     // Token Id -> String. Uses the vocabulary in the provided context
 | |
|     LLAMA_API const char * llama_token_to_str(struct llama_context * ctx, llama_token token);
 | |
| 
 | |
|     // Special tokens
 | |
|     LLAMA_API llama_token llama_token_bos();
 | |
|     LLAMA_API llama_token llama_token_eos();
 | |
|     LLAMA_API llama_token llama_token_nl();
 | |
| 
 | |
|     // Sampling functions
 | |
| 
 | |
|     /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
 | |
|     LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, llama_token * last_tokens, size_t last_tokens_size, float penalty);
 | |
| 
 | |
|     /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
 | |
|     LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
 | |
| 
 | |
|     /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
 | |
|     LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
 | |
| 
 | |
|     /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
 | |
|     LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep = 1);
 | |
| 
 | |
|     /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
 | |
|     LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep = 1);
 | |
| 
 | |
|     /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
 | |
|     LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep = 1);
 | |
| 
 | |
|     /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
 | |
|     LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep = 1);
 | |
|     LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp);
 | |
| 
 | |
|     /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
 | |
|     /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
 | |
|     /// @param tau  The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
 | |
|     /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
 | |
|     /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
 | |
|     /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
 | |
|     LLAMA_API llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu);
 | |
| 
 | |
|     /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
 | |
|     /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
 | |
|     /// @param tau  The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
 | |
|     /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
 | |
|     /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
 | |
|     LLAMA_API llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu);
 | |
| 
 | |
|     /// @details Selects the token with the highest probability.
 | |
|     LLAMA_API llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates);
 | |
| 
 | |
|     /// @details Randomly selects a token from the candidates based on their probabilities.
 | |
|     LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates);
 | |
| 
 | |
|     // Performance information
 | |
|     LLAMA_API void llama_print_timings(struct llama_context * ctx);
 | |
|     LLAMA_API void llama_reset_timings(struct llama_context * ctx);
 | |
| 
 | |
|     // Print system information
 | |
|     LLAMA_API const char * llama_print_system_info(void);
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| }
 | |
| #endif
 | |
| 
 | |
| // Internal API to be implemented by llama.cpp and used by tests/benchmarks only
 | |
| #ifdef LLAMA_API_INTERNAL
 | |
| 
 | |
| #include <vector>
 | |
| #include <string>
 | |
| struct ggml_tensor;
 | |
| 
 | |
| std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #endif // LLAMA_H
 |