mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* ggml_graph_compute: deprecate using ggml_context, try resolve issue #287 * rewrite: no longer consider backward compitability; plan and make_plan * minor: rename ctx as plan; const * remove ggml_graph_compute from tests/test-grad0.c, but current change breaks backward * add static ggml_graph_compute_sugar() * minor: update comments * reusable buffers * ggml : more consistent naming + metal fixes * ggml : fix docs * tests : disable grad / opt + minor naming changes * ggml : add ggml_graph_compute_with_ctx() - backwards compatible API - deduplicates a lot of copy-paste * ci : enable test-grad0 * examples : factor out plan allocation into a helper function * llama : factor out plan stuff into a helper function * ci : fix env * llama : fix duplicate symbols + refactor example benchmark * ggml : remove obsolete assert + refactor n_tasks section * ggml : fix indentation in switch * llama : avoid unnecessary bool * ggml : remove comments from source file and match order in header --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			210 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			210 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
#include "ggml.h"
 | 
						|
 | 
						|
#include <math.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <assert.h>
 | 
						|
 | 
						|
#define MAX_NARGS 2
 | 
						|
 | 
						|
#pragma GCC diagnostic ignored "-Wdouble-promotion"
 | 
						|
 | 
						|
//
 | 
						|
// logging
 | 
						|
//
 | 
						|
#define GGML_DEBUG 0
 | 
						|
#if (GGML_DEBUG >= 1)
 | 
						|
#define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
 | 
						|
#else
 | 
						|
#define GGML_PRINT_DEBUG(...)
 | 
						|
#endif
 | 
						|
 | 
						|
#if (GGML_DEBUG >= 5)
 | 
						|
#define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
 | 
						|
#else
 | 
						|
#define GGML_PRINT_DEBUG_5(...)
 | 
						|
#endif
 | 
						|
 | 
						|
#if (GGML_DEBUG >= 10)
 | 
						|
#define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
 | 
						|
#else
 | 
						|
#define GGML_PRINT_DEBUG_10(...)
 | 
						|
#endif
 | 
						|
 | 
						|
#define GGML_PRINT(...) printf(__VA_ARGS__)
 | 
						|
 | 
						|
 | 
						|
float frand(void) {
 | 
						|
    return (float)rand()/(float)RAND_MAX;
 | 
						|
}
 | 
						|
 | 
						|
int irand(int n) {
 | 
						|
    return rand()%n;
 | 
						|
}
 | 
						|
 | 
						|
void get_random_dims(int64_t * dims, int ndims) {
 | 
						|
    dims[0] = dims[1] = dims[2] = dims[3] = 1;
 | 
						|
 | 
						|
    for (int i = 0; i < ndims; i++) {
 | 
						|
        dims[i] = 1 + irand(4);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void get_random_dims_minmax(int64_t * dims, int ndims, int min, int max) {
 | 
						|
    dims[0] = dims[1] = dims[2] = dims[3] = 1;
 | 
						|
 | 
						|
    for (int i = 0; i < ndims; i++) {
 | 
						|
        dims[i] = min + irand(max-min);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
struct ggml_tensor * get_random_tensor(
 | 
						|
        struct ggml_context * ctx0,
 | 
						|
        int ndims,
 | 
						|
        int64_t ne[],
 | 
						|
        float fmin,
 | 
						|
        float fmax) {
 | 
						|
    struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F32, ndims, ne);
 | 
						|
 | 
						|
    switch (ndims) {
 | 
						|
        case 1:
 | 
						|
            for (int i0 = 0; i0 < ne[0]; i0++) {
 | 
						|
                ((float *)result->data)[i0] = frand()*(fmax - fmin) + fmin;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case 2:
 | 
						|
            for (int i1 = 0; i1 < ne[1]; i1++) {
 | 
						|
                for (int i0 = 0; i0 < ne[0]; i0++) {
 | 
						|
                    ((float *)result->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case 3:
 | 
						|
            for (int i2 = 0; i2 < ne[2]; i2++) {
 | 
						|
                for (int i1 = 0; i1 < ne[1]; i1++) {
 | 
						|
                    for (int i0 = 0; i0 < ne[0]; i0++) {
 | 
						|
                        ((float *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case 4:
 | 
						|
            for (int i3 = 0; i3 < ne[3]; i3++) {
 | 
						|
                for (int i2 = 0; i2 < ne[2]; i2++) {
 | 
						|
                    for (int i1 = 0; i1 < ne[1]; i1++) {
 | 
						|
                        for (int i0 = 0; i0 < ne[0]; i0++) {
 | 
						|
                            ((float *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            assert(false);
 | 
						|
    };
 | 
						|
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
float get_element(const struct ggml_tensor * t, int idx) {
 | 
						|
    return ((float *)t->data)[idx];
 | 
						|
}
 | 
						|
 | 
						|
void set_element(struct ggml_tensor * t, int idx, float value) {
 | 
						|
    ((float *)t->data)[idx] = value;
 | 
						|
}
 | 
						|
 | 
						|
int main(void) {
 | 
						|
    struct ggml_init_params params = {
 | 
						|
        .mem_size   = 1024*1024*1024,
 | 
						|
        .mem_buffer = NULL,
 | 
						|
        .no_alloc   = false,
 | 
						|
    };
 | 
						|
    struct ggml_context * ctx = ggml_init(params);
 | 
						|
 | 
						|
    int64_t ne1[4] = {4, 1024, 1, 1};
 | 
						|
    int64_t ne2[4] = {4, 2048, 1, 1};;
 | 
						|
    int64_t ne3[4] = {1024, 2048, 1, 1};
 | 
						|
 | 
						|
    struct ggml_tensor * a = get_random_tensor(ctx, 2, ne1, -1, +1);
 | 
						|
    struct ggml_tensor * b = get_random_tensor(ctx, 2, ne2, -1, +1);
 | 
						|
    ggml_set_param(ctx, a);
 | 
						|
    ggml_set_param(ctx, b);
 | 
						|
 | 
						|
    struct ggml_tensor * c = get_random_tensor(ctx, 2, ne3, -1, +1);
 | 
						|
 | 
						|
    struct ggml_tensor * ab = ggml_mul_mat(ctx, a, b);
 | 
						|
    struct ggml_tensor * d  = ggml_sub(ctx, c, ab);
 | 
						|
    struct ggml_tensor * e  = ggml_sum(ctx, ggml_sqr(ctx, d));
 | 
						|
 | 
						|
    struct ggml_cgraph ge = ggml_build_forward(e);
 | 
						|
    ggml_graph_reset(&ge);
 | 
						|
 | 
						|
    ggml_graph_compute_with_ctx(ctx, &ge, /*n_threads*/ 1);
 | 
						|
 | 
						|
    const float fe = ggml_get_f32_1d(e, 0);
 | 
						|
    printf("%s: e = %.4f\n", __func__, fe);
 | 
						|
 | 
						|
    struct ggml_opt_params opt_params = ggml_opt_default_params(GGML_OPT_ADAM);
 | 
						|
 | 
						|
    ggml_opt(ctx, opt_params, e);
 | 
						|
 | 
						|
    ggml_graph_reset(&ge);
 | 
						|
 | 
						|
    ggml_graph_compute_with_ctx(ctx, &ge, /*n_threads*/ 1);
 | 
						|
 | 
						|
    const float fe_opt = ggml_get_f32_1d(e, 0);
 | 
						|
    printf("%s: original  e = %.4f\n", __func__, fe);
 | 
						|
    printf("%s: optimized e = %.4f\n", __func__, fe_opt);
 | 
						|
 | 
						|
    const bool success = (fe_opt <= fe);
 | 
						|
    assert(success);
 | 
						|
 | 
						|
    ggml_free(ctx);
 | 
						|
    return success ? 0 : -1;
 | 
						|
}
 | 
						|
// int64_t ne1[4] = {4, 128, 1, 1};
 | 
						|
// int64_t ne2[4] = {4, 256, 1, 1};;
 | 
						|
// int64_t ne3[4] = {128, 256, 1, 1};
 | 
						|
// main: original  e = 25890.9375
 | 
						|
// main: optimized e = 10094.7031
 | 
						|
 | 
						|
// int64_t ne1[4] = {8, 128, 1, 1};
 | 
						|
// int64_t ne2[4] = {8, 256, 1, 1};;
 | 
						|
// int64_t ne3[4] = {128, 256, 1, 1};
 | 
						|
// main: original  e = 39429.5078
 | 
						|
// main: optimized e = 9275.8936
 | 
						|
 | 
						|
// int64_t ne1[4] = {16, 128, 1, 1};
 | 
						|
// int64_t ne2[4] = {16, 256, 1, 1};;
 | 
						|
// int64_t ne3[4] = {128, 256, 1, 1};
 | 
						|
// main: original  e = 68371.1328
 | 
						|
// main: optimized e = 7854.4502
 | 
						|
 | 
						|
 | 
						|
// int64_t ne1[4] = {32, 128, 1, 1};
 | 
						|
// int64_t ne2[4] = {32, 256, 1, 1};;
 | 
						|
// int64_t ne3[4] = {128, 256, 1, 1};
 | 
						|
// main: original  e = 126061.1953
 | 
						|
// main: optimized e = 5451.0166
 | 
						|
 | 
						|
// int64_t ne1[4] = {4, 1024, 1, 1};
 | 
						|
// int64_t ne2[4] = {4, 2048, 1, 1};;
 | 
						|
// int64_t ne3[4] = {1024, 2048, 1, 1};
 | 
						|
// main: original  e = 1620817.8750
 | 
						|
// main: optimized e = 698387.6875
 | 
						|
 | 
						|
// another run on M1
 | 
						|
// int64_t ne1[4] = {4, 1024, 1, 1};
 | 
						|
// int64_t ne2[4] = {4, 2048, 1, 1};;
 | 
						|
// int64_t ne3[4] = {1024, 2048, 1, 1};
 | 
						|
// main: original  e = 1629595.6250
 | 
						|
// main: optimized e = 698169.1250
 | 
						|
 | 
						|
// int64_t ne1[4] = {32, 1024, 1, 1};
 | 
						|
// int64_t ne2[4] = {32, 2048, 1, 1};;
 | 
						|
// int64_t ne3[4] = {1024, 2048, 1, 1};
 | 
						|
// main: original  e = 8146770.5000
 | 
						|
// main: optimized e = 651119.1250
 |