mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	 f66f582927
			
		
	
	f66f582927
	
	
	
		
			
			* llama : scatter llama.cpp into multiple modules (wip) * llama : control-vector -> adapter * llama : arch * llama : mmap ggml-ci * ci : remove BUILD_SHARED_LIBS=OFF ggml-ci * llama : arch (cont) ggml-ci * llama : chat ggml-ci * llama : model ggml-ci * llama : hparams ggml-ci * llama : adapter ggml-ci * examples : fix ggml-ci * rebase ggml-ci * minor * llama : kv cache ggml-ci * llama : impl ggml-ci * llama : batch ggml-ci * cont ggml-ci * llama : context ggml-ci * minor * llama : context (cont) ggml-ci * llama : model loader ggml-ci * common : update lora ggml-ci * llama : quant ggml-ci * llama : quant (cont) ggml-ci * minor [no ci]
		
			
				
	
	
		
			158 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			158 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "arg.h"
 | |
| #include "common.h"
 | |
| #include "log.h"
 | |
| #include "ngram-cache.h"
 | |
| #include "llama.h"
 | |
| #include "ggml.h"
 | |
| 
 | |
| #include <cstdint>
 | |
| #include <cstdio>
 | |
| #include <cinttypes>
 | |
| #include <fstream>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| int main(int argc, char ** argv){
 | |
|     common_params params;
 | |
| 
 | |
|     if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     common_init();
 | |
| 
 | |
|     const int n_draft = params.speculative.n_max;
 | |
| 
 | |
|     // init llama.cpp
 | |
|     llama_backend_init();
 | |
|     llama_numa_init(params.numa);
 | |
| 
 | |
|     // load the model
 | |
|     common_init_result llama_init = common_init_from_params(params);
 | |
| 
 | |
|     llama_context_ptr & ctx = llama_init.context;
 | |
| 
 | |
|     // tokenize the prompt
 | |
|     std::vector<llama_token> inp;
 | |
|     inp = common_tokenize(ctx.get(), params.prompt, true, true);
 | |
| 
 | |
|     common_ngram_cache ngram_cache_context;
 | |
|     common_ngram_cache ngram_cache_dynamic;
 | |
|     common_ngram_cache ngram_cache_static;
 | |
| 
 | |
|     int64_t t_draft_flat_us = 0;
 | |
|     int64_t t_draft_us = 0;
 | |
| 
 | |
|     {
 | |
|         const int64_t t_start_draft_us = ggml_time_us();
 | |
| 
 | |
|         if (!params.lookup_cache_static.empty()) {
 | |
|             try {
 | |
|                 ngram_cache_static = common_ngram_cache_load(params.lookup_cache_static);
 | |
|             } catch (std::ifstream::failure const &) {
 | |
|                 LOG_ERR("failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
 | |
|                 exit(1);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (!params.lookup_cache_dynamic.empty()) {
 | |
|             try {
 | |
|                 ngram_cache_dynamic = common_ngram_cache_load(params.lookup_cache_dynamic);
 | |
|             } catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program
 | |
|         }
 | |
| 
 | |
|         t_draft_flat_us += ggml_time_us() - t_start_draft_us;
 | |
|     }
 | |
| 
 | |
|     const int n_input = inp.size();
 | |
|     const int n_ctx = llama_n_ctx(ctx.get());
 | |
| 
 | |
|     int n_drafted = 0;
 | |
|     int n_accept  = 0;
 | |
| 
 | |
|     const int64_t t_start_ms = ggml_time_ms();
 | |
| 
 | |
|     // Iterate over input tokens in chunks of size n_ctx.
 | |
|     // Each chunk is treated as if a sequential generation but with pre-determined tokens to ensure reproducibility.
 | |
|     for (int i_start = 0; i_start + n_ctx < n_input; i_start += n_ctx) {
 | |
|         const std::vector<llama_token> inp_slice(inp.begin() + i_start, inp.begin() + i_start + n_ctx);
 | |
|         std::vector<llama_token> pseudo_output;
 | |
|         pseudo_output.push_back(inp_slice[0]);
 | |
| 
 | |
|         while ((int) pseudo_output.size() < n_ctx) {
 | |
|             // Simulate drafting and decoding from draft:
 | |
|             std::vector<llama_token> draft;
 | |
|             draft.push_back(pseudo_output.back());
 | |
| 
 | |
|             {
 | |
|                 const int64_t t_start_draft_us = ggml_time_us();
 | |
|                 common_ngram_cache_draft(pseudo_output, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static);
 | |
|                 t_draft_us += ggml_time_us() - t_start_draft_us;
 | |
|             }
 | |
| 
 | |
|             n_drafted += draft.size() - 1;
 | |
| 
 | |
|             for (size_t j = 1; j < draft.size() && (int) pseudo_output.size() < n_ctx; ++j) {
 | |
|                 const llama_token ground_truth = inp_slice[pseudo_output.size()];
 | |
|                 const llama_token drafted = draft[j];
 | |
| 
 | |
|                 if (ground_truth != drafted) {
 | |
|                     break;
 | |
|                 }
 | |
| 
 | |
|                 ++n_accept;
 | |
|                 pseudo_output.push_back(ground_truth);
 | |
| 
 | |
|                 {
 | |
|                     const int64_t t_start_draft_us = ggml_time_us();
 | |
|                     common_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false);
 | |
|                     t_draft_us += ggml_time_us() - t_start_draft_us;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // After each simulated batch decoding simulate the sampling of a single token:
 | |
|             if ((int) pseudo_output.size() < n_ctx) {
 | |
|                 pseudo_output.push_back(inp_slice[pseudo_output.size()]);
 | |
|                 {
 | |
|                     const int64_t t_start_draft_us = ggml_time_us();
 | |
|                     common_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false);
 | |
|                     t_draft_us += ggml_time_us() - t_start_draft_us;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             draft.erase(draft.begin());
 | |
| 
 | |
|         }
 | |
|         if (i_start > 0 && i_start / 100000 != (i_start - n_ctx) / 100000) {
 | |
|             const int64_t t_now_ms = ggml_time_ms();
 | |
|             const int64_t eta_ms   = (n_input - i_start) * (t_now_ms - t_start_ms) / i_start;
 | |
|             const int64_t eta_min  = eta_ms / (60*1000);
 | |
|             const int64_t eta_s    = (eta_ms - 60*1000*eta_min) / 1000;
 | |
| 
 | |
|             LOG_INF("lookup-stats: %d/%d done, ETA: %02" PRId64 ":%02" PRId64 "\n", i_start, n_input, eta_min, eta_s);
 | |
|         }
 | |
| 
 | |
|         // After each chunk, update the dynamic ngram cache with the context ngram cache:
 | |
|         common_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
 | |
|         ngram_cache_context.clear();
 | |
|     }
 | |
| 
 | |
|     LOG("\n");
 | |
| 
 | |
|     LOG_INF("\n");
 | |
|     LOG_INF("n_draft      = %d\n", n_draft);
 | |
|     LOG_INF("n_predict    = %d\n", n_input - n_input % n_ctx);
 | |
|     LOG_INF("n_drafted    = %d\n", n_drafted);
 | |
|     LOG_INF("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3);
 | |
|     LOG_INF("t_draft      = %.2f ms, %.2f us per token, %.2f tokens per second\n",
 | |
|             t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us));
 | |
|     LOG_INF("n_accept     = %d\n", n_accept);
 | |
|     LOG_INF("accept       = %.3f%%\n", 100.0f * n_accept / n_drafted);
 | |
| 
 | |
|     llama_backend_free();
 | |
| 
 | |
|     LOG("\n\n");
 | |
| 
 | |
|     return 0;
 | |
| }
 |