mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-02 09:12:03 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			187 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			187 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Unit tests for quantization specific functions - quantize, dequantize and dot product
 | 
						|
 | 
						|
#include "ggml.h"
 | 
						|
#include "ggml-cpu.h"
 | 
						|
 | 
						|
#undef NDEBUG
 | 
						|
#include <assert.h>
 | 
						|
#include <math.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <string>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
#if defined(_MSC_VER)
 | 
						|
#pragma warning(disable: 4244 4267) // possible loss of data
 | 
						|
#endif
 | 
						|
 | 
						|
constexpr float MAX_QUANTIZATION_REFERENCE_ERROR = 0.0001f;
 | 
						|
constexpr float MAX_QUANTIZATION_TOTAL_ERROR = 0.002f;
 | 
						|
constexpr float MAX_QUANTIZATION_TOTAL_ERROR_TERNARY = 0.01f;
 | 
						|
constexpr float MAX_QUANTIZATION_TOTAL_ERROR_2BITS = 0.0075f;
 | 
						|
constexpr float MAX_QUANTIZATION_TOTAL_ERROR_3BITS = 0.0040f;
 | 
						|
constexpr float MAX_QUANTIZATION_TOTAL_ERROR_3BITS_XXS = 0.0050f;
 | 
						|
constexpr float MAX_DOT_PRODUCT_ERROR = 0.02f;
 | 
						|
constexpr float MAX_DOT_PRODUCT_ERROR_LOWBIT = 0.04f;
 | 
						|
constexpr float MAX_DOT_PRODUCT_ERROR_TERNARY = 0.15f;
 | 
						|
 | 
						|
static const char* RESULT_STR[] = {"ok", "FAILED"};
 | 
						|
 | 
						|
 | 
						|
// Generate synthetic data
 | 
						|
static void generate_data(float offset, size_t n, float * dst) {
 | 
						|
    for (size_t i = 0; i < n; i++) {
 | 
						|
        dst[i] = 0.1 + 2*cosf(i + offset);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// Calculate RMSE between two float arrays
 | 
						|
static float array_rmse(const float * a1, const float * a2, size_t n) {
 | 
						|
    double sum = 0;
 | 
						|
    for (size_t i = 0; i < n; i++) {
 | 
						|
        double diff = a1[i] - a2[i];
 | 
						|
        sum += diff * diff;
 | 
						|
    }
 | 
						|
    return sqrtf(sum) / n;
 | 
						|
}
 | 
						|
 | 
						|
// Total quantization error on test data
 | 
						|
static float total_quantization_error(const ggml_type_traits * qfns, const ggml_type_traits_cpu * qfns_cpu, size_t test_size, const float * test_data) {
 | 
						|
    std::vector<uint8_t> tmp_q(2*test_size);
 | 
						|
    std::vector<float> tmp_out(test_size);
 | 
						|
 | 
						|
    qfns_cpu->from_float(test_data, tmp_q.data(), test_size);
 | 
						|
    qfns->to_float(tmp_q.data(), tmp_out.data(), test_size);
 | 
						|
    return array_rmse(test_data, tmp_out.data(), test_size);
 | 
						|
}
 | 
						|
 | 
						|
// Total quantization error on test data
 | 
						|
static float reference_quantization_error(const ggml_type_traits * qfns, const ggml_type_traits_cpu * qfns_cpu, size_t test_size, const float * test_data) {
 | 
						|
    std::vector<uint8_t> tmp_q(2*test_size);
 | 
						|
    std::vector<float> tmp_out(test_size);
 | 
						|
    std::vector<float> tmp_out_ref(test_size);
 | 
						|
 | 
						|
    // FIXME: why is done twice?
 | 
						|
    qfns_cpu->from_float(test_data, tmp_q.data(), test_size);
 | 
						|
    qfns->to_float(tmp_q.data(), tmp_out.data(), test_size);
 | 
						|
 | 
						|
    qfns->from_float_ref(test_data, tmp_q.data(), test_size);
 | 
						|
    qfns->to_float(tmp_q.data(), tmp_out_ref.data(), test_size);
 | 
						|
 | 
						|
    return array_rmse(tmp_out.data(), tmp_out_ref.data(), test_size);
 | 
						|
}
 | 
						|
 | 
						|
static float dot_product(const float * a1, const float * a2, size_t test_size) {
 | 
						|
    double sum = 0;
 | 
						|
    for (size_t i = 0; i < test_size; i++) {
 | 
						|
        sum += a1[i] * a2[i];
 | 
						|
    }
 | 
						|
    return sum;
 | 
						|
}
 | 
						|
 | 
						|
// Total dot product error
 | 
						|
static float dot_product_error(const ggml_type_traits * qfns, const ggml_type_traits_cpu * qfns_cpu, size_t test_size, const float * test_data1, const float * test_data2) {
 | 
						|
    GGML_UNUSED(qfns);
 | 
						|
 | 
						|
    std::vector<uint8_t> tmp_q1(2*test_size);
 | 
						|
    std::vector<uint8_t> tmp_q2(2*test_size);
 | 
						|
 | 
						|
    const auto * vdot = ggml_get_type_traits_cpu(qfns_cpu->vec_dot_type);
 | 
						|
 | 
						|
    qfns_cpu->from_float(test_data1, tmp_q1.data(), test_size);
 | 
						|
    vdot->from_float(test_data2, tmp_q2.data(), test_size);
 | 
						|
 | 
						|
    float result = INFINITY;
 | 
						|
    qfns_cpu->vec_dot(test_size, &result, 0, tmp_q1.data(), 0, tmp_q2.data(), 0, 1);
 | 
						|
 | 
						|
    const float dot_ref = dot_product(test_data1, test_data2, test_size);
 | 
						|
 | 
						|
    return fabsf(result - dot_ref) / test_size;
 | 
						|
}
 | 
						|
 | 
						|
int main(int argc, char * argv[]) {
 | 
						|
    bool verbose = false;
 | 
						|
    const size_t test_size = 32 * 128;
 | 
						|
 | 
						|
    std::string arg;
 | 
						|
    for (int i = 1; i < argc; i++) {
 | 
						|
        arg = argv[i];
 | 
						|
 | 
						|
        if (arg == "-v") {
 | 
						|
            verbose = true;
 | 
						|
        } else {
 | 
						|
            fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    std::vector<float> test_data(test_size);
 | 
						|
    std::vector<float> test_data2(test_size);
 | 
						|
 | 
						|
    generate_data(0.0, test_data.size(), test_data.data());
 | 
						|
    generate_data(1.0, test_data2.size(), test_data2.data());
 | 
						|
 | 
						|
    ggml_cpu_init();
 | 
						|
 | 
						|
    int num_failed = 0;
 | 
						|
    bool failed = false;
 | 
						|
 | 
						|
    for (int i = 0; i < GGML_TYPE_COUNT; i++) {
 | 
						|
        ggml_type type = (ggml_type) i;
 | 
						|
        const auto * qfns = ggml_get_type_traits(type);
 | 
						|
        const auto * qfns_cpu = ggml_get_type_traits_cpu(type);
 | 
						|
 | 
						|
        // deprecated - skip
 | 
						|
        if (qfns->blck_size == 0) {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        const ggml_type ei = (ggml_type)i;
 | 
						|
 | 
						|
        printf("Testing %s\n", ggml_type_name((ggml_type) i));
 | 
						|
        ggml_quantize_init(ei);
 | 
						|
 | 
						|
        if (qfns_cpu->from_float && qfns->to_float) {
 | 
						|
            const float total_error = total_quantization_error(qfns, qfns_cpu, test_size, test_data.data());
 | 
						|
            const float max_quantization_error =
 | 
						|
                type == GGML_TYPE_TQ1_0   ? MAX_QUANTIZATION_TOTAL_ERROR_TERNARY :
 | 
						|
                type == GGML_TYPE_TQ2_0   ? MAX_QUANTIZATION_TOTAL_ERROR_TERNARY :
 | 
						|
                type == GGML_TYPE_Q2_K    ? MAX_QUANTIZATION_TOTAL_ERROR_2BITS :
 | 
						|
                type == GGML_TYPE_IQ2_S   ? MAX_QUANTIZATION_TOTAL_ERROR_2BITS :
 | 
						|
                type == GGML_TYPE_Q3_K    ? MAX_QUANTIZATION_TOTAL_ERROR_3BITS :
 | 
						|
                type == GGML_TYPE_IQ3_S   ? MAX_QUANTIZATION_TOTAL_ERROR_3BITS :
 | 
						|
                type == GGML_TYPE_IQ3_XXS ? MAX_QUANTIZATION_TOTAL_ERROR_3BITS_XXS : MAX_QUANTIZATION_TOTAL_ERROR;
 | 
						|
            failed = !(total_error < max_quantization_error);
 | 
						|
            num_failed += failed;
 | 
						|
            if (failed || verbose) {
 | 
						|
                printf("%5s absolute quantization error:    %s (%f)\n", ggml_type_name(type), RESULT_STR[failed], total_error);
 | 
						|
            }
 | 
						|
 | 
						|
            const float reference_error = reference_quantization_error(qfns, qfns_cpu, test_size, test_data.data());
 | 
						|
            failed = !(reference_error < MAX_QUANTIZATION_REFERENCE_ERROR);
 | 
						|
            num_failed += failed;
 | 
						|
            if (failed || verbose) {
 | 
						|
                printf("%5s reference implementation error: %s (%f)\n", ggml_type_name(type), RESULT_STR[failed], reference_error);
 | 
						|
            }
 | 
						|
 | 
						|
            const float vec_dot_error = dot_product_error(qfns, qfns_cpu, test_size, test_data.data(), test_data2.data());
 | 
						|
            const float max_allowed_error = type == GGML_TYPE_Q2_K || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ2_XXS ||
 | 
						|
                                            type == GGML_TYPE_IQ3_XXS || type == GGML_TYPE_IQ3_S || type == GGML_TYPE_IQ2_S
 | 
						|
                                          ? MAX_DOT_PRODUCT_ERROR_LOWBIT
 | 
						|
                                          : type == GGML_TYPE_TQ1_0 || type == GGML_TYPE_TQ2_0
 | 
						|
                                          ? MAX_DOT_PRODUCT_ERROR_TERNARY
 | 
						|
                                          : MAX_DOT_PRODUCT_ERROR;
 | 
						|
            failed = !(vec_dot_error < max_allowed_error);
 | 
						|
            num_failed += failed;
 | 
						|
            if (failed || verbose) {
 | 
						|
                printf("%5s dot product error:              %s (%f)\n", ggml_type_name(type), RESULT_STR[failed], vec_dot_error);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (num_failed || verbose) {
 | 
						|
        printf("%d tests failed\n", num_failed);
 | 
						|
    }
 | 
						|
 | 
						|
    return num_failed > 0;
 | 
						|
}
 |