mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-28 08:31:25 +00:00 
			
		
		
		
	 afa8a9ec9b
			
		
	
	afa8a9ec9b
	
	
	
		
			
			* llama : functions -> methods (#11110) * llama : add struct llama_vocab to the API (#11156) ggml-ci * hparams : move vocab params to llama_vocab (#11159) ggml-ci * vocab : more pimpl (#11165) ggml-ci * vocab : minor tokenization optimizations (#11160) ggml-ci Co-authored-by: Diego Devesa <slarengh@gmail.com> * lora : update API names (#11167) ggml-ci * llama : update API names to use correct prefix (#11174) * llama : update API names to use correct prefix ggml-ci * cont ggml-ci * cont ggml-ci * minor [no ci] * vocab : llama_vocab_add_[be]os -> llama_vocab_get_add_[be]os (#11174) ggml-ci * vocab : llama_vocab_n_vocab -> llama_vocab_n_tokens (#11174) ggml-ci --------- Co-authored-by: Diego Devesa <slarengh@gmail.com>
		
			
				
	
	
		
			942 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			942 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "ggml.h"
 | |
| #include "gguf.h"
 | |
| 
 | |
| #include "llama.h"
 | |
| #include "common.h"
 | |
| #include "log.h"
 | |
| 
 | |
| #include <unordered_map>
 | |
| #include <vector>
 | |
| #include <cassert>
 | |
| #include <climits>
 | |
| #include <cstring>
 | |
| #include <cstdarg>
 | |
| #include <cinttypes>
 | |
| #include <ctime>
 | |
| #include <random>
 | |
| #include <stdexcept>
 | |
| #include <sstream>
 | |
| #include <algorithm>
 | |
| #include <string>
 | |
| 
 | |
| // GGUF keys & tensor names.
 | |
| 
 | |
| #define KV_GENERAL_ARCHITECTURE          "general.architecture"
 | |
| #define KV_GENERAL_NAME                  "general.name"
 | |
| 
 | |
| #define KV_TOKENIZER_MODEL               "tokenizer.ggml.model"
 | |
| #define KV_TOKENIZER_LIST                "tokenizer.ggml.tokens"
 | |
| #define KV_TOKENIZER_TOKEN_TYPE          "tokenizer.ggml.token_type"
 | |
| #define KV_TOKENIZER_SCORES              "tokenizer.ggml.scores"
 | |
| #define KV_TOKENIZER_BOS_ID              "tokenizer.ggml.bos_token_id"
 | |
| #define KV_TOKENIZER_EOS_ID              "tokenizer.ggml.eos_token_id"
 | |
| #define KV_TOKENIZER_UNK_ID              "tokenizer.ggml.unknown_token_id"
 | |
| #define KV_TOKENIZER_SEP_ID              "tokenizer.ggml.seperator_token_id"
 | |
| #define KV_TOKENIZER_PAD_ID              "tokenizer.ggml.padding_token_id"
 | |
| #define KV_TOKENIZER_HF_JSON             "tokenizer.huggingface.json"
 | |
| 
 | |
| #define KV_CONTEXT_LENGTH                "llama.context_length"
 | |
| #define KV_EMBEDDING_LENGTH              "llama.embedding_length"
 | |
| #define KV_BLOCK_COUNT                   "llama.block_count"
 | |
| #define KV_FEED_FORWARD_LENGTH           "llama.feed_forward_length"
 | |
| #define KV_ATTENTION_HEAD_COUNT          "llama.attention.head_count"
 | |
| #define KV_ATTENTION_HEAD_COUNT_KV       "llama.attention.head_count_kv"
 | |
| #define KV_ATTENTION_LAYERNORM_RMS_EPS   "llama.attention.layer_norm_rms_epsilon"
 | |
| #define KV_ROPE_DIMENSION_COUNT          "llama.rope.dimension_count"
 | |
| 
 | |
| #define TN_TOKEN_EMBD  "token_embd.weight"
 | |
| #define TN_OUTPUT_NORM "output_norm.weight"
 | |
| #define TN_OUTPUT      "output.weight"
 | |
| #define TN_ATTN_NORM   "blk.%d.attn_norm.weight"
 | |
| #define TN_ATTN_Q      "blk.%d.attn_q.weight"
 | |
| #define TN_ATTN_K      "blk.%d.attn_k.weight"
 | |
| #define TN_ATTN_V      "blk.%d.attn_v.weight"
 | |
| #define TN_ATTN_OUTPUT "blk.%d.attn_output.weight"
 | |
| #define TN_FFN_NORM    "blk.%d.ffn_norm.weight"
 | |
| #define TN_FFN_GATE    "blk.%d.ffn_gate.weight"
 | |
| #define TN_FFN_DOWN    "blk.%d.ffn_down.weight"
 | |
| #define TN_FFN_UP      "blk.%d.ffn_up.weight"
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #pragma warning(disable: 4244 4267) // possible loss of data
 | |
| #endif
 | |
| 
 | |
| #define LLAMA_FILE_MAGIC_GGJT        0x67676a74u // 'ggjt'
 | |
| #define LLAMA_FILE_VERSION_GGJT_V3   3
 | |
| 
 | |
| #define TOKENIZER_NAME "llama"
 | |
| #define UNKNOWN_TOKEN_ID 0
 | |
| #define BOS_TOKEN_ID 1
 | |
| #define EOS_TOKEN_ID 2
 | |
| 
 | |
| //////////////////////////////////////// llama2.c model structs and functions to load models, alloc memory etc.
 | |
| typedef struct {
 | |
|     int dim; // transformer dimension
 | |
|     int hidden_dim; // for ffn layers
 | |
|     int n_layers; // number of layers
 | |
|     int n_heads; // number of query heads
 | |
|     int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery)
 | |
|     int vocab_size; // vocabulary size, usually 256 (byte-level)
 | |
|     int seq_len; // max sequence length
 | |
| } Config;
 | |
| 
 | |
| struct TransformerWeights {
 | |
|     // token embedding table
 | |
|     std::vector<float> token_embedding_table;    // (vocab_size, dim)
 | |
|     // weights for rmsnorms
 | |
|     std::vector<float> rms_att_weight; // (layer, dim) rmsnorm weights
 | |
|     std::vector<float> rms_ffn_weight; // (layer, dim)
 | |
|     // weights for matmuls
 | |
|     std::vector<float> wq; // (layer, dim, dim)
 | |
|     std::vector<float> wk; // (layer, dim, dim)
 | |
|     std::vector<float> wv; // (layer, dim, dim)
 | |
|     std::vector<float> wo; // (layer, dim, dim)
 | |
|     // weights for ffn
 | |
|     std::vector<float> w1; // (layer, hidden_dim, dim)
 | |
|     std::vector<float> w2; // (layer, dim, hidden_dim)
 | |
|     std::vector<float> w3; // (layer, hidden_dim, dim)
 | |
|     // final rmsnorm
 | |
|     std::vector<float> rms_final_weight; // (dim,)
 | |
|     // freq_cis for RoPE relatively positional embeddings
 | |
|     // std::vector<float> freq_cis_real; // (seq_len, dim/2)
 | |
|     // std::vector<float> freq_cis_imag; // (seq_len, dim/2)
 | |
|     // (optional) classifier weights for the logits, on the last layer
 | |
|     std::vector<float> wcls;
 | |
| };
 | |
| 
 | |
| static void alloc_weights(TransformerWeights * w, const Config * p, bool shared_weights) {
 | |
|     const int n_multiqueries = p->n_kv_heads <= 0 || p->n_kv_heads >= p->n_heads ? 1 : p->n_heads / p->n_kv_heads;
 | |
|     try {
 | |
|         w->token_embedding_table.resize(p->vocab_size * p->dim);
 | |
|         LOG_INF("%s: Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
 | |
| 
 | |
|         w->rms_att_weight.resize(p->n_layers * p->dim);
 | |
|         LOG_INF("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim);
 | |
| 
 | |
|         w->rms_ffn_weight.resize(p->n_layers * p->dim);
 | |
|         LOG_INF("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim);
 | |
| 
 | |
|         w->wq.resize(p->n_layers * p->dim * p->dim);
 | |
|         LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
 | |
| 
 | |
|         w->wk.resize(p->n_layers * p->dim * p->dim / n_multiqueries);
 | |
|         LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries);
 | |
| 
 | |
|         w->wv.resize(p->n_layers * p->dim * p->dim / n_multiqueries);
 | |
|         LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries);
 | |
| 
 | |
|         w->wo.resize(p->n_layers * p->dim * p->dim);
 | |
|         LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
 | |
| 
 | |
|         w->w1.resize(p->n_layers * p->hidden_dim * p->dim);
 | |
|         LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
 | |
| 
 | |
|         w->w2.resize(p->n_layers * p->hidden_dim * p->dim);
 | |
|         LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim);
 | |
| 
 | |
|         w->w3.resize(p->n_layers * p->hidden_dim * p->dim);
 | |
|         LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
 | |
| 
 | |
|         w->rms_final_weight.resize(p->dim);
 | |
|         LOG_INF("%s: Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim);
 | |
| 
 | |
|         if (shared_weights) {
 | |
|             w->wcls = {};
 | |
|         } else {
 | |
|             w->wcls.resize(p->vocab_size * p->dim);
 | |
|             LOG_INF("%s: Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
 | |
|         }
 | |
|     }
 | |
|     catch (std::length_error &) {
 | |
|         die("Invalid configuration. Failed to allocate memory for weights");
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int checkpoint_init_weights(TransformerWeights * w, const Config * p, FILE * f, bool shared_weights) {
 | |
|     if (fread(w->token_embedding_table.data(), sizeof(float), w->token_embedding_table.size(), f) != w->token_embedding_table.size()) return 1;
 | |
|     if (fread(w->rms_att_weight.data(), sizeof(float), w->rms_att_weight.size(), f) != w->rms_att_weight.size()) return 1;
 | |
|     if (fread(w->wq.data(), sizeof(float), w->wq.size(), f) != w->wq.size()) return 1;
 | |
|     if (fread(w->wk.data(), sizeof(float), w->wk.size(), f) != w->wk.size()) return 1;
 | |
|     if (fread(w->wv.data(), sizeof(float), w->wv.size(), f) != w->wv.size()) return 1;
 | |
|     if (fread(w->wo.data(), sizeof(float), w->wo.size(), f) != w->wo.size()) return 1;
 | |
|     if (fread(w->rms_ffn_weight.data(), sizeof(float), w->rms_ffn_weight.size(), f) != w->rms_ffn_weight.size()) return 1;
 | |
|     if (fread(w->w1.data(), sizeof(float), w->w1.size(), f) != w->w1.size()) return 1;
 | |
|     if (fread(w->w2.data(), sizeof(float), w->w2.size(), f) != w->w2.size()) return 1;
 | |
|     if (fread(w->w3.data(), sizeof(float), w->w3.size(), f) != w->w3.size()) return 1;
 | |
|     if (fread(w->rms_final_weight.data(), sizeof(float), w->rms_final_weight.size(), f) != w->rms_final_weight.size()) return 1;
 | |
| 
 | |
|     // Skip freq_cis_real & freq_cis_imag
 | |
|     int head_size = p->dim / p->n_heads;
 | |
|     fseek(f, p->seq_len * head_size * sizeof(float), SEEK_CUR);
 | |
| 
 | |
|     if (!shared_weights && fread(w->wcls.data(), sizeof(float), w->wcls.size(), f) != w->wcls.size()) return 1;
 | |
| 
 | |
|     // Check we didn't forget to read anything
 | |
|     auto curr = ftell(f);
 | |
|     fseek(f, 0, SEEK_END);
 | |
|     auto end = ftell(f);
 | |
|     if (curr != end) {
 | |
|         LOG_ERR("%s: Error: failed to read the checkpoint file to the end (curr = %ld, end =  %ld)\n", __func__, curr, end);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void print_sample_weights(TransformerWeights *w){
 | |
|     LOG_INF("----- Quick print of first of the weight vales of all the variables\n");
 | |
|     LOG_INF("%f\n", w->token_embedding_table[0]);
 | |
|     LOG_INF("%f\n", w->rms_att_weight[0]);
 | |
|     LOG_INF("%f\n", w->rms_ffn_weight[0]);
 | |
| 
 | |
|     LOG_INF("%f\n", w->wq[0]);
 | |
|     LOG_INF("%f\n", w->wk[0]);
 | |
|     LOG_INF("%f\n", w->wv[0]);
 | |
|     LOG_INF("%f\n", w->wo[0]);
 | |
|     LOG_INF("%f\n", w->w1[0]);
 | |
|     LOG_INF("%f\n", w->w2[0]);
 | |
|     LOG_INF("%f\n", w->w3[0]);
 | |
|     LOG_INF("%f\n", w->rms_att_weight[0]);
 | |
|     if (!w->wcls.empty()) LOG_INF("%f\n", w->wcls[0]);
 | |
| }
 | |
| ////////////////////////////////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| //////////////////////////////////////// ggml structs and functions required to load models, configs and save the model.
 | |
| 
 | |
| struct my_llama_vocab {
 | |
|     using id    = int32_t;
 | |
|     using token = std::string;
 | |
|     using ttype = llama_token_type;
 | |
| 
 | |
|     struct token_data {
 | |
|         token text;
 | |
|         float score;
 | |
|         ttype type;
 | |
|     };
 | |
| 
 | |
|     std::unordered_map<token, id> token_to_id;
 | |
|     std::vector<token_data> id_to_token;
 | |
| };
 | |
| 
 | |
| struct my_llama_hparams {
 | |
|     uint32_t n_vocab   = 32000;
 | |
|     uint32_t n_ctx     = 512;   // this is provided as user input?
 | |
|     uint32_t n_embd    = 4096;
 | |
|     uint32_t n_ff      = 11008;
 | |
|     uint32_t n_mult    = 4;
 | |
|     uint32_t n_head    = 32;
 | |
|     uint32_t n_head_kv = 32;
 | |
|     uint32_t n_layer   = 32;
 | |
|     uint32_t n_rot     = 64;
 | |
| 
 | |
|     bool operator!=(const my_llama_hparams& other) const {
 | |
|         return memcmp(this, &other, sizeof(my_llama_hparams));
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct my_llama_layer {
 | |
|     // normalization
 | |
|     struct ggml_tensor * attention_norm;
 | |
| 
 | |
|     // attention
 | |
|     struct ggml_tensor * wq;
 | |
|     struct ggml_tensor * wk;
 | |
|     struct ggml_tensor * wv;
 | |
|     struct ggml_tensor * wo;
 | |
| 
 | |
|     // normalization
 | |
|     struct ggml_tensor * ffn_norm;
 | |
| 
 | |
|     // ff
 | |
|     struct ggml_tensor * w1;
 | |
|     struct ggml_tensor * w2;
 | |
|     struct ggml_tensor * w3;
 | |
| };
 | |
| 
 | |
| struct my_llama_model {
 | |
|     struct ggml_context * ctx = NULL;
 | |
| 
 | |
|     std::string name;
 | |
| 
 | |
|     my_llama_hparams hparams;
 | |
| 
 | |
|     struct ggml_tensor * tok_embeddings;
 | |
| 
 | |
|     struct ggml_tensor * norm;
 | |
|     struct ggml_tensor * output;
 | |
| 
 | |
|     std::vector<my_llama_layer> layers;
 | |
| 
 | |
|     uint32_t train_its = 0;
 | |
|     uint32_t train_samples = 0;
 | |
|     uint32_t train_tokens = 0;
 | |
| };
 | |
| 
 | |
| struct train_params {
 | |
|     const char * fn_vocab_model;
 | |
|     const char * fn_llama2c_model;
 | |
|     const char * fn_llama2c_output_model;
 | |
|     const char * fn_train_data;
 | |
|     const char * fn_checkpoint_in;
 | |
|     const char * fn_checkpoint_out;
 | |
|     const char * fn_model_out;
 | |
| 
 | |
|     uint32_t seed;
 | |
| 
 | |
|     int n_ctx;
 | |
|     int n_embd;
 | |
|     int n_mult;
 | |
|     int n_head;
 | |
|     int n_layer;
 | |
|     int n_rotmax;
 | |
| 
 | |
|     int n_threads;
 | |
|     int n_batch;
 | |
|     int n_examples;
 | |
|     int n_predict;
 | |
| 
 | |
|     int print_info_interval;
 | |
|     int print_details_interval;
 | |
| 
 | |
|     bool samples_start_after_nl;
 | |
|     bool use_adam;
 | |
|     bool use_flash;
 | |
|     bool use_scratch;
 | |
| 
 | |
|     // only adam
 | |
|     int   warmup;
 | |
|     int   cos_decay_steps;
 | |
|     float cos_decay_restart;
 | |
|     float cos_decay_alpha;
 | |
| 
 | |
|     int   lbfgs_n_iter;
 | |
|     int   adam_n_iter;
 | |
|     float adam_alpha;
 | |
|     float adam_decay;
 | |
| 
 | |
|     int mem_model_gb;
 | |
|     int mem_compute_gb;
 | |
|     int mem_compute0_gb;
 | |
|     int mem_compute1_gb;
 | |
| };
 | |
| 
 | |
| static void print_params(struct my_llama_hparams * params) {
 | |
|     LOG_INF("%s: n_vocab:   %u\n", __func__, params->n_vocab);
 | |
|     LOG_INF("%s: n_ctx:     %u\n", __func__, params->n_ctx);
 | |
|     LOG_INF("%s: n_embd:    %u\n", __func__, params->n_embd);
 | |
|     LOG_INF("%s: n_mult:    %u\n", __func__, params->n_mult);
 | |
|     LOG_INF("%s: n_head:    %u\n", __func__, params->n_head);
 | |
|     LOG_INF("%s: n_head_kv: %u\n", __func__, params->n_head_kv);
 | |
|     LOG_INF("%s: n_ff:      %u\n", __func__, params->n_ff);
 | |
|     LOG_INF("%s: n_layer:   %u\n", __func__, params->n_layer);
 | |
|     LOG_INF("%s: n_rot:     %u\n", __func__, params->n_rot);
 | |
| }
 | |
| 
 | |
| static void print_tensor_info(const struct ggml_context * ctx) {
 | |
|     for (auto t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
 | |
|         LOG_INF("%s: Allocating ", __func__);
 | |
|         int64_t total = 1;
 | |
|         int i = 0;
 | |
|         for (; i < ggml_n_dims(t); ++i) {
 | |
|             if (i > 0) LOG("x ");
 | |
|             LOG("[%" PRId64 "] ", t->ne[i]);
 | |
|             total *= t->ne[i];
 | |
|         }
 | |
|         if (i > 1) LOG("= [%" PRId64 "] ", total);
 | |
|         LOG("float space for %s\n", ggml_get_name(t));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void init_model(struct my_llama_model * model) {
 | |
|     const auto & hparams = model->hparams;
 | |
| 
 | |
|     const uint32_t n_embd  = hparams.n_embd;
 | |
|     const uint32_t n_layer = hparams.n_layer;
 | |
|     const uint32_t n_vocab = hparams.n_vocab;
 | |
| 
 | |
|     const uint32_t n_multiqueries = hparams.n_head_kv <= 0 || hparams.n_head_kv >= hparams.n_head ? 1 : hparams.n_head / hparams.n_head_kv;
 | |
| 
 | |
|     const uint32_t n_ff = hparams.n_ff;
 | |
|     struct ggml_context * ctx = model->ctx;
 | |
| 
 | |
|     model->train_its = 0;
 | |
|     model->train_samples = 0;
 | |
|     model->train_tokens = 0;
 | |
| 
 | |
|     model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
 | |
|     model->norm           = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
 | |
|     model->output         = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
 | |
| 
 | |
|     ggml_set_name(model->tok_embeddings, "tok_embeddings.weight");
 | |
|     ggml_set_name(model->norm,           "norm.weight");
 | |
|     ggml_set_name(model->output,         "output.weight");
 | |
| 
 | |
|     model->layers.resize(n_layer);
 | |
|     for (uint32_t i = 0; i < n_layer; ++i) {
 | |
|         auto & layer = model->layers[i];
 | |
| 
 | |
|         std::string layers_i = "layers." + std::to_string(i);
 | |
| 
 | |
|         layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
 | |
| 
 | |
|         layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
 | |
|         layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd / n_multiqueries);
 | |
|         layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd / n_multiqueries);
 | |
|         layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
 | |
| 
 | |
|         layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
 | |
| 
 | |
|         layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
 | |
|         layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd);
 | |
|         layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
 | |
| 
 | |
|         ggml_set_name(layer.attention_norm, (layers_i + ".attention_norm.weight").c_str());
 | |
| 
 | |
|         ggml_set_name(layer.wq, (layers_i + ".attention.wq.weight").c_str());
 | |
|         ggml_set_name(layer.wk, (layers_i + ".attention.wk.weight").c_str());
 | |
|         ggml_set_name(layer.wv, (layers_i + ".attention.wv.weight").c_str());
 | |
|         ggml_set_name(layer.wo, (layers_i + ".attention.wo.weight").c_str());
 | |
| 
 | |
|         ggml_set_name(layer.ffn_norm, (layers_i + ".ffn_norm.weight").c_str());
 | |
| 
 | |
|         ggml_format_name(layer.w1, "%s.feed_forward.w1.weight", layers_i.c_str());
 | |
|         ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str());
 | |
|         ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str());
 | |
|     }
 | |
| 
 | |
|     print_tensor_info(ctx);
 | |
| }
 | |
| 
 | |
| static float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
 | |
|     float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
 | |
|     return *ptr;
 | |
| }
 | |
| 
 | |
| static int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
 | |
|     int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
 | |
|     return *ptr;
 | |
| }
 | |
| 
 | |
| static void print_row(struct ggml_tensor * probs, int i) {
 | |
|     for (int k = 0; k < probs->ne[0]; ++k) {
 | |
|         float p = get_f32_2d(probs, k, i);
 | |
|         LOG(" %f", p);
 | |
|     }
 | |
|     LOG("\n");
 | |
| }
 | |
| 
 | |
| static void print_matrix(struct ggml_tensor * probs) {
 | |
|     assert(ggml_is_matrix(probs));
 | |
|     for (int i = 0; i < probs->ne[1]; ++i) {
 | |
|         for (int k = 0; k < probs->ne[0]; ++k) {
 | |
|             float p = get_f32_2d(probs, k, i);
 | |
|             LOG(" %.2f", p);
 | |
|         }
 | |
|         LOG("\n");
 | |
|     }
 | |
| }
 | |
| 
 | |
| struct my_llama_file {
 | |
|     // use FILE * so we don't have to re-open the file to mmap
 | |
|     FILE * fp;
 | |
|     size_t size;
 | |
| 
 | |
|     my_llama_file(const char * fname, const char * mode) {
 | |
|         fp = std::fopen(fname, mode);
 | |
|         if (fp == NULL) {
 | |
|             size = 0;
 | |
|         } else {
 | |
|             seek(0, SEEK_END);
 | |
|             size = tell();
 | |
|             seek(0, SEEK_SET);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     size_t tell() const {
 | |
| #ifdef _WIN32
 | |
|         __int64 ret = _ftelli64(fp);
 | |
| #else
 | |
|         long ret = std::ftell(fp);
 | |
| #endif
 | |
|         GGML_ASSERT(ret != -1); // this really shouldn't fail
 | |
|         return (size_t) ret;
 | |
|     }
 | |
| 
 | |
|     void seek(size_t offset, int whence) {
 | |
| #ifdef _WIN32
 | |
|         int ret = _fseeki64(fp, (__int64) offset, whence);
 | |
| #else
 | |
|         int ret = std::fseek(fp, (long) offset, whence);
 | |
| #endif
 | |
|         GGML_ASSERT(ret == 0); // same
 | |
|     }
 | |
| 
 | |
|     void read_raw(void * ptr, size_t size) {
 | |
|         if (size == 0) {
 | |
|             return;
 | |
|         }
 | |
|         errno = 0;
 | |
|         std::size_t ret = std::fread(ptr, size, 1, fp);
 | |
|         if (ferror(fp)) {
 | |
|             die_fmt("fread failed: %s", strerror(errno));
 | |
|         }
 | |
|         if (ret != 1) {
 | |
|             die("unexpectedly reached end of file");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     std::uint32_t read_u32() {
 | |
|         std::uint32_t ret;
 | |
|         read_raw(&ret, sizeof(ret));
 | |
|         return ret;
 | |
|     }
 | |
|     std::float_t read_f32() {
 | |
|         std::float_t ret;
 | |
|         read_raw(&ret, sizeof(ret));
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     std::string read_string(std::uint32_t len) {
 | |
|         std::vector<char> chars(len);
 | |
|         read_raw(chars.data(), len);
 | |
|         return std::string(chars.data(), len);
 | |
|     }
 | |
| 
 | |
|     ~my_llama_file() {
 | |
|         if (fp) {
 | |
|             std::fclose(fp);
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| static bool is_ggml_file(const char * filename) {
 | |
|     my_llama_file file(filename, "rb");
 | |
|     if (file.size < 4) {
 | |
|         return false;
 | |
|     }
 | |
|     std::string magic = file.read_string(4);
 | |
|     return magic == GGUF_MAGIC;
 | |
| }
 | |
| 
 | |
| static std::string llama_escape_whitespaces(const std::string & text) {
 | |
|     std::ostringstream out;
 | |
|     for (char c : text) {
 | |
|         if (c == ' ') out << "\xe2\x96\x81";
 | |
|         else out << c;
 | |
|     }
 | |
|     return out.str();
 | |
| }
 | |
| 
 | |
| static void load_vocab(const char * filename, const Config * config, struct my_llama_vocab * vocab) {
 | |
|     if (is_ggml_file(filename)) {
 | |
|         LOG_INF("%s: Loading vocabulary from gguf file %s\n", __func__, filename);
 | |
|         struct ggml_context * ctx_data = NULL;
 | |
| 
 | |
|         struct gguf_init_params params = {
 | |
|             /*.no_alloc = */ false,
 | |
|             /*.ctx      = */ &ctx_data,
 | |
|         };
 | |
| 
 | |
|         struct gguf_context * ctx = gguf_init_from_file(filename, params);
 | |
|         GGML_ASSERT(ctx != NULL);
 | |
| 
 | |
|         const int model_idx = gguf_find_key(ctx, KV_TOKENIZER_MODEL);
 | |
|         GGML_ASSERT(model_idx >= 0);
 | |
|         std::string tokenizer_name = gguf_get_val_str(ctx, model_idx);
 | |
|         GGML_ASSERT(tokenizer_name == TOKENIZER_NAME);
 | |
| 
 | |
|         const int token_idx = gguf_find_key(ctx, KV_TOKENIZER_LIST);
 | |
|         GGML_ASSERT(token_idx >= 0);
 | |
| 
 | |
|         const int score_idx = gguf_find_key(ctx, KV_TOKENIZER_SCORES);
 | |
|         GGML_ASSERT(score_idx >= 0);
 | |
|         const float * scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
 | |
| 
 | |
|         const int toktype_idx = gguf_find_key(ctx, KV_TOKENIZER_TOKEN_TYPE);
 | |
|         GGML_ASSERT(toktype_idx >= 0);
 | |
|         const int * toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
 | |
| 
 | |
|         const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
 | |
|         if (n_vocab != static_cast<uint32_t>(config->vocab_size)) {
 | |
|             die_fmt("vocab size mismatch: (gguf) %u != (llama2c) %d", n_vocab, config->vocab_size);
 | |
|         }
 | |
| 
 | |
|         vocab->id_to_token.resize(n_vocab);
 | |
| 
 | |
|         for (uint32_t i = 0; i < n_vocab; i++) {
 | |
|             std::string word = gguf_get_arr_str(ctx, token_idx, i);
 | |
| 
 | |
|             vocab->token_to_id[word] = i;
 | |
| 
 | |
|             auto & token_data = vocab->id_to_token[i];
 | |
|             token_data.text  = std::move(word);
 | |
|             token_data.score = scores[i];
 | |
|             token_data.type  = (llama_token_type) toktypes[i];
 | |
|         }
 | |
|         ggml_free(ctx_data);
 | |
|         gguf_free(ctx);
 | |
|     } else {
 | |
|         // assume llama2.c vocabulary
 | |
|         LOG_INF("%s: Assuming llama2.c vocabulary since %s is not a gguf file\n", __func__, filename);
 | |
|         my_llama_file file(filename, "rb");
 | |
|         if (!file.fp) {
 | |
|             die_fmt("%s: %s", strerror(errno), filename);
 | |
|         }
 | |
|         const int  n_vocab = config->vocab_size;
 | |
|         /* uint32_t max_token_length =  */ file.read_u32(); // unused
 | |
|         vocab->id_to_token.resize(n_vocab);
 | |
|         for (my_llama_vocab::id id=0; id<n_vocab; ++id) {
 | |
|             float_t score = file.read_f32();
 | |
|             uint32_t len = file.read_u32();
 | |
|             std::string text = file.read_string(len);
 | |
| 
 | |
|             unsigned char byte_val;
 | |
|             my_llama_vocab::ttype type = LLAMA_TOKEN_TYPE_NORMAL;
 | |
|             if (id == UNKNOWN_TOKEN_ID) {
 | |
|                 text = "<unk>";
 | |
|                 type = LLAMA_TOKEN_TYPE_UNKNOWN;
 | |
|             } else if (id == BOS_TOKEN_ID) {
 | |
|                 text = "<s>";
 | |
|                 type = LLAMA_TOKEN_TYPE_CONTROL;
 | |
|             } else if (id == EOS_TOKEN_ID) {
 | |
|                 text = "</s>";
 | |
|                 type = LLAMA_TOKEN_TYPE_CONTROL;
 | |
|             } else if (text.empty()) {
 | |
|                 type = LLAMA_TOKEN_TYPE_CONTROL;
 | |
|             } else if (sscanf(text.c_str(), "<0x%02hhX>", &byte_val) == 1) {
 | |
|                 // Text of byte tokens is already in the expected format.
 | |
|                 type = LLAMA_TOKEN_TYPE_BYTE;
 | |
|             } else {
 | |
|                 type = LLAMA_TOKEN_TYPE_NORMAL;
 | |
|             }
 | |
|             text = llama_escape_whitespaces(text);
 | |
| 
 | |
|             vocab->id_to_token[id].text = text;
 | |
|             vocab->id_to_token[id].score = score;
 | |
|             vocab->id_to_token[id].type = type;
 | |
|             vocab->token_to_id.emplace(text, id);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void convert_weights_ak_to_gg(struct ggml_tensor * gg_weights, const float * karpathy_weights) {
 | |
|     int size = 1;
 | |
|     for (int dim = 0; dim < ggml_n_dims(gg_weights); ++dim) {
 | |
|         size *= gg_weights->ne[dim];
 | |
|     }
 | |
|     for (int ct = 0; ct < size; ++ct) {
 | |
|         int64_t i0 = 0; int64_t i1 = 0;
 | |
|         int64_t i2 = 0; int64_t i3 = 0;
 | |
|         ggml_unravel_index(gg_weights, ct, &i0, &i1, &i2, &i3);
 | |
|         ggml_set_f32_nd(gg_weights, i0, i1, i2, i3, karpathy_weights[ct]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void save_as_llama_model(
 | |
|     struct my_llama_vocab * vocab, struct my_llama_model * model, TransformerWeights* w, const char * filename
 | |
| ) {
 | |
|     // convert AK weights into GG weights one by one.
 | |
|     // w->token_embedding_table -> model->tok_embeddings
 | |
|     // float*                   -> struct ggml_tensor
 | |
|     convert_weights_ak_to_gg(model->tok_embeddings, w->token_embedding_table.data());
 | |
|     convert_weights_ak_to_gg(model->output, !w->wcls.empty() ? w->wcls.data() : w->token_embedding_table.data());
 | |
| 
 | |
|     convert_weights_ak_to_gg(model->norm, w->rms_final_weight.data());
 | |
|     //print_row(model->norm, 0);
 | |
| 
 | |
|     // for rms-att-weight
 | |
|     int row_length = model->hparams.n_embd;
 | |
|     int n_ff = model->hparams.n_ff;
 | |
| 
 | |
|     const uint32_t n_multiqueries = model->hparams.n_head_kv <= 0 || model->hparams.n_head_kv >= model->hparams.n_head ? 1 : model->hparams.n_head / model->hparams.n_head_kv;
 | |
| 
 | |
|     for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
 | |
|         auto & layer = model->layers[i];
 | |
|         // 1d
 | |
|         convert_weights_ak_to_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]);
 | |
|         convert_weights_ak_to_gg(layer.ffn_norm      , &w->rms_ffn_weight[i*row_length]);
 | |
| 
 | |
|         // from 3d matrix layer x dim x dim to 2d matrix dim x dim
 | |
|         convert_weights_ak_to_gg(layer.wq            , &w->wq[i*row_length*row_length]);
 | |
|         convert_weights_ak_to_gg(layer.wo            , &w->wo[i*row_length*row_length]);
 | |
|         // from 3d matrix layer x dim x dim to 2d matrix dim x dim / n_multiqueries
 | |
|         convert_weights_ak_to_gg(layer.wk            , &w->wk[i*row_length*row_length/n_multiqueries]);
 | |
|         convert_weights_ak_to_gg(layer.wv            , &w->wv[i*row_length*row_length/n_multiqueries]);
 | |
| 
 | |
|         convert_weights_ak_to_gg(layer.w1            , &w->w1[i*row_length*n_ff]);
 | |
|         convert_weights_ak_to_gg(layer.w2            , &w->w2[i*n_ff*row_length]);
 | |
|         convert_weights_ak_to_gg(layer.w3            , &w->w3[i*row_length*n_ff]);
 | |
|     }
 | |
| 
 | |
|     struct gguf_context * ctx = gguf_init_empty();
 | |
| 
 | |
|     std::vector<const char*> tokens;
 | |
|     std::vector<float> scores;
 | |
|     std::vector<llama_token_type> token_types;
 | |
|     for (const my_llama_vocab::token_data & token_data : vocab->id_to_token) {
 | |
|         tokens.push_back(token_data.text.c_str());
 | |
|         scores.push_back(token_data.score);
 | |
|         token_types.push_back(token_data.type);
 | |
|     }
 | |
|     gguf_set_arr_str(ctx, KV_TOKENIZER_LIST, tokens.data(), tokens.size());
 | |
|     gguf_set_arr_data(ctx, KV_TOKENIZER_SCORES, GGUF_TYPE_FLOAT32, scores.data(), scores.size());
 | |
|     gguf_set_arr_data(ctx, KV_TOKENIZER_TOKEN_TYPE, GGUF_TYPE_INT32, token_types.data(), token_types.size());
 | |
| 
 | |
|     gguf_set_val_str(ctx, KV_TOKENIZER_MODEL, TOKENIZER_NAME);
 | |
| 
 | |
|     gguf_set_val_str(ctx, KV_GENERAL_ARCHITECTURE, "llama");
 | |
|     gguf_set_val_str(ctx, KV_GENERAL_NAME, "llama");
 | |
| 
 | |
|     // special tokens
 | |
|     gguf_set_val_u32(ctx, KV_TOKENIZER_UNK_ID, UNKNOWN_TOKEN_ID);
 | |
|     gguf_set_val_u32(ctx, KV_TOKENIZER_BOS_ID, BOS_TOKEN_ID);
 | |
|     gguf_set_val_u32(ctx, KV_TOKENIZER_EOS_ID, EOS_TOKEN_ID);
 | |
|     gguf_set_val_u32(ctx, KV_TOKENIZER_SEP_ID, LLAMA_TOKEN_NULL);
 | |
|     gguf_set_val_u32(ctx, KV_TOKENIZER_PAD_ID, LLAMA_TOKEN_NULL);
 | |
| 
 | |
|     gguf_set_val_u32(ctx, KV_CONTEXT_LENGTH, model->hparams.n_ctx);
 | |
|     gguf_set_val_u32(ctx, KV_EMBEDDING_LENGTH, model->hparams.n_embd);
 | |
|     gguf_set_val_u32(ctx, KV_FEED_FORWARD_LENGTH, model->hparams.n_ff);
 | |
|     gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head);
 | |
|     gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head);
 | |
|     gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT_KV, model->hparams.n_head_kv);
 | |
|     gguf_set_val_u32(ctx, KV_BLOCK_COUNT, model->hparams.n_layer);
 | |
|     gguf_set_val_u32(ctx, KV_ROPE_DIMENSION_COUNT, model->hparams.n_rot);
 | |
|     gguf_set_val_f32(ctx, KV_ATTENTION_LAYERNORM_RMS_EPS, 1e-5f);
 | |
| 
 | |
|     // write tensors
 | |
|     ggml_set_name(model->tok_embeddings, TN_TOKEN_EMBD);
 | |
|     gguf_add_tensor(ctx, model->tok_embeddings);
 | |
| 
 | |
|     ggml_set_name(model->norm, TN_OUTPUT_NORM);
 | |
|     gguf_add_tensor(ctx, model->norm);
 | |
| 
 | |
|     ggml_set_name(model->output, TN_OUTPUT);
 | |
|     gguf_add_tensor(ctx, model->output);
 | |
| 
 | |
|     for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
 | |
|         auto & layer = model->layers[i];
 | |
| 
 | |
|         ggml_format_name(layer.wq, TN_ATTN_Q, i);
 | |
|         gguf_add_tensor(ctx, layer.wq);
 | |
| 
 | |
|         ggml_format_name(layer.wk, TN_ATTN_K, i);
 | |
|         gguf_add_tensor(ctx, layer.wk);
 | |
| 
 | |
|         ggml_format_name(layer.wv, TN_ATTN_V, i);
 | |
|         gguf_add_tensor(ctx, layer.wv);
 | |
| 
 | |
|         ggml_format_name(layer.wo, TN_ATTN_OUTPUT, i);
 | |
|         gguf_add_tensor(ctx, layer.wo);
 | |
| 
 | |
|         ggml_format_name(layer.attention_norm, TN_ATTN_NORM, i);
 | |
|         gguf_add_tensor(ctx, layer.attention_norm);
 | |
| 
 | |
|         ggml_format_name(layer.w1, TN_FFN_GATE, i);
 | |
|         gguf_add_tensor(ctx, layer.w1);
 | |
| 
 | |
|         ggml_format_name(layer.w2, TN_FFN_DOWN, i);
 | |
|         gguf_add_tensor(ctx, layer.w2);
 | |
| 
 | |
|         ggml_format_name(layer.w3, TN_FFN_UP, i);
 | |
|         gguf_add_tensor(ctx, layer.w3);
 | |
| 
 | |
|         ggml_format_name(layer.ffn_norm, TN_FFN_NORM, i);
 | |
|         gguf_add_tensor(ctx, layer.ffn_norm);
 | |
|     }
 | |
| 
 | |
|     gguf_write_to_file(ctx, filename, false);
 | |
|     gguf_free(ctx);
 | |
| }
 | |
| 
 | |
| static struct train_params get_default_train_params() {
 | |
|     struct train_params params;
 | |
|     params.fn_vocab_model          = "models/7B/ggml-model-f16.gguf";
 | |
|     params.fn_llama2c_output_model = "ak_llama_model.bin";
 | |
|     params.fn_train_data           = "shakespeare.txt";
 | |
|     params.fn_checkpoint_in        = "checkpoint.bin";
 | |
|     params.fn_checkpoint_out       = "checkpoint.bin";
 | |
|     params.fn_model_out            = "ggml-checkpoint-f32.bin";
 | |
| 
 | |
|     params.seed       =   -1;
 | |
| 
 | |
|     params.n_ctx      =  128;
 | |
|     params.n_embd     =  256;
 | |
|     params.n_mult     =  256;
 | |
|     params.n_head     =    8;
 | |
|     params.n_layer    =   16;
 | |
|     params.n_rotmax   =   64;
 | |
| 
 | |
|     params.n_threads  =    6;
 | |
|     params.n_batch    =    8;
 | |
|     params.n_examples =    8;
 | |
|     params.n_predict  = 1024;
 | |
| 
 | |
|     params.print_info_interval    = 1;
 | |
|     params.print_details_interval = 2;
 | |
| 
 | |
|     params.samples_start_after_nl = false;
 | |
|     params.use_adam               = true;
 | |
|     params.use_flash              = false;
 | |
|     params.use_scratch            = true;
 | |
| 
 | |
|     // only adam
 | |
|     params.warmup            =  100;
 | |
|     params.cos_decay_steps   = 1000;
 | |
|     params.cos_decay_restart = 1.1f;
 | |
|     params.cos_decay_alpha   = 0.0f;
 | |
| 
 | |
|     params.lbfgs_n_iter      = 16;
 | |
|     params.adam_n_iter       = 16;
 | |
|     params.adam_alpha        = 1e-3f;
 | |
|     params.adam_decay        = 1e-3f;
 | |
| 
 | |
|     params.mem_model_gb    = 2;
 | |
|     params.mem_compute_gb  = 24;
 | |
|     params.mem_compute0_gb = 8;
 | |
|     params.mem_compute1_gb = 2;
 | |
| 
 | |
|     return params;
 | |
| }
 | |
| 
 | |
| static void print_usage(int /*argc*/, char ** argv, const struct train_params * params) {
 | |
|     fprintf(stderr, "usage: %s [options]\n", argv[0]);
 | |
|     fprintf(stderr, "\n");
 | |
|     fprintf(stderr, "options:\n");
 | |
|     fprintf(stderr, "  -h, --help                       show this help message and exit\n");
 | |
|     fprintf(stderr, "  --copy-vocab-from-model FNAME    path of gguf llama model or llama2.c vocabulary from which to copy vocab (default '%s')\n", params->fn_vocab_model);
 | |
|     fprintf(stderr, "  --llama2c-model FNAME            [REQUIRED] model path from which to load Karpathy's llama2.c model\n");
 | |
|     fprintf(stderr, "  --llama2c-output-model FNAME     model path to save the converted llama2.c model (default %s')\n", params->fn_llama2c_output_model);
 | |
|     fprintf(stderr, "\n");
 | |
| }
 | |
| 
 | |
| static bool params_parse(int argc, char ** argv, struct train_params * params) {
 | |
|     bool invalid_param = false;
 | |
|     bool reqd_param_found = false;
 | |
|     std::string arg;
 | |
|     struct train_params default_params = get_default_train_params();
 | |
|     const std::string arg_prefix = "--";
 | |
| 
 | |
|     for (int i = 1; i < argc; i++) {
 | |
|         arg = argv[i];
 | |
|         if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
 | |
|             std::replace(arg.begin(), arg.end(), '_', '-');
 | |
|         }
 | |
| 
 | |
|         if (arg == "--copy-vocab-from-model") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->fn_vocab_model = argv[i];
 | |
|         } else if (arg == "--llama2c-model") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             reqd_param_found = true;
 | |
|             params->fn_llama2c_model = argv[i];
 | |
|         } else if (arg == "--llama2c-output-model") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->fn_llama2c_output_model = argv[i];
 | |
|         } else if (arg == "-h" || arg == "--help") {
 | |
|             print_usage(argc, argv, &default_params);
 | |
|             exit(0);
 | |
|         } else {
 | |
|             fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
 | |
|             print_usage(argc, argv, &default_params);
 | |
|             exit(1);
 | |
|         }
 | |
|     }
 | |
|     if (invalid_param) {
 | |
|         fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
 | |
|         print_usage(argc, argv, &default_params);
 | |
|         exit(1);
 | |
|     }
 | |
|     if (!reqd_param_found){
 | |
|         fprintf(stderr, "error: please specify a llama2.c .bin file to be converted with argument --llama2c-model\n");
 | |
|         print_usage(argc, argv, &default_params);
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static std::string basename(const std::string &path) {
 | |
|     size_t pos = path.find_last_of("/\\");
 | |
|     if (pos == std::string::npos) {
 | |
|         return path;
 | |
|     }
 | |
|     return path.substr(pos + 1);
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     common_init();
 | |
| 
 | |
|     struct train_params params = get_default_train_params();
 | |
|     if (!params_parse(argc, argv, ¶ms)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     Config config;
 | |
|     TransformerWeights weights = {};
 | |
|     {
 | |
|         LOG_INF("%s: Loading llama2c model from %s\n", __func__, params.fn_llama2c_model);
 | |
|         FILE * file = fopen(params.fn_llama2c_model, "rb");
 | |
|         if (!file) {
 | |
|             LOG_ERR("%s: Unable to open the checkpoint file %s!\n", __func__, params.fn_llama2c_model);
 | |
|             return 1;
 | |
|         }
 | |
|         // read in the config header
 | |
|         if (fread(&config, sizeof(Config), 1, file) != 1) {
 | |
|             LOG_ERR("%s: Unable to read llama2c config from %s!\n",__func__,params.fn_llama2c_model);
 | |
|             return 1;
 | |
|         }
 | |
|         auto shared_weights = config.vocab_size > 0;
 | |
|         config.vocab_size = abs(config.vocab_size);
 | |
| 
 | |
|         // read in the Transformer weights
 | |
|         alloc_weights(&weights, &config, shared_weights);
 | |
|         if (checkpoint_init_weights(&weights, &config, file, shared_weights)) {
 | |
|             LOG_ERR("%s: Unable to initialize transformer weights from %s!",__func__,params.fn_llama2c_model);
 | |
|             return 1;
 | |
|         }
 | |
|         fclose(file);
 | |
|     }
 | |
| 
 | |
|     struct my_llama_vocab vocab;
 | |
|     load_vocab(params.fn_vocab_model, &config, &vocab);
 | |
| 
 | |
|     struct my_llama_model model;
 | |
|     model.hparams.n_vocab   = config.vocab_size; //llama_vocab_n_vocab(lctx);
 | |
|     model.hparams.n_ctx     = params.n_ctx;
 | |
|     model.hparams.n_embd    = config.dim; //params.n_embd;
 | |
|     model.hparams.n_ff      = config.hidden_dim;
 | |
|     model.hparams.n_mult    = 32;//params.n_mult;
 | |
|     model.hparams.n_head    = config.n_heads; //params.n_head;
 | |
|     model.hparams.n_head_kv = config.n_kv_heads;
 | |
|     model.hparams.n_layer   = config.n_layers; //params.n_layer;
 | |
|     model.hparams.n_rot     = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head);
 | |
| 
 | |
|     print_params(&model.hparams);
 | |
| 
 | |
|     struct ggml_init_params lcparams;
 | |
|     lcparams.mem_size   = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb);
 | |
|     lcparams.mem_buffer = NULL;
 | |
|     lcparams.no_alloc   = false;
 | |
| 
 | |
|     model.ctx = ggml_init(lcparams);
 | |
| 
 | |
|     init_model(&model);
 | |
|     model.name = basename(params.fn_llama2c_model);
 | |
|     save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model);
 | |
| 
 | |
|     LOG_INF("%s: Saving llama.c model file %s in ggml format at %s\n", __func__, params.fn_llama2c_model, params.fn_llama2c_output_model);
 | |
| 
 | |
|     ggml_free(model.ctx);
 | |
|     return 0;
 | |
| }
 |