mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			237 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			237 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "common.h"
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <cmath>
 | |
| #include <cstdio>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| struct seq_ngram {
 | |
|     bool active   = false;
 | |
| 
 | |
|     std::vector<llama_token> tokens;
 | |
| };
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     gpt_params params;
 | |
| 
 | |
|     if (gpt_params_parse(argc, argv, params) == false) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     const int W = 5; // lookahead window
 | |
|     const int N = 4; // n-gram size
 | |
|     const int G = 5; // max verification n-grams
 | |
| 
 | |
|     const bool dump_kv_cache = params.dump_kv_cache;
 | |
| 
 | |
| #ifndef LOG_DISABLE_LOGS
 | |
|     log_set_target(log_filename_generator("lookahead", "log"));
 | |
|     LOG_TEE("Log start\n");
 | |
|     log_dump_cmdline(argc, argv);
 | |
| #endif // LOG_DISABLE_LOGS
 | |
| 
 | |
|     // init llama.cpp
 | |
|     llama_backend_init(params.numa);
 | |
| 
 | |
|     llama_model * model = NULL;
 | |
|     llama_context * ctx = NULL;
 | |
| 
 | |
|     // load the target model
 | |
|     std::tie(model, ctx) = llama_init_from_gpt_params(params);
 | |
| 
 | |
|     // Tokenize the prompt
 | |
|     const bool add_bos = llama_should_add_bos_token(model);
 | |
|     LOG("add_bos tgt: %d\n", add_bos);
 | |
| 
 | |
|     std::vector<llama_token> inp;
 | |
|     std::vector<llama_token> all;
 | |
| 
 | |
|     inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
 | |
|     all = inp;
 | |
| 
 | |
|     const int max_context_size     = llama_n_ctx(ctx);
 | |
|     const int max_tokens_list_size = max_context_size - 4;
 | |
| 
 | |
|     if ((int) inp.size() > max_tokens_list_size) {
 | |
|         fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "\n\n");
 | |
| 
 | |
|     for (auto id : inp) {
 | |
|         fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
 | |
|     }
 | |
| 
 | |
|     fflush(stderr);
 | |
| 
 | |
|     const int n_input = inp.size();
 | |
| 
 | |
|     const auto t_enc_start = ggml_time_us();
 | |
| 
 | |
|     // eval the prompt
 | |
|     llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1, 0,           0));
 | |
|     llama_decode(ctx, llama_batch_get_one(&inp.back(),           1, n_input - 1, 0));
 | |
| 
 | |
|     for (int s = 0; s < W + G + 1; ++s) {
 | |
|         llama_kv_cache_seq_cp(ctx, 0, s, -1, -1);
 | |
|     }
 | |
| 
 | |
|     const auto t_enc_end = ggml_time_us();
 | |
| 
 | |
|     int n_predict = 0;
 | |
|     int n_accept  = 0;
 | |
| 
 | |
|     int n_past = inp.size();
 | |
| 
 | |
|     llama_token id = 0;
 | |
| 
 | |
|     // used to determine end of generation
 | |
|     bool has_eos = false;
 | |
| 
 | |
|     // seq_id == 0           : the current input token
 | |
|     // seq_id [1, W]         : tokens from the past N - 1 Jacobi iterations
 | |
|     // seq_id [W + 1, W + G] : verification n-grams
 | |
|     llama_batch batch = llama_batch_init(params.n_ctx, 0, W + G + 1);
 | |
| 
 | |
|     // target model sampling context
 | |
|     struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
 | |
| 
 | |
|     // verification n-grams
 | |
|     std::vector<seq_ngram> drafts(G);
 | |
| 
 | |
|     // tokens for the past N - 1 Jacobi iterations
 | |
|     // TODO: how to initialize?
 | |
|     std::vector<std::vector<llama_token>> tokens_j(N - 1);
 | |
|     for (int j = 0; j < N - 1; j++) {
 | |
|         tokens_j[j].resize(W);
 | |
|         for (int i = 0; i < W; i++) {
 | |
|             tokens_j[j][i] = all[1 + rand() % (all.size() - 1)];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     std::vector<llama_seq_id> seq_id_look(W + 1);
 | |
|     for (int i = 0; i < W + 1; i++) {
 | |
|         seq_id_look[i] = i;
 | |
|     }
 | |
| 
 | |
|     std::vector<llama_seq_id> seq_id_all(W + G + 1);
 | |
|     for (int i = 0; i < W + G + 1; i++) {
 | |
|         seq_id_all[i] = i;
 | |
|     }
 | |
| 
 | |
|     // debug
 | |
|     struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, W + G + 1);
 | |
| 
 | |
|     const auto t_dec_start = ggml_time_us();
 | |
| 
 | |
|     // sample first token
 | |
|     {
 | |
|         id = llama_sampling_sample(ctx_sampling, ctx, NULL, 0);
 | |
| 
 | |
|         llama_sampling_accept(ctx_sampling, ctx, id, true);
 | |
| 
 | |
|         {
 | |
|             const std::string token_str = llama_token_to_piece(ctx, id);
 | |
| 
 | |
|             printf("%s", token_str.c_str());
 | |
|             fflush(stdout);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     while (true) {
 | |
|         // debug
 | |
|         if (dump_kv_cache) {
 | |
|             llama_kv_cache_view_update(ctx, &kvc_view);
 | |
|             dump_kv_cache_view_seqs(kvc_view, 40);
 | |
|         }
 | |
| 
 | |
|         // build the mask from https://lmsys.org/blog/2023-11-21-lookahead-decoding/
 | |
|         {
 | |
|             llama_batch_clear(batch);
 | |
| 
 | |
|             llama_batch_add(batch, id, n_past, seq_id_all, true);
 | |
|             for (int i = 1; i < W; i++) {
 | |
|                 llama_batch_add(batch, tokens_j[0][i], n_past + i, seq_id_look, false);
 | |
|             }
 | |
|             for (int j = 1; j < N - 1; j++) {
 | |
|                 for (int i = 0; i < W; i++) {
 | |
|                     llama_batch_add(batch, tokens_j[j][i], n_past + j + i, { i + 1 }, j == N - 2);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // TODO: add verification n-grams
 | |
|         }
 | |
| 
 | |
|         llama_decode(ctx, batch);
 | |
| 
 | |
|         id = llama_sampling_sample(ctx_sampling, ctx, NULL, 0);
 | |
| 
 | |
|         llama_sampling_accept(ctx_sampling, ctx, id, true);
 | |
| 
 | |
|         {
 | |
|             const std::string token_str = llama_token_to_piece(ctx, id);
 | |
| 
 | |
|             printf("%s", token_str.c_str());
 | |
|             fflush(stdout);
 | |
| 
 | |
|             if (id == llama_token_eos(model)) {
 | |
|                 has_eos = true;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         ++n_predict;
 | |
|         ++n_past;
 | |
| 
 | |
|         if (n_predict > params.n_predict || has_eos) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         // update Jacobi tokens (or whatever these are called)
 | |
|         {
 | |
|             for (int j = 0; j < N - 2; j++) {
 | |
|                 tokens_j[j] = tokens_j[j + 1];
 | |
|             }
 | |
| 
 | |
|             for (int i = 0; i < W; i++) {
 | |
|                 tokens_j[N - 2][i] = llama_sampling_sample(ctx_sampling, ctx, NULL, W*(N - 2) + i);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // verification
 | |
|         // TODO
 | |
|         {
 | |
|         }
 | |
| 
 | |
|         llama_kv_cache_seq_rm(ctx, -1, n_past, -1);
 | |
|     }
 | |
| 
 | |
|     auto t_dec_end = ggml_time_us();
 | |
| 
 | |
|     LOG_TEE("\n\n");
 | |
| 
 | |
|     LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input,   (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
 | |
|     LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict  / ((t_dec_end - t_dec_start) / 1e6f));
 | |
| 
 | |
|     LOG_TEE("\n");
 | |
|     LOG_TEE("n_predict = %d\n", n_predict);
 | |
|     LOG_TEE("n_accept  = %d\n", n_accept);
 | |
| 
 | |
|     llama_print_timings(ctx);
 | |
| 
 | |
|     llama_kv_cache_view_free(&kvc_view);
 | |
|     llama_sampling_free(ctx_sampling);
 | |
| 
 | |
|     llama_batch_free(batch);
 | |
| 
 | |
|     llama_free(ctx);
 | |
|     llama_free_model(model);
 | |
| 
 | |
|     llama_backend_free();
 | |
| 
 | |
|     fprintf(stderr, "\n\n");
 | |
| 
 | |
|     return 0;
 | |
| }
 | 
