mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-28 08:31:25 +00:00 
			
		
		
		
	 41b9260f18
			
		
	
	41b9260f18
	
	
	
		
			
			* support for Poro chat pre-tokenizer * add support for Poro pre-tokenizer * Update convert-hf-to-gguf-update.py Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Change Poro-34B-chat to poro-chat * Change Poro-34B-chat to poro-chat * Update convert-hf-to-gguf-update.py * Update llama.cpp --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			2882 lines
		
	
	
		
			126 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			2882 lines
		
	
	
		
			126 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python3
 | ||
| # -*- coding: utf-8 -*-
 | ||
| 
 | ||
| from __future__ import annotations
 | ||
| 
 | ||
| import logging
 | ||
| import argparse
 | ||
| import contextlib
 | ||
| import json
 | ||
| import os
 | ||
| import re
 | ||
| import sys
 | ||
| from enum import IntEnum
 | ||
| from pathlib import Path
 | ||
| from hashlib import sha256
 | ||
| from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Sequence, TypeVar, cast
 | ||
| 
 | ||
| import math
 | ||
| import numpy as np
 | ||
| import torch
 | ||
| 
 | ||
| if TYPE_CHECKING:
 | ||
|     from torch import Tensor
 | ||
| 
 | ||
| if 'NO_LOCAL_GGUF' not in os.environ:
 | ||
|     sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
 | ||
| import gguf
 | ||
| 
 | ||
| logger = logging.getLogger("hf-to-gguf")
 | ||
| 
 | ||
| 
 | ||
| ###### MODEL DEFINITIONS ######
 | ||
| 
 | ||
| class SentencePieceTokenTypes(IntEnum):
 | ||
|     NORMAL = 1
 | ||
|     UNKNOWN = 2
 | ||
|     CONTROL = 3
 | ||
|     USER_DEFINED = 4
 | ||
|     UNUSED = 5
 | ||
|     BYTE = 6
 | ||
| 
 | ||
| 
 | ||
| AnyModel = TypeVar("AnyModel", bound="type[Model]")
 | ||
| 
 | ||
| 
 | ||
| class Model:
 | ||
|     _model_classes: dict[str, type[Model]] = {}
 | ||
| 
 | ||
|     dir_model: Path
 | ||
|     ftype: gguf.LlamaFileType
 | ||
|     is_big_endian: bool
 | ||
|     endianess: gguf.GGUFEndian
 | ||
|     use_temp_file: bool
 | ||
|     lazy: bool
 | ||
|     model_name: str | None
 | ||
|     part_names: list[str]
 | ||
|     is_safetensors: bool
 | ||
|     hparams: dict[str, Any]
 | ||
|     block_count: int
 | ||
|     tensor_map: gguf.TensorNameMap
 | ||
|     tensor_names: set[str] | None
 | ||
|     fname_out: Path
 | ||
|     gguf_writer: gguf.GGUFWriter
 | ||
| 
 | ||
|     # subclasses should define this!
 | ||
|     model_arch: gguf.MODEL_ARCH
 | ||
| 
 | ||
|     def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool, use_temp_file: bool, eager: bool, model_name: str | None):
 | ||
|         if type(self) is Model:
 | ||
|             raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
 | ||
|         self.dir_model = dir_model
 | ||
|         self.ftype = ftype
 | ||
|         self.is_big_endian = is_big_endian
 | ||
|         self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
 | ||
|         self.use_temp_file = use_temp_file
 | ||
|         self.lazy = not eager
 | ||
|         self.model_name = model_name
 | ||
|         self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
 | ||
|         self.is_safetensors = len(self.part_names) > 0
 | ||
|         if not self.is_safetensors:
 | ||
|             self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
 | ||
|         self.hparams = Model.load_hparams(self.dir_model)
 | ||
|         self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
 | ||
|         self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
 | ||
|         self.tensor_names = None
 | ||
|         if self.ftype == gguf.LlamaFileType.GUESSED:
 | ||
|             # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
 | ||
|             _, first_tensor = next(self.get_tensors())
 | ||
|             if first_tensor.dtype == torch.float16:
 | ||
|                 logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
 | ||
|                 self.ftype = gguf.LlamaFileType.MOSTLY_F16
 | ||
|             else:
 | ||
|                 logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
 | ||
|                 self.ftype = gguf.LlamaFileType.MOSTLY_BF16
 | ||
|         ftype_up: str = self.ftype.name.partition("_")[2].upper()
 | ||
|         ftype_lw: str = ftype_up.lower()
 | ||
|         # allow templating the file name with the output ftype, useful with the "auto" ftype
 | ||
|         self.fname_out = fname_out.parent / fname_out.name.format(ftype_lw, outtype=ftype_lw, ftype=ftype_lw, OUTTYPE=ftype_up, FTYPE=ftype_up)
 | ||
|         self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file)
 | ||
| 
 | ||
|     @classmethod
 | ||
|     def __init_subclass__(cls):
 | ||
|         # can't use an abstract property, because overriding it without type errors
 | ||
|         # would require using decorated functions instead of simply defining the property
 | ||
|         if "model_arch" not in cls.__dict__:
 | ||
|             raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
 | ||
| 
 | ||
|     def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
 | ||
|         key = next((k for k in keys if k in self.hparams), None)
 | ||
|         if key is not None:
 | ||
|             return self.hparams[key]
 | ||
|         if optional:
 | ||
|             return None
 | ||
|         raise KeyError(f"could not find any of: {keys}")
 | ||
| 
 | ||
|     def set_vocab(self):
 | ||
|         self._set_vocab_gpt2()
 | ||
| 
 | ||
|     def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
 | ||
|         tensor_names_from_parts: set[str] = set()
 | ||
| 
 | ||
|         if len(self.part_names) > 1:
 | ||
|             self.tensor_names = set()
 | ||
|             index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
 | ||
|             index_name += ".index.json"
 | ||
|             logger.info(f"gguf: loading model weight map from '{index_name}'")
 | ||
|             with open(self.dir_model / index_name, "r", encoding="utf-8") as f:
 | ||
|                 index: dict[str, Any] = json.load(f)
 | ||
|                 weight_map = index.get("weight_map")
 | ||
|                 if weight_map is None or not isinstance(weight_map, dict):
 | ||
|                     raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
 | ||
|                 self.tensor_names.update(weight_map.keys())
 | ||
|         else:
 | ||
|             self.tensor_names = tensor_names_from_parts
 | ||
| 
 | ||
|         for part_name in self.part_names:
 | ||
|             logger.info(f"gguf: loading model part '{part_name}'")
 | ||
|             ctx: ContextManager[Any]
 | ||
|             if self.is_safetensors:
 | ||
|                 from safetensors import safe_open
 | ||
|                 ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
 | ||
|             else:
 | ||
|                 ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
 | ||
| 
 | ||
|             with ctx as model_part:
 | ||
|                 tensor_names_from_parts.update(model_part.keys())
 | ||
| 
 | ||
|                 for name in model_part.keys():
 | ||
|                     data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
 | ||
|                     if self.lazy:
 | ||
|                         data = LazyTorchTensor.from_eager(data)
 | ||
|                     yield name, data
 | ||
| 
 | ||
|         # only verify tensor name presence; it doesn't matter if they are not in the right files
 | ||
|         if len(sym_diff := tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
 | ||
|             raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}")
 | ||
| 
 | ||
|     def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
 | ||
|         if key not in gguf.MODEL_TENSORS[self.model_arch]:
 | ||
|             raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
 | ||
|         name: str = gguf.TENSOR_NAMES[key]
 | ||
|         if "{bid}" in name:
 | ||
|             assert bid is not None
 | ||
|             name = name.format(bid=bid)
 | ||
|         return name + suffix
 | ||
| 
 | ||
|     def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
 | ||
|         if key not in gguf.MODEL_TENSORS[self.model_arch]:
 | ||
|             return False
 | ||
|         key_name: str = gguf.TENSOR_NAMES[key]
 | ||
|         if "{bid}" in key_name:
 | ||
|             if bid is None:
 | ||
|                 return False
 | ||
|             key_name = key_name.format(bid=bid)
 | ||
|         else:
 | ||
|             if bid is not None:
 | ||
|                 return False
 | ||
|         return name == (key_name + suffix)
 | ||
| 
 | ||
|     def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
 | ||
|         new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
 | ||
|         if new_name is None:
 | ||
|             raise ValueError(f"Can not map tensor {name!r}")
 | ||
|         return new_name
 | ||
| 
 | ||
|     def set_gguf_parameters(self):
 | ||
|         self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
 | ||
|         self.gguf_writer.add_block_count(self.block_count)
 | ||
| 
 | ||
|         if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
 | ||
|             self.gguf_writer.add_context_length(n_ctx)
 | ||
|             logger.info(f"gguf: context length = {n_ctx}")
 | ||
| 
 | ||
|         n_embd = self.find_hparam(["hidden_size", "n_embd"])
 | ||
|         self.gguf_writer.add_embedding_length(n_embd)
 | ||
|         logger.info(f"gguf: embedding length = {n_embd}")
 | ||
| 
 | ||
|         if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
 | ||
|             self.gguf_writer.add_feed_forward_length(n_ff)
 | ||
|             logger.info(f"gguf: feed forward length = {n_ff}")
 | ||
| 
 | ||
|         n_head = self.find_hparam(["num_attention_heads", "n_head"])
 | ||
|         self.gguf_writer.add_head_count(n_head)
 | ||
|         logger.info(f"gguf: head count = {n_head}")
 | ||
| 
 | ||
|         if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
 | ||
|             self.gguf_writer.add_head_count_kv(n_head_kv)
 | ||
|             logger.info(f"gguf: key-value head count = {n_head_kv}")
 | ||
| 
 | ||
|         if (rope_theta := self.hparams.get("rope_theta")) is not None:
 | ||
|             self.gguf_writer.add_rope_freq_base(rope_theta)
 | ||
|             logger.info(f"gguf: rope theta = {rope_theta}")
 | ||
|         if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
 | ||
|             self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
 | ||
|             logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
 | ||
|         if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
 | ||
|             self.gguf_writer.add_layer_norm_eps(f_norm_eps)
 | ||
|             logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
 | ||
|         if (n_experts := self.hparams.get("num_local_experts")) is not None:
 | ||
|             self.gguf_writer.add_expert_count(n_experts)
 | ||
|             logger.info(f"gguf: expert count = {n_experts}")
 | ||
|         if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
 | ||
|             self.gguf_writer.add_expert_used_count(n_experts_used)
 | ||
|             logger.info(f"gguf: experts used count = {n_experts_used}")
 | ||
| 
 | ||
|         self.gguf_writer.add_file_type(self.ftype)
 | ||
|         logger.info(f"gguf: file type = {self.ftype}")
 | ||
| 
 | ||
|     def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
 | ||
|         del bid  # unused
 | ||
| 
 | ||
|         return [(self.map_tensor_name(name), data_torch)]
 | ||
| 
 | ||
|     def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
 | ||
|         del name, new_name, bid, n_dims  # unused
 | ||
| 
 | ||
|         return False
 | ||
| 
 | ||
|     def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
 | ||
|         del name, new_name, bid, n_dims  # unused
 | ||
| 
 | ||
|         return False
 | ||
| 
 | ||
|     def write_tensors(self):
 | ||
|         max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
 | ||
| 
 | ||
|         for name, data_torch in self.get_tensors():
 | ||
|             # we don't need these
 | ||
|             if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
 | ||
|                 continue
 | ||
| 
 | ||
|             old_dtype = data_torch.dtype
 | ||
| 
 | ||
|             # convert any unsupported data types to float32
 | ||
|             if data_torch.dtype not in (torch.float16, torch.float32):
 | ||
|                 data_torch = data_torch.to(torch.float32)
 | ||
| 
 | ||
|             # use the first number-like part of the tensor name as the block id
 | ||
|             bid = None
 | ||
|             for part in name.split("."):
 | ||
|                 if part.isdecimal():
 | ||
|                     bid = int(part)
 | ||
|                     break
 | ||
| 
 | ||
|             for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
 | ||
|                 data: np.ndarray = data  # type hint
 | ||
|                 n_dims = len(data.shape)
 | ||
|                 data_dtype = data.dtype
 | ||
|                 data_qtype: gguf.GGMLQuantizationType | None = None
 | ||
| 
 | ||
|                 # when both are True, f32 should win
 | ||
|                 extra_f32 = self.extra_f32_tensors(name, new_name, bid, n_dims)
 | ||
|                 extra_f16 = self.extra_f16_tensors(name, new_name, bid, n_dims)
 | ||
| 
 | ||
|                 # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
 | ||
|                 # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
 | ||
|                 extra_f32 = any(cond for cond in (
 | ||
|                     extra_f32,
 | ||
|                     n_dims == 1,
 | ||
|                     new_name.endswith("_norm.weight"),
 | ||
|                 ))
 | ||
| 
 | ||
|                 # Some tensor types are always in float32
 | ||
|                 extra_f32 = extra_f32 or any(self.match_model_tensor_name(new_name, key, bid) for key in (
 | ||
|                     gguf.MODEL_TENSOR.FFN_GATE_INP,
 | ||
|                     gguf.MODEL_TENSOR.POS_EMBD,
 | ||
|                     gguf.MODEL_TENSOR.TOKEN_TYPES,
 | ||
|                 ))
 | ||
| 
 | ||
|                 # if f16 desired, convert any float32 2-dim weight tensors to float16
 | ||
|                 extra_f16 = any(cond for cond in (
 | ||
|                     extra_f16,
 | ||
|                     (name.endswith(".weight") and n_dims >= 2),
 | ||
|                 ))
 | ||
| 
 | ||
|                 if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32:
 | ||
|                     if self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
 | ||
|                         data = gguf.quantize_bf16(data)
 | ||
|                         assert data.dtype == np.int16
 | ||
|                         data_qtype = gguf.GGMLQuantizationType.BF16
 | ||
| 
 | ||
|                     elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0 and gguf.can_quantize_to_q8_0(data):
 | ||
|                         data = gguf.quantize_q8_0(data)
 | ||
|                         assert data.dtype == np.uint8
 | ||
|                         data_qtype = gguf.GGMLQuantizationType.Q8_0
 | ||
| 
 | ||
|                     else:  # default to float16 for quantized tensors
 | ||
|                         if data_dtype != np.float16:
 | ||
|                             data = data.astype(np.float16)
 | ||
|                         data_qtype = gguf.GGMLQuantizationType.F16
 | ||
| 
 | ||
|                 if data_qtype is None:  # by default, convert to float32
 | ||
|                     if data_dtype != np.float32:
 | ||
|                         data = data.astype(np.float32)
 | ||
|                     data_qtype = gguf.GGMLQuantizationType.F32
 | ||
| 
 | ||
|                 shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
 | ||
| 
 | ||
|                 # reverse shape to make it similar to the internal ggml dimension order
 | ||
|                 shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
 | ||
| 
 | ||
|                 # n_dims is implicit in the shape
 | ||
|                 logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
 | ||
| 
 | ||
|                 self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
 | ||
| 
 | ||
|     def write(self):
 | ||
|         self.write_tensors()
 | ||
|         self.gguf_writer.write_header_to_file(self.fname_out)
 | ||
|         self.gguf_writer.write_kv_data_to_file()
 | ||
|         self.gguf_writer.write_tensors_to_file(progress=True)
 | ||
|         self.gguf_writer.close()
 | ||
| 
 | ||
|     def write_vocab(self):
 | ||
|         self.gguf_writer.write_header_to_file(self.fname_out)
 | ||
|         self.gguf_writer.write_kv_data_to_file()
 | ||
|         self.gguf_writer.close()
 | ||
| 
 | ||
|     @staticmethod
 | ||
|     def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
 | ||
|         part_names: list[str] = []
 | ||
|         for filename in os.listdir(dir_model):
 | ||
|             if filename.startswith(prefix) and filename.endswith(suffix):
 | ||
|                 part_names.append(filename)
 | ||
| 
 | ||
|         part_names.sort()
 | ||
| 
 | ||
|         return part_names
 | ||
| 
 | ||
|     @staticmethod
 | ||
|     def load_hparams(dir_model: Path):
 | ||
|         with open(dir_model / "config.json", "r", encoding="utf-8") as f:
 | ||
|             return json.load(f)
 | ||
| 
 | ||
|     @classmethod
 | ||
|     def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
 | ||
|         assert names
 | ||
| 
 | ||
|         def func(modelcls: AnyModel) -> AnyModel:
 | ||
|             for name in names:
 | ||
|                 cls._model_classes[name] = modelcls
 | ||
|             return modelcls
 | ||
|         return func
 | ||
| 
 | ||
|     @classmethod
 | ||
|     def from_model_architecture(cls, arch: str) -> type[Model]:
 | ||
|         try:
 | ||
|             return cls._model_classes[arch]
 | ||
|         except KeyError:
 | ||
|             raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
 | ||
| 
 | ||
|     # used for GPT-2 BPE and WordPiece vocabs
 | ||
|     def get_vocab_base(self) -> tuple[list[str], list[int], str]:
 | ||
|         tokens: list[str] = []
 | ||
|         toktypes: list[int] = []
 | ||
| 
 | ||
|         from transformers import AutoTokenizer
 | ||
|         tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
 | ||
|         vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
 | ||
|         assert max(tokenizer.vocab.values()) < vocab_size
 | ||
| 
 | ||
|         tokpre = self.get_vocab_base_pre(tokenizer)
 | ||
| 
 | ||
|         reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
 | ||
|         added_vocab = tokenizer.get_added_vocab()
 | ||
| 
 | ||
|         for i in range(vocab_size):
 | ||
|             if i not in reverse_vocab:
 | ||
|                 tokens.append(f"[PAD{i}]")
 | ||
|                 toktypes.append(gguf.TokenType.USER_DEFINED)
 | ||
|             elif reverse_vocab[i] in added_vocab:
 | ||
|                 tokens.append(reverse_vocab[i])
 | ||
|                 if tokenizer.added_tokens_decoder[i].special:
 | ||
|                     toktypes.append(gguf.TokenType.CONTROL)
 | ||
|                 else:
 | ||
|                     toktypes.append(gguf.TokenType.USER_DEFINED)
 | ||
|             else:
 | ||
|                 tokens.append(reverse_vocab[i])
 | ||
|                 toktypes.append(gguf.TokenType.NORMAL)
 | ||
| 
 | ||
|         return tokens, toktypes, tokpre
 | ||
| 
 | ||
|     # NOTE: this function is generated by convert-hf-to-gguf-update.py
 | ||
|     #       do not modify it manually!
 | ||
|     # ref:  https://github.com/ggerganov/llama.cpp/pull/6920
 | ||
|     # Marker: Start get_vocab_base_pre
 | ||
|     def get_vocab_base_pre(self, tokenizer) -> str:
 | ||
|         # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
 | ||
|         # is specific for the BPE pre-tokenizer used by the model
 | ||
|         # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
 | ||
|         # use in llama.cpp to implement the same pre-tokenizer
 | ||
| 
 | ||
|         chktxt = '\n \n\n \n\n\n \t \t\t \t\n  \n   \n    \n     \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
 | ||
| 
 | ||
|         chktok = tokenizer.encode(chktxt)
 | ||
|         chkhsh = sha256(str(chktok).encode()).hexdigest()
 | ||
| 
 | ||
|         logger.debug(f"chktok: {chktok}")
 | ||
|         logger.debug(f"chkhsh: {chkhsh}")
 | ||
| 
 | ||
|         res = None
 | ||
| 
 | ||
|         # NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script
 | ||
|         #       or pull the latest version of the model from Huggingface
 | ||
|         #       don't edit the hashes manually!
 | ||
|         if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
 | ||
|             # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
 | ||
|             res = "llama-bpe"
 | ||
|         if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
 | ||
|             # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
 | ||
|             res = "deepseek-llm"
 | ||
|         if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
 | ||
|             # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
 | ||
|             res = "deepseek-coder"
 | ||
|         if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
 | ||
|             # ref: https://huggingface.co/tiiuae/falcon-7b
 | ||
|             res = "falcon"
 | ||
|         if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
 | ||
|             # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
 | ||
|             res = "bert-bge"
 | ||
|         if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
 | ||
|             # ref: https://huggingface.co/mosaicml/mpt-7b
 | ||
|             res = "mpt"
 | ||
|         if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
 | ||
|             # ref: https://huggingface.co/bigcode/starcoder2-3b
 | ||
|             res = "starcoder"
 | ||
|         if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
 | ||
|             # ref: https://huggingface.co/openai-community/gpt2
 | ||
|             res = "gpt-2"
 | ||
|         if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
 | ||
|             # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
 | ||
|             res = "stablelm2"
 | ||
|         if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
 | ||
|             # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
 | ||
|             res = "refact"
 | ||
|         if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
 | ||
|             # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
 | ||
|             res = "command-r"
 | ||
|         if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
 | ||
|             # ref: https://huggingface.co/Qwen/Qwen1.5-7B
 | ||
|             res = "qwen2"
 | ||
|         if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
 | ||
|             # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
 | ||
|             res = "olmo"
 | ||
|         if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
 | ||
|             # ref: https://huggingface.co/databricks/dbrx-base
 | ||
|             res = "dbrx"
 | ||
|         if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
 | ||
|             # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
 | ||
|             res = "jina-v2-en"
 | ||
|         if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
 | ||
|             # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
 | ||
|             res = "jina-v2-es"
 | ||
|         if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
 | ||
|             # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
 | ||
|             res = "jina-v2-de"
 | ||
|         if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
 | ||
|             # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
 | ||
|             res = "smaug-bpe"
 | ||
|         if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
 | ||
|             # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
 | ||
|             res = "poro-chat"
 | ||
|         if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
 | ||
|             # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
 | ||
|             res = "jina-v2-code"
 | ||
| 
 | ||
|         if res is None:
 | ||
|             logger.warning("\n")
 | ||
|             logger.warning("**************************************************************************************")
 | ||
|             logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
 | ||
|             logger.warning("**          There are 2 possible reasons for this:")
 | ||
|             logger.warning("**          - the model has not been added to convert-hf-to-gguf-update.py yet")
 | ||
|             logger.warning("**          - the pre-tokenization config has changed upstream")
 | ||
|             logger.warning("**          Check your model files and convert-hf-to-gguf-update.py and update them accordingly.")
 | ||
|             logger.warning("** ref:     https://github.com/ggerganov/llama.cpp/pull/6920")
 | ||
|             logger.warning("**")
 | ||
|             logger.warning(f"** chkhsh:  {chkhsh}")
 | ||
|             logger.warning("**************************************************************************************")
 | ||
|             logger.warning("\n")
 | ||
|             raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
 | ||
| 
 | ||
|         logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
 | ||
|         logger.debug(f"chkhsh: {chkhsh}")
 | ||
| 
 | ||
|         return res
 | ||
|         # Marker: End get_vocab_base_pre
 | ||
| 
 | ||
|     def _set_vocab_gpt2(self) -> None:
 | ||
|         tokens, toktypes, tokpre = self.get_vocab_base()
 | ||
|         self.gguf_writer.add_tokenizer_model("gpt2")
 | ||
|         self.gguf_writer.add_tokenizer_pre(tokpre)
 | ||
|         self.gguf_writer.add_token_list(tokens)
 | ||
|         self.gguf_writer.add_token_types(toktypes)
 | ||
| 
 | ||
|         special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
 | ||
|         special_vocab.add_to_gguf(self.gguf_writer)
 | ||
| 
 | ||
|     def _set_vocab_qwen(self):
 | ||
|         dir_model = self.dir_model
 | ||
|         hparams = self.hparams
 | ||
|         tokens: list[str] = []
 | ||
|         toktypes: list[int] = []
 | ||
| 
 | ||
|         from transformers import AutoTokenizer
 | ||
|         tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
 | ||
|         vocab_size = hparams["vocab_size"]
 | ||
|         assert max(tokenizer.get_vocab().values()) < vocab_size
 | ||
| 
 | ||
|         tokpre = self.get_vocab_base_pre(tokenizer)
 | ||
| 
 | ||
|         merges = []
 | ||
|         vocab = {}
 | ||
|         mergeable_ranks = tokenizer.mergeable_ranks
 | ||
|         for token, rank in mergeable_ranks.items():
 | ||
|             vocab[QwenModel.token_bytes_to_string(token)] = rank
 | ||
|             if len(token) == 1:
 | ||
|                 continue
 | ||
|             merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
 | ||
|             assert len(merged) == 2
 | ||
|             merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
 | ||
| 
 | ||
|         # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
 | ||
|         added_vocab = tokenizer.special_tokens
 | ||
|         reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
 | ||
| 
 | ||
|         for i in range(vocab_size):
 | ||
|             if i not in reverse_vocab:
 | ||
|                 tokens.append(f"[PAD{i}]")
 | ||
|                 toktypes.append(gguf.TokenType.USER_DEFINED)
 | ||
|             elif reverse_vocab[i] in added_vocab:
 | ||
|                 tokens.append(reverse_vocab[i])
 | ||
|                 toktypes.append(gguf.TokenType.CONTROL)
 | ||
|             else:
 | ||
|                 tokens.append(reverse_vocab[i])
 | ||
|                 toktypes.append(gguf.TokenType.NORMAL)
 | ||
| 
 | ||
|         self.gguf_writer.add_tokenizer_model("gpt2")
 | ||
|         self.gguf_writer.add_tokenizer_pre(tokpre)
 | ||
|         self.gguf_writer.add_token_list(tokens)
 | ||
|         self.gguf_writer.add_token_types(toktypes)
 | ||
| 
 | ||
|         special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
 | ||
|         special_vocab.merges = merges
 | ||
|         # only add special tokens when they were not already loaded from config.json
 | ||
|         if len(special_vocab.special_token_ids) == 0:
 | ||
|             special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
 | ||
|             special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
 | ||
|         # this one is usually not in config.json anyway
 | ||
|         special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
 | ||
|         special_vocab.add_to_gguf(self.gguf_writer)
 | ||
| 
 | ||
|     def _set_vocab_sentencepiece(self):
 | ||
|         from sentencepiece import SentencePieceProcessor
 | ||
| 
 | ||
|         tokenizer_path = self.dir_model / 'tokenizer.model'
 | ||
| 
 | ||
|         tokens: list[bytes] = []
 | ||
|         scores: list[float] = []
 | ||
|         toktypes: list[int] = []
 | ||
| 
 | ||
|         if not tokenizer_path.is_file():
 | ||
|             raise FileNotFoundError(f"File not found: {tokenizer_path}")
 | ||
| 
 | ||
|         tokenizer = SentencePieceProcessor()
 | ||
|         tokenizer.LoadFromFile(str(tokenizer_path))
 | ||
| 
 | ||
|         vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
 | ||
| 
 | ||
|         tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
 | ||
|         scores: list[float] = [-10000.0] * vocab_size
 | ||
|         toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
 | ||
| 
 | ||
|         for token_id in range(tokenizer.vocab_size()):
 | ||
|             piece = tokenizer.IdToPiece(token_id)
 | ||
|             text = piece.encode("utf-8")
 | ||
|             score = tokenizer.GetScore(token_id)
 | ||
| 
 | ||
|             toktype = SentencePieceTokenTypes.NORMAL
 | ||
|             if tokenizer.IsUnknown(token_id):
 | ||
|                 toktype = SentencePieceTokenTypes.UNKNOWN
 | ||
|             elif tokenizer.IsControl(token_id):
 | ||
|                 toktype = SentencePieceTokenTypes.CONTROL
 | ||
|             elif tokenizer.IsUnused(token_id):
 | ||
|                 toktype = SentencePieceTokenTypes.UNUSED
 | ||
|             elif tokenizer.IsByte(token_id):
 | ||
|                 toktype = SentencePieceTokenTypes.BYTE
 | ||
| 
 | ||
|             tokens[token_id] = text
 | ||
|             scores[token_id] = score
 | ||
|             toktypes[token_id] = toktype
 | ||
| 
 | ||
|         added_tokens_file = self.dir_model / 'added_tokens.json'
 | ||
|         if added_tokens_file.is_file():
 | ||
|             with open(added_tokens_file, "r", encoding="utf-8") as f:
 | ||
|                 added_tokens_json = json.load(f)
 | ||
|                 for key in added_tokens_json:
 | ||
|                     token_id = added_tokens_json[key]
 | ||
|                     if (token_id >= vocab_size):
 | ||
|                         logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
 | ||
|                         continue
 | ||
| 
 | ||
|                     tokens[token_id] = key.encode("utf-8")
 | ||
|                     scores[token_id] = -1000.0
 | ||
|                     toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
 | ||
| 
 | ||
|         if vocab_size > len(tokens):
 | ||
|             pad_count = vocab_size - len(tokens)
 | ||
|             logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
 | ||
|             for i in range(1, pad_count + 1):
 | ||
|                 tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
 | ||
|                 scores.append(-1000.0)
 | ||
|                 toktypes.append(SentencePieceTokenTypes.UNUSED)
 | ||
| 
 | ||
|         self.gguf_writer.add_tokenizer_model("llama")
 | ||
|         self.gguf_writer.add_tokenizer_pre("default")
 | ||
|         self.gguf_writer.add_token_list(tokens)
 | ||
|         self.gguf_writer.add_token_scores(scores)
 | ||
|         self.gguf_writer.add_token_types(toktypes)
 | ||
| 
 | ||
|         special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
 | ||
|         special_vocab.add_to_gguf(self.gguf_writer)
 | ||
| 
 | ||
|     def _set_vocab_llama_hf(self):
 | ||
|         vocab = gguf.LlamaHfVocab(self.dir_model)
 | ||
|         tokens = []
 | ||
|         scores = []
 | ||
|         toktypes = []
 | ||
| 
 | ||
|         for text, score, toktype in vocab.all_tokens():
 | ||
|             tokens.append(text)
 | ||
|             scores.append(score)
 | ||
|             toktypes.append(toktype)
 | ||
| 
 | ||
|         assert len(tokens) == vocab.vocab_size
 | ||
| 
 | ||
|         self.gguf_writer.add_tokenizer_model("llama")
 | ||
|         self.gguf_writer.add_tokenizer_pre("default")
 | ||
|         self.gguf_writer.add_token_list(tokens)
 | ||
|         self.gguf_writer.add_token_scores(scores)
 | ||
|         self.gguf_writer.add_token_types(toktypes)
 | ||
| 
 | ||
|         special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
 | ||
|         special_vocab.add_to_gguf(self.gguf_writer)
 | ||
| 
 | ||
| 
 | ||
| @Model.register("GPTNeoXForCausalLM")
 | ||
| class GPTNeoXModel(Model):
 | ||
|     model_arch = gguf.MODEL_ARCH.GPTNEOX
 | ||
| 
 | ||
|     def set_gguf_parameters(self):
 | ||
|         block_count = self.hparams["num_hidden_layers"]
 | ||
| 
 | ||
|         self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
 | ||
|         self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
 | ||
|         self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
 | ||
|         self.gguf_writer.add_block_count(block_count)
 | ||
|         self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
 | ||
|         self.gguf_writer.add_rope_dimension_count(
 | ||
|             int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
 | ||
|         )
 | ||
|         self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
 | ||
|         self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
 | ||
|         self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
 | ||
| 
 | ||
|     def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
 | ||
|         del bid  # unused
 | ||
| 
 | ||
|         n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
 | ||
|         n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
 | ||
| 
 | ||
|         tensors: list[tuple[str, Tensor]] = []
 | ||
| 
 | ||
|         if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
 | ||
|             # Map bloom-style qkv_linear to gpt-style qkv_linear
 | ||
|             # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252  # noqa
 | ||
|             # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312  # noqa
 | ||
|             qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
 | ||
|             data_torch = torch.cat(
 | ||
|                 (
 | ||
|                     qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
 | ||
|                     qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
 | ||
|                     qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
 | ||
|                 ),
 | ||
|                 dim=0,
 | ||
|             )
 | ||
|             logger.info("re-format attention.linear_qkv.weight")
 | ||
|         elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
 | ||
|             qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
 | ||
|             data_torch = torch.cat(
 | ||
|                 (
 | ||
|                     qkv_bias[:, 0, :].reshape((n_embed,)),
 | ||
|                     qkv_bias[:, 1, :].reshape((n_embed,)),
 | ||
|                     qkv_bias[:, 2, :].reshape((n_embed,)),
 | ||
|                 ),
 | ||
|                 dim=0,
 | ||
|             )
 | ||
|             logger.info("re-format attention.linear_qkv.bias")
 | ||
| 
 | ||
|         tensors.append((self.map_tensor_name(name), data_torch))
 | ||
| 
 | ||
|         return tensors
 | ||
| 
 | ||
| 
 | ||
| @Model.register("BloomForCausalLM")
 | ||
| class BloomModel(Model):
 | ||
|     model_arch = gguf.MODEL_ARCH.BLOOM
 | ||
| 
 | ||
|     def set_gguf_parameters(self):
 | ||
|         self.gguf_writer.add_name("Bloom")
 | ||
|         n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
 | ||
|         n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
 | ||
|         self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
 | ||
|         self.gguf_writer.add_embedding_length(n_embed)
 | ||
|         self.gguf_writer.add_feed_forward_length(4 * n_embed)
 | ||
|         self.gguf_writer.add_block_count(self.hparams["n_layer"])
 | ||
|         self.gguf_writer.add_head_count(n_head)
 | ||
|         self.gguf_writer.add_head_count_kv(n_head)
 | ||
|         self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
 | ||
|         self.gguf_writer.add_file_type(self.ftype)
 | ||
| 
 | ||
|     def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
 | ||
|         del bid  # unused
 | ||
| 
 | ||
|         n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
 | ||
|         n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
 | ||
| 
 | ||
|         name = re.sub(r'transformer\.', '', name)
 | ||
| 
 | ||
|         tensors: list[tuple[str, Tensor]] = []
 | ||
| 
 | ||
|         if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
 | ||
|             # Map bloom-style qkv_linear to gpt-style qkv_linear
 | ||
|             # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252  # noqa
 | ||
|             # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312  # noqa
 | ||
|             qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
 | ||
|             data_torch = torch.cat(
 | ||
|                 (
 | ||
|                     qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
 | ||
|                     qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
 | ||
|                     qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
 | ||
|                 ),
 | ||
|                 dim=0,
 | ||
|             )
 | ||
|             logger.info("re-format attention.linear_qkv.weight")
 | ||
|         elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
 | ||
|             qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
 | ||
|             data_torch = torch.cat(
 | ||
|                 (
 | ||
|                     qkv_bias[:, 0, :].reshape((n_embed,)),
 | ||
|                     qkv_bias[:, 1, :].reshape((n_embed,)),
 | ||
|                     qkv_bias[:, 2, :].reshape((n_embed,)),
 | ||
|                 ),
 | ||
|                 dim=0,
 | ||
|             )
 | ||
|             logger.info("re-format attention.linear_qkv.bias")
 | ||
| 
 | ||
|         tensors.append((self.map_tensor_name(name), data_torch))
 | ||
| 
 | ||
|         if name == "word_embeddings.weight":
 | ||
|             assert self.tensor_names is not None
 | ||
| 
 | ||
|             # TODO: tie them at runtime, don't duplicate in the model file
 | ||
|             if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
 | ||
|                 tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
 | ||
| 
 | ||
|         return tensors
 | ||
| 
 | ||
| 
 | ||
| @Model.register("MPTForCausalLM")
 | ||
| class MPTModel(Model):
 | ||
|     model_arch = gguf.MODEL_ARCH.MPT
 | ||
| 
 | ||
|     def set_vocab(self):
 | ||
|         try:
 | ||
|             self._set_vocab_gpt2()
 | ||
|         except Exception:
 | ||
|             # Fallback for SEA-LION model
 | ||
|             self._set_vocab_sentencepiece()
 | ||
|             self.gguf_writer.add_add_bos_token(False)
 | ||
|             self.gguf_writer.add_pad_token_id(3)
 | ||
|             self.gguf_writer.add_eos_token_id(1)
 | ||
|             self.gguf_writer.add_unk_token_id(0)
 | ||
| 
 | ||
|     def set_gguf_parameters(self):
 | ||
|         block_count = self.hparams["n_layers"]
 | ||
|         self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
 | ||
|         self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
 | ||
|         self.gguf_writer.add_embedding_length(self.hparams["d_model"])
 | ||
|         self.gguf_writer.add_block_count(block_count)
 | ||
|         self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
 | ||
|         self.gguf_writer.add_head_count(self.hparams["n_heads"])
 | ||
|         if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
 | ||
|             self.gguf_writer.add_head_count_kv(kv_n_heads)
 | ||
|         self.gguf_writer.add_layer_norm_eps(1e-5)
 | ||
|         if self.hparams["attn_config"]["clip_qkv"] is not None:
 | ||
|             self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
 | ||
|         if self.hparams["attn_config"]["alibi"]:
 | ||
|             self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
 | ||
|         else:
 | ||
|             self.gguf_writer.add_max_alibi_bias(0.0)
 | ||
| 
 | ||
|     def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
 | ||
|         del bid  # unused
 | ||
| 
 | ||
|         if "scales" in name:
 | ||
|             new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
 | ||
|             new_name = new_name.replace("scales", "act.scales")
 | ||
|         else:
 | ||
|             new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
 | ||
| 
 | ||
|         return [(new_name, data_torch)]
 | ||
| 
 | ||
| 
 | ||
| @Model.register("OrionForCausalLM")
 | ||
| class OrionModel(Model):
 | ||
|     model_arch = gguf.MODEL_ARCH.ORION
 | ||
| 
 | ||
|     def set_vocab(self):
 | ||
|         self._set_vocab_sentencepiece()
 | ||
| 
 | ||
|     def set_gguf_parameters(self):
 | ||
|         block_count = self.hparams["num_hidden_layers"]
 | ||
|         head_count = self.hparams["num_attention_heads"]
 | ||
|         head_count_kv = self.hparams.get("num_key_value_heads", head_count)
 | ||
|         hf_repo = self.hparams.get("_name_or_path", "")
 | ||
| 
 | ||
|         ctx_length = 0
 | ||
|         if "max_sequence_length" in self.hparams:
 | ||
|             ctx_length = self.hparams["max_sequence_length"]
 | ||
|         elif "max_position_embeddings" in self.hparams:
 | ||
|             ctx_length = self.hparams["max_position_embeddings"]
 | ||
|         elif "model_max_length" in self.hparams:
 | ||
|             ctx_length = self.hparams["model_max_length"]
 | ||
|         else:
 | ||
|             raise ValueError("gguf: can not find ctx length parameter.")
 | ||
| 
 | ||
|         self.gguf_writer.add_file_type(self.ftype)
 | ||
|         self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
 | ||
|         self.gguf_writer.add_source_hf_repo(hf_repo)
 | ||
|         self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
 | ||
|         self.gguf_writer.add_context_length(ctx_length)
 | ||
|         self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
 | ||
|         self.gguf_writer.add_block_count(block_count)
 | ||
|         self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
 | ||
|         self.gguf_writer.add_head_count(head_count)
 | ||
|         self.gguf_writer.add_head_count_kv(head_count_kv)
 | ||
|         # note: config provides rms norm but it is actually layer norm
 | ||
|         # ref:  https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
 | ||
|         self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
 | ||
| 
 | ||
| 
 | ||
| @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
 | ||
| class BaichuanModel(Model):
 | ||
|     model_arch = gguf.MODEL_ARCH.BAICHUAN
 | ||
| 
 | ||
|     def set_vocab(self):
 | ||
|         self._set_vocab_sentencepiece()
 | ||
| 
 | ||
|     def set_gguf_parameters(self):
 | ||
|         block_count = self.hparams["num_hidden_layers"]
 | ||
|         head_count = self.hparams["num_attention_heads"]
 | ||
|         head_count_kv = self.hparams.get("num_key_value_heads", head_count)
 | ||
|         hf_repo = self.hparams.get("_name_or_path", "")
 | ||
| 
 | ||
|         ctx_length = 0
 | ||
|         if "max_sequence_length" in self.hparams:
 | ||
|             ctx_length = self.hparams["max_sequence_length"]
 | ||
|         elif "max_position_embeddings" in self.hparams:
 | ||
|             ctx_length = self.hparams["max_position_embeddings"]
 | ||
|         elif "model_max_length" in self.hparams:
 | ||
|             ctx_length = self.hparams["model_max_length"]
 | ||
|         else:
 | ||
|             raise ValueError("gguf: can not find ctx length parameter.")
 | ||
| 
 | ||
|         self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
 | ||
|         self.gguf_writer.add_source_hf_repo(hf_repo)
 | ||
|         self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
 | ||
|         self.gguf_writer.add_context_length(ctx_length)
 | ||
|         self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
 | ||
|         self.gguf_writer.add_block_count(block_count)
 | ||
|         self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
 | ||
|         self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
 | ||
|         self.gguf_writer.add_head_count(head_count)
 | ||
|         self.gguf_writer.add_head_count_kv(head_count_kv)
 | ||
|         self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
 | ||
|         self.gguf_writer.add_file_type(self.ftype)
 | ||
| 
 | ||
|         if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
 | ||
|             if self.hparams["rope_scaling"].get("type") == "linear":
 | ||
|                 self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
 | ||
|                 self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
 | ||
| 
 | ||
|     def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
 | ||
|         head_count = self.hparams["num_attention_heads"]
 | ||
|         head_count_kv = self.hparams.get("num_key_value_heads", head_count)
 | ||
| 
 | ||
|         tensors: list[tuple[str, Tensor]] = []
 | ||
| 
 | ||
|         if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
 | ||
|             logger.info(f"Unpacking and permuting layer {bid}")
 | ||
|             tensors = [
 | ||
|                 (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
 | ||
|                     self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
 | ||
|                 (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
 | ||
|                     self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
 | ||
|                 (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
 | ||
|                     self._reverse_hf_part(data_torch, 2)),
 | ||
|             ]
 | ||
|         else:
 | ||
|             tensors = [(self.map_tensor_name(name), data_torch)]
 | ||
| 
 | ||
|         return tensors
 | ||
| 
 | ||
|     def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
 | ||
|         if n_kv_head is not None and n_head != n_kv_head:
 | ||
|             n_head //= n_kv_head
 | ||
| 
 | ||
|         return (
 | ||
|             weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
 | ||
|             .swapaxes(1, 2)
 | ||
|             .reshape(weights.shape)
 | ||
|         )
 | ||
| 
 | ||
|     def _reverse_hf_permute_part(
 | ||
|         self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
 | ||
|     ) -> Tensor:
 | ||
|         r = weights.shape[0] // 3
 | ||
|         return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
 | ||
| 
 | ||
|     def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
 | ||
|         r = weights.shape[0] // 3
 | ||
|         return weights[r * n_part:r * n_part + r, ...]
 | ||
| 
 | ||
| 
 | ||
| @Model.register("XverseForCausalLM")
 | ||
| class XverseModel(Model):
 | ||
|     model_arch = gguf.MODEL_ARCH.XVERSE
 | ||
| 
 | ||
|     def set_vocab(self):
 | ||
|         assert (self.dir_model / "tokenizer.json").is_file()
 | ||
|         dir_model = self.dir_model
 | ||
|         hparams = self.hparams
 | ||
| 
 | ||
|         tokens: list[bytes] = []
 | ||
|         toktypes: list[int] = []
 | ||
| 
 | ||
|         from transformers import AutoTokenizer
 | ||
|         tokenizer = AutoTokenizer.from_pretrained(dir_model)
 | ||
|         vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
 | ||
|         assert max(tokenizer.vocab.values()) < vocab_size
 | ||
| 
 | ||
|         reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
 | ||
|         added_vocab = tokenizer.get_added_vocab()
 | ||
| 
 | ||
|         for token_id in range(vocab_size):
 | ||
|             token_text = reverse_vocab[token_id].encode('utf-8')
 | ||
|             # replace "\x00" to string with length > 0
 | ||
|             if token_text == b"\x00":
 | ||
|                 toktype = gguf.TokenType.BYTE  # special
 | ||
|                 token_text = f"<{token_text}>".encode('utf-8')
 | ||
|             elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
 | ||
|                 toktype = gguf.TokenType.BYTE  # special
 | ||
|             elif reverse_vocab[token_id] in added_vocab:
 | ||
|                 if tokenizer.added_tokens_decoder[token_id].special:
 | ||
|                     toktype = gguf.TokenType.CONTROL
 | ||
|                 else:
 | ||
|                     toktype = gguf.TokenType.USER_DEFINED
 | ||
|             else:
 | ||
|                 toktype = gguf.TokenType.NORMAL
 | ||
| 
 | ||
|             tokens.append(token_text)
 | ||
|             toktypes.append(toktype)
 | ||
| 
 | ||
|         self.gguf_writer.add_tokenizer_model("llama")
 | ||
|         self.gguf_writer.add_tokenizer_pre("default")
 | ||
|         self.gguf_writer.add_token_list(tokens)
 | ||
|         self.gguf_writer.add_token_types(toktypes)
 | ||
| 
 | ||
|         special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
 | ||
|         special_vocab.add_to_gguf(self.gguf_writer)
 | ||
| 
 | ||
|     def set_gguf_parameters(self):
 | ||
|         block_count = self.hparams["num_hidden_layers"]
 | ||
|         head_count = self.hparams["num_attention_heads"]
 | ||
|         head_count_kv = self.hparams.get("num_key_value_heads", head_count)
 | ||
|         hf_repo = self.hparams.get("_name_or_path", "")
 | ||
| 
 | ||
|         ctx_length = 0
 | ||
|         if "max_sequence_length" in self.hparams:
 | ||
|             ctx_length = self.hparams["max_sequence_length"]
 | ||
|         elif "max_position_embeddings" in self.hparams:
 | ||
|             ctx_length = self.hparams["max_position_embeddings"]
 | ||
|         elif "model_max_length" in self.hparams:
 | ||
|             ctx_length = self.hparams["model_max_length"]
 | ||
|         else:
 | ||
|             raise ValueError("gguf: can not find ctx length parameter.")
 | ||
| 
 | ||
|         self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
 | ||
|         self.gguf_writer.add_source_hf_repo(hf_repo)
 | ||
|         self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
 | ||
|         self.gguf_writer.add_context_length(ctx_length)
 | ||
|         self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
 | ||
|         self.gguf_writer.add_block_count(block_count)
 | ||
|         self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
 | ||
|         self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
 | ||
|         self.gguf_writer.add_head_count(head_count)
 | ||
|         self.gguf_writer.add_head_count_kv(head_count_kv)
 | ||
|         self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
 | ||
|         self.gguf_writer.add_file_type(self.ftype)
 | ||
| 
 | ||
|         if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
 | ||
|             if self.hparams["rope_scaling"].get("type") == "linear":
 | ||
|                 self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
 | ||
|                 self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
 | ||
| 
 | ||
|     def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
 | ||
|         del bid  # unused
 | ||
| 
 | ||
|         head_count = self.hparams["num_attention_heads"]
 | ||
|         head_count_kv = self.hparams.get("num_key_value_heads", head_count)
 | ||
| 
 | ||
|         # HF models permute some of the tensors, so we need to undo that
 | ||
|         if name.endswith("q_proj.weight"):
 | ||
|             data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
 | ||
|         if name.endswith("k_proj.weight"):
 | ||
|             data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
 | ||
| 
 | ||
|         return [(self.map_tensor_name(name), data_torch)]
 | ||
| 
 | ||
|     def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
 | ||
|         if n_kv_head is not None and n_head != n_kv_head:
 | ||
|             n_head //= n_kv_head
 | ||
| 
 | ||
|         return (
 | ||
|             weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
 | ||
|             .swapaxes(1, 2)
 | ||
|             .reshape(weights.shape)
 | ||
|         )
 | ||
| 
 | ||
| 
 | ||
| @Model.register("FalconForCausalLM", "RWForCausalLM")
 | ||
| class FalconModel(Model):
 | ||
|     model_arch = gguf.MODEL_ARCH.FALCON
 | ||
| 
 | ||
|     def set_gguf_parameters(self):
 | ||
|         block_count = self.hparams.get("num_hidden_layers")
 | ||
|         if block_count is None:
 | ||
|             block_count = self.hparams["n_layer"]  # old name
 | ||
| 
 | ||
|         n_head = self.hparams.get("num_attention_heads")
 | ||
|         if n_head is None:
 | ||
|             n_head = self.hparams["n_head"]  # old name
 | ||
| 
 | ||
|         n_head_kv = self.hparams.get("num_kv_heads")
 | ||
|         if n_head_kv is None:
 | ||
|             n_head_kv = self.hparams.get("n_head_kv", 1)  # old name
 | ||
| 
 | ||
|         self.gguf_writer.add_name("Falcon")
 | ||
|         self.gguf_writer.add_context_length(2048)  # not in config.json
 | ||
|         self.gguf_writer.add_tensor_data_layout("jploski")  # qkv tensor transform
 | ||
|         self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
 | ||
|         self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
 | ||
|         self.gguf_writer.add_block_count(block_count)
 | ||
|         self.gguf_writer.add_head_count(n_head)
 | ||
|         self.gguf_writer.add_head_count_kv(n_head_kv)
 | ||
|         self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
 | ||
|         self.gguf_writer.add_file_type(self.ftype)
 | ||
| 
 | ||
|     def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
 | ||
|         del bid  # unused
 | ||
| 
 | ||
|         # QKV tensor transform
 | ||
|         # The original query_key_value tensor contains n_head_kv "kv groups",
 | ||
|         # each consisting of n_head/n_head_kv query weights followed by one key
 | ||
|         # and one value weight (shared by all query heads in the kv group).
 | ||
|         # This layout makes it a big pain to work with in GGML.
 | ||
|         # So we rearrange them here,, so that we have n_head query weights
 | ||
|         # followed by n_head_kv key weights followed by n_head_kv value weights,
 | ||
|         # in contiguous fashion.
 | ||
|         # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
 | ||
| 
 | ||
|         if "query_key_value" in name:
 | ||
|             n_head = self.find_hparam(["num_attention_heads", "n_head"])
 | ||
|             n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
 | ||
|             head_dim = self.hparams["hidden_size"] // n_head
 | ||
| 
 | ||
|             qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
 | ||
|             q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
 | ||
|             k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
 | ||
|             v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
 | ||
|             data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
 | ||
| 
 | ||
|         return [(self.map_tensor_name(name), data_torch)]
 | ||
| 
 | ||
| 
 | ||
| @Model.register("GPTBigCodeForCausalLM")
 | ||
| class StarCoderModel(Model):
 | ||
|     model_arch = gguf.MODEL_ARCH.STARCODER
 | ||
| 
 | ||
|     def set_gguf_parameters(self):
 | ||
|         block_count = self.hparams["n_layer"]
 | ||
| 
 | ||
|         self.gguf_writer.add_name("StarCoder")
 | ||
|         self.gguf_writer.add_context_length(self.hparams["n_positions"])
 | ||
|         self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
 | ||
|         self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
 | ||
|         self.gguf_writer.add_block_count(block_count)
 | ||
|         self.gguf_writer.add_head_count(self.hparams["n_head"])
 | ||
|         self.gguf_writer.add_head_count_kv(1)
 | ||
|         self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
 | ||
|         self.gguf_writer.add_file_type(self.ftype)
 | ||
| 
 | ||
| 
 | ||
| @Model.register("GPTRefactForCausalLM")
 | ||
| class RefactModel(Model):
 | ||
|     model_arch = gguf.MODEL_ARCH.REFACT
 | ||
| 
 | ||
|     def set_vocab(self):
 | ||
|         super().set_vocab()
 | ||
| 
 | ||
|         # TODO: how to determine special FIM tokens automatically?
 | ||
|         special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
 | ||
|                                           special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
 | ||
|         special_vocab._set_special_token("prefix", 1)
 | ||
|         special_vocab._set_special_token("suffix", 3)
 | ||
|         special_vocab._set_special_token("middle", 2)
 | ||
|         special_vocab._set_special_token("fsep",   4) # is this correct?
 | ||
|         special_vocab.add_to_gguf(self.gguf_writer)
 | ||
| 
 | ||
|     def set_gguf_parameters(self):
 | ||
|         hidden_dim = self.hparams["n_embd"]
 | ||
|         inner_dim = 4 * hidden_dim
 | ||
|         hidden_dim = int(2 * inner_dim / 3)
 | ||
|         multiple_of = 256
 | ||
|         ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
 | ||
| 
 | ||
|         block_count = self.hparams["n_layer"]
 | ||
| 
 | ||
|         self.gguf_writer.add_name("Refact")
 | ||
|         # refact uses Alibi. So this is from config.json which might be used by training.
 | ||
|         self.gguf_writer.add_context_length(self.hparams["n_positions"])
 | ||
|         self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
 | ||
| 
 | ||
|         self.gguf_writer.add_feed_forward_length(ff_dim)
 | ||
|         self.gguf_writer.add_block_count(block_count)
 | ||
|         self.gguf_writer.add_head_count(self.hparams["n_head"])
 | ||
|         self.gguf_writer.add_head_count_kv(1)
 | ||
|         self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
 | ||
|         self.gguf_writer.add_file_type(self.ftype)
 | ||
| 
 | ||
|     def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
 | ||
|         hidden_dim = self.hparams["n_embd"]
 | ||
|         inner_dim = 4 * hidden_dim
 | ||
|         hidden_dim = int(2 * inner_dim / 3)
 | ||
|         multiple_of = 256
 | ||
|         ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
 | ||
|         n_head = self.hparams["n_head"]
 | ||
|         n_head_kv = 1
 | ||
|         head_dim = self.hparams["n_embd"] // n_head
 | ||
| 
 | ||
|         tensors: list[tuple[str, Tensor]] = []
 | ||
| 
 | ||
|         if bid is not None:
 | ||
|             if name == f"transformer.h.{bid}.attn.kv.weight":
 | ||
|                 tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
 | ||
|                 tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
 | ||
|             elif name == f"transformer.h.{bid}.attn.q.weight":
 | ||
|                 tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
 | ||
|             elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
 | ||
|                 tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
 | ||
|                 tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
 | ||
| 
 | ||
|         if len(tensors) == 0:
 | ||
|             tensors.append((self.map_tensor_name(name), data_torch))
 | ||
| 
 | ||
|         return tensors
 | ||
| 
 | ||
| 
 | ||
| @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
 | ||
| class StableLMModel(Model):
 | ||
|     model_arch = gguf.MODEL_ARCH.STABLELM
 | ||
| 
 | ||
|     def set_vocab(self):
 | ||
|         if (self.dir_model / "tokenizer.json").is_file():
 | ||
|             self._set_vocab_gpt2()
 | ||
|         else:
 | ||
|             # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
 | ||
|             self._set_vocab_qwen()
 | ||
| 
 | ||
|     def set_gguf_parameters(self):
 | ||
|         hparams = self.hparams
 | ||
|         block_count = hparams["num_hidden_layers"]
 | ||
| 
 | ||
|         self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
 | ||
|         self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
 | ||
|         self.gguf_writer.add_embedding_length(hparams["hidden_size"])
 | ||
|         self.gguf_writer.add_block_count(block_count)
 | ||
|         self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
 | ||
|         rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
 | ||
|         self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
 | ||
|         self.gguf_writer.add_head_count(hparams["num_attention_heads"])
 | ||
|         self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
 | ||
|         self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
 | ||
|         self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
 | ||
|         self.gguf_writer.add_file_type(self.ftype)
 | ||
| 
 | ||
|     _q_norms: list[dict[str, Tensor]] | None = None
 | ||
|     _k_norms: list[dict[str, Tensor]] | None = None
 | ||
| 
 | ||
|     def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
 | ||
|         n_head = self.hparams["num_attention_heads"]
 | ||
|         n_kv_head = self.hparams["num_key_value_heads"]
 | ||
| 
 | ||
|         if name.find("q_layernorm.norms") != -1:
 | ||
|             assert bid is not None
 | ||
| 
 | ||
|             if self._q_norms is None:
 | ||
|                 self._q_norms = [{} for _ in range(self.block_count)]
 | ||
| 
 | ||
|             self._q_norms[bid][name] = data_torch
 | ||
| 
 | ||
|             if len(self._q_norms[bid]) >= n_head:
 | ||
|                 return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
 | ||
|             else:
 | ||
|                 return []
 | ||
| 
 | ||
|         if name.find("k_layernorm.norms") != -1:
 | ||
|             assert bid is not None
 | ||
| 
 | ||
|             if self._k_norms is None:
 | ||
|                 self._k_norms = [{} for _ in range(self.block_count)]
 | ||
| 
 | ||
|             self._k_norms[bid][name] = data_torch
 | ||
| 
 | ||
|             if len(self._k_norms[bid]) >= n_kv_head:
 | ||
|                 return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
 | ||
|             else:
 | ||
|                 return []
 | ||
| 
 | ||
|         return [(self.map_tensor_name(name), data_torch)]
 | ||
| 
 | ||
|     def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
 | ||
|         datas: list[Tensor] = []
 | ||
|         # extract the norms in order
 | ||
|         for xid in range(n_head):
 | ||
|             ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
 | ||
|             datas.append(norms[ename])
 | ||
|             del norms[ename]
 | ||
|         data_torch = torch.stack(datas, dim=0)
 | ||
| 
 | ||
|         merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
 | ||
|         new_name = self.map_tensor_name(merged_name)
 | ||
| 
 | ||
|         return [(new_name, data_torch)]
 | ||
| 
 | ||
|     def write_tensors(self):
 | ||
|         super().write_tensors()
 | ||
| 
 | ||
|         if self._q_norms is not None or self._k_norms is not None:
 | ||
|             # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
 | ||
|             norms = (
 | ||
|                 [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
 | ||
|             ) + (
 | ||
|                 [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
 | ||
|             )
 | ||
|             if len(norms) > 0:
 | ||
|                 raise ValueError(f"Unprocessed norms: {norms}")
 | ||
| 
 | ||
| 
 | ||
| @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
 | ||
| class LlamaModel(Model):
 | ||
|     model_arch = gguf.MODEL_ARCH.LLAMA
 | ||
| 
 | ||
|     def set_vocab(self):
 | ||
|         try:
 | ||
|             self. _set_vocab_sentencepiece()
 | ||
|         except FileNotFoundError:
 | ||
|             try:
 | ||
|                 self._set_vocab_llama_hf()
 | ||
|             except (FileNotFoundError, TypeError):
 | ||
|                 # Llama 3
 | ||
|                 self._set_vocab_gpt2()
 | ||
| 
 | ||
|         # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
 | ||
|         if self.hparams.get("vocab_size", 32000) == 32016:
 | ||
|             special_vocab = gguf.SpecialVocab(
 | ||
|                 self.dir_model, load_merges=False,
 | ||
|                 special_token_types = ['prefix', 'suffix', 'middle', 'eot']
 | ||
|             )
 | ||
|             special_vocab._set_special_token("prefix", 32007)
 | ||
|             special_vocab._set_special_token("suffix", 32008)
 | ||
|             special_vocab._set_special_token("middle", 32009)
 | ||
|             special_vocab._set_special_token("eot",    32010)
 | ||
|             special_vocab.add_to_gguf(self.gguf_writer)
 | ||
| 
 | ||
|     def set_gguf_parameters(self):
 | ||
|         super().set_gguf_parameters()
 | ||
|         hparams = self.hparams
 | ||
|         self.gguf_writer.add_vocab_size(hparams["vocab_size"])
 | ||
|         self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
 | ||
| 
 | ||
|         if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
 | ||
|             if self.hparams["rope_scaling"].get("type") == "linear":
 | ||
|                 self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
 | ||
|                 self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
 | ||
| 
 | ||
|         tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
 | ||
|         if tokenizer_config_file.is_file():
 | ||
|             with open(tokenizer_config_file, "r", encoding="utf-8") as f:
 | ||
|                 tokenizer_config_json = json.load(f)
 | ||
|                 if "add_prefix_space" in tokenizer_config_json:
 | ||
|                     self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
 | ||
| 
 | ||
|         # Apply to granite small models only
 | ||
|         if self.hparams.get("vocab_size", 32000) == 49152:
 | ||
|             self.gguf_writer.add_add_bos_token(False)
 | ||
| 
 | ||
|     @staticmethod
 | ||
|     def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
 | ||
|         if n_head_kv is not None and n_head != n_head_kv:
 | ||
|             n_head = n_head_kv
 | ||
|         return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
 | ||
|                 .swapaxes(1, 2)
 | ||
|                 .reshape(weights.shape))
 | ||
| 
 | ||
|     _experts: list[dict[str, Tensor]] | None = None
 | ||
| 
 | ||
|     def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
 | ||
|         n_head = self.hparams["num_attention_heads"]
 | ||
|         n_kv_head = self.hparams.get("num_key_value_heads")
 | ||
| 
 | ||
|         if name.endswith(("q_proj.weight", "q_proj.bias")):
 | ||
|             data_torch = LlamaModel.permute(data_torch, n_head, n_head)
 | ||
|         if name.endswith(("k_proj.weight", "k_proj.bias")):
 | ||
|             data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
 | ||
| 
 | ||
|         # process the experts separately
 | ||
|         if name.find("block_sparse_moe.experts") != -1:
 | ||
|             n_experts = self.hparams["num_local_experts"]
 | ||
| 
 | ||
|             assert bid is not None
 | ||
| 
 | ||
|             if self._experts is None:
 | ||
|                 self._experts = [{} for _ in range(self.block_count)]
 | ||
| 
 | ||
|             self._experts[bid][name] = data_torch
 | ||
| 
 | ||
|             if len(self._experts[bid]) >= n_experts * 3:
 | ||
|                 tensors: list[tuple[str, Tensor]] = []
 | ||
| 
 | ||
|                 # merge the experts into a single 3d tensor
 | ||
|                 for wid in ["w1", "w2", "w3"]:
 | ||
|                     datas: list[Tensor] = []
 | ||
| 
 | ||
|                     for xid in range(n_experts):
 | ||
|                         ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
 | ||
|                         datas.append(self._experts[bid][ename])
 | ||
|                         del self._experts[bid][ename]
 | ||
| 
 | ||
|                     data_torch = torch.stack(datas, dim=0)
 | ||
| 
 | ||
|                     merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
 | ||
| 
 | ||
|                     new_name = self.map_tensor_name(merged_name)
 | ||
| 
 | ||
|                     tensors.append((new_name, data_torch))
 | ||
|                 return tensors
 | ||
|             else:
 | ||
|                 return []
 | ||
| 
 | ||
|         return [(self.map_tensor_name(name), data_torch)]
 | ||
| 
 | ||
|     def write_tensors(self):
 | ||
|         super().write_tensors()
 | ||
| 
 | ||
|         if self._experts is not None:
 | ||
|             # flatten `list[dict[str, Tensor]]` into `list[str]`
 | ||
|             experts = [k for d in self._experts for k in d.keys()]
 | ||
|             if len(experts) > 0:
 | ||
|                 raise ValueError(f"Unprocessed experts: {experts}")
 | ||
| 
 | ||
| 
 | ||
| @Model.register("GrokForCausalLM")
 | ||
| class GrokModel(Model):
 | ||
|     model_arch = gguf.MODEL_ARCH.GROK
 | ||
| 
 | ||
|     def set_vocab(self):
 | ||
|         self._set_vocab_sentencepiece()
 | ||
| 
 | ||
|     def __init__(self, *args, **kwargs):
 | ||
|         super().__init__(*args, **kwargs)
 | ||
| 
 | ||
|     def set_gguf_parameters(self):
 | ||
|         super().set_gguf_parameters()
 | ||
|         self.gguf_writer.add_name("Grok")
 | ||
| 
 | ||
|     _experts: list[dict[str, Tensor]] | None = None
 | ||
| 
 | ||
|     def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
 | ||
|         # process the experts separately
 | ||
|         if name.find(".moe.") != -1:
 | ||
|             n_experts = self.hparams["num_local_experts"]
 | ||
| 
 | ||
|             assert bid is not None
 | ||
| 
 | ||
|             if self._experts is None:
 | ||
|                 self._experts = [{} for _ in range(self.block_count)]
 | ||
| 
 | ||
|             self._experts[bid][name] = data_torch
 | ||
| 
 | ||
|             if len(self._experts[bid]) >= n_experts * 3:
 | ||
|                 tensors: list[tuple[str, Tensor]] = []
 | ||
| 
 | ||
|                 # merge the experts into a single 3d tensor
 | ||
|                 for wid in ["linear", "linear_1", "linear_v"]:
 | ||
|                     datas: list[Tensor] = []
 | ||
| 
 | ||
|                     for xid in range(n_experts):
 | ||
|                         ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
 | ||
|                         datas.append(self._experts[bid][ename])
 | ||
|                         del self._experts[bid][ename]
 | ||
| 
 | ||
|                     data_torch = torch.stack(datas, dim=0)
 | ||
| 
 | ||
|                     merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
 | ||
| 
 | ||
|                     new_name = self.map_tensor_name(merged_name)
 | ||
| 
 | ||
|                     tensors.append((new_name, data_torch))
 | ||
|                 return tensors
 | ||
|             else:
 | ||
|                 return []
 | ||
| 
 | ||
|         return [(self.map_tensor_name(name), data_torch)]
 | ||
| 
 | ||
| 
 | ||
| @Model.register("DbrxForCausalLM")
 | ||
| class DbrxModel(Model):
 | ||
|     model_arch = gguf.MODEL_ARCH.DBRX
 | ||
| 
 | ||
|     def set_gguf_parameters(self):
 | ||
|         ffn_config = self.hparams["ffn_config"]
 | ||
|         attn_config = self.hparams["attn_config"]
 | ||
|         self.gguf_writer.add_name(self.hparams["model_type"])
 | ||
|         self.gguf_writer.add_block_count(self.hparams["n_layers"])
 | ||
| 
 | ||
|         self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
 | ||
|         self.gguf_writer.add_embedding_length(self.hparams["d_model"])
 | ||
|         self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
 | ||
| 
 | ||
|         self.gguf_writer.add_head_count(self.hparams["n_heads"])
 | ||
|         self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
 | ||
| 
 | ||
|         self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
 | ||
| 
 | ||
|         self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
 | ||
|         self.gguf_writer.add_file_type(self.ftype)
 | ||
| 
 | ||
|         self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
 | ||
|         self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
 | ||
| 
 | ||
|         self.gguf_writer.add_layer_norm_eps(1e-5)
 | ||
| 
 | ||
|         self.gguf_writer.add_file_type(self.ftype)
 | ||
|         logger.info(f"gguf: file type = {self.ftype}")
 | ||
| 
 | ||
|     def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
 | ||
|         del bid  # unused
 | ||
| 
 | ||
|         n_expert = self.hparams["ffn_config"]["moe_num_experts"]
 | ||
|         n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
 | ||
|         n_embd = self.hparams["d_model"]
 | ||
| 
 | ||
|         # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
 | ||
|         # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
 | ||
|         # But llama.cpp moe graph works differently
 | ||
|         # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
 | ||
|         # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
 | ||
|         exp_tensor_names = {"ffn.experts.mlp.w1": None,       # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff,   n_expert}
 | ||
|                             "ffn.experts.mlp.w2": (0, 2, 1),  # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff,   n_embd, n_expert}
 | ||
|                             "ffn.experts.mlp.v1": None}       # LLM_TENSOR_FFN_UP_EXPS   ggml_tensor->ne{n_embd, n_ff,   n_expert}
 | ||
|         experts = False
 | ||
| 
 | ||
|         for exp_tensor_name in exp_tensor_names.keys():
 | ||
|             if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
 | ||
|                 experts = True
 | ||
|                 data_torch = data_torch.view(n_expert, n_ff, n_embd)
 | ||
|                 if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
 | ||
|                     data_torch = data_torch.permute(*permute_tensor)
 | ||
|                 break
 | ||
| 
 | ||
|         # map tensor names
 | ||
|         # In MoE models the ffn tensors are typically most of the model weights,
 | ||
|         # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
 | ||
|         # Every other model has the weight names ending in .weight,
 | ||
|         # let's assume that is the convention which is not the case for dbrx:
 | ||
|         # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
 | ||
|         new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
 | ||
| 
 | ||
|         return [(new_name, data_torch)]
 | ||
| 
 | ||
|     def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
 | ||
|         del name, new_name, bid  # unused
 | ||
| 
 | ||
|         return n_dims > 1
 | ||
| 
 | ||
| 
 | ||
| @Model.register("MiniCPMForCausalLM")
 | ||
| class MiniCPMModel(Model):
 | ||
|     model_arch = gguf.MODEL_ARCH.MINICPM
 | ||
| 
 | ||
|     def set_gguf_parameters(self):
 | ||
|         block_count = self.hparams["num_hidden_layers"]
 | ||
|         self.gguf_writer.add_name("MiniCPM")
 | ||
|         self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
 | ||
|         self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
 | ||
|         self.gguf_writer.add_block_count(block_count)
 | ||
|         self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
 | ||
|         self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
 | ||
|         self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
 | ||
|         self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
 | ||
|         self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
 | ||
|         self.gguf_writer.add_file_type(self.ftype)
 | ||
| 
 | ||
|     def set_vocab(self):
 | ||
|         self._set_vocab_llama_hf()
 | ||
| 
 | ||
|     def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
 | ||
|         if n_kv_head is not None and n_head != n_kv_head:
 | ||
|             n_head //= n_kv_head
 | ||
| 
 | ||
|         return (
 | ||
|             weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
 | ||
|             .swapaxes(1, 2)
 | ||
|             .reshape(weights.shape)
 | ||
|         )
 | ||
| 
 | ||
|     def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
 | ||
|         del bid  # unused
 | ||
| 
 | ||
|         n_head = self.hparams["num_attention_heads"]
 | ||
|         n_kv_head = self.hparams.get("num_key_value_heads")
 | ||
| 
 | ||
|         # HF models permute some of the tensors, so we need to undo that
 | ||
|         if name.endswith(("q_proj.weight")):
 | ||
|             data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
 | ||
|         if name.endswith(("k_proj.weight")):
 | ||
|             data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
 | ||
| 
 | ||
|         return [(self.map_tensor_name(name), data_torch)]
 | ||
| 
 | ||
| 
 | ||
| @Model.register("QWenLMHeadModel")
 | ||
| class QwenModel(Model):
 | ||
|     model_arch = gguf.MODEL_ARCH.QWEN
 | ||
| 
 | ||
|     @staticmethod
 | ||
|     def token_bytes_to_string(b):
 | ||
|         from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
 | ||
|         byte_encoder = bytes_to_unicode()
 | ||
|         return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
 | ||
| 
 | ||
|     @staticmethod
 | ||
|     def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
 | ||
|         parts = [bytes([b]) for b in token]
 | ||
|         while True:
 | ||
|             min_idx = None
 | ||
|             min_rank = None
 | ||
|             for i, pair in enumerate(zip(parts[:-1], parts[1:])):
 | ||
|                 rank = mergeable_ranks.get(pair[0] + pair[1])
 | ||
|                 if rank is not None and (min_rank is None or rank < min_rank):
 | ||
|                     min_idx = i
 | ||
|                     min_rank = rank
 | ||
|             if min_rank is None or (max_rank is not None and min_rank >= max_rank):
 | ||
|                 break
 | ||
|             assert min_idx is not None
 | ||
|             parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
 | ||
|         return parts
 | ||
| 
 | ||
|     def set_vocab(self):
 | ||
|         self._set_vocab_qwen()
 | ||
| 
 | ||
|     def set_gguf_parameters(self):
 | ||
|         self.gguf_writer.add_name("Qwen")
 | ||
|         self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
 | ||
|         self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
 | ||
|         self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
 | ||
|         self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
 | ||
|         self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
 | ||
|         self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
 | ||
|         self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
 | ||
|         self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
 | ||
|         self.gguf_writer.add_file_type(self.ftype)
 | ||
| 
 | ||
| 
 | ||
| @Model.register("Qwen2ForCausalLM")
 | ||
| class Qwen2Model(Model):
 | ||
|     model_arch = gguf.MODEL_ARCH.QWEN2
 | ||
| 
 | ||
|     def set_vocab(self):
 | ||
|         try:
 | ||
|             self._set_vocab_sentencepiece()
 | ||
|         except FileNotFoundError:
 | ||
|             self._set_vocab_gpt2()
 | ||
| 
 | ||
| 
 | ||
| @Model.register("Qwen2MoeForCausalLM")
 | ||
| class Qwen2MoeModel(Model):
 | ||
|     model_arch = gguf.MODEL_ARCH.QWEN2MOE
 | ||
| 
 | ||
|     def set_gguf_parameters(self):
 | ||
|         super().set_gguf_parameters()
 | ||
|         if (n_experts := self.hparams.get("num_experts")) is not None:
 | ||
|             self.gguf_writer.add_expert_count(n_experts)
 | ||
| 
 | ||
|     _experts: list[dict[str, Tensor]] | None = None
 | ||
| 
 | ||
|     def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
 | ||
|         # process the experts separately
 | ||
|         if name.find("experts") != -1:
 | ||
|             n_experts = self.hparams["num_experts"]
 | ||
|             assert bid is not None
 | ||
| 
 | ||
|             if self._experts is None:
 | ||
|                 self._experts = [{} for _ in range(self.block_count)]
 | ||
| 
 | ||
|             self._experts[bid][name] = data_torch
 | ||
| 
 | ||
|             if len(self._experts[bid]) >= n_experts * 3:
 | ||
|                 tensors: list[tuple[str, Tensor]] = []
 | ||
| 
 | ||
|                 # merge the experts into a single 3d tensor
 | ||
|                 for w_name in ["down_proj", "gate_proj", "up_proj"]:
 | ||
|                     datas: list[Tensor] = []
 | ||
| 
 | ||
|                     for xid in range(n_experts):
 | ||
|                         ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
 | ||
|                         datas.append(self._experts[bid][ename])
 | ||
|                         del self._experts[bid][ename]
 | ||
| 
 | ||
|                     data_torch = torch.stack(datas, dim=0)
 | ||
| 
 | ||
|                     merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
 | ||
| 
 | ||
|                     new_name = self.map_tensor_name(merged_name)
 | ||
| 
 | ||
|                     tensors.append((new_name, data_torch))
 | ||
|                 return tensors
 | ||
|             else:
 | ||
|                 return []
 | ||
| 
 | ||
|         return [(self.map_tensor_name(name), data_torch)]
 | ||
| 
 | ||
|     def write_tensors(self):
 | ||
|         super().write_tensors()
 | ||
| 
 | ||
|         if self._experts is not None:
 | ||
|             # flatten `list[dict[str, Tensor]]` into `list[str]`
 | ||
|             experts = [k for d in self._experts for k in d.keys()]
 | ||
|             if len(experts) > 0:
 | ||
|                 raise ValueError(f"Unprocessed experts: {experts}")
 | ||
| 
 | ||
| 
 | ||
| @Model.register("GPT2LMHeadModel")
 | ||
| class GPT2Model(Model):
 | ||
|     model_arch = gguf.MODEL_ARCH.GPT2
 | ||
| 
 | ||
|     def set_gguf_parameters(self):
 | ||
|         self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
 | ||
|         self.gguf_writer.add_block_count(self.hparams["n_layer"])
 | ||
|         self.gguf_writer.add_context_length(self.hparams["n_ctx"])
 | ||
|         self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
 | ||
|         self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
 | ||
|         self.gguf_writer.add_head_count(self.hparams["n_head"])
 | ||
|         self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
 | ||
|         self.gguf_writer.add_file_type(self.ftype)
 | ||
| 
 | ||
|     def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
 | ||
|         del bid  # unused
 | ||
| 
 | ||
|         tensors: list[tuple[str, Tensor]] = []
 | ||
| 
 | ||
|         # we don't need these
 | ||
|         if name.endswith((".attn.bias", ".attn.masked_bias")):
 | ||
|             return tensors
 | ||
| 
 | ||
|         if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
 | ||
|             data_torch = data_torch.transpose(1, 0)
 | ||
| 
 | ||
|         new_name = self.map_tensor_name(name)
 | ||
| 
 | ||
|         tensors.append((new_name, data_torch))
 | ||
| 
 | ||
|         # note: GPT2 output is tied to (same as) wte in original model
 | ||
|         if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
 | ||
|             tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
 | ||
| 
 | ||
|         return tensors
 | ||
| 
 | ||
| 
 | ||
| @Model.register("PhiForCausalLM")
 | ||
| class Phi2Model(Model):
 | ||
|     model_arch = gguf.MODEL_ARCH.PHI2
 | ||
| 
 | ||
|     def set_gguf_parameters(self):
 | ||
|         block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
 | ||
| 
 | ||
|         rot_pct = self.find_hparam(["partial_rotary_factor"])
 | ||
|         n_embd = self.find_hparam(["hidden_size", "n_embd"])
 | ||
|         n_head = self.find_hparam(["num_attention_heads", "n_head"])
 | ||
| 
 | ||
|         self.gguf_writer.add_name("Phi2")
 | ||
|         self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
 | ||
| 
 | ||
|         self.gguf_writer.add_embedding_length(n_embd)
 | ||
|         self.gguf_writer.add_feed_forward_length(4 * n_embd)
 | ||
|         self.gguf_writer.add_block_count(block_count)
 | ||
|         self.gguf_writer.add_head_count(n_head)
 | ||
|         self.gguf_writer.add_head_count_kv(n_head)
 | ||
|         self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
 | ||
|         self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
 | ||
|         self.gguf_writer.add_file_type(self.ftype)
 | ||
|         self.gguf_writer.add_add_bos_token(False)
 | ||
| 
 | ||
| 
 | ||
| @Model.register("Phi3ForCausalLM")
 | ||
| class Phi3MiniModel(Model):
 | ||
|     model_arch = gguf.MODEL_ARCH.PHI3
 | ||
| 
 | ||
|     def set_vocab(self):
 | ||
|         from sentencepiece import SentencePieceProcessor
 | ||
| 
 | ||
|         tokenizer_path = self.dir_model / 'tokenizer.model'
 | ||
| 
 | ||
|         if not tokenizer_path.is_file():
 | ||
|             raise ValueError(f'Error: Missing {tokenizer_path}')
 | ||
| 
 | ||
|         tokenizer = SentencePieceProcessor()
 | ||
|         tokenizer.LoadFromFile(str(tokenizer_path))
 | ||
| 
 | ||
|         vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
 | ||
| 
 | ||
|         tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
 | ||
|         scores: list[float] = [-10000.0] * vocab_size
 | ||
|         toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
 | ||
| 
 | ||
|         for token_id in range(tokenizer.vocab_size()):
 | ||
| 
 | ||
|             piece = tokenizer.IdToPiece(token_id)
 | ||
|             text = piece.encode("utf-8")
 | ||
|             score = tokenizer.GetScore(token_id)
 | ||
| 
 | ||
|             toktype = SentencePieceTokenTypes.NORMAL
 | ||
|             if tokenizer.IsUnknown(token_id):
 | ||
|                 toktype = SentencePieceTokenTypes.UNKNOWN
 | ||
|             elif tokenizer.IsControl(token_id):
 | ||
|                 toktype = SentencePieceTokenTypes.CONTROL
 | ||
|             elif tokenizer.IsUnused(token_id):
 | ||
|                 toktype = SentencePieceTokenTypes.UNUSED
 | ||
|             elif tokenizer.IsByte(token_id):
 | ||
|                 toktype = SentencePieceTokenTypes.BYTE
 | ||
| 
 | ||
|             tokens[token_id] = text
 | ||
|             scores[token_id] = score
 | ||
|             toktypes[token_id] = toktype
 | ||
| 
 | ||
|         added_tokens_file = self.dir_model / 'added_tokens.json'
 | ||
|         if added_tokens_file.is_file():
 | ||
|             with open(added_tokens_file, "r", encoding="utf-8") as f:
 | ||
|                 added_tokens_json = json.load(f)
 | ||
| 
 | ||
|                 for key in added_tokens_json:
 | ||
|                     token_id = added_tokens_json[key]
 | ||
|                     if (token_id >= vocab_size):
 | ||
|                         logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
 | ||
|                         continue
 | ||
| 
 | ||
|                     tokens[token_id] = key.encode("utf-8")
 | ||
|                     scores[token_id] = -1000.0
 | ||
|                     toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
 | ||
| 
 | ||
|         tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
 | ||
|         if tokenizer_config_file.is_file():
 | ||
|             with open(tokenizer_config_file, "r", encoding="utf-8") as f:
 | ||
|                 tokenizer_config_json = json.load(f)
 | ||
|                 added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
 | ||
|                 for token_id, foken_data in added_tokens_decoder.items():
 | ||
|                     token_id = int(token_id)
 | ||
|                     token = foken_data["content"].encode("utf-8")
 | ||
|                     if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
 | ||
|                         assert tokens[token_id] == token
 | ||
|                     tokens[token_id] = token
 | ||
|                     scores[token_id] = -1000.0
 | ||
|                     toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
 | ||
|                     if foken_data.get("special"):
 | ||
|                         toktypes[token_id] = SentencePieceTokenTypes.CONTROL
 | ||
| 
 | ||
|         tokenizer_file = self.dir_model / 'tokenizer.json'
 | ||
|         if tokenizer_file.is_file():
 | ||
|             with open(tokenizer_file, "r", encoding="utf-8") as f:
 | ||
|                 tokenizer_json = json.load(f)
 | ||
|                 added_tokens = tokenizer_json.get("added_tokens", [])
 | ||
|                 for foken_data in added_tokens:
 | ||
|                     token_id = int(foken_data["id"])
 | ||
|                     token = foken_data["content"].encode("utf-8")
 | ||
|                     if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
 | ||
|                         assert tokens[token_id] == token
 | ||
|                     tokens[token_id] = token
 | ||
|                     scores[token_id] = -1000.0
 | ||
|                     toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
 | ||
|                     if foken_data.get("special"):
 | ||
|                         toktypes[token_id] = SentencePieceTokenTypes.CONTROL
 | ||
| 
 | ||
|         self.gguf_writer.add_tokenizer_model("llama")
 | ||
|         self.gguf_writer.add_tokenizer_pre("default")
 | ||
|         self.gguf_writer.add_token_list(tokens)
 | ||
|         self.gguf_writer.add_token_scores(scores)
 | ||
|         self.gguf_writer.add_token_types(toktypes)
 | ||
| 
 | ||
|         special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
 | ||
|         special_vocab.add_to_gguf(self.gguf_writer)
 | ||
| 
 | ||
|     def set_gguf_parameters(self):
 | ||
|         block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
 | ||
| 
 | ||
|         n_embd = self.find_hparam(["hidden_size", "n_embd"])
 | ||
|         n_head = self.find_hparam(["num_attention_heads", "n_head"])
 | ||
|         n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
 | ||
|         rms_eps = self.find_hparam(["rms_norm_eps"])
 | ||
|         max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
 | ||
|         orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
 | ||
|         rope_dims = n_embd // n_head
 | ||
| 
 | ||
|         self.gguf_writer.add_name("Phi3")
 | ||
|         self.gguf_writer.add_context_length(max_pos_embds)
 | ||
|         self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
 | ||
|         self.gguf_writer.add_embedding_length(n_embd)
 | ||
|         self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
 | ||
|         self.gguf_writer.add_block_count(block_count)
 | ||
|         self.gguf_writer.add_head_count(n_head)
 | ||
|         self.gguf_writer.add_head_count_kv(n_head_kv)
 | ||
|         self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
 | ||
|         self.gguf_writer.add_rope_dimension_count(rope_dims)
 | ||
|         self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
 | ||
|         self.gguf_writer.add_file_type(self.ftype)
 | ||
| 
 | ||
|         # write rope scaling for long context (128k) model
 | ||
|         rope_scaling = self.find_hparam(['rope_scaling'], True)
 | ||
|         if (rope_scaling is None):
 | ||
|             return
 | ||
| 
 | ||
|         scale = max_pos_embds / orig_max_pos_embds
 | ||
| 
 | ||
|         rope_scaling_type = rope_scaling.get('type', '').lower()
 | ||
|         if len(rope_scaling_type) == 0:
 | ||
|             raise KeyError('Missing the required key rope_scaling.type')
 | ||
| 
 | ||
|         if rope_scaling_type == 'su':
 | ||
|             attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
 | ||
|         elif rope_scaling_type == 'yarn':
 | ||
|             attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
 | ||
|         else:
 | ||
|             raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
 | ||
| 
 | ||
|         self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
 | ||
| 
 | ||
|         long_factors = rope_scaling.get('long_factor', None)
 | ||
|         short_factors = rope_scaling.get('short_factor', None)
 | ||
| 
 | ||
|         if long_factors is None or short_factors is None:
 | ||
|             raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
 | ||
| 
 | ||
|         if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
 | ||
|             raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
 | ||
| 
 | ||
|         self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG]  + ".weight", np.array(long_factors, dtype=np.float32))
 | ||
|         self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
 | ||
| 
 | ||
| 
 | ||
| @Model.register("PlamoForCausalLM")
 | ||
| class PlamoModel(Model):
 | ||
|     model_arch = gguf.MODEL_ARCH.PLAMO
 | ||
| 
 | ||
|     def set_vocab(self):
 | ||
|         self._set_vocab_sentencepiece()
 | ||
| 
 | ||
|     def set_gguf_parameters(self):
 | ||
|         hparams = self.hparams
 | ||
|         block_count = hparams["num_hidden_layers"]
 | ||
| 
 | ||
|         self.gguf_writer.add_name("PLaMo")
 | ||
|         self.gguf_writer.add_context_length(4096)  # not in config.json
 | ||
|         self.gguf_writer.add_embedding_length(hparams["hidden_size"])
 | ||
|         self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
 | ||
|         self.gguf_writer.add_block_count(block_count)
 | ||
|         self.gguf_writer.add_head_count(hparams["num_attention_heads"])
 | ||
|         self.gguf_writer.add_head_count_kv(5)  # hparams["num_key_value_heads"]) is wrong
 | ||
|         self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
 | ||
|         self.gguf_writer.add_file_type(self.ftype)
 | ||
| 
 | ||
|     def shuffle_attn_q_weight(self, data_torch):
 | ||
|         assert data_torch.size() == (5120, 5120)
 | ||
|         data_torch = data_torch.reshape(8, 5, 128, 5120)
 | ||
|         data_torch = torch.permute(data_torch, (1, 0, 2, 3))
 | ||
|         data_torch = torch.reshape(data_torch, (5120, 5120))
 | ||
|         return data_torch
 | ||
| 
 | ||
|     def shuffle_attn_output_weight(self, data_torch):
 | ||
|         assert data_torch.size() == (5120, 5120)
 | ||
|         data_torch = data_torch.reshape(5120, 8, 5, 128)
 | ||
|         data_torch = torch.permute(data_torch, (0, 2, 1, 3))
 | ||
|         data_torch = torch.reshape(data_torch, (5120, 5120))
 | ||
|         return data_torch
 | ||
| 
 | ||
|     def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
 | ||
|         del bid  # unused
 | ||
| 
 | ||
|         new_name = self.map_tensor_name(name)
 | ||
| 
 | ||
|         # shuffle for broadcasting of gqa in ggml_mul_mat
 | ||
|         if new_name.endswith("attn_q.weight"):
 | ||
|             data_torch = self.shuffle_attn_q_weight(data_torch)
 | ||
|         elif new_name.endswith("attn_output.weight"):
 | ||
|             data_torch = self.shuffle_attn_output_weight(data_torch)
 | ||
| 
 | ||
|         return [(new_name, data_torch)]
 | ||
| 
 | ||
| 
 | ||
| @Model.register("CodeShellForCausalLM")
 | ||
| class CodeShellModel(Model):
 | ||
|     model_arch = gguf.MODEL_ARCH.CODESHELL
 | ||
| 
 | ||
|     def set_gguf_parameters(self):
 | ||
|         block_count = self.hparams["n_layer"]
 | ||
| 
 | ||
|         self.gguf_writer.add_name("CodeShell")
 | ||
|         self.gguf_writer.add_context_length(self.hparams["n_positions"])
 | ||
|         self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
 | ||
|         self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
 | ||
|         self.gguf_writer.add_block_count(block_count)
 | ||
|         self.gguf_writer.add_head_count(self.hparams["n_head"])
 | ||
|         self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
 | ||
|         self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
 | ||
|         self.gguf_writer.add_file_type(self.ftype)
 | ||
|         self.gguf_writer.add_rope_freq_base(10000.0)
 | ||
|         self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
 | ||
|         self.gguf_writer.add_rope_scaling_factor(1.0)
 | ||
| 
 | ||
|     def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
 | ||
|         del bid  # unused
 | ||
| 
 | ||
|         new_name = self.map_tensor_name(name)
 | ||
| 
 | ||
|         tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
 | ||
| 
 | ||
|         if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
 | ||
|             assert self.tensor_names is not None
 | ||
| 
 | ||
|             if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
 | ||
|                 # copy tok_embd.weight to output.weight
 | ||
|                 tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
 | ||
| 
 | ||
|         return tensors
 | ||
| 
 | ||
| 
 | ||
| @Model.register("InternLM2ForCausalLM")
 | ||
| class InternLM2Model(Model):
 | ||
|     model_arch = gguf.MODEL_ARCH.INTERNLM2
 | ||
| 
 | ||
|     def set_vocab(self):
 | ||
|         # (TODO): Is there a better way?
 | ||
|         # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
 | ||
|         # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
 | ||
|         # recognized as an empty string in C++.
 | ||
|         from sentencepiece import SentencePieceProcessor
 | ||
|         from sentencepiece import sentencepiece_model_pb2 as model
 | ||
| 
 | ||
|         tokenizer_path = self.dir_model / 'tokenizer.model'
 | ||
| 
 | ||
|         tokens: list[bytes] = []
 | ||
|         scores: list[float] = []
 | ||
|         toktypes: list[int] = []
 | ||
| 
 | ||
|         if not tokenizer_path.is_file():
 | ||
|             logger.error(f'Error: Missing {tokenizer_path}')
 | ||
|             sys.exit(1)
 | ||
| 
 | ||
|         sentencepiece_model = model.ModelProto()
 | ||
|         sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
 | ||
|         add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
 | ||
| 
 | ||
|         tokenizer = SentencePieceProcessor()
 | ||
|         tokenizer.LoadFromFile(str(tokenizer_path))
 | ||
| 
 | ||
|         vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
 | ||
| 
 | ||
|         for token_id in range(vocab_size):
 | ||
|             piece = tokenizer.IdToPiece(token_id)
 | ||
|             text = piece.encode("utf-8")
 | ||
|             score = tokenizer.GetScore(token_id)
 | ||
|             if text == b"\x00":
 | ||
|                 # (TODO): fixme
 | ||
|                 # Hack here and replace the \x00 characters.
 | ||
|                 logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
 | ||
|                 text = "🐉".encode("utf-8")
 | ||
| 
 | ||
|             toktype = SentencePieceTokenTypes.NORMAL
 | ||
|             if tokenizer.IsUnknown(token_id):
 | ||
|                 toktype = SentencePieceTokenTypes.UNKNOWN
 | ||
|             elif tokenizer.IsControl(token_id):
 | ||
|                 toktype = SentencePieceTokenTypes.CONTROL
 | ||
|             elif tokenizer.IsUnused(token_id):
 | ||
|                 toktype = SentencePieceTokenTypes.UNUSED
 | ||
|             elif tokenizer.IsByte(token_id):
 | ||
|                 toktype = SentencePieceTokenTypes.BYTE
 | ||
| 
 | ||
|             tokens.append(text)
 | ||
|             scores.append(score)
 | ||
|             toktypes.append(toktype)
 | ||
| 
 | ||
|         added_tokens_file = self.dir_model / 'added_tokens.json'
 | ||
|         if added_tokens_file.is_file():
 | ||
|             with open(added_tokens_file, "r", encoding="utf-8") as f:
 | ||
|                 added_tokens_json = json.load(f)
 | ||
| 
 | ||
|                 for key in added_tokens_json:
 | ||
|                     tokens.append(key.encode("utf-8"))
 | ||
|                     scores.append(-1000.0)
 | ||
|                     toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
 | ||
| 
 | ||
|         self.gguf_writer.add_tokenizer_model("llama")
 | ||
|         self.gguf_writer.add_tokenizer_pre("default")
 | ||
|         self.gguf_writer.add_token_list(tokens)
 | ||
|         self.gguf_writer.add_token_scores(scores)
 | ||
|         self.gguf_writer.add_token_types(toktypes)
 | ||
|         self.gguf_writer.add_add_space_prefix(add_prefix)
 | ||
| 
 | ||
|         special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
 | ||
|         old_eos = special_vocab.special_token_ids["eos"]
 | ||
|         if "chat" in os.path.basename(self.dir_model.absolute()):
 | ||
|             # For the chat model, we replace the eos with '<|im_end|>'.
 | ||
|             # TODO: this is a hack, should be fixed
 | ||
|             #       https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
 | ||
|             special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
 | ||
|             logger.warning(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
 | ||
| in chat mode so that the conversation can end normally.")
 | ||
| 
 | ||
|         special_vocab.add_to_gguf(self.gguf_writer)
 | ||
| 
 | ||
|     def _try_get_sft_eos(self, tokenizer):
 | ||
|         unused_145_list = tokenizer.Encode('[UNUSED_TOKEN_145]')
 | ||
|         im_end_list = tokenizer.Encode('<|im_end|>')
 | ||
|         eos_token = None
 | ||
|         assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
 | ||
|         if len(unused_145_list) == 1:
 | ||
|             eos_token = unused_145_list[0]
 | ||
|         if len(im_end_list) == 1:
 | ||
|             eos_token = im_end_list[0]
 | ||
|         assert eos_token
 | ||
|         return eos_token
 | ||
| 
 | ||
|     def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
 | ||
|         if n_head_kv is not None and n_head != n_head_kv:
 | ||
|             n_head = n_head_kv
 | ||
|         return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
 | ||
|                 .swapaxes(1, 2)
 | ||
|                 .reshape(weights.shape))
 | ||
| 
 | ||
|     def set_gguf_parameters(self):
 | ||
|         self.gguf_writer.add_name("InternLM2")
 | ||
|         self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
 | ||
|         self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
 | ||
|         self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
 | ||
|         self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
 | ||
|         self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
 | ||
|         self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
 | ||
|         self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
 | ||
|         self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
 | ||
|         self.gguf_writer.add_file_type(self.ftype)
 | ||
| 
 | ||
|     def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
 | ||
|         num_heads = self.hparams["num_attention_heads"]
 | ||
|         num_kv_heads = self.hparams["num_key_value_heads"]
 | ||
|         hidden_size = self.hparams["hidden_size"]
 | ||
|         q_per_kv = num_heads // num_kv_heads
 | ||
|         head_dim = hidden_size // num_heads
 | ||
|         num_groups = num_heads // q_per_kv
 | ||
| 
 | ||
|         qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
 | ||
| 
 | ||
|         if re.match(qkv_pattern, name):
 | ||
|             bid = re.findall(qkv_pattern, name)[0]
 | ||
|             qkv = data_torch
 | ||
|             # qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
 | ||
|             qkv = qkv.T.reshape((-1, num_groups, q_per_kv + 2, head_dim))
 | ||
|             q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
 | ||
|             # The model weights of q and k equire additional reshape.
 | ||
|             # q = self._hf_permute_qk(rearrange(q, " o g n i ->  o (g n i)").T, num_heads, num_heads)
 | ||
|             q = self._hf_permute_qk(q.reshape((q.shape[0], -1)).T, num_heads, num_heads)
 | ||
|             # k = self._hf_permute_qk(rearrange(k, " o g n i ->  o (g n i)").T, num_heads, num_kv_heads)
 | ||
|             k = self._hf_permute_qk(k.reshape((k.shape[0], -1)).T, num_heads, num_kv_heads)
 | ||
|             # v = rearrange(v, " o g n i ->  o (g n i)").T
 | ||
|             v = v.reshape((v.shape[0], -1)).T
 | ||
|             return [
 | ||
|                 (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
 | ||
|                 (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
 | ||
|                 (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
 | ||
|             ]
 | ||
|         else:
 | ||
|             return [(self.map_tensor_name(name), data_torch)]
 | ||
| 
 | ||
| 
 | ||
| @Model.register("BertModel", "CamembertModel")
 | ||
| class BertModel(Model):
 | ||
|     model_arch = gguf.MODEL_ARCH.BERT
 | ||
| 
 | ||
|     def __init__(self, *args, **kwargs):
 | ||
|         super().__init__(*args, **kwargs)
 | ||
|         self.vocab_size = None
 | ||
| 
 | ||
|     def set_gguf_parameters(self):
 | ||
|         super().set_gguf_parameters()
 | ||
|         self.gguf_writer.add_causal_attention(False)
 | ||
| 
 | ||
|         # get pooling path
 | ||
|         pooling_path = None
 | ||
|         module_path = self.dir_model / "modules.json"
 | ||
|         if module_path.is_file():
 | ||
|             with open(module_path, encoding="utf-8") as f:
 | ||
|                 modules = json.load(f)
 | ||
|             for mod in modules:
 | ||
|                 if mod["type"] == "sentence_transformers.models.Pooling":
 | ||
|                     pooling_path = mod["path"]
 | ||
|                     break
 | ||
| 
 | ||
|         # get pooling type
 | ||
|         if pooling_path is not None:
 | ||
|             with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
 | ||
|                 pooling = json.load(f)
 | ||
|             if pooling["pooling_mode_mean_tokens"]:
 | ||
|                 pooling_type = gguf.PoolingType.MEAN
 | ||
|             elif pooling["pooling_mode_cls_token"]:
 | ||
|                 pooling_type = gguf.PoolingType.CLS
 | ||
|             else:
 | ||
|                 raise NotImplementedError("Only MEAN and CLS pooling types supported")
 | ||
|             self.gguf_writer.add_pooling_type(pooling_type)
 | ||
| 
 | ||
|     def set_vocab(self):
 | ||
|         tokens, toktypes, tokpre = self.get_vocab_base()
 | ||
|         self.vocab_size = len(tokens)
 | ||
| 
 | ||
|         # we need this to validate the size of the token_type embeddings
 | ||
|         # though currently we are passing all zeros to the token_type embeddings
 | ||
|         self.gguf_writer.add_token_type_count(2)  # "Sequence A" or "Sequence B"
 | ||
| 
 | ||
|         # convert to phantom space vocab
 | ||
|         def phantom(tok):
 | ||
|             if tok.startswith("[") and tok.endswith("]"):
 | ||
|                 return tok
 | ||
|             if tok.startswith("##"):
 | ||
|                 return tok[2:]
 | ||
|             return "\u2581" + tok
 | ||
|         tokens = list(map(phantom, tokens))
 | ||
| 
 | ||
|         # add vocab to gguf
 | ||
|         self.gguf_writer.add_tokenizer_model("bert")
 | ||
|         self.gguf_writer.add_tokenizer_pre(tokpre)
 | ||
|         self.gguf_writer.add_token_list(tokens)
 | ||
|         self.gguf_writer.add_token_types(toktypes)
 | ||
| 
 | ||
|         # handle special tokens
 | ||
|         special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
 | ||
|         special_vocab.add_to_gguf(self.gguf_writer)
 | ||
| 
 | ||
|     def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
 | ||
|         del bid  # unused
 | ||
| 
 | ||
|         # we are only using BERT for embeddings so we don't need the pooling layer
 | ||
|         if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
 | ||
|             return [] # we don't need these
 | ||
| 
 | ||
|         return [(self.map_tensor_name(name), data_torch)]
 | ||
| 
 | ||
| 
 | ||
| @Model.register("NomicBertModel")
 | ||
| class NomicBertModel(BertModel):
 | ||
|     model_arch = gguf.MODEL_ARCH.NOMIC_BERT
 | ||
| 
 | ||
|     def __init__(self, *args, **kwargs):
 | ||
|         super().__init__(*args, **kwargs)
 | ||
| 
 | ||
|         # the HF config claims n_ctx=8192, but it uses RoPE scaling
 | ||
|         self.hparams["n_ctx"] = 2048
 | ||
| 
 | ||
|         # SwigLU activation
 | ||
|         assert self.hparams["activation_function"] == "swiglu"
 | ||
|         # this doesn't do anything in the HF version
 | ||
|         assert self.hparams["causal"] is False
 | ||
|         # no bias tensors
 | ||
|         assert self.hparams["qkv_proj_bias"] is False
 | ||
|         assert self.hparams["mlp_fc1_bias"] is False
 | ||
|         assert self.hparams["mlp_fc2_bias"] is False
 | ||
|         # norm at end of layer
 | ||
|         assert self.hparams["prenorm"] is False
 | ||
|         # standard RoPE
 | ||
|         assert self.hparams["rotary_emb_fraction"] == 1.0
 | ||
|         assert self.hparams["rotary_emb_interleaved"] is False
 | ||
|         assert self.hparams["rotary_emb_scale_base"] is None
 | ||
| 
 | ||
|     def set_gguf_parameters(self):
 | ||
|         super().set_gguf_parameters()
 | ||
|         self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
 | ||
| 
 | ||
| 
 | ||
| @Model.register("GemmaForCausalLM")
 | ||
| class GemmaModel(Model):
 | ||
|     model_arch = gguf.MODEL_ARCH.GEMMA
 | ||
| 
 | ||
|     def set_vocab(self):
 | ||
|         self._set_vocab_sentencepiece()
 | ||
| 
 | ||
|         # TODO: these special tokens should be exported only for the CodeGemma family
 | ||
|         special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
 | ||
|                                           special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
 | ||
|         special_vocab._set_special_token("prefix", 67)
 | ||
|         special_vocab._set_special_token("suffix", 69)
 | ||
|         special_vocab._set_special_token("middle", 68)
 | ||
|         special_vocab._set_special_token("fsep",   70)
 | ||
|         special_vocab._set_special_token("eot",    107)
 | ||
|         special_vocab.add_to_gguf(self.gguf_writer)
 | ||
| 
 | ||
|     def set_gguf_parameters(self):
 | ||
|         hparams = self.hparams
 | ||
|         block_count = hparams["num_hidden_layers"]
 | ||
| 
 | ||
|         self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
 | ||
|         self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
 | ||
|         self.gguf_writer.add_embedding_length(hparams["hidden_size"])
 | ||
|         self.gguf_writer.add_block_count(block_count)
 | ||
|         self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
 | ||
|         self.gguf_writer.add_head_count(hparams["num_attention_heads"])
 | ||
|         self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
 | ||
|         self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
 | ||
|         self.gguf_writer.add_key_length(hparams["head_dim"])
 | ||
|         self.gguf_writer.add_value_length(hparams["head_dim"])
 | ||
|         self.gguf_writer.add_file_type(self.ftype)
 | ||
| 
 | ||
|     def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
 | ||
|         del bid  # unused
 | ||
| 
 | ||
|         # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
 | ||
|         # To prevent errors, skip loading lm_head.weight.
 | ||
|         if name == "lm_head.weight":
 | ||
|             logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
 | ||
|             return []
 | ||
| 
 | ||
|         # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
 | ||
|         if name.endswith("norm.weight"):
 | ||
|             data_torch = data_torch + 1
 | ||
| 
 | ||
|         return [(self.map_tensor_name(name), data_torch)]
 | ||
| 
 | ||
| 
 | ||
| @Model.register("Starcoder2ForCausalLM")
 | ||
| class StarCoder2Model(Model):
 | ||
|     model_arch = gguf.MODEL_ARCH.STARCODER2
 | ||
| 
 | ||
| 
 | ||
| @Model.register("MambaForCausalLM", "MambaLMHeadModel")
 | ||
| class MambaModel(Model):
 | ||
|     model_arch = gguf.MODEL_ARCH.MAMBA
 | ||
| 
 | ||
|     def set_vocab(self):
 | ||
|         vocab_size = self.hparams["vocab_size"]
 | ||
|         # Round vocab size to next multiple of 8
 | ||
|         pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
 | ||
|         # pad using ceiling division
 | ||
|         # ref: https://stackoverflow.com/a/17511341/22827863
 | ||
|         vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
 | ||
|         self.hparams["vocab_size"] = vocab_size
 | ||
| 
 | ||
|         if (self.dir_model / "tokenizer.json").is_file():
 | ||
|             self._set_vocab_gpt2()
 | ||
|         elif (self.dir_model / "tokenizer.model").is_file():
 | ||
|             self._set_vocab_sentencepiece()
 | ||
|         else:
 | ||
|             # Use the GPT-NeoX tokenizer when no tokenizer files are present
 | ||
|             tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
 | ||
|             logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
 | ||
|             neox_reader = gguf.GGUFReader(tokenizer_path, "r")
 | ||
| 
 | ||
|             field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
 | ||
|             self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8") if field else "gpt2")
 | ||
| 
 | ||
|             field = neox_reader.get_field(gguf.Keys.Tokenizer.PRE)
 | ||
|             self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else "mpt")
 | ||
| 
 | ||
|             field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
 | ||
|             assert field
 | ||
|             self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
 | ||
| 
 | ||
|             field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
 | ||
|             assert field
 | ||
|             self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
 | ||
| 
 | ||
|             field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
 | ||
|             assert field
 | ||
|             self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
 | ||
| 
 | ||
|             field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
 | ||
|             self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0] if field else 1)
 | ||
| 
 | ||
|             field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
 | ||
|             self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0] if field else 0)
 | ||
| 
 | ||
|             field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
 | ||
|             self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0] if field else 0)
 | ||
| 
 | ||
|             field = neox_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)
 | ||
|             self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0] if field else 0)
 | ||
| 
 | ||
|     def set_gguf_parameters(self):
 | ||
|         d_model = self.find_hparam(["hidden_size",       "d_model"])
 | ||
|         d_conv  = self.find_hparam(["conv_kernel",       "d_conv"],  optional=True) or 4
 | ||
|         d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
 | ||
|         d_state = self.find_hparam(["state_size",        "d_state"], optional=True) or 16
 | ||
|         # ceiling division
 | ||
|         # ref: https://stackoverflow.com/a/17511341/22827863
 | ||
|         # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
 | ||
|         dt_rank      = self.find_hparam(["time_step_rank",     "dt_rank"],      optional=True) or -(d_model // -16)
 | ||
|         rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
 | ||
| 
 | ||
|         # Fail early for models which don't have a block expansion factor of 2
 | ||
|         assert d_inner == 2 * d_model
 | ||
| 
 | ||
|         self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
 | ||
|         self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
 | ||
|         self.gguf_writer.add_embedding_length(d_model)
 | ||
|         self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
 | ||
|         self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
 | ||
|         self.gguf_writer.add_block_count(self.hparams["n_layer"])
 | ||
|         self.gguf_writer.add_ssm_conv_kernel(d_conv)
 | ||
|         self.gguf_writer.add_ssm_inner_size(d_inner)
 | ||
|         self.gguf_writer.add_ssm_state_size(d_state)
 | ||
|         self.gguf_writer.add_ssm_time_step_rank(dt_rank)
 | ||
|         self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
 | ||
|         self.gguf_writer.add_file_type(self.ftype)
 | ||
| 
 | ||
|     _tok_embd = None
 | ||
| 
 | ||
|     def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
 | ||
|         del bid  # unused
 | ||
| 
 | ||
|         output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
 | ||
|         tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
 | ||
| 
 | ||
|         new_name = self.map_tensor_name(name)
 | ||
| 
 | ||
|         if name.endswith(".A_log"):
 | ||
|             logger.debug("A_log --> A ==> " + new_name)
 | ||
|             data_torch = -torch.exp(data_torch)
 | ||
| 
 | ||
|         # assuming token_embd.weight is seen before output.weight
 | ||
|         if self._tok_embd is not None and new_name == output_name:
 | ||
|             if torch.equal(self._tok_embd, data_torch):
 | ||
|                 logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
 | ||
|                 return []
 | ||
|         elif new_name == tok_embd_name:
 | ||
|             self._tok_embd = data_torch
 | ||
| 
 | ||
|         return [(new_name, data_torch)]
 | ||
| 
 | ||
|     def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
 | ||
|         del n_dims  # unused
 | ||
| 
 | ||
|         return bid is not None and new_name in (
 | ||
|             self.format_tensor_name(n, bid, ".weight" if name.endswith(".weight") else "") for n in [
 | ||
|                 gguf.MODEL_TENSOR.SSM_CONV1D,
 | ||
|                 gguf.MODEL_TENSOR.SSM_X,
 | ||
|                 gguf.MODEL_TENSOR.SSM_DT,
 | ||
|                 gguf.MODEL_TENSOR.SSM_A,
 | ||
|                 gguf.MODEL_TENSOR.SSM_D,
 | ||
|             ]
 | ||
|         )
 | ||
| 
 | ||
| 
 | ||
| @Model.register("CohereForCausalLM")
 | ||
| class CommandR2Model(Model):
 | ||
|     model_arch = gguf.MODEL_ARCH.COMMAND_R
 | ||
| 
 | ||
|     def __init__(self, *args, **kwargs):
 | ||
|         super().__init__(*args, **kwargs)
 | ||
| 
 | ||
|         # max_position_embeddings = 8192 in config.json but model was actually
 | ||
|         # trained on 128k context length
 | ||
|         # aya-23 models don't have model_max_length specified
 | ||
|         self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
 | ||
| 
 | ||
|     def set_gguf_parameters(self):
 | ||
|         super().set_gguf_parameters()
 | ||
|         self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
 | ||
|         self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
 | ||
| 
 | ||
| 
 | ||
| @Model.register("OlmoForCausalLM")
 | ||
| @Model.register("OLMoForCausalLM")
 | ||
| class OlmoModel(Model):
 | ||
|     model_arch = gguf.MODEL_ARCH.OLMO
 | ||
| 
 | ||
|     def set_gguf_parameters(self):
 | ||
|         super().set_gguf_parameters()
 | ||
|         self.gguf_writer.add_layer_norm_eps(1e-5)
 | ||
|         clip_qkv = self.hparams.get("clip_qkv")
 | ||
|         if clip_qkv is not None:
 | ||
|             self.gguf_writer.add_clamp_kqv(clip_qkv)
 | ||
| 
 | ||
|     # Same as super class, but permuting q_proj, k_proj
 | ||
|     # Copied from: LlamaModel
 | ||
|     def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
 | ||
|         del bid  # unused
 | ||
| 
 | ||
|         n_head = self.hparams["num_attention_heads"]
 | ||
|         n_kv_head = self.hparams.get("num_key_value_heads")
 | ||
| 
 | ||
|         if name.endswith("q_proj.weight"):
 | ||
|             data_torch = LlamaModel.permute(data_torch, n_head, n_head)
 | ||
|         if name.endswith("k_proj.weight"):
 | ||
|             data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
 | ||
| 
 | ||
|         return [(self.map_tensor_name(name), data_torch)]
 | ||
| 
 | ||
| 
 | ||
| @Model.register("JinaBertModel", "JinaBertForMaskedLM")
 | ||
| class JinaBertV2Model(BertModel):
 | ||
|     model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
 | ||
| 
 | ||
|     def __init__(self, *args, **kwargs):
 | ||
|         super().__init__(*args, **kwargs)
 | ||
|         self.intermediate_size = self.hparams["intermediate_size"]
 | ||
| 
 | ||
|     def get_tensors(self):
 | ||
|         for name, data in super().get_tensors():
 | ||
|             if 'gated_layer' in name:
 | ||
|                 d1 = data[:self.intermediate_size, :]
 | ||
|                 name1 = name.replace('gated_layers', 'gated_layers_w')
 | ||
|                 name1 = name1.replace('up_gated_layer', 'gated_layers_v')
 | ||
|                 d2 = data[self.intermediate_size:, :]
 | ||
|                 name2 = name.replace('gated_layers', 'gated_layers_v')
 | ||
|                 name2 = name2.replace('up_gated_layer', 'gated_layers_w')
 | ||
|                 yield name1, d1
 | ||
|                 yield name2, d2
 | ||
|                 continue
 | ||
| 
 | ||
|             yield name, data
 | ||
| 
 | ||
|     def set_vocab(self, *args, **kwargs):
 | ||
|         tokenizer_class = 'BertTokenizer'
 | ||
|         with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
 | ||
|             tokenizer_class = json.load(f)['tokenizer_class']
 | ||
| 
 | ||
|         if tokenizer_class == 'BertTokenizer':
 | ||
|             super().set_vocab()
 | ||
|         elif tokenizer_class == 'RobertaTokenizer':
 | ||
|             self._set_vocab_gpt2()
 | ||
|             self.gguf_writer.add_token_type_count(2)
 | ||
|         else:
 | ||
|             raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
 | ||
|         self.gguf_writer.add_add_bos_token(True)
 | ||
|         self.gguf_writer.add_add_eos_token(True)
 | ||
| 
 | ||
| 
 | ||
| @Model.register("ArcticForCausalLM")
 | ||
| class ArcticModel(Model):
 | ||
|     model_arch = gguf.MODEL_ARCH.ARCTIC
 | ||
| 
 | ||
|     def set_vocab(self):
 | ||
|         # The reason for using a custom implementation here is that the
 | ||
|         # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
 | ||
|         # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
 | ||
|         from sentencepiece import SentencePieceProcessor
 | ||
| 
 | ||
|         tokenizer_path = self.dir_model / 'tokenizer.model'
 | ||
| 
 | ||
|         if not tokenizer_path.is_file():
 | ||
|             logger.error(f'Error: Missing {tokenizer_path}')
 | ||
|             sys.exit(1)
 | ||
| 
 | ||
|         # Read the whole vocabulary from the tokenizer.model file
 | ||
|         tokenizer = SentencePieceProcessor()
 | ||
|         tokenizer.LoadFromFile(str(tokenizer_path))
 | ||
| 
 | ||
|         vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
 | ||
| 
 | ||
|         tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
 | ||
|         scores: list[float] = [-10000.0] * vocab_size
 | ||
|         toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
 | ||
| 
 | ||
|         for token_id in range(tokenizer.vocab_size()):
 | ||
| 
 | ||
|             piece = tokenizer.IdToPiece(token_id)
 | ||
|             text = piece.encode("utf-8")
 | ||
|             score = tokenizer.GetScore(token_id)
 | ||
| 
 | ||
|             toktype = SentencePieceTokenTypes.NORMAL
 | ||
|             if tokenizer.IsUnknown(token_id):
 | ||
|                 toktype = SentencePieceTokenTypes.UNKNOWN
 | ||
|             elif tokenizer.IsControl(token_id):
 | ||
|                 toktype = SentencePieceTokenTypes.CONTROL
 | ||
|             elif tokenizer.IsUnused(token_id):
 | ||
|                 toktype = SentencePieceTokenTypes.UNUSED
 | ||
|             elif tokenizer.IsByte(token_id):
 | ||
|                 toktype = SentencePieceTokenTypes.BYTE
 | ||
| 
 | ||
|             tokens[token_id] = text
 | ||
|             scores[token_id] = score
 | ||
|             toktypes[token_id] = toktype
 | ||
| 
 | ||
|         # Use the added_tokens_decoder field from tokeniser_config.json as the source
 | ||
|         # of information about added/redefined tokens and modify them accordingly.
 | ||
|         tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
 | ||
|         if tokenizer_config_file.is_file():
 | ||
|             with open(tokenizer_config_file, "r", encoding="utf-8") as f:
 | ||
|                 tokenizer_config_json = json.load(f)
 | ||
| 
 | ||
|                 if "added_tokens_decoder" in tokenizer_config_json:
 | ||
|                     added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
 | ||
|                     for token_id, token_json in added_tokens_decoder.items():
 | ||
|                         token_id = int(token_id)
 | ||
|                         if (token_id >= vocab_size):
 | ||
|                             logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
 | ||
|                             continue
 | ||
| 
 | ||
|                         token_content = token_json["content"]
 | ||
|                         token_type = SentencePieceTokenTypes.USER_DEFINED
 | ||
|                         token_score = -10000.0
 | ||
| 
 | ||
|                         # Map unk_token to UNKNOWN, other special tokens to CONTROL
 | ||
|                         # Set the score to 0.0 as in the original tokenizer.model
 | ||
|                         if ("special" in token_json) and token_json["special"]:
 | ||
|                             if token_content == tokenizer_config_json["unk_token"]:
 | ||
|                                 token_type = SentencePieceTokenTypes.UNKNOWN
 | ||
|                             else:
 | ||
|                                 token_type = SentencePieceTokenTypes.CONTROL
 | ||
|                             token_score = 0.0
 | ||
| 
 | ||
|                         logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
 | ||
|                         tokens[token_id] = token_content.encode("utf-8")
 | ||
|                         toktypes[token_id] = token_type
 | ||
|                         scores[token_id] = token_score
 | ||
| 
 | ||
|         self.gguf_writer.add_tokenizer_model("llama")
 | ||
|         self.gguf_writer.add_tokenizer_pre("default")
 | ||
|         self.gguf_writer.add_token_list(tokens)
 | ||
|         self.gguf_writer.add_token_scores(scores)
 | ||
|         self.gguf_writer.add_token_types(toktypes)
 | ||
| 
 | ||
|         special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
 | ||
|         special_vocab.add_to_gguf(self.gguf_writer)
 | ||
| 
 | ||
|     def set_gguf_parameters(self):
 | ||
|         super().set_gguf_parameters()
 | ||
|         hparams = self.hparams
 | ||
|         self.gguf_writer.add_vocab_size(hparams["vocab_size"])
 | ||
|         self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
 | ||
| 
 | ||
|     _experts: list[dict[str, Tensor]] | None = None
 | ||
| 
 | ||
|     def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
 | ||
|         n_head = self.hparams["num_attention_heads"]
 | ||
|         n_kv_head = self.hparams.get("num_key_value_heads")
 | ||
| 
 | ||
|         if name.endswith("q_proj.weight"):
 | ||
|             data_torch = LlamaModel.permute(data_torch, n_head, n_head)
 | ||
|         if name.endswith("k_proj.weight"):
 | ||
|             data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
 | ||
| 
 | ||
|         # process the experts separately
 | ||
|         if name.find("block_sparse_moe.experts") != -1:
 | ||
|             n_experts = self.hparams["num_local_experts"]
 | ||
| 
 | ||
|             assert bid is not None
 | ||
| 
 | ||
|             if self._experts is None:
 | ||
|                 self._experts = [{} for _ in range(self.block_count)]
 | ||
| 
 | ||
|             self._experts[bid][name] = data_torch
 | ||
| 
 | ||
|             if len(self._experts[bid]) >= n_experts * 3:
 | ||
|                 tensors: list[tuple[str, Tensor]] = []
 | ||
| 
 | ||
|                 # merge the experts into a single 3d tensor
 | ||
|                 for wid in ["w1", "w2", "w3"]:
 | ||
|                     datas: list[Tensor] = []
 | ||
| 
 | ||
|                     for xid in range(n_experts):
 | ||
|                         ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
 | ||
|                         datas.append(self._experts[bid][ename])
 | ||
|                         del self._experts[bid][ename]
 | ||
| 
 | ||
|                     data_torch = torch.stack(datas, dim=0)
 | ||
| 
 | ||
|                     merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
 | ||
| 
 | ||
|                     new_name = self.map_tensor_name(merged_name)
 | ||
| 
 | ||
|                     tensors.append((new_name, data_torch))
 | ||
|                 return tensors
 | ||
|             else:
 | ||
|                 return []
 | ||
| 
 | ||
|         return [(self.map_tensor_name(name), data_torch)]
 | ||
| 
 | ||
|     def write_tensors(self):
 | ||
|         super().write_tensors()
 | ||
| 
 | ||
|         if self._experts is not None:
 | ||
|             # flatten `list[dict[str, Tensor]]` into `list[str]`
 | ||
|             experts = [k for d in self._experts for k in d.keys()]
 | ||
|             if len(experts) > 0:
 | ||
|                 raise ValueError(f"Unprocessed experts: {experts}")
 | ||
| 
 | ||
| 
 | ||
| @Model.register("DeepseekV2ForCausalLM")
 | ||
| class DeepseekV2Model(Model):
 | ||
|     model_arch = gguf.MODEL_ARCH.DEEPSEEK2
 | ||
| 
 | ||
|     def set_vocab(self):
 | ||
|         self._set_vocab_gpt2()
 | ||
| 
 | ||
|     def set_gguf_parameters(self):
 | ||
|         super().set_gguf_parameters()
 | ||
|         hparams = self.hparams
 | ||
| 
 | ||
|         self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
 | ||
|         self.gguf_writer.add_vocab_size(hparams["vocab_size"])
 | ||
|         if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
 | ||
|             self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
 | ||
|         self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
 | ||
|         self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
 | ||
|         self.gguf_writer.add_value_length(hparams["v_head_dim"])
 | ||
|         self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
 | ||
|         self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
 | ||
|         self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
 | ||
|         self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
 | ||
|         self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
 | ||
| 
 | ||
|         if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
 | ||
|             if self.hparams["rope_scaling"].get("type") == "yarn":
 | ||
|                 self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
 | ||
|                 self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
 | ||
|                 self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
 | ||
|                 self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
 | ||
| 
 | ||
|     _experts: list[dict[str, Tensor]] | None = None
 | ||
| 
 | ||
|     def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
 | ||
|         # process the experts separately
 | ||
|         if name.find("mlp.experts") != -1:
 | ||
|             n_experts = self.hparams["n_routed_experts"]
 | ||
|             assert bid is not None
 | ||
| 
 | ||
|             if self._experts is None:
 | ||
|                 self._experts = [{} for _ in range(self.block_count)]
 | ||
| 
 | ||
|             self._experts[bid][name] = data_torch
 | ||
| 
 | ||
|             if len(self._experts[bid]) >= n_experts * 3:
 | ||
|                 tensors: list[tuple[str, Tensor]] = []
 | ||
| 
 | ||
|                 # merge the experts into a single 3d tensor
 | ||
|                 for w_name in ["down_proj", "gate_proj", "up_proj"]:
 | ||
|                     datas: list[Tensor] = []
 | ||
| 
 | ||
|                     for xid in range(n_experts):
 | ||
|                         ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
 | ||
|                         datas.append(self._experts[bid][ename])
 | ||
|                         del self._experts[bid][ename]
 | ||
| 
 | ||
|                     data_torch = torch.stack(datas, dim=0)
 | ||
| 
 | ||
|                     merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
 | ||
| 
 | ||
|                     new_name = self.map_tensor_name(merged_name)
 | ||
| 
 | ||
|                     tensors.append((new_name, data_torch))
 | ||
|                 return tensors
 | ||
|             else:
 | ||
|                 return []
 | ||
| 
 | ||
|         return [(self.map_tensor_name(name), data_torch)]
 | ||
| 
 | ||
|     def write_tensors(self):
 | ||
|         super().write_tensors()
 | ||
| 
 | ||
|         if self._experts is not None:
 | ||
|             # flatten `list[dict[str, Tensor]]` into `list[str]`
 | ||
|             experts = [k for d in self._experts for k in d.keys()]
 | ||
|             if len(experts) > 0:
 | ||
|                 raise ValueError(f"Unprocessed experts: {experts}")
 | ||
| 
 | ||
| 
 | ||
| ###### CONVERSION LOGIC ######
 | ||
| 
 | ||
| 
 | ||
| # tree of lazy tensors
 | ||
| class LazyTorchTensor(gguf.LazyBase):
 | ||
|     _tensor_type = torch.Tensor
 | ||
|     # to keep the type-checker happy
 | ||
|     dtype: torch.dtype
 | ||
|     shape: torch.Size
 | ||
| 
 | ||
|     # only used when converting a torch.Tensor to a np.ndarray
 | ||
|     _dtype_map: dict[torch.dtype, type] = {
 | ||
|         torch.float16: np.float16,
 | ||
|         torch.float32: np.float32,
 | ||
|     }
 | ||
| 
 | ||
|     def numpy(self) -> gguf.LazyNumpyTensor:
 | ||
|         dtype = self._dtype_map[self.dtype]
 | ||
|         return gguf.LazyNumpyTensor(
 | ||
|             meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
 | ||
|             lazy=self._lazy,
 | ||
|             args=(self,),
 | ||
|             func=(lambda s: s[0].numpy())
 | ||
|         )
 | ||
| 
 | ||
|     @classmethod
 | ||
|     def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: torch.Size) -> Tensor:
 | ||
|         return torch.empty(size=shape, dtype=dtype, device="meta")
 | ||
| 
 | ||
|     @classmethod
 | ||
|     def __torch_function__(cls, func, types, args=(), kwargs=None):
 | ||
|         del types  # unused
 | ||
| 
 | ||
|         if kwargs is None:
 | ||
|             kwargs = {}
 | ||
| 
 | ||
|         if func is torch.Tensor.numpy:
 | ||
|             return args[0].numpy()
 | ||
| 
 | ||
|         return LazyTorchTensor._wrap_fn(func)(*args, **kwargs)
 | ||
| 
 | ||
| 
 | ||
| def parse_args() -> argparse.Namespace:
 | ||
|     parser = argparse.ArgumentParser(
 | ||
|         description="Convert a huggingface model to a GGML compatible file")
 | ||
|     parser.add_argument(
 | ||
|         "--vocab-only", action="store_true",
 | ||
|         help="extract only the vocab",
 | ||
|     )
 | ||
|     parser.add_argument(
 | ||
|         "--awq-path", type=Path, default=None,
 | ||
|         help="Path to scale awq cache file",
 | ||
|     )
 | ||
|     parser.add_argument(
 | ||
|         "--outfile", type=Path,
 | ||
|         help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
 | ||
|     )
 | ||
|     parser.add_argument(
 | ||
|         "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
 | ||
|         help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
 | ||
|     )
 | ||
|     parser.add_argument(
 | ||
|         "--bigendian", action="store_true",
 | ||
|         help="model is executed on big endian machine",
 | ||
|     )
 | ||
|     parser.add_argument(
 | ||
|         "model", type=Path,
 | ||
|         help="directory containing model file",
 | ||
|     )
 | ||
|     parser.add_argument(
 | ||
|         "--use-temp-file", action="store_true",
 | ||
|         help="use the tempfile library while processing (helpful when running out of memory, process killed)",
 | ||
|     )
 | ||
|     parser.add_argument(
 | ||
|         "--no-lazy", action="store_true",
 | ||
|         help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
 | ||
|     )
 | ||
|     parser.add_argument(
 | ||
|         "--model-name", type=str, default=None,
 | ||
|         help="name of the model",
 | ||
|     )
 | ||
|     parser.add_argument(
 | ||
|         "--verbose", action="store_true",
 | ||
|         help="increase output verbosity",
 | ||
|     )
 | ||
| 
 | ||
|     return parser.parse_args()
 | ||
| 
 | ||
| 
 | ||
| def main() -> None:
 | ||
|     args = parse_args()
 | ||
| 
 | ||
|     logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
 | ||
| 
 | ||
|     dir_model = args.model
 | ||
| 
 | ||
|     if args.awq_path:
 | ||
|         sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
 | ||
|         from awq.apply_awq import add_scale_weights  # type: ignore[import-not-found]
 | ||
|         tmp_model_path = args.model / "weighted_model"
 | ||
|         dir_model = tmp_model_path
 | ||
|         if tmp_model_path.is_dir():
 | ||
|             logger.info(f"{tmp_model_path} exists as a weighted model.")
 | ||
|         else:
 | ||
|             tmp_model_path.mkdir(parents=True, exist_ok=True)
 | ||
|             logger.info("Saving new weighted model ...")
 | ||
|             add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
 | ||
|             logger.info(f"Saved weighted model at {tmp_model_path}.")
 | ||
| 
 | ||
|     if not dir_model.is_dir():
 | ||
|         logger.error(f'Error: {args.model} is not a directory')
 | ||
|         sys.exit(1)
 | ||
| 
 | ||
|     ftype_map: dict[str, gguf.LlamaFileType] = {
 | ||
|         "f32": gguf.LlamaFileType.ALL_F32,
 | ||
|         "f16": gguf.LlamaFileType.MOSTLY_F16,
 | ||
|         "bf16": gguf.LlamaFileType.MOSTLY_BF16,
 | ||
|         "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
 | ||
|         "auto": gguf.LlamaFileType.GUESSED,
 | ||
|     }
 | ||
| 
 | ||
|     if args.outfile is not None:
 | ||
|         fname_out = args.outfile
 | ||
|     else:
 | ||
|         # output in the same directory as the model by default
 | ||
|         fname_out = dir_model / 'ggml-model-{ftype}.gguf'
 | ||
| 
 | ||
|     logger.info(f"Loading model: {dir_model.name}")
 | ||
| 
 | ||
|     hparams = Model.load_hparams(dir_model)
 | ||
| 
 | ||
|     with torch.inference_mode():
 | ||
|         try:
 | ||
|             model_class = Model.from_model_architecture(hparams["architectures"][0])
 | ||
|         except NotImplementedError:
 | ||
|             logger.error(f"Model {hparams['architectures'][0]} is not supported")
 | ||
|             sys.exit(1)
 | ||
| 
 | ||
|         model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file, args.no_lazy, args.model_name)
 | ||
| 
 | ||
|         logger.info("Set model parameters")
 | ||
|         model_instance.set_gguf_parameters()
 | ||
| 
 | ||
|         logger.info("Set model tokenizer")
 | ||
|         model_instance.set_vocab()
 | ||
| 
 | ||
|         model_instance.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
 | ||
| 
 | ||
|         if args.vocab_only:
 | ||
|             logger.info(f"Exporting model vocab to '{model_instance.fname_out}'")
 | ||
|             model_instance.write_vocab()
 | ||
|         else:
 | ||
|             logger.info(f"Exporting model to '{model_instance.fname_out}'")
 | ||
|             model_instance.write()
 | ||
| 
 | ||
|         logger.info(f"Model successfully exported to '{model_instance.fname_out}'")
 | ||
| 
 | ||
| 
 | ||
| if __name__ == '__main__':
 | ||
|     main()
 |