mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	This was broken by commit e36ecdcc ("build : on Mac OS enable Metal by
default (#2901)").
		
	
		
			
				
	
	
		
			105 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			105 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "common.h"
 | 
						|
#include "llama.h"
 | 
						|
#include "build-info.h"
 | 
						|
 | 
						|
#include <ctime>
 | 
						|
 | 
						|
#if defined(_MSC_VER)
 | 
						|
#pragma warning(disable: 4244 4267) // possible loss of data
 | 
						|
#endif
 | 
						|
 | 
						|
int main(int argc, char ** argv) {
 | 
						|
    gpt_params params;
 | 
						|
 | 
						|
    if (!gpt_params_parse(argc, argv, params)) {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    params.embedding = true;
 | 
						|
 | 
						|
    fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
 | 
						|
 | 
						|
    if (params.seed == LLAMA_DEFAULT_SEED) {
 | 
						|
        params.seed = time(NULL);
 | 
						|
    }
 | 
						|
 | 
						|
    fprintf(stderr, "%s: seed  = %u\n", __func__, params.seed);
 | 
						|
 | 
						|
    std::mt19937 rng(params.seed);
 | 
						|
    if (params.random_prompt) {
 | 
						|
        params.prompt = gpt_random_prompt(rng);
 | 
						|
    }
 | 
						|
 | 
						|
    llama_backend_init(params.numa);
 | 
						|
 | 
						|
    llama_model * model;
 | 
						|
    llama_context * ctx;
 | 
						|
 | 
						|
    // load the model
 | 
						|
    std::tie(model, ctx) = llama_init_from_gpt_params(params);
 | 
						|
    if (model == NULL) {
 | 
						|
        fprintf(stderr, "%s: error: unable to load model\n", __func__);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    const int n_ctx_train = llama_n_ctx_train(ctx);
 | 
						|
    if (params.n_ctx > n_ctx_train) {
 | 
						|
        fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
 | 
						|
                __func__, n_ctx_train, params.n_ctx);
 | 
						|
    }
 | 
						|
 | 
						|
    // print system information
 | 
						|
    {
 | 
						|
        fprintf(stderr, "\n");
 | 
						|
        fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
 | 
						|
                params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
 | 
						|
    }
 | 
						|
 | 
						|
    int n_past = 0;
 | 
						|
 | 
						|
    // tokenize the prompt
 | 
						|
    auto embd_inp = ::llama_tokenize(ctx, params.prompt, true);
 | 
						|
 | 
						|
    if (params.verbose_prompt) {
 | 
						|
        fprintf(stderr, "\n");
 | 
						|
        fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
 | 
						|
        fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
 | 
						|
        for (int i = 0; i < (int) embd_inp.size(); i++) {
 | 
						|
            fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
 | 
						|
        }
 | 
						|
        fprintf(stderr, "\n");
 | 
						|
    }
 | 
						|
 | 
						|
    if (embd_inp.size() > (size_t)params.n_ctx) {
 | 
						|
        fprintf(stderr, "%s: error: prompt is longer than the context window (%zu tokens, n_ctx = %d)\n",
 | 
						|
                __func__, embd_inp.size(), params.n_ctx);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    while (!embd_inp.empty()) {
 | 
						|
        int n_tokens = std::min(params.n_batch, (int) embd_inp.size());
 | 
						|
        if (llama_eval(ctx, embd_inp.data(), n_tokens, n_past, params.n_threads)) {
 | 
						|
            fprintf(stderr, "%s : failed to eval\n", __func__);
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
        n_past += n_tokens;
 | 
						|
        embd_inp.erase(embd_inp.begin(), embd_inp.begin() + n_tokens);
 | 
						|
    }
 | 
						|
 | 
						|
    const int n_embd = llama_n_embd(ctx);
 | 
						|
    const auto embeddings = llama_get_embeddings(ctx);
 | 
						|
 | 
						|
    for (int i = 0; i < n_embd; i++) {
 | 
						|
        printf("%f ", embeddings[i]);
 | 
						|
    }
 | 
						|
    printf("\n");
 | 
						|
 | 
						|
    llama_print_timings(ctx);
 | 
						|
    llama_free(ctx);
 | 
						|
    llama_free_model(model);
 | 
						|
 | 
						|
    llama_backend_free();
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 |