mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 777f42ba18
			
		
	
	777f42ba18
	
	
	
		
			
			* Improve UNK, BOS, EOS token handling when converting without metadata. * Allow importing as a module. * Remove some obsolete code and minor cleanups. * Set default UNK token mapping from -1 to 0 in llama.cpp * Try to handle overflow due to buggy Windows Python with a better error message
		
			
				
	
	
		
			351 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			351 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import sys, struct, math, argparse, warnings
 | |
| from pathlib import Path
 | |
| 
 | |
| import numpy as np
 | |
| 
 | |
| import gguf
 | |
| 
 | |
| warnings.filterwarnings('error')
 | |
| 
 | |
| # Note: Does not support GGML_QKK_64
 | |
| QK_K = 256
 | |
| # Items here are (block size, type size)
 | |
| GGML_QUANT_SIZES = {
 | |
|     gguf.GGMLQuantizationType.F32  : (1, 4),
 | |
|     gguf.GGMLQuantizationType.F16  : (1, 2),
 | |
|     gguf.GGMLQuantizationType.Q4_0 : (32, 2 + 16),
 | |
|     gguf.GGMLQuantizationType.Q4_1 : (32, 2 + 2 + 16),
 | |
|     gguf.GGMLQuantizationType.Q5_0 : (32, 2 + 4 + 16),
 | |
|     gguf.GGMLQuantizationType.Q5_1 : (32, 2 + 2 + 4 + 16),
 | |
|     gguf.GGMLQuantizationType.Q8_0 : (32, 2 + 32),
 | |
|     gguf.GGMLQuantizationType.Q8_1 : (32, 4 + 4 + 32),
 | |
|     gguf.GGMLQuantizationType.Q2_K : (256, 2 + 2 + QK_K // 16 + QK_K // 4),
 | |
|     gguf.GGMLQuantizationType.Q3_K : (256, 2 + QK_K // 4 + QK_K // 8 + 12),
 | |
|     gguf.GGMLQuantizationType.Q4_K : (256, 2 + 2 + QK_K // 2 + 12),
 | |
|     gguf.GGMLQuantizationType.Q5_K : (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
 | |
|     gguf.GGMLQuantizationType.Q6_K : (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
 | |
|     gguf.GGMLQuantizationType.Q8_K : (256, 4 + QK_K + QK_K // 8),
 | |
| }
 | |
| 
 | |
| class Hyperparameters:
 | |
|     def __init__(self):
 | |
|         self.n_vocab = self.n_embd = self.n_mult = self.n_head = self.n_layer = self.n_rot = self.ftype = 0
 | |
|         self.n_ff = 0
 | |
| 
 | |
|     def set_n_ff(self, model):
 | |
|         ff_tensor_idx = model.tensor_map.get(b'layers.0.feed_forward.w1.weight')
 | |
|         assert ff_tensor_idx is not None, 'Missing layer 0 FF tensor'
 | |
|         ff_tensor = model.tensors[ff_tensor_idx]
 | |
|         self.n_ff = ff_tensor.dims[1]
 | |
| 
 | |
|     def load(self, data, offset):
 | |
|         (
 | |
|             self.n_vocab,
 | |
|             self.n_embd,
 | |
|             self.n_mult,
 | |
|             self.n_head,
 | |
|             self.n_layer,
 | |
|             self.n_rot,
 | |
|             self.ftype,
 | |
|         ) = struct.unpack('<7I', data[offset:offset + (4 * 7)])
 | |
|         return 4 * 7
 | |
| 
 | |
|     def __str__(self):
 | |
|         return f'<Hyperparameters: n_vocab={self.n_vocab}, n_embd={self.n_embd}, n_mult={self.n_mult}, n_head={self.n_head}, n_layer={self.n_layer}, n_rot={self.n_rot}, n_ff={self.n_ff}, ftype={self.ftype}>'
 | |
| 
 | |
| class Vocab:
 | |
|     def __init__(self):
 | |
|         self.items = []
 | |
| 
 | |
|     def load(self, data, offset, n_vocab):
 | |
|         orig_offset = offset
 | |
|         for _ in range(n_vocab):
 | |
|             itemlen = struct.unpack('<I', data[offset:offset + 4])[0]
 | |
|             assert itemlen < 4096, 'Absurd vocab item length'
 | |
|             offset += 4
 | |
|             vocab = bytes(data[offset:offset + itemlen])
 | |
|             offset += itemlen
 | |
|             score = struct.unpack('<f', data[offset:offset + 4])[0]
 | |
|             offset += 4
 | |
|             self.items.append((vocab, score))
 | |
|         return offset - orig_offset
 | |
| 
 | |
| class Tensor:
 | |
|     def __init__(self):
 | |
|         self.name = None
 | |
|         self.dims = ()
 | |
|         self.dtype = None
 | |
|         self.start_offset = 0
 | |
|         self.len_bytes = 0
 | |
| 
 | |
|     def load(self, data, offset):
 | |
|         orig_offset = offset
 | |
|         (n_dims, name_len, dtype) = struct.unpack('<3I', data[offset:offset + 12])
 | |
|         assert n_dims >= 0 and n_dims <= 4, f'Invalid tensor dimensions {n_dims}'
 | |
|         assert name_len < 4096, 'Absurd tensor name length'
 | |
|         quant = GGML_QUANT_SIZES.get(dtype)
 | |
|         assert quant is not None, 'Unknown tensor type'
 | |
|         (blksize, tysize) = quant
 | |
|         offset += 12
 | |
|         self.dtype= dtype
 | |
|         self.dims = struct.unpack(f'<{n_dims}I', data[offset:offset + (4 * n_dims)])
 | |
|         offset += 4 * n_dims
 | |
|         self.name = bytes(data[offset:offset + name_len])
 | |
|         offset += name_len
 | |
|         pad = ((offset + 31) & ~31) - offset
 | |
|         offset += pad
 | |
|         n_elems = np.prod(self.dims)
 | |
|         n_bytes = (n_elems * tysize) // blksize
 | |
|         self.start_offset = offset
 | |
|         self.len_bytes = n_bytes
 | |
|         offset += n_bytes
 | |
|         # print(n_dims, name_len, dtype, self.dims, self.name, pad)
 | |
|         return offset - orig_offset
 | |
| 
 | |
| class GGMLV3Model:
 | |
|     def __init__(self):
 | |
|         self.hyperparameters = None
 | |
|         self.vocab = None
 | |
|         self.tensor_map = {}
 | |
|         self.tensors = []
 | |
| 
 | |
|     def validate_header(self, data, offset):
 | |
|         if bytes(data[offset:offset + 4]) != b'tjgg' or struct.unpack('<I', data[offset + 4:offset + 8])[0] != 3:
 | |
|             raise ValueError('Only GGJTv3 supported')
 | |
|         return 8
 | |
| 
 | |
|     def load(self, data, offset):
 | |
|         offset += self.validate_header(data, offset)
 | |
|         hp = Hyperparameters()
 | |
|         offset += hp.load(data, offset)
 | |
|         vocab = Vocab()
 | |
|         offset += vocab.load(data, offset, hp.n_vocab)
 | |
|         tensors = []
 | |
|         tensor_map = {}
 | |
|         while offset < len(data):
 | |
|             tensor = Tensor()
 | |
|             offset += tensor.load(data, offset)
 | |
|             tensor_map[tensor.name] = len(tensors)
 | |
|             tensors.append(tensor)
 | |
|         self.hyperparameters = hp
 | |
|         self.vocab = vocab
 | |
|         self.tensors = tensors
 | |
|         self.tensor_map = tensor_map
 | |
|         hp.set_n_ff(self)
 | |
|         return offset
 | |
| 
 | |
| class GGMLToGGUF:
 | |
|     def __init__(self, ggml_model, data, cfg, params_override = None, vocab_override = None):
 | |
|         hp = ggml_model.hyperparameters
 | |
|         self.model = ggml_model
 | |
|         self.data = data
 | |
|         self.cfg = cfg
 | |
|         self.params_override = params_override
 | |
|         self.vocab_override = vocab_override
 | |
|         if params_override is not None:
 | |
|             n_kv_head = params_override.n_head_kv
 | |
|         else:
 | |
|             if cfg.gqa == 1:
 | |
|                 n_kv_head = hp.n_head
 | |
|             else:
 | |
|                 gqa = float(cfg.gqa)
 | |
|                 n_kv_head = None
 | |
|                 for x in range(1, 256):
 | |
|                     if float(hp.n_head) / float(x) == gqa:
 | |
|                         n_kv_head = x
 | |
|                 assert n_kv_head is not None, "Couldn't determine n_kv_head from GQA param"
 | |
|                 print(f'- Guessed n_kv_head = {n_kv_head} based on GQA {cfg.gqa}')
 | |
|         self.n_kv_head = n_kv_head
 | |
|         self.name_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.LLAMA, ggml_model.hyperparameters.n_layer)
 | |
| 
 | |
|     def save(self):
 | |
|         print('* Preparing to save GGUF file')
 | |
|         gguf_writer = gguf.GGUFWriter(self.cfg.output, gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], use_temp_file = False)
 | |
|         self.add_params(gguf_writer)
 | |
|         self.add_vocab(gguf_writer)
 | |
|         self.add_tensors(gguf_writer)
 | |
|         print("    gguf: write header")
 | |
|         gguf_writer.write_header_to_file()
 | |
|         print("    gguf: write metadata")
 | |
|         gguf_writer.write_kv_data_to_file()
 | |
|         print("    gguf: write tensors")
 | |
|         gguf_writer.write_tensors_to_file()
 | |
|         gguf_writer.close()
 | |
| 
 | |
|     def add_params(self, gguf_writer):
 | |
|         hp = self.model.hyperparameters
 | |
|         cfg = self.cfg
 | |
|         desc = cfg.desc if cfg.desc is not None else 'converted from legacy GGJTv3 format'
 | |
|         try:
 | |
|             # Filenames aren't necessarily valid UTF8.
 | |
|             name = cfg.name if cfg.name is not None else cfg.input.name
 | |
|         except UnicodeDecodeError:
 | |
|             name = None
 | |
|         print('* Adding model parameters and KV items')
 | |
|         if name is not None:
 | |
|             gguf_writer.add_name(name)
 | |
|         gguf_writer.add_description(desc)
 | |
|         if self.params_override is not None:
 | |
|             po = self.params_override
 | |
|             assert po.n_embd == hp.n_embd, 'Model hyperparams mismatch'
 | |
|             assert po.n_layer == hp.n_layer, 'Model hyperparams mismatch'
 | |
|             assert po.n_head == hp.n_head, 'Model hyperparams mismatch'
 | |
|             gguf_writer.add_context_length      (po.n_ctx)
 | |
|             gguf_writer.add_embedding_length    (po.n_embd)
 | |
|             gguf_writer.add_block_count         (po.n_layer)
 | |
|             gguf_writer.add_feed_forward_length (po.n_ff)
 | |
|             gguf_writer.add_rope_dimension_count(po.n_embd // po.n_head)
 | |
|             gguf_writer.add_head_count          (po.n_head)
 | |
|             gguf_writer.add_head_count_kv       (po.n_head_kv)
 | |
|             gguf_writer.add_layer_norm_rms_eps  (po.f_norm_eps)
 | |
|             return
 | |
|         gguf_writer.add_context_length(cfg.context_length)
 | |
|         gguf_writer.add_embedding_length(hp.n_embd)
 | |
|         gguf_writer.add_block_count(hp.n_layer)
 | |
|         gguf_writer.add_feed_forward_length(hp.n_ff)
 | |
|         gguf_writer.add_rope_dimension_count(hp.n_embd // hp.n_head)
 | |
|         gguf_writer.add_head_count(hp.n_head)
 | |
|         gguf_writer.add_head_count_kv(self.n_kv_head)
 | |
|         gguf_writer.add_layer_norm_rms_eps(float(cfg.eps))
 | |
| 
 | |
|     def add_vocab(self, gguf_writer):
 | |
|         hp = self.model.hyperparameters
 | |
|         gguf_writer.add_tokenizer_model('llama')
 | |
|         tokens = []
 | |
|         scores = []
 | |
|         toktypes = []
 | |
|         if self.vocab_override is not None:
 | |
|             vo = self.vocab_override
 | |
|             print('* Adding vocab item(s)')
 | |
|             for (idx, (vbytes, score, ttype)) in enumerate(vo.all_tokens()):
 | |
|                 tokens.append(vbytes)
 | |
|                 scores.append(score)
 | |
|                 toktypes.append(ttype)
 | |
|             assert len(tokens) == hp.n_vocab, f'Override vocab has a different number of items than hyperparameters - override = {len(tokens)} but n_vocab={hp.n_vocab}'
 | |
|             gguf_writer.add_token_list(tokens)
 | |
|             gguf_writer.add_token_scores(scores)
 | |
|             if len(toktypes) > 0:
 | |
|                 gguf_writer.add_token_types(toktypes)
 | |
|             return
 | |
|         print(f'* Adding {hp.n_vocab} vocab item(s)')
 | |
|         assert len(self.model.vocab.items) >= 3, 'Cannot handle unexpectedly short model vocab'
 | |
|         for (tokid, (vbytes, vscore)) in enumerate(self.model.vocab.items):
 | |
|             tt = 1 # Normal
 | |
|             # Special handling for UNK, BOS, EOS tokens.
 | |
|             if tokid <= 2:
 | |
|                 if tokid == 0:
 | |
|                     vbytes = b'<unk>'
 | |
|                     tt = 2
 | |
|                 elif tokid == 1:
 | |
|                     vbytes = b'<s>'
 | |
|                     tt = 3
 | |
|                 else:
 | |
|                     vbytes = b'</s>'
 | |
|                     tt = 3
 | |
|             elif len(vbytes) == 0:
 | |
|                 tt = 3 # Control
 | |
|             elif tokid >= 3 and tokid <= 258 and len(vbytes) == 1:
 | |
|                 vbytes = bytes(f'<0x{vbytes[0]:02X}>', encoding = 'UTF-8')
 | |
|                 tt = 6 # Byte
 | |
|             else:
 | |
|                 vbytes = vbytes.replace(b' ', b'\xe2\x96\x81')
 | |
|             toktypes.append(tt)
 | |
|             tokens.append(vbytes)
 | |
|             scores.append(vscore)
 | |
|         gguf_writer.add_token_list(tokens)
 | |
|         gguf_writer.add_token_scores(scores)
 | |
|         gguf_writer.add_token_types(toktypes)
 | |
|         gguf_writer.add_unk_token_id(0)
 | |
|         gguf_writer.add_bos_token_id(1)
 | |
|         gguf_writer.add_eos_token_id(2)
 | |
| 
 | |
|     def add_tensors(self, gguf_writer):
 | |
|         nm = self.name_map
 | |
|         data = self.data
 | |
|         print(f'* Adding {len(self.model.tensors)} tensor(s)')
 | |
|         for tensor in self.model.tensors:
 | |
|             name = str(tensor.name, 'UTF-8')
 | |
|             if name.endswith('.weight'):
 | |
|                 name = name[:-7]
 | |
|                 suffix = '.weight'
 | |
|             elif name.endswith('.bias'):
 | |
|                 name = name[:-5]
 | |
|                 suffix = '.bias'
 | |
|             mapped_name = nm.get(name)
 | |
|             assert mapped_name is not None, f'Bad name {name}'
 | |
|             mapped_name += suffix
 | |
|             tempdims = list(tensor.dims[:])
 | |
|             if len(tempdims) > 1:
 | |
|                 temp = tempdims[1]
 | |
|                 tempdims[1] = tempdims[0]
 | |
|                 tempdims[0] = temp
 | |
|             # print(f'+ {tensor.name} | {mapped_name} {tensor.dims} :: {tempdims}')
 | |
|             gguf_writer.add_tensor(mapped_name, data[tensor.start_offset:tensor.start_offset + tensor.len_bytes], raw_shape = tempdims, raw_dtype = tensor.dtype)
 | |
| 
 | |
| def handle_metadata(cfg, hp):
 | |
|     import convert
 | |
|     assert cfg.model_metadata_dir.is_dir(), 'Metadata dir is not a directory'
 | |
|     hf_config_path   = cfg.model_metadata_dir / "config.json"
 | |
|     orig_config_path = cfg.model_metadata_dir / "params.json"
 | |
|     # We pass a fake model here. "original" mode will check the shapes of some
 | |
|     # tensors if information is missing in the .json file: other than that, the
 | |
|     # model data isn't used so this should be safe (at least for now).
 | |
|     fakemodel = {
 | |
|         'tok_embeddings.weight': convert.LazyTensor.__new__(convert.LazyTensor),
 | |
|         'layers.0.feed_forward.w1.weight': convert.LazyTensor.__new__(convert.LazyTensor),
 | |
|     }
 | |
|     fakemodel['tok_embeddings.weight'].shape = [hp.n_vocab]
 | |
|     fakemodel['layers.0.feed_forward.w1.weight'].shape = [hp.n_ff]
 | |
|     if hf_config_path.exists():
 | |
|         params = convert.Params.loadHFTransformerJson(fakemodel, hf_config_path)
 | |
|     elif orig_config_path.exists():
 | |
|         params = convert.Params.loadOriginalParamsJson(fakemodel, orig_config_path)
 | |
|     else:
 | |
|         raise ValueError('Unable to load metadata')
 | |
|     vocab = convert.load_vocab(cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir, cfg.vocabtype)
 | |
|     convert.check_vocab_size(params, vocab)
 | |
|     return (params, vocab)
 | |
| 
 | |
| def handle_args():
 | |
|     parser = argparse.ArgumentParser(description = 'Convert GGMLv3 models to GGUF')
 | |
|     parser.add_argument('--input', '-i', type = Path, help = 'Input GGMLv3 filename')
 | |
|     parser.add_argument('--output', '-o', type = Path, help ='Output GGUF filename')
 | |
|     parser.add_argument('--name', help = 'Set model name')
 | |
|     parser.add_argument('--desc', help = 'Set model description')
 | |
|     parser.add_argument('--gqa', type = int, default = 1, help = 'grouped-query attention factor (use 8 for LLaMA2 70B)')
 | |
|     parser.add_argument('--eps', default = '5.0e-06', help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2')
 | |
|     parser.add_argument('--context-length', '-c', type=int, default = 2048, help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096')
 | |
|     parser.add_argument('--model-metadata-dir', '-m', type = Path, help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
 | |
|     parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
 | |
|     parser.add_argument("--vocabtype", choices=["spm", "bpe"], help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)", default="spm")
 | |
|     return parser.parse_args()
 | |
| 
 | |
| def main():
 | |
|     cfg = handle_args()
 | |
|     print(f'* Using config: {cfg}')
 | |
|     print('\n=== WARNING === Be aware that this conversion script is best-effort. Use a native GGUF model if possible. === WARNING ===\n')
 | |
|     data = np.memmap(cfg.input, mode = 'r')
 | |
|     model = GGMLV3Model()
 | |
|     print('* Scanning GGML input file')
 | |
|     try:
 | |
|         offset = model.load(data, 0)
 | |
|     except OverflowError:
 | |
|         print(f'!!! Caught overflow loading tensors. The most likely issue is running on Windows but not in WSL. Try running in WSL if possible.', file = sys.stderr)
 | |
|         raise
 | |
|     print(f'* GGML model hyperparameters: {model.hyperparameters}')
 | |
|     vocab_override = None
 | |
|     params_override = None
 | |
|     if cfg.model_metadata_dir is not None:
 | |
|         (params_override, vocab_override) = handle_metadata(cfg, model.hyperparameters)
 | |
|         print('!! Note: When overriding params the --gqa, --eps and --context-length options are ignored.')
 | |
|         print(f'* Overriding params: {params_override}')
 | |
|         print(f'* Overriding vocab: {vocab_override}')
 | |
|     else:
 | |
|         print('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n')
 | |
|     converter = GGMLToGGUF(model, data, cfg, params_override = params_override, vocab_override = vocab_override)
 | |
|     converter.save()
 | |
|     print(f'* Successful completion. Output saved to: {cfg.output}')
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     main()
 |