mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 0a4ce78681
			
		
	
	0a4ce78681
	
	
	
		
			
			* common : Changed tuple to struct (TODO fix) Use struct `llama_init_result` to replace the previous std::tuple<struct llama_model *, struct llama_context *> * delete llama_init_default_params() * delete the extra whitespace
		
			
				
	
	
		
			998 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			998 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "common.h"
 | |
| 
 | |
| #include "console.h"
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <cassert>
 | |
| #include <cinttypes>
 | |
| #include <cmath>
 | |
| #include <cstdio>
 | |
| #include <cstring>
 | |
| #include <ctime>
 | |
| #include <fstream>
 | |
| #include <iostream>
 | |
| #include <sstream>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
 | |
| #include <signal.h>
 | |
| #include <unistd.h>
 | |
| #elif defined (_WIN32)
 | |
| #define WIN32_LEAN_AND_MEAN
 | |
| #ifndef NOMINMAX
 | |
| #define NOMINMAX
 | |
| #endif
 | |
| #include <windows.h>
 | |
| #include <signal.h>
 | |
| #endif
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #pragma warning(disable: 4244 4267) // possible loss of data
 | |
| #endif
 | |
| 
 | |
| static llama_context           ** g_ctx;
 | |
| static llama_model             ** g_model;
 | |
| static gpt_params               * g_params;
 | |
| static std::vector<llama_token> * g_input_tokens;
 | |
| static std::ostringstream       * g_output_ss;
 | |
| static std::vector<llama_token> * g_output_tokens;
 | |
| static bool is_interacting  = false;
 | |
| static bool need_insert_eot = false;
 | |
| 
 | |
| static bool file_exists(const std::string & path) {
 | |
|     std::ifstream f(path.c_str());
 | |
|     return f.good();
 | |
| }
 | |
| 
 | |
| static bool file_is_empty(const std::string & path) {
 | |
|     std::ifstream f;
 | |
|     f.exceptions(std::ifstream::failbit | std::ifstream::badbit);
 | |
|     f.open(path.c_str(), std::ios::in | std::ios::binary | std::ios::ate);
 | |
|     return f.tellg() == 0;
 | |
| }
 | |
| 
 | |
| static void write_logfile(
 | |
|     const llama_context * ctx, const gpt_params & params, const llama_model * model,
 | |
|     const std::vector<llama_token> & input_tokens, const std::string & output,
 | |
|     const std::vector<llama_token> & output_tokens
 | |
| ) {
 | |
|     if (params.logdir.empty()) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const std::string timestamp = string_get_sortable_timestamp();
 | |
| 
 | |
|     const bool success = fs_create_directory_with_parents(params.logdir);
 | |
|     if (!success) {
 | |
|         fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
 | |
|                 __func__, params.logdir.c_str());
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const std::string logfile_path = params.logdir + timestamp + ".yml";
 | |
|     FILE * logfile = fopen(logfile_path.c_str(), "w");
 | |
| 
 | |
|     if (logfile == NULL) {
 | |
|         fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     fprintf(logfile, "binary: main\n");
 | |
|     char model_desc[128];
 | |
|     llama_model_desc(model, model_desc, sizeof(model_desc));
 | |
|     yaml_dump_non_result_info(logfile, params, ctx, timestamp, input_tokens, model_desc);
 | |
| 
 | |
|     fprintf(logfile, "\n");
 | |
|     fprintf(logfile, "######################\n");
 | |
|     fprintf(logfile, "# Generation Results #\n");
 | |
|     fprintf(logfile, "######################\n");
 | |
|     fprintf(logfile, "\n");
 | |
| 
 | |
|     yaml_dump_string_multiline(logfile, "output", output.c_str());
 | |
|     yaml_dump_vector_int(logfile, "output_tokens", output_tokens);
 | |
| 
 | |
|     llama_dump_timing_info_yaml(logfile, ctx);
 | |
|     fclose(logfile);
 | |
| }
 | |
| 
 | |
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
 | |
| static void sigint_handler(int signo) {
 | |
|     if (signo == SIGINT) {
 | |
|         if (!is_interacting && g_params->interactive) {
 | |
|             is_interacting  = true;
 | |
|             need_insert_eot = true;
 | |
|         } else {
 | |
|             console::cleanup();
 | |
|             printf("\n");
 | |
|             llama_print_timings(*g_ctx);
 | |
|             write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
 | |
|             _exit(130);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void llama_log_callback_logTee(ggml_log_level level, const char * text, void * user_data) {
 | |
|     (void) level;
 | |
|     (void) user_data;
 | |
|     LOG_TEE("%s", text);
 | |
| }
 | |
| 
 | |
| static std::string chat_add_and_format(struct llama_model * model, std::vector<llama_chat_msg> & chat_msgs, std::string role, std::string content) {
 | |
|     llama_chat_msg new_msg{role, content};
 | |
|     auto formatted = llama_chat_format_single(
 | |
|         model, g_params->chat_template, chat_msgs, new_msg, role == "user");
 | |
|     chat_msgs.push_back({role, content});
 | |
|     LOG("formatted: %s\n", formatted.c_str());
 | |
|     return formatted;
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     gpt_params params;
 | |
|     g_params = ¶ms;
 | |
| 
 | |
|     if (!gpt_params_parse(argc, argv, params)) {
 | |
|         gpt_params_print_usage(argc, argv, params);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     llama_sampling_params & sparams = params.sparams;
 | |
| 
 | |
| #ifndef LOG_DISABLE_LOGS
 | |
|     log_set_target(log_filename_generator("main", "log"));
 | |
|     LOG_TEE("Log start\n");
 | |
|     log_dump_cmdline(argc, argv);
 | |
|     llama_log_set(llama_log_callback_logTee, nullptr);
 | |
| #endif // LOG_DISABLE_LOGS
 | |
| 
 | |
|     // TODO: Dump params ?
 | |
|     //LOG("Params perplexity: %s\n", LOG_TOSTR(params.perplexity));
 | |
| 
 | |
|     // save choice to use color for later
 | |
|     // (note for later: this is a slightly awkward choice)
 | |
|     console::init(params.simple_io, params.use_color);
 | |
|     atexit([]() { console::cleanup(); });
 | |
| 
 | |
|     if (params.logits_all) {
 | |
|         printf("\n************\n");
 | |
|         printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
 | |
|         printf("************\n\n");
 | |
| 
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (params.embedding) {
 | |
|         printf("\n************\n");
 | |
|         printf("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
 | |
|         printf("************\n\n");
 | |
| 
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (params.n_ctx != 0 && params.n_ctx < 8) {
 | |
|         LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
 | |
|         params.n_ctx = 8;
 | |
|     }
 | |
| 
 | |
|     if (params.rope_freq_base != 0.0) {
 | |
|         LOG_TEE("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
 | |
|     }
 | |
| 
 | |
|     if (params.rope_freq_scale != 0.0) {
 | |
|         LOG_TEE("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
 | |
|     }
 | |
| 
 | |
|     LOG_TEE("%s: build = %d (%s)\n",      __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
 | |
|     LOG_TEE("%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET);
 | |
| 
 | |
|     if (params.seed == LLAMA_DEFAULT_SEED) {
 | |
|         params.seed = time(NULL);
 | |
|     }
 | |
| 
 | |
|     LOG_TEE("%s: seed  = %u\n", __func__, params.seed);
 | |
| 
 | |
|     std::mt19937 rng(params.seed);
 | |
| 
 | |
|     LOG("%s: llama backend init\n", __func__);
 | |
|     llama_backend_init();
 | |
|     llama_numa_init(params.numa);
 | |
| 
 | |
|     llama_model * model;
 | |
|     llama_context * ctx;
 | |
|     llama_context * ctx_guidance = NULL;
 | |
|     std::vector<llama_chat_msg> chat_msgs;
 | |
|     g_model = &model;
 | |
|     g_ctx = &ctx;
 | |
| 
 | |
|     // load the model and apply lora adapter, if any
 | |
|     LOG("%s: load the model and apply lora adapter, if any\n", __func__);
 | |
|     llama_init_result llama_init = llama_init_from_gpt_params(params);
 | |
| 
 | |
|     model = llama_init.model;
 | |
|     ctx = llama_init.context;
 | |
|     if (sparams.cfg_scale > 1.f) {
 | |
|         struct llama_context_params lparams = llama_context_params_from_gpt_params(params);
 | |
|         ctx_guidance = llama_new_context_with_model(model, lparams);
 | |
|     }
 | |
| 
 | |
|     if (model == NULL) {
 | |
|         LOG_TEE("%s: error: unable to load model\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     const int n_ctx_train = llama_n_ctx_train(model);
 | |
|     const int n_ctx = llama_n_ctx(ctx);
 | |
|     LOG("n_ctx: %d\n", n_ctx);
 | |
| 
 | |
|     if (n_ctx > n_ctx_train) {
 | |
|         LOG_TEE("%s: warning: model was trained on only %d context tokens (%d specified)\n",
 | |
|                 __func__, n_ctx_train, n_ctx);
 | |
|     }
 | |
| 
 | |
|     // print chat template example in conversation mode
 | |
|     if (params.conversation) {
 | |
|         if (params.enable_chat_template) {
 | |
|             LOG_TEE("%s: chat template example: %s\n", __func__, llama_chat_format_example(model, params.chat_template).c_str());
 | |
|         } else {
 | |
|             LOG_TEE("%s: in-suffix/prefix is specified, chat template will be disabled\n", __func__);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // print system information
 | |
|     {
 | |
|         LOG_TEE("\n");
 | |
|         LOG_TEE("%s\n", gpt_params_get_system_info(params).c_str());
 | |
|     }
 | |
| 
 | |
|     std::string path_session = params.path_prompt_cache;
 | |
|     std::vector<llama_token> session_tokens;
 | |
| 
 | |
|     if (!path_session.empty()) {
 | |
|         LOG_TEE("%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str());
 | |
|         if (!file_exists(path_session)) {
 | |
|             LOG_TEE("%s: session file does not exist, will create.\n", __func__);
 | |
|         } else if (file_is_empty(path_session)) {
 | |
|             LOG_TEE("%s: The session file is empty. A new session will be initialized.\n", __func__);
 | |
|         } else {
 | |
|             // The file exists and is not empty
 | |
|             session_tokens.resize(n_ctx);
 | |
|             size_t n_token_count_out = 0;
 | |
|             if (!llama_state_load_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
 | |
|                 LOG_TEE("%s: error: failed to load session file '%s'\n", __func__, path_session.c_str());
 | |
|                 return 1;
 | |
|             }
 | |
|             session_tokens.resize(n_token_count_out);
 | |
|             LOG_TEE("%s: loaded a session with prompt size of %d tokens\n", __func__, (int)session_tokens.size());
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     const bool add_bos = llama_should_add_bos_token(model);
 | |
|     if (!llama_model_has_encoder(model)) {
 | |
|         GGML_ASSERT(llama_add_eos_token(model) != 1);
 | |
|     }
 | |
|     LOG("add_bos: %d\n", add_bos);
 | |
| 
 | |
|     std::vector<llama_token> embd_inp;
 | |
| 
 | |
|     {
 | |
|         auto prompt = (params.conversation && params.enable_chat_template && !params.prompt.empty())
 | |
|             ? chat_add_and_format(model, chat_msgs, "system", params.prompt) // format the system prompt in conversation mode
 | |
|             : params.prompt;
 | |
|         if (params.interactive_first || !params.prompt.empty() || session_tokens.empty()) {
 | |
|             LOG("tokenize the prompt\n");
 | |
|             embd_inp = ::llama_tokenize(ctx, prompt, true, true);
 | |
|         } else {
 | |
|             LOG("use session tokens\n");
 | |
|             embd_inp = session_tokens;
 | |
|         }
 | |
| 
 | |
|         LOG("prompt: \"%s\"\n", log_tostr(prompt));
 | |
|         LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
 | |
|     }
 | |
| 
 | |
|     // Should not run without any tokens
 | |
|     if (embd_inp.empty()) {
 | |
|         if (add_bos) {
 | |
|             embd_inp.push_back(llama_token_bos(model));
 | |
|             LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
 | |
|         } else {
 | |
|             LOG_TEE("error: input is empty\n");
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Tokenize negative prompt
 | |
|     std::vector<llama_token> guidance_inp;
 | |
|     int guidance_offset = 0;
 | |
|     int original_prompt_len = 0;
 | |
|     if (ctx_guidance) {
 | |
|         LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt));
 | |
| 
 | |
|         guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, true, true);
 | |
|         LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp).c_str());
 | |
| 
 | |
|         std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, true, true);
 | |
|         LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp).c_str());
 | |
| 
 | |
|         original_prompt_len = original_inp.size();
 | |
|         guidance_offset = (int)guidance_inp.size() - original_prompt_len;
 | |
|         LOG("original_prompt_len: %s", log_tostr(original_prompt_len));
 | |
|         LOG("guidance_offset:     %s", log_tostr(guidance_offset));
 | |
|     }
 | |
| 
 | |
|     if ((int) embd_inp.size() > n_ctx - 4) {
 | |
|         LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // debug message about similarity of saved session, if applicable
 | |
|     size_t n_matching_session_tokens = 0;
 | |
|     if (!session_tokens.empty()) {
 | |
|         for (llama_token id : session_tokens) {
 | |
|             if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) {
 | |
|                 break;
 | |
|             }
 | |
|             n_matching_session_tokens++;
 | |
|         }
 | |
|         if (params.prompt.empty() && n_matching_session_tokens == embd_inp.size()) {
 | |
|             LOG_TEE("%s: using full prompt from session file\n", __func__);
 | |
|         } else if (n_matching_session_tokens >= embd_inp.size()) {
 | |
|             LOG_TEE("%s: session file has exact match for prompt!\n", __func__);
 | |
|         } else if (n_matching_session_tokens < (embd_inp.size() / 2)) {
 | |
|             LOG_TEE("%s: warning: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n",
 | |
|                 __func__, n_matching_session_tokens, embd_inp.size());
 | |
|         } else {
 | |
|             LOG_TEE("%s: session file matches %zu / %zu tokens of prompt\n",
 | |
|                 __func__, n_matching_session_tokens, embd_inp.size());
 | |
|         }
 | |
| 
 | |
|         // remove any "future" tokens that we might have inherited from the previous session
 | |
|         llama_kv_cache_seq_rm(ctx, -1, n_matching_session_tokens, -1);
 | |
|     }
 | |
| 
 | |
|     LOGLN(
 | |
|             "recalculate the cached logits (check): embd_inp.empty() %s, n_matching_session_tokens %zu, embd_inp.size() %zu, session_tokens.size() %zu, embd_inp.size() %zu",
 | |
|             log_tostr(embd_inp.empty()), n_matching_session_tokens, embd_inp.size(), session_tokens.size(), embd_inp.size());
 | |
| 
 | |
|     // if we will use the cache for the full prompt without reaching the end of the cache, force
 | |
|     // reevaluation of the last token to recalculate the cached logits
 | |
|     if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() && session_tokens.size() > embd_inp.size()) {
 | |
|         LOGLN("recalculate the cached logits (do): session_tokens.resize( %zu )", embd_inp.size() - 1);
 | |
| 
 | |
|         session_tokens.resize(embd_inp.size() - 1);
 | |
|     }
 | |
| 
 | |
|     // number of tokens to keep when resetting context
 | |
|     if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size()) {
 | |
|         params.n_keep = (int)embd_inp.size();
 | |
|     } else {
 | |
|         params.n_keep += add_bos; // always keep the BOS token
 | |
|     }
 | |
| 
 | |
|     if (params.conversation) {
 | |
|         params.interactive_first = true;
 | |
|     }
 | |
| 
 | |
|     // enable interactive mode if interactive start is specified
 | |
|     if (params.interactive_first) {
 | |
|         params.interactive = true;
 | |
|     }
 | |
| 
 | |
|     if (params.verbose_prompt) {
 | |
|         LOG_TEE("\n");
 | |
|         LOG_TEE("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
 | |
|         LOG_TEE("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
 | |
|         for (int i = 0; i < (int) embd_inp.size(); i++) {
 | |
|             LOG_TEE("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
 | |
|         }
 | |
| 
 | |
|         if (ctx_guidance) {
 | |
|             LOG_TEE("\n");
 | |
|             LOG_TEE("%s: negative prompt: '%s'\n", __func__, sparams.cfg_negative_prompt.c_str());
 | |
|             LOG_TEE("%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size());
 | |
|             for (int i = 0; i < (int) guidance_inp.size(); i++) {
 | |
|                 LOG_TEE("%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str());
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (params.n_keep > add_bos) {
 | |
|             LOG_TEE("%s: static prompt based on n_keep: '", __func__);
 | |
|             for (int i = 0; i < params.n_keep; i++) {
 | |
|                 LOG_TEE("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str());
 | |
|             }
 | |
|             LOG_TEE("'\n");
 | |
|         }
 | |
|         LOG_TEE("\n");
 | |
|     }
 | |
| 
 | |
|     // ctrl+C handling
 | |
|     {
 | |
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
 | |
|         struct sigaction sigint_action;
 | |
|         sigint_action.sa_handler = sigint_handler;
 | |
|         sigemptyset (&sigint_action.sa_mask);
 | |
|         sigint_action.sa_flags = 0;
 | |
|         sigaction(SIGINT, &sigint_action, NULL);
 | |
| #elif defined (_WIN32)
 | |
|         auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
 | |
|             return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
 | |
|         };
 | |
|         SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     if (params.interactive) {
 | |
|         LOG_TEE("%s: interactive mode on.\n", __func__);
 | |
| 
 | |
|         if (!params.antiprompt.empty()) {
 | |
|             for (const auto & antiprompt : params.antiprompt) {
 | |
|                 LOG_TEE("Reverse prompt: '%s'\n", antiprompt.c_str());
 | |
|                 if (params.verbose_prompt) {
 | |
|                     auto tmp = ::llama_tokenize(ctx, antiprompt, false, true);
 | |
|                     for (int i = 0; i < (int) tmp.size(); i++) {
 | |
|                         LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (params.input_prefix_bos) {
 | |
|             LOG_TEE("Input prefix with BOS\n");
 | |
|         }
 | |
| 
 | |
|         if (!params.input_prefix.empty()) {
 | |
|             LOG_TEE("Input prefix: '%s'\n", params.input_prefix.c_str());
 | |
|             if (params.verbose_prompt) {
 | |
|                 auto tmp = ::llama_tokenize(ctx, params.input_prefix, true, true);
 | |
|                 for (int i = 0; i < (int) tmp.size(); i++) {
 | |
|                     LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (!params.input_suffix.empty()) {
 | |
|             LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str());
 | |
|             if (params.verbose_prompt) {
 | |
|                 auto tmp = ::llama_tokenize(ctx, params.input_suffix, false, true);
 | |
|                 for (int i = 0; i < (int) tmp.size(); i++) {
 | |
|                     LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     LOG_TEE("sampling: \n%s\n", llama_sampling_print(sparams).c_str());
 | |
|     LOG_TEE("sampling order: \n%s\n", llama_sampling_order_print(sparams).c_str());
 | |
|     LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
 | |
| 
 | |
|     // group-attention state
 | |
|     // number of grouped KV tokens so far (used only if params.grp_attn_n > 1)
 | |
|     int ga_i = 0;
 | |
| 
 | |
|     const int ga_n = params.grp_attn_n;
 | |
|     const int ga_w = params.grp_attn_w;
 | |
| 
 | |
|     if (ga_n != 1) {
 | |
|         GGML_ASSERT(ga_n > 0                    && "grp_attn_n must be positive");                     // NOLINT
 | |
|         GGML_ASSERT(ga_w % ga_n == 0            && "grp_attn_w must be a multiple of grp_attn_n");     // NOLINT
 | |
|       //GGML_ASSERT(n_ctx_train % ga_w == 0     && "n_ctx_train must be a multiple of grp_attn_w");    // NOLINT
 | |
|       //GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * grp_attn_n"); // NOLINT
 | |
|         LOG_TEE("self-extend: n_ctx_train = %d, grp_attn_n = %d, grp_attn_w = %d\n", n_ctx_train, ga_n, ga_w);
 | |
|     }
 | |
|     LOG_TEE("\n\n");
 | |
| 
 | |
|     if (params.interactive) {
 | |
|         const char * control_message;
 | |
|         if (params.multiline_input) {
 | |
|             control_message = " - To return control to the AI, end your input with '\\'.\n"
 | |
|                               " - To return control without starting a new line, end your input with '/'.\n";
 | |
|         } else {
 | |
|             control_message = " - Press Return to return control to the AI.\n"
 | |
|                               " - To return control without starting a new line, end your input with '/'.\n"
 | |
|                               " - If you want to submit another line, end your input with '\\'.\n";
 | |
|         }
 | |
|         LOG_TEE("== Running in interactive mode. ==\n");
 | |
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
 | |
|         LOG_TEE(       " - Press Ctrl+C to interject at any time.\n");
 | |
| #endif
 | |
|         LOG_TEE(       "%s\n", control_message);
 | |
| 
 | |
|         is_interacting = params.interactive_first;
 | |
|     }
 | |
| 
 | |
|     bool is_antiprompt        = false;
 | |
|     bool input_echo           = true;
 | |
|     bool display              = true;
 | |
|     bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < embd_inp.size();
 | |
| 
 | |
|     int n_past             = 0;
 | |
|     int n_remain           = params.n_predict;
 | |
|     int n_consumed         = 0;
 | |
|     int n_session_consumed = 0;
 | |
|     int n_past_guidance    = 0;
 | |
| 
 | |
|     std::vector<int>   input_tokens;  g_input_tokens  = &input_tokens;
 | |
|     std::vector<int>   output_tokens; g_output_tokens = &output_tokens;
 | |
|     std::ostringstream output_ss;     g_output_ss     = &output_ss;
 | |
|     std::ostringstream assistant_ss; // for storing current assistant message, used in conversation mode
 | |
| 
 | |
|     // the first thing we will do is to output the prompt, so set color accordingly
 | |
|     console::set_display(console::prompt);
 | |
|     display = params.display_prompt;
 | |
| 
 | |
|     std::vector<llama_token> embd;
 | |
|     std::vector<llama_token> embd_guidance;
 | |
| 
 | |
|     // tokenized antiprompts
 | |
|     std::vector<std::vector<llama_token>> antiprompt_ids;
 | |
| 
 | |
|     antiprompt_ids.reserve(params.antiprompt.size());
 | |
|     for (const std::string & antiprompt : params.antiprompt) {
 | |
|         antiprompt_ids.emplace_back(::llama_tokenize(ctx, antiprompt, false, true));
 | |
|     }
 | |
| 
 | |
|     struct llama_sampling_context * ctx_sampling = llama_sampling_init(sparams);
 | |
|     if (!ctx_sampling) {
 | |
|         fprintf(stderr, "%s: failed to initialize sampling subsystem\n", __func__);
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     if (llama_model_has_encoder(model)) {
 | |
|         int enc_input_size = embd_inp.size();
 | |
|         llama_token * enc_input_buf = embd_inp.data();
 | |
| 
 | |
|         if (llama_encode(ctx, llama_batch_get_one(enc_input_buf, enc_input_size, 0, 0))) {
 | |
|             LOG_TEE("%s : failed to eval\n", __func__);
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
 | |
|         if (decoder_start_token_id == -1) {
 | |
|             decoder_start_token_id = llama_token_bos(model);
 | |
|         }
 | |
| 
 | |
|         embd_inp.clear();
 | |
|         embd_inp.push_back(decoder_start_token_id);
 | |
|     }
 | |
| 
 | |
|     while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
 | |
|         // predict
 | |
|         if (!embd.empty()) {
 | |
|             // Note: (n_ctx - 4) here is to match the logic for commandline prompt handling via
 | |
|             // --prompt or --file which uses the same value.
 | |
|             int max_embd_size = n_ctx - 4;
 | |
| 
 | |
|             // Ensure the input doesn't exceed the context size by truncating embd if necessary.
 | |
|             if ((int) embd.size() > max_embd_size) {
 | |
|                 const int skipped_tokens = (int) embd.size() - max_embd_size;
 | |
|                 embd.resize(max_embd_size);
 | |
| 
 | |
|                 console::set_display(console::error);
 | |
|                 printf("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
 | |
|                 console::set_display(console::reset);
 | |
|                 fflush(stdout);
 | |
|             }
 | |
| 
 | |
|             if (ga_n == 1) {
 | |
|                 // infinite text generation via context shifting
 | |
|                 // if we run out of context:
 | |
|                 // - take the n_keep first tokens from the original prompt (via n_past)
 | |
|                 // - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
 | |
|                 if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) >= n_ctx) {
 | |
|                     if (params.n_predict == -2) {
 | |
|                         LOG_TEE("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
 | |
|                         break;
 | |
|                     }
 | |
| 
 | |
|                     const int n_left    = n_past - params.n_keep;
 | |
|                     const int n_discard = n_left/2;
 | |
| 
 | |
|                     LOG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
 | |
|                             n_past, n_left, n_ctx, params.n_keep, n_discard);
 | |
| 
 | |
|                     llama_kv_cache_seq_rm (ctx, 0, params.n_keep            , params.n_keep + n_discard);
 | |
|                     llama_kv_cache_seq_add(ctx, 0, params.n_keep + n_discard, n_past, -n_discard);
 | |
| 
 | |
|                     n_past -= n_discard;
 | |
| 
 | |
|                     if (ctx_guidance) {
 | |
|                         n_past_guidance -= n_discard;
 | |
|                     }
 | |
| 
 | |
|                     LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance);
 | |
| 
 | |
|                     LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
 | |
| 
 | |
|                     LOG("clear session path\n");
 | |
|                     path_session.clear();
 | |
|                 }
 | |
|             } else {
 | |
|                 // context extension via Self-Extend
 | |
|                 while (n_past >= ga_i + ga_w) {
 | |
|                     const int ib = (ga_n*ga_i)/ga_w;
 | |
|                     const int bd = (ga_w/ga_n)*(ga_n - 1);
 | |
|                     const int dd = (ga_w/ga_n) - ib*bd - ga_w;
 | |
| 
 | |
|                     LOG("\n");
 | |
|                     LOG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i, n_past, ib*bd, ga_i + ib*bd, n_past + ib*bd);
 | |
|                     LOG("div:   [%6d, %6d] / %6d -> [%6d, %6d]\n", ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n, (ga_i + ib*bd)/ga_n, (ga_i + ib*bd + ga_w)/ga_n);
 | |
|                     LOG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i + ib*bd + ga_w, n_past + ib*bd, dd, ga_i + ib*bd + ga_w + dd, n_past + ib*bd + dd);
 | |
| 
 | |
|                     llama_kv_cache_seq_add(ctx, 0, ga_i,                n_past,              ib*bd);
 | |
|                     llama_kv_cache_seq_div(ctx, 0, ga_i + ib*bd,        ga_i + ib*bd + ga_w, ga_n);
 | |
|                     llama_kv_cache_seq_add(ctx, 0, ga_i + ib*bd + ga_w, n_past + ib*bd,      dd);
 | |
| 
 | |
|                     n_past -= bd;
 | |
| 
 | |
|                     ga_i += ga_w/ga_n;
 | |
| 
 | |
|                     LOG("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", n_past + bd, n_past, ga_i);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // try to reuse a matching prefix from the loaded session instead of re-eval (via n_past)
 | |
|             if (n_session_consumed < (int) session_tokens.size()) {
 | |
|                 size_t i = 0;
 | |
|                 for ( ; i < embd.size(); i++) {
 | |
|                     if (embd[i] != session_tokens[n_session_consumed]) {
 | |
|                         session_tokens.resize(n_session_consumed);
 | |
|                         break;
 | |
|                     }
 | |
| 
 | |
|                     n_past++;
 | |
|                     n_session_consumed++;
 | |
| 
 | |
|                     if (n_session_consumed >= (int) session_tokens.size()) {
 | |
|                         ++i;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|                 if (i > 0) {
 | |
|                     embd.erase(embd.begin(), embd.begin() + i);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // evaluate tokens in batches
 | |
|             // embd is typically prepared beforehand to fit within a batch, but not always
 | |
|             if (ctx_guidance) {
 | |
|                 int input_size = 0;
 | |
|                 llama_token * input_buf = NULL;
 | |
| 
 | |
|                 if (n_past_guidance < (int) guidance_inp.size()) {
 | |
|                     // Guidance context should have the same data with these modifications:
 | |
|                     //
 | |
|                     // * Replace the initial prompt
 | |
|                     // * Shift everything by guidance_offset
 | |
|                     embd_guidance = guidance_inp;
 | |
|                     if (embd.begin() + original_prompt_len < embd.end()) {
 | |
|                         embd_guidance.insert(
 | |
|                             embd_guidance.end(),
 | |
|                             embd.begin() + original_prompt_len,
 | |
|                             embd.end()
 | |
|                         );
 | |
|                     }
 | |
| 
 | |
|                     input_buf  = embd_guidance.data();
 | |
|                     input_size = embd_guidance.size();
 | |
| 
 | |
|                     LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance).c_str());
 | |
|                 } else {
 | |
|                     input_buf  = embd.data();
 | |
|                     input_size = embd.size();
 | |
|                 }
 | |
| 
 | |
|                 for (int i = 0; i < input_size; i += params.n_batch) {
 | |
|                     int n_eval = std::min(input_size - i, params.n_batch);
 | |
|                     if (llama_decode(ctx_guidance, llama_batch_get_one(input_buf + i, n_eval, n_past_guidance, 0))) {
 | |
|                         LOG_TEE("%s : failed to eval\n", __func__);
 | |
|                         return 1;
 | |
|                     }
 | |
| 
 | |
|                     n_past_guidance += n_eval;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
 | |
|                 int n_eval = (int) embd.size() - i;
 | |
|                 if (n_eval > params.n_batch) {
 | |
|                     n_eval = params.n_batch;
 | |
|                 }
 | |
| 
 | |
|                 LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
 | |
| 
 | |
|                 if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) {
 | |
|                     LOG_TEE("%s : failed to eval\n", __func__);
 | |
|                     return 1;
 | |
|                 }
 | |
| 
 | |
|                 n_past += n_eval;
 | |
| 
 | |
|                 LOG("n_past = %d\n", n_past);
 | |
|                 // Display total tokens alongside total time
 | |
|                 if (params.n_print > 0 && n_past % params.n_print == 0) {
 | |
|                     LOG_TEE("\n\033[31mTokens consumed so far = %d / %d \033[0m\n", n_past, n_ctx);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (!embd.empty() && !path_session.empty()) {
 | |
|                 session_tokens.insert(session_tokens.end(), embd.begin(), embd.end());
 | |
|                 n_session_consumed = session_tokens.size();
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         embd.clear();
 | |
|         embd_guidance.clear();
 | |
| 
 | |
|         if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
 | |
|             // optionally save the session on first sample (for faster prompt loading next time)
 | |
|             if (!path_session.empty() && need_to_save_session && !params.prompt_cache_ro) {
 | |
|                 need_to_save_session = false;
 | |
|                 llama_state_save_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
 | |
| 
 | |
|                 LOG("saved session to %s\n", path_session.c_str());
 | |
|             }
 | |
| 
 | |
|             const llama_token id = llama_sampling_sample(ctx_sampling, ctx, ctx_guidance);
 | |
| 
 | |
|             llama_sampling_accept(ctx_sampling, ctx, id, /* apply_grammar= */ true);
 | |
| 
 | |
|             LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, ctx_sampling->prev).c_str());
 | |
| 
 | |
|             embd.push_back(id);
 | |
| 
 | |
|             // echo this to console
 | |
|             input_echo = true;
 | |
| 
 | |
|             // decrement remaining sampling budget
 | |
|             --n_remain;
 | |
| 
 | |
|             LOG("n_remain: %d\n", n_remain);
 | |
|         } else {
 | |
|             // some user input remains from prompt or interaction, forward it to processing
 | |
|             LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
 | |
|             while ((int) embd_inp.size() > n_consumed) {
 | |
|                 embd.push_back(embd_inp[n_consumed]);
 | |
| 
 | |
|                 // push the prompt in the sampling context in order to apply repetition penalties later
 | |
|                 // for the prompt, we don't apply grammar rules
 | |
|                 llama_sampling_accept(ctx_sampling, ctx, embd_inp[n_consumed], /* apply_grammar= */ false);
 | |
| 
 | |
|                 ++n_consumed;
 | |
|                 if ((int) embd.size() >= params.n_batch) {
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // display text
 | |
|         if (input_echo && display) {
 | |
|             for (auto id : embd) {
 | |
|                 const std::string token_str = llama_token_to_piece(ctx, id, params.special);
 | |
| 
 | |
|                 // Console/Stream Output
 | |
|                 fprintf(stdout, "%s", token_str.c_str());
 | |
| 
 | |
|                 // Record Displayed Tokens To Log
 | |
|                 // Note: Generated tokens are created one by one hence this check
 | |
|                 if (embd.size() > 1) {
 | |
|                     // Incoming Requested Tokens
 | |
|                     input_tokens.push_back(id);
 | |
|                 } else {
 | |
|                     // Outgoing Generated Tokens
 | |
|                     output_tokens.push_back(id);
 | |
|                     output_ss << token_str;
 | |
|                 }
 | |
| 
 | |
|                 fflush(stdout);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // reset color to default if there is no pending user input
 | |
|         if (input_echo && (int) embd_inp.size() == n_consumed) {
 | |
|             console::set_display(console::reset);
 | |
|             display = true;
 | |
|         }
 | |
| 
 | |
|         // if not currently processing queued inputs;
 | |
|         if ((int) embd_inp.size() <= n_consumed) {
 | |
|             // check for reverse prompt in the last n_prev tokens
 | |
|             if (!params.antiprompt.empty()) {
 | |
|                 const int n_prev = 32;
 | |
|                 const std::string last_output = llama_sampling_prev_str(ctx_sampling, ctx, n_prev);
 | |
| 
 | |
|                 is_antiprompt = false;
 | |
|                 // Check if each of the reverse prompts appears at the end of the output.
 | |
|                 // If we're not running interactively, the reverse prompt might be tokenized with some following characters
 | |
|                 // so we'll compensate for that by widening the search window a bit.
 | |
|                 for (std::string & antiprompt : params.antiprompt) {
 | |
|                     size_t extra_padding = params.interactive ? 0 : 2;
 | |
|                     size_t search_start_pos = last_output.length() > static_cast<size_t>(antiprompt.length() + extra_padding)
 | |
|                         ? last_output.length() - static_cast<size_t>(antiprompt.length() + extra_padding)
 | |
|                         : 0;
 | |
| 
 | |
|                     if (last_output.find(antiprompt, search_start_pos) != std::string::npos) {
 | |
|                         if (params.interactive) {
 | |
|                             is_interacting = true;
 | |
|                         }
 | |
|                         is_antiprompt = true;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 // check for reverse prompt using special tokens
 | |
|                 llama_token last_token = llama_sampling_last(ctx_sampling);
 | |
|                 for (std::vector<llama_token> ids : antiprompt_ids) {
 | |
|                     if (ids.size() == 1 && last_token == ids[0]) {
 | |
|                         if (params.interactive) {
 | |
|                             is_interacting = true;
 | |
|                         }
 | |
|                         is_antiprompt = true;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 if (is_antiprompt) {
 | |
|                     LOG("found antiprompt: %s\n", last_output.c_str());
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // deal with end of generation tokens in interactive mode
 | |
|             if (llama_token_is_eog(model, llama_sampling_last(ctx_sampling))) {
 | |
|                 LOG("found an EOG token\n");
 | |
| 
 | |
|                 if (params.interactive) {
 | |
|                     if (!params.antiprompt.empty()) {
 | |
|                         // tokenize and inject first reverse prompt
 | |
|                         const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false, true);
 | |
|                         embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
 | |
|                         is_antiprompt = true;
 | |
|                     }
 | |
| 
 | |
|                     if (params.enable_chat_template) {
 | |
|                         chat_add_and_format(model, chat_msgs, "assistant", assistant_ss.str());
 | |
|                     }
 | |
|                     is_interacting = true;
 | |
|                     printf("\n");
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // if current token is not EOG, we add it to current assistant message
 | |
|             if (params.conversation) {
 | |
|                 auto id = llama_sampling_last(ctx_sampling);
 | |
|                 assistant_ss << llama_token_to_piece(ctx, id, false);
 | |
|             }
 | |
| 
 | |
|             if (n_past > 0 && is_interacting) {
 | |
|                 LOG("waiting for user input\n");
 | |
| 
 | |
|                 if (params.conversation) {
 | |
|                     printf("\n> ");
 | |
|                 }
 | |
| 
 | |
|                 if (params.input_prefix_bos) {
 | |
|                     LOG("adding input prefix BOS token\n");
 | |
|                     embd_inp.push_back(llama_token_bos(model));
 | |
|                 }
 | |
| 
 | |
|                 std::string buffer;
 | |
|                 if (!params.input_prefix.empty() && !params.conversation) {
 | |
|                     LOG("appending input prefix: '%s'\n", params.input_prefix.c_str());
 | |
|                     printf("%s", params.input_prefix.c_str());
 | |
|                 }
 | |
| 
 | |
|                 // color user input only
 | |
|                 console::set_display(console::user_input);
 | |
|                 display = params.display_prompt;
 | |
| 
 | |
|                 std::string line;
 | |
|                 bool another_line = true;
 | |
|                 do {
 | |
|                     another_line = console::readline(line, params.multiline_input);
 | |
|                     buffer += line;
 | |
|                 } while (another_line);
 | |
| 
 | |
|                 // done taking input, reset color
 | |
|                 console::set_display(console::reset);
 | |
|                 display = true;
 | |
| 
 | |
|                 // Add tokens to embd only if the input buffer is non-empty
 | |
|                 // Entering a empty line lets the user pass control back
 | |
|                 if (buffer.length() > 1) {
 | |
|                     // append input suffix if any
 | |
|                     if (!params.input_suffix.empty() && !params.conversation) {
 | |
|                         LOG("appending input suffix: '%s'\n", params.input_suffix.c_str());
 | |
|                         printf("%s", params.input_suffix.c_str());
 | |
|                     }
 | |
| 
 | |
|                     LOG("buffer: '%s'\n", buffer.c_str());
 | |
| 
 | |
|                     const size_t original_size = embd_inp.size();
 | |
| 
 | |
|                     if (params.escape) {
 | |
|                         string_process_escapes(buffer);
 | |
|                     }
 | |
| 
 | |
|                     bool format_chat = params.conversation && params.enable_chat_template;
 | |
|                     std::string user_inp = format_chat
 | |
|                         ? chat_add_and_format(model, chat_msgs, "user", std::move(buffer))
 | |
|                         : std::move(buffer);
 | |
|                     // TODO: one inconvenient of current chat template implementation is that we can't distinguish between user input and special tokens (prefix/postfix)
 | |
|                     const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true);
 | |
|                     const auto line_inp = ::llama_tokenize(ctx, user_inp,            false, format_chat);
 | |
|                     const auto line_sfx = ::llama_tokenize(ctx, params.input_suffix, false, true);
 | |
| 
 | |
|                     LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str());
 | |
| 
 | |
|                     // if user stop generation mid-way, we must add EOT to finish model's last response
 | |
|                     if (need_insert_eot && format_chat) {
 | |
|                         llama_token eot = llama_token_eot(model);
 | |
|                         embd_inp.push_back(eot == -1 ? llama_token_eos(model) : eot);
 | |
|                         need_insert_eot = false;
 | |
|                     }
 | |
| 
 | |
|                     embd_inp.insert(embd_inp.end(), line_pfx.begin(), line_pfx.end());
 | |
|                     embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
 | |
|                     embd_inp.insert(embd_inp.end(), line_sfx.begin(), line_sfx.end());
 | |
| 
 | |
|                     for (size_t i = original_size; i < embd_inp.size(); ++i) {
 | |
|                         const llama_token token = embd_inp[i];
 | |
|                         output_tokens.push_back(token);
 | |
|                         output_ss << llama_token_to_piece(ctx, token);
 | |
|                     }
 | |
| 
 | |
|                     // reset assistant message
 | |
|                     assistant_ss.str("");
 | |
| 
 | |
|                     n_remain -= line_inp.size();
 | |
|                     LOG("n_remain: %d\n", n_remain);
 | |
|                 } else {
 | |
|                     LOG("empty line, passing control back\n");
 | |
|                 }
 | |
| 
 | |
|                 input_echo = false; // do not echo this again
 | |
|             }
 | |
| 
 | |
|             if (n_past > 0) {
 | |
|                 if (is_interacting) {
 | |
|                     llama_sampling_reset(ctx_sampling);
 | |
|                 }
 | |
|                 is_interacting = false;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // end of generation
 | |
|         if (!embd.empty() && llama_token_is_eog(model, embd.back()) && !(params.interactive)) {
 | |
|             LOG_TEE(" [end of text]\n");
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         // In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
 | |
|         // We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size).
 | |
|         if (params.interactive && n_remain <= 0 && params.n_predict >= 0) {
 | |
|             n_remain = params.n_predict;
 | |
|             is_interacting = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!path_session.empty() && params.prompt_cache_all && !params.prompt_cache_ro) {
 | |
|         LOG_TEE("\n%s: saving final output to session file '%s'\n", __func__, path_session.c_str());
 | |
|         llama_state_save_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
 | |
|     }
 | |
| 
 | |
|     llama_print_timings(ctx);
 | |
|     write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
 | |
| 
 | |
|     if (ctx_guidance) { llama_free(ctx_guidance); }
 | |
|     llama_free(ctx);
 | |
|     llama_free_model(model);
 | |
| 
 | |
|     llama_sampling_free(ctx_sampling);
 | |
|     llama_backend_free();
 | |
| 
 | |
| #ifndef LOG_DISABLE_LOGS
 | |
|     LOG_TEE("Log end\n");
 | |
| #endif // LOG_DISABLE_LOGS
 | |
| 
 | |
|     return 0;
 | |
| }
 |