mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-10-27 08:21:30 +00:00
232 lines
8.0 KiB
Python
Executable File
232 lines
8.0 KiB
Python
Executable File
#!/usr/bin/env python3
|
||
|
||
import argparse
|
||
import os
|
||
import importlib
|
||
from pathlib import Path
|
||
|
||
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
||
import torch
|
||
import numpy as np
|
||
|
||
### If you want to dump RoPE activations, apply this monkey patch to the model
|
||
### class from Transformers that you are running (replace apertus.modeling_apertus
|
||
### with the proper package and class for your model
|
||
### === START ROPE DEBUG ===
|
||
# from transformers.models.apertus.modeling_apertus import apply_rotary_pos_emb
|
||
|
||
# orig_rope = apply_rotary_pos_emb
|
||
# torch.set_printoptions(threshold=float('inf'))
|
||
# torch.set_printoptions(precision=6, sci_mode=False)
|
||
|
||
# def debug_rope(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
||
# # log inputs
|
||
# summarize(q, "RoPE.q_in")
|
||
# summarize(k, "RoPE.k_in")
|
||
|
||
# # call original
|
||
# q_out, k_out = orig_rope(q, k, cos, sin, position_ids, unsqueeze_dim)
|
||
|
||
# # log outputs
|
||
# summarize(q_out, "RoPE.q_out")
|
||
# summarize(k_out, "RoPE.k_out")
|
||
|
||
# return q_out, k_out
|
||
|
||
# # Patch it
|
||
# import transformers.models.apertus.modeling_apertus as apertus_mod # noqa: E402
|
||
# apertus_mod.apply_rotary_pos_emb = debug_rope
|
||
### == END ROPE DEBUG ===
|
||
|
||
|
||
def summarize(tensor: torch.Tensor, name: str, max_seq: int = 3, max_vals: int = 3):
|
||
"""
|
||
Print a tensor in llama.cpp debug style.
|
||
|
||
Supports:
|
||
- 2D tensors (seq, hidden)
|
||
- 3D tensors (batch, seq, hidden)
|
||
- 4D tensors (batch, seq, heads, dim_per_head) via flattening heads × dim_per_head
|
||
|
||
Shows first and last max_vals of each vector per sequence position.
|
||
"""
|
||
t = tensor.detach().to(torch.float32).cpu()
|
||
|
||
# Determine dimensions
|
||
if t.ndim == 3:
|
||
_, s, _ = t.shape
|
||
elif t.ndim == 2:
|
||
_, s = 1, t.shape[0]
|
||
t = t.unsqueeze(0)
|
||
elif t.ndim == 4:
|
||
_, s, _, _ = t.shape
|
||
else:
|
||
print(f"Skipping tensor due to unsupported dimensions: {t.ndim}")
|
||
return
|
||
|
||
ten_shape = t.shape
|
||
|
||
print(f"ggml_debug: {name} = (f32) ... = {{{ten_shape}}}")
|
||
print(" [")
|
||
print(" [")
|
||
|
||
# Determine indices for first and last sequences
|
||
first_indices = list(range(min(s, max_seq)))
|
||
last_indices = list(range(max(0, s - max_seq), s))
|
||
|
||
# Check if there's an overlap between first and last indices or if we're at the edge case of s = 2 * max_seq
|
||
has_overlap = bool(set(first_indices) & set(last_indices)) or (max_seq * 2 == s)
|
||
|
||
# Combine indices
|
||
if has_overlap:
|
||
# If there's overlap, just use the combined unique indices
|
||
indices = sorted(list(set(first_indices + last_indices)))
|
||
separator_index = None
|
||
else:
|
||
# If no overlap, we'll add a separator between first and last sequences
|
||
indices = first_indices + last_indices
|
||
separator_index = len(first_indices)
|
||
|
||
for i, si in enumerate(indices):
|
||
# Add separator if needed
|
||
if separator_index is not None and i == separator_index:
|
||
print(" ...")
|
||
|
||
# Extract appropriate slice
|
||
vec = t[0, si]
|
||
if vec.ndim == 2: # 4D case: flatten heads × dim_per_head
|
||
flat = vec.flatten().tolist()
|
||
else: # 2D or 3D case
|
||
flat = vec.tolist()
|
||
|
||
# First and last slices
|
||
first = flat[:max_vals]
|
||
last = flat[-max_vals:] if len(flat) >= max_vals else flat
|
||
first_str = ", ".join(f"{v:12.4f}" for v in first)
|
||
last_str = ", ".join(f"{v:12.4f}" for v in last)
|
||
|
||
print(f" [{first_str}, ..., {last_str}]")
|
||
|
||
print(" ],")
|
||
print(" ]")
|
||
print(f" sum = {t.sum().item():.6f}\n")
|
||
|
||
|
||
def debug_hook(name):
|
||
def fn(_m, input, output):
|
||
if isinstance(input, torch.Tensor):
|
||
summarize(input, name + "_in")
|
||
elif isinstance(input, (tuple, list)) and isinstance(input[0], torch.Tensor):
|
||
summarize(input[0], name + "_in")
|
||
if isinstance(output, torch.Tensor):
|
||
summarize(output, name + "_out")
|
||
elif isinstance(output, (tuple, list)) and isinstance(output[0], torch.Tensor):
|
||
summarize(output[0], name + "_out")
|
||
|
||
return fn
|
||
|
||
|
||
unreleased_model_name = os.getenv("UNRELEASED_MODEL_NAME")
|
||
|
||
parser = argparse.ArgumentParser(description="Process model with specified path")
|
||
parser.add_argument("--model-path", "-m", help="Path to the model")
|
||
args = parser.parse_args()
|
||
|
||
model_path = os.environ.get("MODEL_PATH", args.model_path)
|
||
if model_path is None:
|
||
parser.error(
|
||
"Model path must be specified either via --model-path argument or MODEL_PATH environment variable"
|
||
)
|
||
|
||
config = AutoConfig.from_pretrained(model_path)
|
||
|
||
print("Model type: ", config.model_type)
|
||
print("Vocab size: ", config.vocab_size)
|
||
print("Hidden size: ", config.hidden_size)
|
||
print("Number of layers: ", config.num_hidden_layers)
|
||
print("BOS token id: ", config.bos_token_id)
|
||
print("EOS token id: ", config.eos_token_id)
|
||
|
||
print("Loading model and tokenizer using AutoTokenizer:", model_path)
|
||
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||
config = AutoConfig.from_pretrained(model_path)
|
||
|
||
if unreleased_model_name:
|
||
model_name_lower = unreleased_model_name.lower()
|
||
unreleased_module_path = (
|
||
f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
|
||
)
|
||
class_name = f"{unreleased_model_name}ForCausalLM"
|
||
print(f"Importing unreleased model module: {unreleased_module_path}")
|
||
|
||
try:
|
||
model_class = getattr(
|
||
importlib.import_module(unreleased_module_path), class_name
|
||
)
|
||
model = model_class.from_pretrained(
|
||
model_path
|
||
) # Note: from_pretrained, not fromPretrained
|
||
except (ImportError, AttributeError) as e:
|
||
print(f"Failed to import or load model: {e}")
|
||
exit(1)
|
||
else:
|
||
model = AutoModelForCausalLM.from_pretrained(
|
||
model_path, device_map="auto", offload_folder="offload"
|
||
)
|
||
|
||
for name, module in model.named_modules():
|
||
if len(list(module.children())) == 0: # only leaf modules
|
||
module.register_forward_hook(debug_hook(name))
|
||
|
||
model_name = os.path.basename(model_path)
|
||
# Printing the Model class to allow for easier debugging. This can be useful
|
||
# when working with models that have not been publicly released yet and this
|
||
# migth require that the concrete class is imported and used directly instead
|
||
# of using AutoModelForCausalLM.
|
||
print(f"Model class: {model.__class__.__name__}")
|
||
|
||
prompt = "Hello, my name is"
|
||
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
||
|
||
print(f"Input tokens: {input_ids}")
|
||
print(f"Input text: {repr(prompt)}")
|
||
print(f"Tokenized: {tokenizer.convert_ids_to_tokens(input_ids[0])}")
|
||
|
||
with torch.no_grad():
|
||
outputs = model(input_ids.to(model.device))
|
||
logits = outputs.logits
|
||
|
||
# Extract logits for the last token (next token prediction)
|
||
last_logits = logits[0, -1, :].cpu().numpy()
|
||
|
||
print(f"Logits shape: {logits.shape}")
|
||
print(f"Last token logits shape: {last_logits.shape}")
|
||
print(f"Vocab size: {len(last_logits)}")
|
||
|
||
data_dir = Path("data")
|
||
data_dir.mkdir(exist_ok=True)
|
||
bin_filename = data_dir / f"pytorch-{model_name}.bin"
|
||
txt_filename = data_dir / f"pytorch-{model_name}.txt"
|
||
|
||
# Save to file for comparison
|
||
last_logits.astype(np.float32).tofile(bin_filename)
|
||
|
||
# Also save as text file for easy inspection
|
||
with open(txt_filename, "w") as f:
|
||
for i, logit in enumerate(last_logits):
|
||
f.write(f"{i}: {logit:.6f}\n")
|
||
|
||
# Print some sample logits for quick verification
|
||
print(f"First 10 logits: {last_logits[:10]}")
|
||
print(f"Last 10 logits: {last_logits[-10:]}")
|
||
|
||
# Show top 5 predicted tokens
|
||
top_indices = np.argsort(last_logits)[-5:][::-1]
|
||
print("Top 5 predictions:")
|
||
for idx in top_indices:
|
||
token = tokenizer.decode([idx])
|
||
print(f" Token {idx} ({repr(token)}): {last_logits[idx]:.6f}")
|
||
|
||
print(f"Saved bin logits to: {bin_filename}")
|
||
print(f"Saved txt logist to: {txt_filename}")
|