mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1087 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1087 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import asyncio
 | 
						|
import collections
 | 
						|
import json
 | 
						|
import os
 | 
						|
import re
 | 
						|
import socket
 | 
						|
import subprocess
 | 
						|
import time
 | 
						|
from contextlib import closing
 | 
						|
from re import RegexFlag
 | 
						|
 | 
						|
import aiohttp
 | 
						|
import numpy as np
 | 
						|
import openai
 | 
						|
from behave import step
 | 
						|
from behave.api.async_step import async_run_until_complete
 | 
						|
from huggingface_hub import hf_hub_download
 | 
						|
from prometheus_client import parser
 | 
						|
 | 
						|
 | 
						|
@step("a server listening on {server_fqdn}:{server_port}")
 | 
						|
def step_server_config(context, server_fqdn, server_port):
 | 
						|
    context.server_fqdn = server_fqdn
 | 
						|
    context.server_port = int(server_port)
 | 
						|
    if 'PORT' in os.environ:
 | 
						|
        context.server_port = int(os.environ['PORT'])
 | 
						|
        print(f"$PORT set, overriding server port with to {context.server_port}")
 | 
						|
    if 'FQDN' in os.environ:
 | 
						|
        context.server_fqdn = os.environ['FQDN']
 | 
						|
        print(f"$FQDN set, overriding server fqdn with to {context.server_fqdn}")
 | 
						|
 | 
						|
    context.base_url = f'http://{context.server_fqdn}:{context.server_port}'
 | 
						|
 | 
						|
    context.model_alias = None
 | 
						|
    context.n_batch = None
 | 
						|
    context.n_ubatch = None
 | 
						|
    context.n_ctx = None
 | 
						|
    context.n_ga = None
 | 
						|
    context.n_ga_w = None
 | 
						|
    context.n_gpu_layer = None
 | 
						|
    context.n_predict = None
 | 
						|
    context.n_prompts = 0
 | 
						|
    context.n_server_predict = None
 | 
						|
    context.n_slots = None
 | 
						|
    context.prompt_prefix = None
 | 
						|
    context.prompt_suffix = None
 | 
						|
    context.server_api_key = None
 | 
						|
    context.server_continuous_batching = False
 | 
						|
    context.server_embeddings = False
 | 
						|
    context.server_metrics = False
 | 
						|
    context.server_process = None
 | 
						|
    context.seed = None
 | 
						|
    context.server_seed = None
 | 
						|
    context.user_api_key = None
 | 
						|
 | 
						|
    context.tasks_result = []
 | 
						|
    context.concurrent_tasks = []
 | 
						|
    context.prompts = []
 | 
						|
 | 
						|
 | 
						|
@step('a model file {hf_file} from HF repo {hf_repo}')
 | 
						|
def step_download_hf_model(context, hf_file, hf_repo):
 | 
						|
    context.model_file = hf_hub_download(repo_id=hf_repo, filename=hf_file)
 | 
						|
    if context.debug:
 | 
						|
        print(f"model file: {context.model_file}\n")
 | 
						|
 | 
						|
 | 
						|
@step('a model alias {model_alias}')
 | 
						|
def step_model_alias(context, model_alias):
 | 
						|
    context.model_alias = model_alias
 | 
						|
 | 
						|
 | 
						|
@step('{seed:d} as server seed')
 | 
						|
def step_seed(context, seed):
 | 
						|
    context.server_seed = seed
 | 
						|
 | 
						|
 | 
						|
@step('{ngl:d} GPU offloaded layers')
 | 
						|
def step_n_gpu_layer(context, ngl):
 | 
						|
    if 'N_GPU_LAYERS' in os.environ:
 | 
						|
        new_ngl = int(os.environ['N_GPU_LAYERS'])
 | 
						|
        if context.debug:
 | 
						|
            print(f"-ngl upgraded from {ngl} to {new_ngl}")
 | 
						|
        ngl = new_ngl
 | 
						|
    context.n_gpu_layer = ngl
 | 
						|
 | 
						|
 | 
						|
@step('{n_ctx:d} KV cache size')
 | 
						|
def step_n_ctx(context, n_ctx):
 | 
						|
    context.n_ctx = n_ctx
 | 
						|
 | 
						|
 | 
						|
@step('{n_slots:d} slots')
 | 
						|
def step_n_slots(context, n_slots):
 | 
						|
    context.n_slots = n_slots
 | 
						|
 | 
						|
 | 
						|
@step('{n_predict:d} server max tokens to predict')
 | 
						|
def step_server_n_predict(context, n_predict):
 | 
						|
    context.n_server_predict = n_predict
 | 
						|
 | 
						|
 | 
						|
@step('continuous batching')
 | 
						|
def step_server_continuous_batching(context):
 | 
						|
    context.server_continuous_batching = True
 | 
						|
 | 
						|
 | 
						|
@step('embeddings extraction')
 | 
						|
def step_server_embeddings(context):
 | 
						|
    context.server_embeddings = True
 | 
						|
 | 
						|
 | 
						|
@step('prometheus compatible metrics exposed')
 | 
						|
def step_server_metrics(context):
 | 
						|
    context.server_metrics = True
 | 
						|
 | 
						|
 | 
						|
@step("the server is starting")
 | 
						|
def step_start_server(context):
 | 
						|
    start_server_background(context)
 | 
						|
    attempts = 0
 | 
						|
    max_attempts = 20
 | 
						|
    if 'GITHUB_ACTIONS' in os.environ:
 | 
						|
        max_attempts *= 2
 | 
						|
 | 
						|
    while True:
 | 
						|
        with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
 | 
						|
            result = sock.connect_ex((context.server_fqdn, context.server_port))
 | 
						|
            if result == 0:
 | 
						|
                print("\x1b[33;46mserver started!\x1b[0m")
 | 
						|
                return
 | 
						|
            attempts += 1
 | 
						|
            if attempts > max_attempts:
 | 
						|
                assert False, "server not started"
 | 
						|
            print(f"waiting for server to start, connect error code = {result}...")
 | 
						|
            time.sleep(0.1)
 | 
						|
 | 
						|
 | 
						|
@step("the server is {expecting_status}")
 | 
						|
@async_run_until_complete
 | 
						|
async def step_wait_for_the_server_to_be_started(context, expecting_status):
 | 
						|
    match expecting_status:
 | 
						|
        case 'healthy':
 | 
						|
            await wait_for_health_status(context, context.base_url, 200, 'ok')
 | 
						|
 | 
						|
        case 'ready' | 'idle':
 | 
						|
            await wait_for_health_status(context, context.base_url, 200, 'ok',
 | 
						|
                                         timeout=10,
 | 
						|
                                         params={'fail_on_no_slot': 0, 'include_slots': 0},
 | 
						|
                                         slots_idle=context.n_slots,
 | 
						|
                                         slots_processing=0,
 | 
						|
                                         expected_slots=[{'id': slot_id, 'state': 0}
 | 
						|
                                                         for slot_id in
 | 
						|
                                                         range(context.n_slots if context.n_slots else 1)])
 | 
						|
        case 'busy':
 | 
						|
            await wait_for_health_status(context, context.base_url, 503,
 | 
						|
                                         'no slot available',
 | 
						|
                                         params={'fail_on_no_slot': 0, 'include_slots': 0},
 | 
						|
                                         slots_idle=0,
 | 
						|
                                         slots_processing=context.n_slots,
 | 
						|
                                         expected_slots=[{'id': slot_id, 'state': 1}
 | 
						|
                                                         for slot_id in
 | 
						|
                                                         range(context.n_slots if context.n_slots else 1)])
 | 
						|
        case _:
 | 
						|
            assert False, "unknown status"
 | 
						|
 | 
						|
 | 
						|
@step('all slots are {expected_slot_status_string}')
 | 
						|
@async_run_until_complete
 | 
						|
async def step_all_slots_status(context, expected_slot_status_string):
 | 
						|
    match expected_slot_status_string:
 | 
						|
        case 'idle':
 | 
						|
            expected_slot_status = 0
 | 
						|
        case 'busy':
 | 
						|
            expected_slot_status = 1
 | 
						|
        case _:
 | 
						|
            assert False, "unknown status"
 | 
						|
 | 
						|
    expected_slots = [{'id': slot_id, 'state': expected_slot_status}
 | 
						|
                      for slot_id in range(context.n_slots)]
 | 
						|
    await request_slots_status(context, expected_slots)
 | 
						|
 | 
						|
 | 
						|
@step('a completion request with {api_error} api error')
 | 
						|
@async_run_until_complete
 | 
						|
async def step_request_completion(context, api_error):
 | 
						|
    expect_api_error = api_error == 'raised'
 | 
						|
    completion = await request_completion(context.prompts.pop(),
 | 
						|
                                          context.base_url,
 | 
						|
                                          debug=context.debug,
 | 
						|
                                          n_predict=context.n_predict,
 | 
						|
                                          seed=await completions_seed(context),
 | 
						|
                                          expect_api_error=expect_api_error,
 | 
						|
                                          user_api_key=context.user_api_key)
 | 
						|
    context.tasks_result.append(completion)
 | 
						|
    if context.debug:
 | 
						|
        print(f"Completion response: {completion}\n")
 | 
						|
    if expect_api_error:
 | 
						|
        assert completion == 401, f"completion must be an 401 status code: {completion}"
 | 
						|
 | 
						|
 | 
						|
@step('{predicted_n:d} tokens are predicted matching {re_content}')
 | 
						|
def step_n_tokens_predicted_with_content(context, predicted_n, re_content):
 | 
						|
    context.completion = context.tasks_result.pop()
 | 
						|
    assert_n_tokens_predicted(context.completion, predicted_n, re_content)
 | 
						|
 | 
						|
 | 
						|
@step('{predicted_n:d} tokens are predicted')
 | 
						|
def step_n_tokens_predicted(context, predicted_n):
 | 
						|
    context.completion = context.tasks_result.pop()
 | 
						|
    assert_n_tokens_predicted(context.completion, predicted_n)
 | 
						|
 | 
						|
 | 
						|
@step('the completion is  truncated')
 | 
						|
def step_assert_completion_truncated(context):
 | 
						|
    step_assert_completion_truncated(context, '')
 | 
						|
 | 
						|
 | 
						|
@step('the completion is {truncated} truncated')
 | 
						|
def step_assert_completion_truncated(context, truncated):
 | 
						|
    truncated = truncated != "not"
 | 
						|
    assert context.completion['truncated'] == truncated, f'{context.completion}'
 | 
						|
 | 
						|
 | 
						|
@step('{n_prompt:d} prompt tokens are processed')
 | 
						|
def step_impl(context, n_prompt):
 | 
						|
    assert n_prompt < 0 or n_prompt == context.completion['timings']['prompt_n'], f"n_prompt={context.completion['timings']['prompt_n']}"
 | 
						|
 | 
						|
 | 
						|
@step('a user prompt {user_prompt}')
 | 
						|
def step_user_prompt(context, user_prompt):
 | 
						|
    context.prompts.append(user_prompt)
 | 
						|
    context.n_prompts = len(context.prompts)
 | 
						|
 | 
						|
 | 
						|
@step('a system prompt {system_prompt}')
 | 
						|
def step_system_prompt(context, system_prompt):
 | 
						|
    context.system_prompt = system_prompt
 | 
						|
 | 
						|
 | 
						|
@step('a model {model}')
 | 
						|
def step_model(context, model):
 | 
						|
    context.model = model
 | 
						|
 | 
						|
 | 
						|
@step('{max_tokens:d} max tokens to predict')
 | 
						|
def step_max_tokens(context, max_tokens):
 | 
						|
    context.n_predict = max_tokens
 | 
						|
 | 
						|
 | 
						|
@step('streaming is {enable_streaming}')
 | 
						|
def step_streaming(context, enable_streaming):
 | 
						|
    context.enable_streaming = enable_streaming == 'enabled'
 | 
						|
 | 
						|
 | 
						|
@step('a user api key {user_api_key}')
 | 
						|
def step_user_api_key(context, user_api_key):
 | 
						|
    context.user_api_key = user_api_key
 | 
						|
 | 
						|
 | 
						|
@step('no user api key')
 | 
						|
def step_no_user_api_key(context):
 | 
						|
    context.user_api_key = None
 | 
						|
 | 
						|
 | 
						|
@step('a user api key ')
 | 
						|
def step_no_user_api_key_space(context):
 | 
						|
    context.user_api_key = None
 | 
						|
 | 
						|
 | 
						|
@step('a server api key {server_api_key}')
 | 
						|
def step_server_api_key(context, server_api_key):
 | 
						|
    context.server_api_key = server_api_key
 | 
						|
 | 
						|
 | 
						|
@step('{n_junk:d} as number of junk')
 | 
						|
def step_n_junk(context, n_junk):
 | 
						|
    context.n_junk = n_junk
 | 
						|
 | 
						|
 | 
						|
@step('{n_batch:d} as batch size')
 | 
						|
def step_n_batch(context, n_batch):
 | 
						|
    context.n_batch = n_batch
 | 
						|
 | 
						|
 | 
						|
@step('{n_ubatch:d} as ubatch size')
 | 
						|
def step_n_ubatch(context, n_ubatch):
 | 
						|
    context.n_ubatch = n_ubatch
 | 
						|
 | 
						|
 | 
						|
@step('{seed:d} as seed')
 | 
						|
def step_seed(context, seed):
 | 
						|
    context.seed = seed
 | 
						|
 | 
						|
 | 
						|
@step('a prefix prompt')
 | 
						|
def step_prompt_prefix(context):
 | 
						|
    context.prompt_prefix = context_text(context)
 | 
						|
 | 
						|
 | 
						|
@step('a junk suffix prompt')
 | 
						|
def step_prompt_junk_suffix(context):
 | 
						|
    context.prompt_junk_suffix = context_text(context)
 | 
						|
 | 
						|
 | 
						|
@step('a suffix prompt')
 | 
						|
def step_prompt_suffix(context):
 | 
						|
    context.prompt_suffix = context_text(context)
 | 
						|
 | 
						|
 | 
						|
@step('{n_ga:d} group attention factor'
 | 
						|
      ' to extend context size through self-extend')
 | 
						|
def step_impl(context, n_ga):
 | 
						|
    context.n_ga = n_ga
 | 
						|
 | 
						|
 | 
						|
@step('{n_ga_w:d} group attention width to extend context size through self-extend')
 | 
						|
def step_impl(context, n_ga_w):
 | 
						|
    context.n_ga_w = n_ga_w
 | 
						|
 | 
						|
 | 
						|
@step('a passkey prompt template')
 | 
						|
def step_prompt_passkey(context):
 | 
						|
    context.prompt_passkey = context_text(context)
 | 
						|
 | 
						|
 | 
						|
@step('{n_prompts:d} fixed prompts')
 | 
						|
def step_fixed_prompts(context, n_prompts):
 | 
						|
    context.prompts.extend([str(0)*(context.n_batch if context.n_batch is not None else 512) for i in range(n_prompts)])
 | 
						|
    context.n_prompts = n_prompts
 | 
						|
 | 
						|
 | 
						|
@step('a "{passkey}" passkey challenge prompt with the passkey inserted every {i_pos:d} junk')
 | 
						|
def step_prompt_passkey(context, passkey, i_pos):
 | 
						|
    prompt = ""
 | 
						|
    for i in range(context.n_junk):
 | 
						|
        if i % context.n_junk == i_pos:
 | 
						|
            prompt += context.prompt_passkey # the passkey is already substituted
 | 
						|
        prompt += context.prompt_junk_suffix
 | 
						|
    if context.debug:
 | 
						|
        passkey_highlight = "\x1b[33m" + passkey + "\x1b[0m"
 | 
						|
        print(f"Passkey challenge:\n```{prompt.replace(passkey, passkey_highlight)}```\n")
 | 
						|
    context.prompts.append(context.prompt_prefix + prompt + context.prompt_suffix)
 | 
						|
    context.n_prompts = len(context.prompts)
 | 
						|
 | 
						|
 | 
						|
@step('an OAI compatible chat completions request with {api_error} api error')
 | 
						|
@async_run_until_complete
 | 
						|
async def step_oai_chat_completions(context, api_error):
 | 
						|
    if context.debug:
 | 
						|
        print(f"Submitting OAI compatible completions request...\n")
 | 
						|
    expect_api_error = api_error == 'raised'
 | 
						|
    completion = await oai_chat_completions(context.prompts.pop(),
 | 
						|
                                            context.system_prompt,
 | 
						|
                                            context.base_url,
 | 
						|
                                            '/v1/chat',
 | 
						|
                                            False,
 | 
						|
                                            model=context.model if hasattr(context, 'model') else None,
 | 
						|
 | 
						|
                                            n_predict=context.n_predict
 | 
						|
                                            if hasattr(context, 'n_predict') else None,
 | 
						|
 | 
						|
                                            enable_streaming=context.enable_streaming
 | 
						|
                                            if hasattr(context, 'enable_streaming') else None,
 | 
						|
 | 
						|
                                            seed=await completions_seed(context),
 | 
						|
 | 
						|
                                            user_api_key=context.user_api_key
 | 
						|
                                            if hasattr(context, 'user_api_key') else None,
 | 
						|
 | 
						|
                                            expect_api_error=expect_api_error)
 | 
						|
    context.tasks_result.append(completion)
 | 
						|
    if context.debug:
 | 
						|
        print(f"Completion response: {completion}")
 | 
						|
    if expect_api_error:
 | 
						|
        assert completion == 401, f"completion must be an 401 status code: {completion}"
 | 
						|
 | 
						|
    if context.debug:
 | 
						|
        print(f"Completion response: {completion}")
 | 
						|
 | 
						|
 | 
						|
@step('a prompt')
 | 
						|
def step_a_prompt(context):
 | 
						|
    context.prompts.append(context_text(context))
 | 
						|
    context.n_prompts = len(context.prompts)
 | 
						|
 | 
						|
 | 
						|
@step('a prompt {prompt}')
 | 
						|
def step_a_prompt_prompt(context, prompt):
 | 
						|
    context.prompts.append(prompt)
 | 
						|
    context.n_prompts = len(context.prompts)
 | 
						|
 | 
						|
 | 
						|
@step('concurrent completion requests')
 | 
						|
@async_run_until_complete()
 | 
						|
async def step_concurrent_completion_requests(context):
 | 
						|
    await concurrent_requests(context,
 | 
						|
                              request_completion,
 | 
						|
                              # prompt is inserted automatically
 | 
						|
                              context.base_url,
 | 
						|
                              debug=context.debug,
 | 
						|
                              prompt_prefix=context.prompt_prefix,
 | 
						|
                              prompt_suffix=context.prompt_suffix,
 | 
						|
                              n_predict=context.n_predict if hasattr(context, 'n_predict') else None,
 | 
						|
                              seed=await completions_seed(context),
 | 
						|
                              user_api_key=context.user_api_key if hasattr(context,
 | 
						|
                                                                           'user_api_key') else None)
 | 
						|
 | 
						|
 | 
						|
@step('concurrent OAI completions requests')
 | 
						|
@async_run_until_complete
 | 
						|
async def step_oai_chat_completions(context):
 | 
						|
    await concurrent_requests(context, oai_chat_completions,
 | 
						|
                              # user_prompt is inserted automatically
 | 
						|
                              context.system_prompt,
 | 
						|
                              context.base_url,
 | 
						|
                              '/v1/chat/completions',
 | 
						|
                              True,  # async_client
 | 
						|
                              model=context.model
 | 
						|
                              if hasattr(context, 'model') else None,
 | 
						|
                              n_predict=context.n_predict
 | 
						|
                              if hasattr(context, 'n_predict') else None,
 | 
						|
                              enable_streaming=context.enable_streaming
 | 
						|
                              if hasattr(context, 'enable_streaming') else None,
 | 
						|
                              seed=await completions_seed(context),
 | 
						|
                              user_api_key=context.user_api_key
 | 
						|
                              if hasattr(context, 'user_api_key') else None)
 | 
						|
 | 
						|
 | 
						|
@step('concurrent OAI completions requests no v1')
 | 
						|
@async_run_until_complete
 | 
						|
async def step_oai_chat_completions(context):
 | 
						|
    await concurrent_requests(context, oai_chat_completions,
 | 
						|
                              # user_prompt is inserted automatically
 | 
						|
                              context.system_prompt,
 | 
						|
                              context.base_url,
 | 
						|
                              '/chat/completions',
 | 
						|
                              True,  # async_client
 | 
						|
                              model=context.model
 | 
						|
                              if hasattr(context, 'model') else None,
 | 
						|
                              n_predict=context.n_predict
 | 
						|
                              if hasattr(context, 'n_predict') else None,
 | 
						|
                              enable_streaming=context.enable_streaming
 | 
						|
                              if hasattr(context, 'enable_streaming') else None,
 | 
						|
                              seed=context.seed
 | 
						|
                              if hasattr(context, 'seed') else
 | 
						|
                              context.server_seed
 | 
						|
                              if hasattr(context, 'server_seed') else None,
 | 
						|
                              user_api_key=context.user_api_key
 | 
						|
                              if hasattr(context, 'user_api_key') else None)
 | 
						|
 | 
						|
 | 
						|
@step('all prompts are predicted')
 | 
						|
@async_run_until_complete
 | 
						|
async def step_all_prompts_are_predicted(context):
 | 
						|
    await all_prompts_are_predicted(context)
 | 
						|
 | 
						|
 | 
						|
@step('all prompts are predicted with {n_expected_predicted:d} tokens')
 | 
						|
@async_run_until_complete
 | 
						|
async def step_all_prompts_are_predicted_with_n_tokens(context, n_expected_predicted):
 | 
						|
    await all_prompts_are_predicted(context, n_expected_predicted)
 | 
						|
 | 
						|
 | 
						|
async def all_prompts_are_predicted(context, expected_predicted_n=None):
 | 
						|
    n_completions = await gather_tasks_results(context)
 | 
						|
    assert n_completions > 0
 | 
						|
    for i in range(n_completions):
 | 
						|
        assert_n_tokens_predicted(context.tasks_result.pop(), expected_predicted_n=expected_predicted_n)
 | 
						|
    assert len(context.concurrent_tasks) == 0, f"{len(context.concurrent_tasks)} pending requests"
 | 
						|
 | 
						|
 | 
						|
@step('embeddings are computed for')
 | 
						|
@async_run_until_complete
 | 
						|
async def step_compute_embedding(context):
 | 
						|
    context.n_prompts = 1
 | 
						|
    context.embeddings = await request_embedding(context_text(context), base_url=context.base_url)
 | 
						|
 | 
						|
 | 
						|
@step('all embeddings are the same')
 | 
						|
@async_run_until_complete
 | 
						|
async def step_all_embeddings_are_the_same(context):
 | 
						|
    n_embedding_requests = await gather_tasks_results(context)
 | 
						|
    assert n_embedding_requests > 0
 | 
						|
    embeddings = []
 | 
						|
    for i in range(n_embedding_requests):
 | 
						|
        embedding = context.tasks_result.pop().pop()
 | 
						|
        embeddings.append(embedding)
 | 
						|
        assert_embeddings(embedding)
 | 
						|
    n = len(embeddings)
 | 
						|
    for i in range(n-1):
 | 
						|
        for j in range(i+1, n):
 | 
						|
            embedding1 = np.array(embeddings[i])
 | 
						|
            embedding2 = np.array(embeddings[j])
 | 
						|
            if context.debug:
 | 
						|
                print(f"embedding1: {embedding1[-8:]}\n")
 | 
						|
                print(f"embedding2: {embedding2[-8:]}\n")
 | 
						|
            similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
 | 
						|
            msg = f"Similarity between {i} and {j}: {similarity:.10f}"
 | 
						|
            if context.debug:
 | 
						|
                print(f"{msg}\n")
 | 
						|
            assert np.isclose(similarity, 1.0, rtol=1e-05, atol=1e-08, equal_nan=False), msg
 | 
						|
 | 
						|
 | 
						|
@step('embeddings are generated')
 | 
						|
def step_assert_embeddings(context):
 | 
						|
    assert context.n_prompts == len(context.embeddings), (f"unexpected response:\n"
 | 
						|
                                                             f"context.n_prompts={context.n_prompts}\n"
 | 
						|
                                                             f"context.embeddings={context.embeddings}")
 | 
						|
    for embedding in context.embeddings:
 | 
						|
        assert_embeddings(embedding)
 | 
						|
 | 
						|
 | 
						|
@step('an OAI compatible embeddings computation request for')
 | 
						|
@async_run_until_complete
 | 
						|
async def step_oai_compute_embeddings(context):
 | 
						|
    context.n_prompts = 1
 | 
						|
    context.embeddings = await request_oai_embeddings(context_text(context),
 | 
						|
                                                      base_url=context.base_url,
 | 
						|
                                                      user_api_key=context.user_api_key,
 | 
						|
                                                      model=context.model)
 | 
						|
 | 
						|
 | 
						|
@step('an OAI compatible embeddings computation request for multiple inputs')
 | 
						|
@async_run_until_complete
 | 
						|
async def step_oai_compute_embeddings_multiple_inputs(context):
 | 
						|
    context.embeddings = await request_oai_embeddings(context.prompts,
 | 
						|
                                                      base_url=context.base_url,
 | 
						|
                                                      user_api_key=context.user_api_key,
 | 
						|
                                                      model=context.model)
 | 
						|
    context.prompts.clear()
 | 
						|
 | 
						|
 | 
						|
@step('concurrent embedding requests')
 | 
						|
@async_run_until_complete()
 | 
						|
async def step_concurrent_embedding_requests(context):
 | 
						|
    await concurrent_requests(context,
 | 
						|
                              request_embedding,
 | 
						|
                              # prompt is inserted automatically
 | 
						|
                              base_url=context.base_url)
 | 
						|
 | 
						|
 | 
						|
@step('concurrent OAI embedding requests')
 | 
						|
@async_run_until_complete()
 | 
						|
async def step_concurrent_oai_embedding_requests(context):
 | 
						|
    await concurrent_requests(context,
 | 
						|
                              request_oai_embeddings,
 | 
						|
                              # prompt is inserted automatically
 | 
						|
                              base_url=context.base_url,
 | 
						|
                              async_client=True,
 | 
						|
                              model=context.model)
 | 
						|
 | 
						|
 | 
						|
@step('all embeddings are generated')
 | 
						|
@async_run_until_complete()
 | 
						|
async def all_embeddings_are_generated(context):
 | 
						|
    n_embedding_requests = await gather_tasks_results(context)
 | 
						|
    assert n_embedding_requests == context.n_prompts
 | 
						|
    for i in range(n_embedding_requests):
 | 
						|
        assert_embeddings(context.tasks_result.pop().pop())
 | 
						|
 | 
						|
 | 
						|
@step('tokenizing')
 | 
						|
@async_run_until_complete
 | 
						|
async def step_tokenize(context):
 | 
						|
    context.tokenized_text = context_text(context)
 | 
						|
    async with aiohttp.ClientSession() as session:
 | 
						|
        async with session.post(f'{context.base_url}/tokenize',
 | 
						|
                                json={
 | 
						|
                                    "content": context.tokenized_text,
 | 
						|
                                }) as response:
 | 
						|
            assert response.status == 200
 | 
						|
            tokenize_json = await response.json()
 | 
						|
            context.tokens = tokenize_json['tokens']
 | 
						|
 | 
						|
 | 
						|
@step('tokens can be detokenize')
 | 
						|
@async_run_until_complete
 | 
						|
async def step_detokenize(context):
 | 
						|
    assert len(context.tokens) > 0
 | 
						|
    async with aiohttp.ClientSession() as session:
 | 
						|
        async with session.post(f'{context.base_url}/detokenize',
 | 
						|
                                json={
 | 
						|
                                    "tokens": context.tokens,
 | 
						|
                                }) as response:
 | 
						|
            assert response.status == 200
 | 
						|
            detokenize_json = await response.json()
 | 
						|
            # SPM tokenizer adds a whitespace prefix: https://github.com/google/sentencepiece/issues/15
 | 
						|
            assert context.tokenized_text == detokenize_json['content'].strip()
 | 
						|
 | 
						|
 | 
						|
@step('an OPTIONS request is sent from {origin}')
 | 
						|
@async_run_until_complete
 | 
						|
async def step_options_request(context, origin):
 | 
						|
    async with aiohttp.ClientSession() as session:
 | 
						|
        headers = {'Authorization': f'Bearer {context.user_api_key}', 'Origin': origin}
 | 
						|
        async with session.options(f'{context.base_url}/v1/chat/completions',
 | 
						|
                                    headers=headers) as response:
 | 
						|
            assert response.status == 200
 | 
						|
            context.options_response = response
 | 
						|
 | 
						|
 | 
						|
@step('CORS header {cors_header} is set to {cors_header_value}')
 | 
						|
def step_check_options_header_value(context, cors_header, cors_header_value):
 | 
						|
    assert context.options_response.headers[cors_header] == cors_header_value
 | 
						|
 | 
						|
 | 
						|
@step('prometheus metrics are exposed')
 | 
						|
@async_run_until_complete
 | 
						|
async def step_prometheus_metrics_exported(context):
 | 
						|
    async with aiohttp.ClientSession() as session:
 | 
						|
        async with await session.get(f'{context.base_url}/metrics') as metrics_response:
 | 
						|
            assert metrics_response.status == 200
 | 
						|
            assert metrics_response.headers['Content-Type'] == "text/plain; version=0.0.4"
 | 
						|
            metrics_raw = await metrics_response.text()
 | 
						|
            metric_exported = False
 | 
						|
            if context.debug:
 | 
						|
                print(f"/metrics answer:\n{metrics_raw}\n")
 | 
						|
            context.metrics = {}
 | 
						|
            for metric in parser.text_string_to_metric_families(metrics_raw):
 | 
						|
                match metric.name:
 | 
						|
                    case "llamacpp:kv_cache_usage_ratio":
 | 
						|
                        assert len(metric.samples) > 0
 | 
						|
                        metric_exported = True
 | 
						|
                context.metrics[metric.name] = metric
 | 
						|
            assert int(metrics_response.headers["Process-Start-Time-Unix"]) > 0, "no header process start time"
 | 
						|
            assert metric_exported, "No metrics exported"
 | 
						|
 | 
						|
 | 
						|
@step('metric {metric_name} is {metric_value:d}')
 | 
						|
def step_assert_metric_value(context, metric_name, metric_value):
 | 
						|
    if metric_name not in context.metrics:
 | 
						|
        assert False, f"no metric {metric_name} in {context.metrics.keys()}"
 | 
						|
    assert context.metrics[metric_name].samples[0].value == metric_value, f"metric: {context.metrics[metric_name]}"
 | 
						|
 | 
						|
 | 
						|
@step('available models')
 | 
						|
def step_available_models(context):
 | 
						|
    # openai client always expects an api_key
 | 
						|
    openai.api_key = context.user_api_key if context.user_api_key is not None else 'nope'
 | 
						|
    openai.api_base = f'{context.base_url}/v1'
 | 
						|
    context.models = openai.Model.list().data
 | 
						|
 | 
						|
 | 
						|
@step('{n_model:d} models are supported')
 | 
						|
def step_supported_models(context, n_model):
 | 
						|
    if context.debug:
 | 
						|
        print("server models available:", context.models)
 | 
						|
    assert len(context.models) == n_model
 | 
						|
 | 
						|
 | 
						|
@step('model {i_model:d} is {param} {preposition} {param_value}')
 | 
						|
def step_supported_models(context, i_model, param, preposition, param_value):
 | 
						|
    assert i_model < len(context.models)
 | 
						|
    model = context.models[i_model]
 | 
						|
 | 
						|
    param_value = param_value.split(' ', 1)[0]
 | 
						|
    match param:
 | 
						|
        case 'identified':
 | 
						|
            value = model.id
 | 
						|
        case 'trained':
 | 
						|
            value = str(model.meta.n_ctx_train)
 | 
						|
        case _:
 | 
						|
            assert False, "param {param} not supported"
 | 
						|
    assert param_value == value, f"model param {param} {value} != {param_value}"
 | 
						|
 | 
						|
 | 
						|
async def concurrent_requests(context, f_completion, *args, **kwargs):
 | 
						|
    context.n_prompts = len(context.prompts)
 | 
						|
    if context.debug:
 | 
						|
        print(f"starting {context.n_prompts} concurrent completion requests...")
 | 
						|
    assert context.n_prompts > 0
 | 
						|
    for prompt_no in range(context.n_prompts):
 | 
						|
        shifted_args = [context.prompts.pop(), *args]
 | 
						|
        context.concurrent_tasks.append(asyncio.create_task(f_completion(*shifted_args, **kwargs)))
 | 
						|
    await asyncio.sleep(0.1)
 | 
						|
 | 
						|
 | 
						|
async def request_completion(prompt,
 | 
						|
                             base_url,
 | 
						|
                             debug=False,
 | 
						|
                             prompt_prefix=None,
 | 
						|
                             prompt_suffix=None,
 | 
						|
                             n_predict=None,
 | 
						|
                             seed=None,
 | 
						|
                             expect_api_error=None,
 | 
						|
                             user_api_key=None):
 | 
						|
    if debug:
 | 
						|
        print(f"Sending completion request: {prompt}")
 | 
						|
    origin = "my.super.domain"
 | 
						|
    headers = {
 | 
						|
        'Origin': origin
 | 
						|
    }
 | 
						|
    if user_api_key is not None:
 | 
						|
        if debug:
 | 
						|
            print(f"Set user_api_key: {user_api_key}")
 | 
						|
        headers['Authorization'] = f'Bearer {user_api_key}'
 | 
						|
 | 
						|
    async with aiohttp.ClientSession() as session:
 | 
						|
        async with session.post(f'{base_url}/completion',
 | 
						|
                                json={
 | 
						|
                                    "input_prefix": prompt_prefix,
 | 
						|
                                    "prompt": prompt,
 | 
						|
                                    "input_suffix": prompt_suffix,
 | 
						|
                                    "n_predict": n_predict if n_predict is not None else -1,
 | 
						|
                                    "seed": seed if seed is not None else 42
 | 
						|
                                },
 | 
						|
                                headers=headers,
 | 
						|
                                timeout=3600) as response:
 | 
						|
            if expect_api_error is None or not expect_api_error:
 | 
						|
                assert response.status == 200
 | 
						|
                assert response.headers['Access-Control-Allow-Origin'] == origin
 | 
						|
                return await response.json()
 | 
						|
            else:
 | 
						|
                return response.status
 | 
						|
 | 
						|
 | 
						|
async def oai_chat_completions(user_prompt,
 | 
						|
                               system_prompt,
 | 
						|
                               base_url,
 | 
						|
                               base_path,
 | 
						|
                               async_client,
 | 
						|
                               debug=False,
 | 
						|
                               model=None,
 | 
						|
                               n_predict=None,
 | 
						|
                               enable_streaming=None,
 | 
						|
                               seed=None,
 | 
						|
                               user_api_key=None,
 | 
						|
                               expect_api_error=None):
 | 
						|
    if debug:
 | 
						|
        print(f"Sending OAI Chat completions request: {user_prompt}")
 | 
						|
    # openai client always expects an api key
 | 
						|
    user_api_key = user_api_key if user_api_key is not None else 'nope'
 | 
						|
    seed = seed if seed is not None else 42
 | 
						|
    enable_streaming = enable_streaming if enable_streaming is not None else False
 | 
						|
    payload = {
 | 
						|
        "messages": [
 | 
						|
            {
 | 
						|
                "role": "system",
 | 
						|
                "content": system_prompt,
 | 
						|
            },
 | 
						|
            {
 | 
						|
                "role": "user",
 | 
						|
                "content": user_prompt,
 | 
						|
            }
 | 
						|
        ],
 | 
						|
        "model": model,
 | 
						|
        "max_tokens": n_predict,
 | 
						|
        "stream": enable_streaming,
 | 
						|
        "seed": seed
 | 
						|
    }
 | 
						|
    completion_response = {
 | 
						|
        'content': '',
 | 
						|
        'timings': {
 | 
						|
            'predicted_n': 0,
 | 
						|
            'prompt_n': 0
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if async_client:
 | 
						|
        origin = 'llama.cpp'
 | 
						|
        headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
 | 
						|
        async with aiohttp.ClientSession() as session:
 | 
						|
            async with session.post(f'{base_url}{base_path}',
 | 
						|
                                    json=payload,
 | 
						|
                                    headers=headers) as response:
 | 
						|
                if enable_streaming:
 | 
						|
                    assert response.status == 200
 | 
						|
                    assert response.headers['Access-Control-Allow-Origin'] == origin
 | 
						|
                    assert response.headers['Content-Type'] == "text/event-stream"
 | 
						|
                    event_received = True
 | 
						|
                    while event_received:
 | 
						|
                        event_received = False
 | 
						|
                        async for line_in_bytes in response.content:
 | 
						|
                            line = line_in_bytes.decode('utf8')
 | 
						|
                            line = line.rstrip('\n').rstrip('\r')
 | 
						|
                            if line == '':
 | 
						|
                                continue
 | 
						|
                            event_data = line.split(': ', 1)
 | 
						|
                            assert event_data[0] == 'data', f'Bad event code received: ```{event_data}```'
 | 
						|
                            chunk_raw = event_data[1]
 | 
						|
 | 
						|
                            chunk = json.loads(chunk_raw)
 | 
						|
                            assert len(chunk['choices']) == 1, f"no choices provided, line ```{line}```"
 | 
						|
                            delta = chunk['choices'][0]['delta']
 | 
						|
                            if 'content' in delta:
 | 
						|
                                completion_response['content'] += delta['content']
 | 
						|
                                completion_response['timings']['predicted_n'] += 1
 | 
						|
                else:
 | 
						|
                    if expect_api_error is None or not expect_api_error:
 | 
						|
                        assert response.status == 200
 | 
						|
                        assert response.headers['Access-Control-Allow-Origin'] == origin
 | 
						|
                        assert response.headers['Content-Type'] == "application/json; charset=utf-8"
 | 
						|
                        chat_completion_raw = await response.json()
 | 
						|
                        completion_response = {
 | 
						|
                            'content': chat_completion_raw['choices'][0]['message'],
 | 
						|
                            'timings': {
 | 
						|
                                'predicted_n': chat_completion_raw['usage']['completion_tokens'],
 | 
						|
                                'prompt_n': chat_completion_raw['usage']['prompt_tokens']
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    else:
 | 
						|
                        return response.status
 | 
						|
    else:
 | 
						|
        try:
 | 
						|
            openai.api_key = user_api_key
 | 
						|
            openai.api_base = f'{base_url}{base_path}'
 | 
						|
            chat_completion = openai.Completion.create(
 | 
						|
                messages=payload['messages'],
 | 
						|
                model=model,
 | 
						|
                max_tokens=n_predict,
 | 
						|
                stream=enable_streaming,
 | 
						|
                seed=seed
 | 
						|
            )
 | 
						|
        except openai.error.AuthenticationError as e:
 | 
						|
            if expect_api_error is not None and expect_api_error:
 | 
						|
                return 401
 | 
						|
            else:
 | 
						|
                assert False, f'error raised: {e}'
 | 
						|
 | 
						|
        if enable_streaming:
 | 
						|
            for chunk in chat_completion:
 | 
						|
                assert len(chunk.choices) == 1
 | 
						|
                delta = chunk.choices[0].delta
 | 
						|
                if 'content' in delta:
 | 
						|
                    completion_response['content'] += delta['content']
 | 
						|
                    completion_response['timings']['predicted_n'] += 1
 | 
						|
                completion_response['truncated'] = chunk.choices[0].finish_reason != 'stop'
 | 
						|
        else:
 | 
						|
            assert len(chat_completion.choices) == 1
 | 
						|
            completion_response = {
 | 
						|
                'content': chat_completion.choices[0].message.content,
 | 
						|
                'timings': {
 | 
						|
                    'predicted_n': chat_completion.usage.completion_tokens,
 | 
						|
                    'prompt_n': chat_completion.usage.prompt_tokens
 | 
						|
                    },
 | 
						|
                'truncated': chat_completion.choices[0].finish_reason != 'stop'
 | 
						|
            }
 | 
						|
    if debug:
 | 
						|
        print("OAI response formatted to llama.cpp:", completion_response)
 | 
						|
    return completion_response
 | 
						|
 | 
						|
 | 
						|
async def request_embedding(content, base_url=None):
 | 
						|
    async with aiohttp.ClientSession() as session:
 | 
						|
        async with session.post(f'{base_url}/embedding',
 | 
						|
                                json={
 | 
						|
                                    "content": content,
 | 
						|
                                }) as response:
 | 
						|
            assert response.status == 200
 | 
						|
            response_json = await response.json()
 | 
						|
            return [response_json['embedding']]
 | 
						|
 | 
						|
 | 
						|
async def request_oai_embeddings(input,
 | 
						|
                                 base_url=None, user_api_key=None,
 | 
						|
                                 model=None, async_client=False):
 | 
						|
    # openai client always expects an api_key
 | 
						|
    user_api_key = user_api_key if user_api_key is not None else 'nope'
 | 
						|
    if async_client:
 | 
						|
        origin = 'llama.cpp'
 | 
						|
        headers=[]
 | 
						|
        if user_api_key is not None:
 | 
						|
            headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
 | 
						|
        async with aiohttp.ClientSession() as session:
 | 
						|
            async with session.post(f'{base_url}/v1/embeddings',
 | 
						|
                                    json={
 | 
						|
                                        "input": input,
 | 
						|
                                        "model": model,
 | 
						|
                                    },
 | 
						|
                                    headers=headers,
 | 
						|
                                    timeout=3600) as response:
 | 
						|
                assert response.status == 200, f"received status code not expected: {response.status}"
 | 
						|
                assert response.headers['Access-Control-Allow-Origin'] == origin
 | 
						|
                assert response.headers['Content-Type'] == "application/json; charset=utf-8"
 | 
						|
                response_json = await response.json()
 | 
						|
                assert response_json['model'] == model, f"invalid model received: {response_json['model']}"
 | 
						|
                assert response_json['object'] == 'list'
 | 
						|
                if isinstance(input, collections.abc.Sequence):
 | 
						|
                    embeddings = []
 | 
						|
                    for an_oai_embeddings in response_json['data']:
 | 
						|
                        embeddings.append(an_oai_embeddings['embedding'])
 | 
						|
                else:
 | 
						|
                    embeddings = [response_json['data']['embedding']]
 | 
						|
                return embeddings
 | 
						|
    else:
 | 
						|
        openai.api_key = user_api_key
 | 
						|
        openai.api_base = f'{base_url}/v1'
 | 
						|
        oai_embeddings = openai.Embedding.create(
 | 
						|
            model=model,
 | 
						|
            input=input,
 | 
						|
        )
 | 
						|
 | 
						|
        if isinstance(input, collections.abc.Sequence):
 | 
						|
            embeddings = []
 | 
						|
            for an_oai_embeddings in oai_embeddings.data:
 | 
						|
                embeddings.append(an_oai_embeddings.embedding)
 | 
						|
        else:
 | 
						|
            embeddings = [oai_embeddings.data.embedding]
 | 
						|
        return embeddings
 | 
						|
 | 
						|
 | 
						|
def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re_content=None):
 | 
						|
    content = completion_response['content']
 | 
						|
    n_predicted = completion_response['timings']['predicted_n']
 | 
						|
    assert len(content) > 0, "no token predicted"
 | 
						|
    if re_content is not None:
 | 
						|
        p = re.compile(re_content, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL)
 | 
						|
        matches = p.finditer(content)
 | 
						|
        last_match = 0
 | 
						|
        highlighted = ''
 | 
						|
        for match in matches:
 | 
						|
            start, end = match.span()
 | 
						|
            highlighted += content[last_match: start]
 | 
						|
            highlighted += '\x1b[33m'
 | 
						|
            highlighted += content[start: end]
 | 
						|
            highlighted += '\x1b[0m'
 | 
						|
            last_match = end
 | 
						|
        highlighted += content[last_match:]
 | 
						|
        if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
 | 
						|
          print(f"Checking completion response: {highlighted}\n")
 | 
						|
        assert last_match > 0, f'/{re_content}/ must match ```{highlighted}```'
 | 
						|
    if expected_predicted_n and expected_predicted_n > 0:
 | 
						|
        assert n_predicted == expected_predicted_n, (f'invalid number of tokens predicted:'
 | 
						|
                                                     f' {n_predicted} <> {expected_predicted_n}')
 | 
						|
 | 
						|
 | 
						|
async def gather_tasks_results(context):
 | 
						|
    n_tasks = len(context.concurrent_tasks)
 | 
						|
    if context.debug:
 | 
						|
        print(f"Waiting for all {n_tasks} tasks results...\n")
 | 
						|
    for task_no in range(n_tasks):
 | 
						|
        context.tasks_result.append(await context.concurrent_tasks.pop())
 | 
						|
    n_completions = len(context.tasks_result)
 | 
						|
    return n_completions
 | 
						|
 | 
						|
 | 
						|
async def wait_for_health_status(context,
 | 
						|
                                 base_url,
 | 
						|
                                 expected_http_status_code,
 | 
						|
                                 expected_health_status,
 | 
						|
                                 timeout=3,
 | 
						|
                                 params=None,
 | 
						|
                                 slots_idle=None,
 | 
						|
                                 slots_processing=None,
 | 
						|
                                 expected_slots=None):
 | 
						|
    if context.debug:
 | 
						|
        print(f"Starting checking for health for expected_health_status={expected_health_status}\n")
 | 
						|
    interval = 0.5
 | 
						|
    counter = 0
 | 
						|
    if 'GITHUB_ACTIONS' in os.environ:
 | 
						|
        timeout *= 2
 | 
						|
 | 
						|
    async with aiohttp.ClientSession() as session:
 | 
						|
        while True:
 | 
						|
            async with await session.get(f'{base_url}/health', params=params) as health_response:
 | 
						|
                status_code = health_response.status
 | 
						|
                health = await health_response.json()
 | 
						|
                if context.debug:
 | 
						|
                    print(f"HEALTH - response for expected health status='{expected_health_status}' on "
 | 
						|
                          f"'{base_url}/health'?{params} is {health}\n")
 | 
						|
                if (status_code == expected_http_status_code
 | 
						|
                        and health['status'] == expected_health_status
 | 
						|
                        and (slots_idle is None or health['slots_idle'] == slots_idle)
 | 
						|
                        and (slots_processing is None or health['slots_processing'] == slots_processing)):
 | 
						|
                    if expected_slots is not None:
 | 
						|
                        assert_slots_status(health['slots'], expected_slots)
 | 
						|
                    return
 | 
						|
                if (status_code == expected_http_status_code
 | 
						|
                        and health['status'] == expected_health_status
 | 
						|
                        and (slots_idle is None or health['slots_idle'] == slots_idle)
 | 
						|
                        and (slots_processing is None or health['slots_processing'] == slots_processing)):
 | 
						|
                    if expected_slots is not None:
 | 
						|
                        assert_slots_status(health['slots'], expected_slots)
 | 
						|
                    return
 | 
						|
            await asyncio.sleep(interval)
 | 
						|
 | 
						|
            counter += interval
 | 
						|
            if counter >= timeout:
 | 
						|
                # Sometimes health requests are triggered after completions are predicted
 | 
						|
                if expected_http_status_code == 503:
 | 
						|
                    if len(context.tasks_result) == 0:
 | 
						|
                        print("\x1b[5;37;43mWARNING: forcing concurrent tasks,"
 | 
						|
                              " busy health check missed, probably too fast inference\x1b[0m\n")
 | 
						|
                        n_completions = await gather_tasks_results(context)
 | 
						|
                        if n_completions > 0:
 | 
						|
                            return
 | 
						|
 | 
						|
                assert False, f'{expected_health_status} timeout exceeded {counter}s>={timeout}'
 | 
						|
 | 
						|
 | 
						|
def assert_embeddings(embeddings):
 | 
						|
    assert len(embeddings) > 0
 | 
						|
    embeddings_computed = False
 | 
						|
    for emb in embeddings:
 | 
						|
        if not isinstance(emb, float):
 | 
						|
            assert False, f"Bad embeddings: {embeddings}"
 | 
						|
        if emb != 0:
 | 
						|
            embeddings_computed = True
 | 
						|
    assert embeddings_computed, f"Embeddings: {embeddings}"
 | 
						|
 | 
						|
 | 
						|
async def request_slots_status(context, expected_slots):
 | 
						|
    async with aiohttp.ClientSession() as session:
 | 
						|
        async with await session.get(f'{context.base_url}/slots') as slots_response:
 | 
						|
            assert slots_response.status == 200
 | 
						|
            slots = await slots_response.json()
 | 
						|
            assert_slots_status(slots, expected_slots)
 | 
						|
 | 
						|
 | 
						|
def assert_slots_status(slots, expected_slots):
 | 
						|
    assert len(slots) == len(expected_slots)
 | 
						|
    for slot_id, (expected, slot) in enumerate(zip(expected_slots, slots)):
 | 
						|
        for key in expected:
 | 
						|
            assert expected[key] == slot[key], (f"invalid slot {slot_id}"
 | 
						|
                                                f" expected[{key}] != slot[{key}]"
 | 
						|
                                                f" = {expected[key]} != {slot[key]}")
 | 
						|
 | 
						|
 | 
						|
async def completions_seed(context):
 | 
						|
    return context.seed if hasattr(context, 'seed') and context.seed is not None \
 | 
						|
        else context.server_seed if hasattr(context, 'server_seed') else None
 | 
						|
 | 
						|
 | 
						|
def context_text(context):
 | 
						|
    return context.text.replace('\r', '')
 | 
						|
 | 
						|
 | 
						|
def start_server_background(context):
 | 
						|
    if os.name == 'nt':
 | 
						|
        context.server_path = '../../../build/bin/Release/server.exe'
 | 
						|
    else:
 | 
						|
        context.server_path = '../../../build/bin/server'
 | 
						|
    if 'LLAMA_SERVER_BIN_PATH' in os.environ:
 | 
						|
        context.server_path = os.environ['LLAMA_SERVER_BIN_PATH']
 | 
						|
    server_listen_addr = context.server_fqdn
 | 
						|
    if os.name == 'nt':
 | 
						|
        server_listen_addr = '0.0.0.0'
 | 
						|
    server_args = [
 | 
						|
        '--host', server_listen_addr,
 | 
						|
        '--port', context.server_port,
 | 
						|
        '--model', context.model_file
 | 
						|
    ]
 | 
						|
    if context.n_batch:
 | 
						|
        server_args.extend(['--batch-size', context.n_batch])
 | 
						|
    if context.n_ubatch:
 | 
						|
        server_args.extend(['--ubatch-size', context.n_ubatch])
 | 
						|
    if context.n_gpu_layer:
 | 
						|
        server_args.extend(['--n-gpu-layers', context.n_gpu_layer])
 | 
						|
    if context.server_continuous_batching:
 | 
						|
        server_args.append('--cont-batching')
 | 
						|
    if context.server_embeddings:
 | 
						|
        server_args.append('--embedding')
 | 
						|
    if context.server_metrics:
 | 
						|
        server_args.append('--metrics')
 | 
						|
    if context.model_alias:
 | 
						|
        server_args.extend(['--alias', context.model_alias])
 | 
						|
    if context.n_ctx:
 | 
						|
        server_args.extend(['--ctx-size', context.n_ctx])
 | 
						|
    if context.n_slots:
 | 
						|
        server_args.extend(['--parallel', context.n_slots])
 | 
						|
    if context.n_server_predict:
 | 
						|
        server_args.extend(['--n-predict', context.n_server_predict])
 | 
						|
    if context.server_api_key:
 | 
						|
        server_args.extend(['--api-key', context.server_api_key])
 | 
						|
    if context.n_ga:
 | 
						|
        server_args.extend(['--grp-attn-n', context.n_ga])
 | 
						|
    if context.n_ga_w:
 | 
						|
        server_args.extend(['--grp-attn-w', context.n_ga_w])
 | 
						|
    if context.debug:
 | 
						|
        server_args.append('--verbose')
 | 
						|
    if 'SERVER_LOG_FORMAT_JSON' not in os.environ:
 | 
						|
        server_args.extend(['--log-format', "text"])
 | 
						|
    print(f"starting server with: {context.server_path} {server_args}\n")
 | 
						|
    flags = 0
 | 
						|
    if 'nt' == os.name:
 | 
						|
        flags |= subprocess.DETACHED_PROCESS
 | 
						|
        flags |= subprocess.CREATE_NEW_PROCESS_GROUP
 | 
						|
        flags |= subprocess.CREATE_NO_WINDOW
 | 
						|
 | 
						|
    pkwargs = {
 | 
						|
        'creationflags': flags,
 | 
						|
    }
 | 
						|
    context.server_process = subprocess.Popen(
 | 
						|
        [str(arg) for arg in [context.server_path, *server_args]],
 | 
						|
        **pkwargs)
 | 
						|
    print(f"server pid={context.server_process.pid}, behave pid={os.getpid()}")
 |