mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	* llama : llama_perf + option to disable timings during decode ggml-ci * common : add llama_arg * Update src/llama.cpp Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com> * perf : separate functions in the API ggml-ci * perf : safer pointer handling + naming update ggml-ci * minor : better local var name * perf : abort on invalid sampler pointer ggml-ci --------- Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
		
			
				
	
	
		
			258 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			258 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "arg.h"
 | 
						|
#include "ggml.h"
 | 
						|
#include "common.h"
 | 
						|
#include "ngram-cache.h"
 | 
						|
#include "sampling.h"
 | 
						|
#include "llama.h"
 | 
						|
 | 
						|
#include <cstdint>
 | 
						|
#include <cstdio>
 | 
						|
#include <fstream>
 | 
						|
#include <string>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
int main(int argc, char ** argv){
 | 
						|
    gpt_params params;
 | 
						|
 | 
						|
    if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    // max. number of additional tokens to draft if match is found
 | 
						|
    const int n_draft = params.n_draft;
 | 
						|
 | 
						|
    const bool dump_kv_cache = params.dump_kv_cache;
 | 
						|
 | 
						|
#ifndef LOG_DISABLE_LOGS
 | 
						|
    log_set_target(log_filename_generator("lookup", "log"));
 | 
						|
    LOG_TEE("Log start\n");
 | 
						|
    log_dump_cmdline(argc, argv);
 | 
						|
#endif // LOG_DISABLE_LOGS
 | 
						|
 | 
						|
    // init llama.cpp
 | 
						|
    llama_backend_init();
 | 
						|
    llama_numa_init(params.numa);
 | 
						|
 | 
						|
    // load the model
 | 
						|
    llama_init_result llama_init = llama_init_from_gpt_params(params);
 | 
						|
 | 
						|
    llama_model * model = llama_init.model;
 | 
						|
    llama_context * ctx = llama_init.context;
 | 
						|
 | 
						|
    // tokenize the prompt
 | 
						|
    std::vector<llama_token> inp;
 | 
						|
    inp = ::llama_tokenize(ctx, params.prompt, true, true);
 | 
						|
 | 
						|
    llama_ngram_cache ngram_cache_context;
 | 
						|
    llama_ngram_cache ngram_cache_dynamic;
 | 
						|
    llama_ngram_cache ngram_cache_static;
 | 
						|
    int64_t t_draft_flat_us = 0;
 | 
						|
    int64_t t_draft_us = 0;
 | 
						|
 | 
						|
    {
 | 
						|
        // Fill up context ngram cache with tokens from user input:
 | 
						|
        const int64_t t_start_draft_us = ggml_time_us();
 | 
						|
        llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, inp.size(), false);
 | 
						|
 | 
						|
        if (!params.lookup_cache_static.empty()) {
 | 
						|
            try {
 | 
						|
                ngram_cache_static = llama_ngram_cache_load(params.lookup_cache_static);
 | 
						|
            } catch (std::ifstream::failure const &) {
 | 
						|
                fprintf(stderr, "error: failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
 | 
						|
                exit(1);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (!params.lookup_cache_dynamic.empty()) {
 | 
						|
            try {
 | 
						|
                ngram_cache_dynamic = llama_ngram_cache_load(params.lookup_cache_dynamic);
 | 
						|
            } catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program
 | 
						|
        }
 | 
						|
 | 
						|
        t_draft_flat_us += ggml_time_us() - t_start_draft_us;
 | 
						|
    }
 | 
						|
 | 
						|
    const int max_context_size     = llama_n_ctx(ctx);
 | 
						|
    const int max_tokens_list_size = max_context_size - 4;
 | 
						|
 | 
						|
    if ((int) inp.size() > max_tokens_list_size) {
 | 
						|
        fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    fprintf(stderr, "\n\n");
 | 
						|
 | 
						|
    for (auto id : inp) {
 | 
						|
        fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
 | 
						|
    }
 | 
						|
 | 
						|
    fflush(stderr);
 | 
						|
 | 
						|
    const int n_input = inp.size();
 | 
						|
 | 
						|
    const auto t_enc_start = ggml_time_us();
 | 
						|
 | 
						|
    llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1, 0,           0));
 | 
						|
    llama_decode(ctx, llama_batch_get_one(&inp.back(),           1, n_input - 1, 0));
 | 
						|
 | 
						|
    const auto t_enc_end = ggml_time_us();
 | 
						|
 | 
						|
    int n_predict = 0;
 | 
						|
    int n_drafted = 0;
 | 
						|
    int n_accept  = 0;
 | 
						|
 | 
						|
    int n_past = inp.size();
 | 
						|
 | 
						|
    bool has_eos = false;
 | 
						|
 | 
						|
    struct gpt_sampler * smpl = gpt_sampler_init(model, params.sparams);
 | 
						|
 | 
						|
    std::vector<llama_token> draft;
 | 
						|
 | 
						|
    llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, 1);
 | 
						|
 | 
						|
    // debug
 | 
						|
    struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, 1);
 | 
						|
 | 
						|
    const auto t_dec_start = ggml_time_us();
 | 
						|
 | 
						|
    while (true) {
 | 
						|
        // debug
 | 
						|
        if (dump_kv_cache) {
 | 
						|
            llama_kv_cache_view_update(ctx, &kvc_view);
 | 
						|
            llama_kv_cache_dump_view_seqs(kvc_view, 40);
 | 
						|
        }
 | 
						|
 | 
						|
        // print current draft sequence
 | 
						|
        LOG("drafted %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, draft).c_str());
 | 
						|
 | 
						|
        int i_dft = 0;
 | 
						|
        while (true) {
 | 
						|
            // sample from the target model
 | 
						|
            llama_token id = gpt_sampler_sample(smpl, ctx, i_dft);
 | 
						|
 | 
						|
            gpt_sampler_accept(smpl, id, true);
 | 
						|
 | 
						|
            const std::string token_str = llama_token_to_piece(ctx, id);
 | 
						|
 | 
						|
            if (!params.use_color) {
 | 
						|
                printf("%s", token_str.c_str());
 | 
						|
            }
 | 
						|
 | 
						|
            if (llama_token_is_eog(model, id)) {
 | 
						|
                has_eos = true;
 | 
						|
            }
 | 
						|
 | 
						|
            ++n_predict;
 | 
						|
 | 
						|
            // check if the target token matches the draft
 | 
						|
            if (i_dft < (int) draft.size() && id == draft[i_dft]) {
 | 
						|
                LOG("the sampled target token matches the %dth drafted token (%d, '%s') - accepted\n", i_dft, id, token_str.c_str());
 | 
						|
                ++n_accept;
 | 
						|
                ++n_past;
 | 
						|
                ++i_dft;
 | 
						|
                inp.push_back(id);
 | 
						|
                {
 | 
						|
                    // Update context ngram cache with the newly accepted token:
 | 
						|
                    const int64_t t_start_draft_us = ggml_time_us();
 | 
						|
                    llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false);
 | 
						|
                    t_draft_us += ggml_time_us() - t_start_draft_us;
 | 
						|
                }
 | 
						|
 | 
						|
                if (params.use_color) {
 | 
						|
                    // color accepted draft token
 | 
						|
                    printf("\033[34m%s\033[0m", token_str.c_str());
 | 
						|
                    fflush(stdout);
 | 
						|
                }
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
 | 
						|
            if (params.use_color) {
 | 
						|
                printf("%s", token_str.c_str());
 | 
						|
            }
 | 
						|
            fflush(stdout);
 | 
						|
 | 
						|
 | 
						|
            LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str());
 | 
						|
 | 
						|
            draft.clear();
 | 
						|
            draft.push_back(id);
 | 
						|
            inp.push_back(id);
 | 
						|
            {
 | 
						|
                // Update context ngram cache with the newly accepted token:
 | 
						|
                const int64_t t_start_draft_us = ggml_time_us();
 | 
						|
                llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false);
 | 
						|
                t_draft_us += ggml_time_us() - t_start_draft_us;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        if ((params.n_predict > 0 && n_predict > params.n_predict) || has_eos) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        // KV cache management
 | 
						|
        // clean the cache of draft tokens that weren't accepted
 | 
						|
        llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
 | 
						|
 | 
						|
        llama_batch_clear(batch_tgt);
 | 
						|
        llama_batch_add(batch_tgt, draft[0], n_past, { 0 }, true);
 | 
						|
 | 
						|
        // Draft already contains a single token sampled from the model:
 | 
						|
        GGML_ASSERT(draft.size() == 1);
 | 
						|
        GGML_ASSERT(draft[0] == inp.back());
 | 
						|
        const int64_t t_start_draft_us = ggml_time_us();
 | 
						|
 | 
						|
        llama_ngram_cache_draft(inp, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static);
 | 
						|
 | 
						|
        for (size_t i = 1; i < draft.size(); ++i) {
 | 
						|
            llama_batch_add(batch_tgt, draft[i], n_past + i, { 0 }, true);
 | 
						|
        }
 | 
						|
 | 
						|
        t_draft_us += ggml_time_us() - t_start_draft_us;
 | 
						|
        n_drafted += draft.size() - 1;
 | 
						|
 | 
						|
        llama_decode(ctx, batch_tgt);
 | 
						|
        ++n_past;
 | 
						|
 | 
						|
        draft.erase(draft.begin());
 | 
						|
    }
 | 
						|
 | 
						|
    auto t_dec_end = ggml_time_us();
 | 
						|
 | 
						|
    // Update dynamic ngram cache with context ngram cache and save it to disk:
 | 
						|
    llama_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
 | 
						|
    llama_ngram_cache_save(ngram_cache_dynamic, params.lookup_cache_dynamic);
 | 
						|
 | 
						|
    LOG_TEE("\n\n");
 | 
						|
 | 
						|
    LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input,   (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
 | 
						|
    LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict  / ((t_dec_end - t_dec_start) / 1e6f));
 | 
						|
 | 
						|
    LOG_TEE("\n");
 | 
						|
    LOG_TEE("n_draft      = %d\n", n_draft);
 | 
						|
    LOG_TEE("n_predict    = %d\n", n_predict);
 | 
						|
    LOG_TEE("n_drafted    = %d\n", n_drafted);
 | 
						|
    LOG_TEE("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3);
 | 
						|
    LOG_TEE("t_draft      = %.2f ms, %.2f us per token, %.2f tokens per second\n",
 | 
						|
            t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us));
 | 
						|
    LOG_TEE("n_accept     = %d\n", n_accept);
 | 
						|
    LOG_TEE("accept       = %.3f%%\n", 100.0f * n_accept / n_drafted);
 | 
						|
 | 
						|
    LOG_TEE("\ntarget:\n\n");
 | 
						|
    gpt_perf_print(ctx, smpl);
 | 
						|
 | 
						|
    gpt_sampler_free(smpl);
 | 
						|
 | 
						|
    llama_batch_free(batch_tgt);
 | 
						|
 | 
						|
    llama_free(ctx);
 | 
						|
    llama_free_model(model);
 | 
						|
 | 
						|
    llama_backend_free();
 | 
						|
 | 
						|
    fprintf(stderr, "\n\n");
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 |