mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			175 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			175 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python3
 | |
| 
 | |
| import numpy as np
 | |
| import sys
 | |
| import os
 | |
| import argparse
 | |
| from pathlib import Path
 | |
| 
 | |
| def calculate_nmse(reference, test):
 | |
|     mse = np.mean((test - reference) ** 2)
 | |
|     ref_var = np.var(reference)
 | |
|     if ref_var == 0:
 | |
|         nmse = float('inf') if mse > 0 else 0.0
 | |
|         return mse, mse, ref_var
 | |
| 
 | |
|     nmse = mse / ref_var
 | |
| 
 | |
|     return nmse, mse, ref_var
 | |
| 
 | |
| def load_logits(file_path):
 | |
|     if not os.path.exists(file_path):
 | |
|         raise FileNotFoundError(f"File not found: {file_path}")
 | |
| 
 | |
|     if file_path.suffix == '.npy':
 | |
|         return np.load(file_path)
 | |
|     elif file_path.suffix == '.bin':
 | |
|         return np.fromfile(file_path, dtype=np.float32)
 | |
|     else:
 | |
|         # Try to load as text file
 | |
|         try:
 | |
|             # If it has index format "0: value", extract just values
 | |
|             data = []
 | |
|             with open(file_path, 'r') as f:
 | |
|                 for line in f:
 | |
|                     if ':' in line:
 | |
|                         # Format: "index: value"
 | |
|                         value = float(line.split(':')[1].strip())
 | |
|                     else:
 | |
|                         # Just the value
 | |
|                         value = float(line.strip())
 | |
|                     data.append(value)
 | |
|             return np.array(data, dtype=np.float32)
 | |
|         except:
 | |
|             return np.loadtxt(file_path, dtype=np.float32)
 | |
| 
 | |
| def interpret_nmse(nmse):
 | |
|     """Provide interpretation of NMSE value"""
 | |
|     if nmse == 0:
 | |
|         return "Perfect match", "🎉"
 | |
|     elif nmse < 1e-6:
 | |
|         return "Essentially identical", "✅"
 | |
|     elif nmse < 1e-4:
 | |
|         return "Excellent match", "✅"
 | |
|     elif nmse < 1e-3:
 | |
|         return "Very good match", "👍"
 | |
|     elif nmse < 1e-2:
 | |
|         return "Good match", "👍"
 | |
|     elif nmse < 0.1:
 | |
|         return "Acceptable match", "⚠️"
 | |
|     elif nmse < 1.0:
 | |
|         return "Poor match", "❌"
 | |
|     else:
 | |
|         return "Very poor match (worse than noise)", "❌"
 | |
| 
 | |
| def main():
 | |
|     parser = argparse.ArgumentParser(description='Validate model logits')
 | |
|     parser.add_argument('-m', '--model-path', required=True,  help='Path to the model directory')
 | |
|     args = parser.parse_args()
 | |
| 
 | |
|     model_name = os.path.basename(args.model_path)
 | |
|     data_dir = Path("data")
 | |
| 
 | |
|     pytorch_file = data_dir / f"pytorch-{model_name}.bin"
 | |
|     llamacpp_file = data_dir / f"llamacpp-{model_name}.bin"
 | |
| 
 | |
|     print(f"Model name: {model_name}")
 | |
|     print(f"PyTorch logits file: {pytorch_file}")
 | |
|     print(f"llama.cpp logits file: {llamacpp_file}")
 | |
| 
 | |
|     reference_file = pytorch_file
 | |
|     test_file = llamacpp_file
 | |
| 
 | |
|     print("📊 NMSE Check for Model Comparison")
 | |
|     print("=" * 50)
 | |
|     print(f"Reference (ground truth): {reference_file}")
 | |
|     print(f"Test (to evaluate):       {test_file}")
 | |
|     print()
 | |
| 
 | |
|     try:
 | |
|         print("Loading reference logits...")
 | |
|         reference = load_logits(reference_file)
 | |
|         print(f"  Shape: {reference.shape}, Type: {reference.dtype}")
 | |
| 
 | |
|         print("Loading test logits...")
 | |
|         test = load_logits(test_file)
 | |
|         print(f"  Shape: {test.shape}, Type: {test.dtype}")
 | |
| 
 | |
|         # Check shapes match
 | |
|         if reference.shape != test.shape:
 | |
|             print(f"\n❌ Error: Shape mismatch!")
 | |
|             print(f"  Reference: {reference.shape}")
 | |
|             print(f"  Test: {test.shape}")
 | |
|             sys.exit(1)
 | |
| 
 | |
|         print(f"\n✅ Shapes match: {reference.shape}")
 | |
| 
 | |
|         nmse, mse, ref_var = calculate_nmse(reference, test)
 | |
| 
 | |
|         # Additional metrics
 | |
|         max_abs_error = np.max(np.abs(test - reference))
 | |
|         mean_abs_error = np.mean(np.abs(test - reference))
 | |
| 
 | |
|         # Results
 | |
|         print(f"\n📈 METRICS")
 | |
|         print("=" * 30)
 | |
|         print(f"MSE (Mean Squared Error):     {mse:.6e}")
 | |
|         print(f"Reference Variance:           {ref_var:.6e}")
 | |
|         print(f"NMSE:                         {nmse:.6e}")
 | |
|         print(f"Max Absolute Error:           {max_abs_error:.6f}")
 | |
|         print(f"Mean Absolute Error:          {mean_abs_error:.6f}")
 | |
| 
 | |
|         # NMSE in dB (common in signal processing)
 | |
|         if nmse > 0:
 | |
|             nmse_db = 10 * np.log10(nmse)
 | |
|             print(f"NMSE (dB):                    {nmse_db:.2f} dB")
 | |
| 
 | |
|         # Interpretation
 | |
|         interpretation, emoji = interpret_nmse(nmse)
 | |
|         print(f"\n🎯 INTERPRETATION")
 | |
|         print("=" * 30)
 | |
|         print(f"{emoji} {interpretation}")
 | |
| 
 | |
|         # Detailed guidance
 | |
|         print(f"\n📋 GUIDANCE")
 | |
|         print("=" * 30)
 | |
|         if nmse < 1e-3:
 | |
|             print("✅ EXCELLENT: Your GGML conversion is working very well!")
 | |
|             print("   The differences are negligible for practical use.")
 | |
|         elif nmse < 1e-2:
 | |
|             print("👍 GOOD: Your GGML conversion is working well.")
 | |
|             print("   Small differences are likely due to precision/quantization.")
 | |
|         elif nmse < 0.1:
 | |
|             print("⚠️  ACCEPTABLE: Conversion is working but with some differences.")
 | |
|             print("   Check if you're using quantization (Q4, Q8, etc.)")
 | |
|             print("   Test generation quality to see if it's acceptable.")
 | |
|         else:
 | |
|             print("❌ PROBLEMATIC: Large differences detected.")
 | |
|             print("   Check your conversion process for potential issues.")
 | |
|             print("   Verify you're using the same model weights.")
 | |
| 
 | |
|         # NMSE benchmarks
 | |
|         print(f"\n📚 NMSE BENCHMARKS")
 | |
|         print("=" * 30)
 | |
|         print("< 1e-6:  Essentially identical")
 | |
|         print("< 1e-4:  Excellent (typical for good conversions)")
 | |
|         print("< 1e-3:  Very good")
 | |
|         print("< 1e-2:  Good (acceptable for most use cases)")
 | |
|         print("< 0.1:   Acceptable (may need verification)")
 | |
|         print("> 1.0:   Poor (worse than random)")
 | |
| 
 | |
|         # Exit code based on NMSE
 | |
|         if nmse < 1e-2:
 | |
|             print(f"\n✅ RESULT: PASS (NMSE = {nmse:.2e})")
 | |
|             sys.exit(0)
 | |
|         else:
 | |
|             print(f"\n❌ RESULT: NEEDS REVIEW (NMSE = {nmse:.2e})")
 | |
|             sys.exit(1)
 | |
| 
 | |
|     except Exception as e:
 | |
|         print(f"❌ Error: {e}")
 | |
|         sys.exit(1)
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     main()
 | 
