mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	 92ecdcc06a
			
		
	
	92ecdcc06a
	
	
	
		
			
			* wip llama 4 conversion * rm redundant __init__ * fix conversion * fix conversion * test impl * try this * reshape patch_embeddings_0 * fix view * rm ffn_post_norm * cgraph ok * f32 for pos embd * add image marker tokens * Llama4UnfoldConvolution * correct pixel shuffle * fix merge conflicts * correct * add debug_graph * logits matched, but it still preceives the image incorrectly * fix style * add image_grid_pinpoints * handle llama 4 preprocessing * rm load_image_size * rm unused line * fix * small fix 2 * add test & docs * fix llava-1.6 test * test: add notion of huge models * add comment * add warn about degraded quality
		
			
				
	
	
		
			722 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			722 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "clip.h"
 | |
| #include "clip-impl.h"
 | |
| #include "mtmd.h"
 | |
| 
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cerrno>
 | |
| #include <cstdio>
 | |
| #include <cstdlib>
 | |
| #include <cstring>
 | |
| #include <limits>
 | |
| #include <vector>
 | |
| 
 | |
| // represents raw image data, layout is RGBRGBRGB...
 | |
| // length of data must be nx * ny * 3
 | |
| struct mtmd_bitmap {
 | |
|     uint32_t nx;
 | |
|     uint32_t ny;
 | |
|     std::vector<unsigned char> data;
 | |
|     std::string id; // optional user-defined id, for ex: can be set to image hash, useful for KV cache tracking
 | |
| };
 | |
| 
 | |
| struct mtmd_image_tokens_deleter {
 | |
|     void operator()(mtmd_image_tokens * val); // forward declaration
 | |
| };
 | |
| using mtmd_image_tokens_ptr = std::unique_ptr<mtmd_image_tokens, mtmd_image_tokens_deleter>;
 | |
| 
 | |
| struct mtmd_input_chunk {
 | |
|     mtmd_input_chunk_type type;
 | |
|     std::vector<llama_token> tokens_text;
 | |
|     mtmd_image_tokens_ptr tokens_image;
 | |
| };
 | |
| 
 | |
| struct mtmd_input_chunks {
 | |
|     std::vector<mtmd_input_chunk> entries;
 | |
| };
 | |
| 
 | |
| // slice template, used by some llava-uhd models to correctly place the special tokens around image embeddings
 | |
| // models not having it (llava-1.6) will process embeddings without any special tokens in-between
 | |
| enum mtmd_slice_tmpl {
 | |
|     MTMD_SLICE_TMPL_NONE,
 | |
|     MTMD_SLICE_TMPL_MINICPMV_2_5,
 | |
|     MTMD_SLICE_TMPL_MINICPMV_2_6,
 | |
|     MTMD_SLICE_TMPL_LLAMA4,
 | |
|     // TODO @ngxson : add support for idefics (SmolVLM)
 | |
| };
 | |
| 
 | |
| mtmd_context_params mtmd_context_params_default() {
 | |
|     mtmd_context_params params;
 | |
|     params.use_gpu = true;
 | |
|     params.print_timings = true;
 | |
|     params.n_threads = 4;
 | |
|     params.verbosity = GGML_LOG_LEVEL_INFO;
 | |
|     params.image_marker = MTMD_DEFAULT_IMAGE_MARKER;
 | |
|     return params;
 | |
| }
 | |
| 
 | |
| struct mtmd_context {
 | |
|     struct clip_ctx * ctx_clip;
 | |
|     const struct llama_model * text_model;
 | |
|     std::vector<float> image_embd_v; // image embedding vector
 | |
| 
 | |
|     bool print_timings;
 | |
|     int n_threads;
 | |
|     std::string image_marker;
 | |
| 
 | |
|     // for llava-uhd style models, we need special tokens in-between slices
 | |
|     // minicpmv calls them "slices", llama 4 calls them "tiles"
 | |
|     mtmd_slice_tmpl slice_tmpl    = MTMD_SLICE_TMPL_NONE;
 | |
|     llama_token tok_ov_img_start  = LLAMA_TOKEN_NULL; // overview image
 | |
|     llama_token tok_ov_img_end    = LLAMA_TOKEN_NULL; // overview image
 | |
|     llama_token tok_slices_start  = LLAMA_TOKEN_NULL; // start of all slices
 | |
|     llama_token tok_slices_end    = LLAMA_TOKEN_NULL; // end of all slices
 | |
|     llama_token tok_sli_img_start = LLAMA_TOKEN_NULL; // single slice start
 | |
|     llama_token tok_sli_img_end   = LLAMA_TOKEN_NULL; // single slice end
 | |
|     llama_token tok_sli_img_mid   = LLAMA_TOKEN_NULL; // between 2 slices
 | |
|     llama_token tok_row_end       = LLAMA_TOKEN_NULL; // end of row
 | |
|     bool        tok_row_end_trail = false;
 | |
|     bool        ov_img_first      = false;
 | |
| 
 | |
|     bool use_mrope = false; // for Qwen2VL, we need to use M-RoPE
 | |
| 
 | |
|     // TODO @ngxson : add timings
 | |
| 
 | |
|     mtmd_context(const char * mmproj_fname,
 | |
|                    const llama_model * text_model,
 | |
|                    const mtmd_context_params & ctx_params) :
 | |
|         text_model   (text_model),
 | |
|         print_timings(ctx_params.print_timings),
 | |
|         n_threads    (ctx_params.n_threads),
 | |
|         image_marker (ctx_params.image_marker)
 | |
|     {
 | |
|         clip_context_params ctx_clip_params;
 | |
|         ctx_clip_params.use_gpu   = ctx_params.use_gpu;
 | |
|         ctx_clip_params.verbosity = ctx_params.verbosity;
 | |
|         ctx_clip = clip_init(mmproj_fname, ctx_clip_params);
 | |
|         if (!ctx_clip) {
 | |
|             throw std::runtime_error(string_format("Failed to load CLIP model from %s\n", mmproj_fname));
 | |
|         }
 | |
| 
 | |
|         use_mrope = clip_is_qwen2vl(ctx_clip);
 | |
| 
 | |
|         projector_type proj = clip_get_projector_type(ctx_clip);
 | |
|         int minicpmv_version = clip_is_minicpmv(ctx_clip);
 | |
|         if (minicpmv_version == 2) {
 | |
|             // minicpmv 2.5 format:
 | |
|             // <image> (overview) </image><slice><image> (slice) </image><image> (slice) </image>\n ... </slice>
 | |
|             slice_tmpl        = MTMD_SLICE_TMPL_MINICPMV_2_5;
 | |
|             tok_ov_img_start  = lookup_token("<image>");
 | |
|             tok_ov_img_end    = lookup_token("</image>");
 | |
|             tok_slices_start  = lookup_token("<slice>");
 | |
|             tok_slices_end    = lookup_token("</slice>");
 | |
|             tok_sli_img_start = tok_ov_img_start;
 | |
|             tok_sli_img_end   = tok_ov_img_end;
 | |
|             tok_row_end       = lookup_token("\n");
 | |
|             tok_row_end_trail = false; // no trailing end-of-row token
 | |
|             ov_img_first      = true;
 | |
| 
 | |
|         } else if (minicpmv_version == 3 || minicpmv_version == 4) {
 | |
|             // minicpmv 2.6 format:
 | |
|             // <image> (overview) </image><slice> (slice) </slice><slice> (slice) </slice>\n ...
 | |
|             slice_tmpl        = MTMD_SLICE_TMPL_MINICPMV_2_6;
 | |
|             tok_ov_img_start  = lookup_token("<image>");
 | |
|             tok_ov_img_end    = lookup_token("</image>");
 | |
|             tok_sli_img_start = lookup_token("<slice>");
 | |
|             tok_sli_img_end   = lookup_token("</slice>");
 | |
|             tok_row_end       = lookup_token("\n");
 | |
|             tok_row_end_trail = false; // no trailing end-of-row token
 | |
|             ov_img_first      = true;
 | |
| 
 | |
|         } else if (minicpmv_version != 0) {
 | |
|             GGML_ASSERT(false && "unsupported minicpmv version");
 | |
|         } else if (proj == PROJECTOR_TYPE_LLAMA4) {
 | |
|             // llama 4 format:
 | |
|             // <|image_start|>
 | |
|             //     (slice) <|tile_x_separator|> (slice) <|tile_x_separator|> ... <|tile_y_separator|>
 | |
|             //     (slice) <|tile_x_separator|> (slice) <|tile_x_separator|> ... <|tile_y_separator|>
 | |
|             //     ... <|tile_y_separator|>   <-- trailing end-of-row token
 | |
|             // <|image|> (overview)           <-- overview image is last
 | |
|             // <|image_end|>
 | |
|             slice_tmpl        = MTMD_SLICE_TMPL_LLAMA4;
 | |
|             tok_ov_img_start  = lookup_token("<|image|>");
 | |
|             tok_sli_img_mid   = lookup_token("<|tile_x_separator|>");
 | |
|             tok_row_end       = lookup_token("<|tile_y_separator|>");
 | |
|             tok_row_end_trail = true; // add trailing end-of-row token
 | |
|             ov_img_first      = false; // overview image is last
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ~mtmd_context() {
 | |
|         clip_free(ctx_clip);
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     llama_token lookup_token(const std::string & token_text) {
 | |
|         const llama_vocab * vocab = llama_model_get_vocab(text_model);
 | |
|         const int n_vocab = llama_vocab_n_tokens(vocab);
 | |
|         for (int i = 0; i < n_vocab; i++) {
 | |
|             if (token_to_piece(vocab, i, true) == token_text) {
 | |
|                 return i;
 | |
|             }
 | |
|         }
 | |
|         return LLAMA_TOKEN_NULL;
 | |
|     }
 | |
| 
 | |
|     std::string token_to_piece(const llama_vocab * vocab, llama_token token, bool special) {
 | |
|         std::string piece;
 | |
|         piece.resize(piece.capacity());  // using string internal cache, 15 bytes + '\n'
 | |
|         const int n_chars = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
 | |
|         if (n_chars < 0) {
 | |
|             piece.resize(-n_chars);
 | |
|             int check = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
 | |
|             GGML_ASSERT(check == -n_chars);
 | |
|         } else {
 | |
|             piece.resize(n_chars);
 | |
|         }
 | |
|         return piece;
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct mtmd_image_tokens_data {
 | |
|     clip_image_f32_batch batch_f32; // preprocessed image patches
 | |
| };
 | |
| 
 | |
| struct mtmd_image_tokens {
 | |
|     uint32_t nx; // number of tokens in x direction
 | |
|     uint32_t ny; // number of tokens in y direction
 | |
|     bool use_mrope_pos = false; // use M-RoPE position counting (the whole image is 1 temporal position)
 | |
|     uint32_t n_tokens() const { return nx * ny; }
 | |
|     clip_image_f32_batch batch_f32; // preprocessed image patches
 | |
|     std::string id; // optional user-defined ID, useful for KV cache tracking
 | |
| 
 | |
|     mtmd_image_tokens clone() {
 | |
|         return mtmd_image_tokens{
 | |
|             nx,
 | |
|             ny,
 | |
|             use_mrope_pos,
 | |
|             batch_f32.clone(),
 | |
|             id
 | |
|         };
 | |
|     }
 | |
| };
 | |
| 
 | |
| mtmd_context * mtmd_init_from_file(const char * mmproj_fname,
 | |
|         const struct llama_model * text_model,
 | |
|         const struct mtmd_context_params ctx_params) {
 | |
|     try {
 | |
|         return new mtmd_context(mmproj_fname, text_model, ctx_params);
 | |
|     } catch (const std::exception & e) {
 | |
|         LOG_ERR("%s: error: %s\n", __func__, e.what());
 | |
|         return nullptr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void mtmd_free(mtmd_context * ctx) {
 | |
|     if (ctx) {
 | |
|         delete ctx;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // copied from common_tokenize
 | |
| static std::vector<llama_token> mtmd_tokenize_text_internal(
 | |
|     const struct llama_vocab * vocab,
 | |
|            const std::string & text,
 | |
|                         bool   add_special,
 | |
|                         bool   parse_special) {
 | |
|     // upper limit for the number of tokens
 | |
|     int n_tokens = text.length() + 2 * add_special;
 | |
|     std::vector<llama_token> result(n_tokens);
 | |
|     n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
 | |
|     if (n_tokens < 0) {
 | |
|         result.resize(-n_tokens);
 | |
|         int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
 | |
|         GGML_ASSERT(check == -n_tokens);
 | |
|     } else {
 | |
|         result.resize(n_tokens);
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| int32_t mtmd_tokenize(mtmd_context * ctx,
 | |
|             mtmd_input_chunks * output,
 | |
|             const mtmd_input_text * text,
 | |
|             const mtmd_bitmap ** bitmaps,
 | |
|             size_t n_bitmaps) {
 | |
|     auto vocab = llama_model_get_vocab(ctx->text_model);
 | |
| 
 | |
|     std::string prompt_modified(text->text);
 | |
|     std::string marker_modified(ctx->image_marker);
 | |
|     projector_type proj_type = clip_get_projector_type(ctx->ctx_clip);
 | |
| 
 | |
|     // a bit hacky here, but works for now
 | |
|     // for some models, we need to add prefix and suffix to the image embeddings
 | |
|     if (clip_is_gemma3(ctx->ctx_clip)) {
 | |
|         // gemma 3
 | |
|         // <start_of_image> ... (image embeddings) ... <end_of_image>
 | |
|         marker_modified = "<start_of_image>" + ctx->image_marker + "<end_of_image>";
 | |
|         string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
 | |
| 
 | |
|     } else if (proj_type == PROJECTOR_TYPE_IDEFICS3) {
 | |
|         // https://github.com/huggingface/transformers/blob/a42ba80fa520c784c8f11a973ca9034e5f859b79/src/transformers/models/idefics3/processing_idefics3.py#L192-L215
 | |
|         marker_modified = "<fake_token_around_image><global-img>" + ctx->image_marker + "<fake_token_around_image>";
 | |
|         string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
 | |
| 
 | |
|     } else if (proj_type == PROJECTOR_TYPE_PIXTRAL) {
 | |
|         // https://github.com/huggingface/transformers/blob/1cd110c6cb6a6237614130c470e9a902dbc1a4bd/docs/source/en/model_doc/pixtral.md
 | |
|         marker_modified = ctx->image_marker + "[IMG_END]";
 | |
|         string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
 | |
| 
 | |
|     } else if (proj_type == PROJECTOR_TYPE_QWEN2VL || proj_type == PROJECTOR_TYPE_QWEN25VL) {
 | |
|         // <|vision_start|> ... (image embeddings) ... <|vision_end|>
 | |
|         marker_modified = "<|vision_start|>" + ctx->image_marker + "<|vision_end|>";
 | |
|         string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
 | |
| 
 | |
|     } else if (proj_type == PROJECTOR_TYPE_LLAMA4) {
 | |
|         // (more details in mtmd_context constructor)
 | |
|         marker_modified = "<|image_start|>" + ctx->image_marker + "<|image_end|>";
 | |
|         string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
 | |
| 
 | |
|     } else if (proj_type == PROJECTOR_TYPE_INTERNVL) {
 | |
|         // <img> ... (image embeddings) ... </img>
 | |
|         marker_modified = "<img>" + ctx->image_marker + "</img>";
 | |
|         string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     // llava-1.5, llava-1.6, Yi-VL, Yi-34B, granite: don't need to add prefix and suffix
 | |
|     // for glm-edge, BOI and EOI token's embeddings are not present in the text model
 | |
| 
 | |
|     std::vector<std::string> parts = string_split_str(prompt_modified, ctx->image_marker);
 | |
|     output->entries.clear();
 | |
|     output->entries.reserve(parts.size());
 | |
| 
 | |
|     size_t i_img = 0;
 | |
| 
 | |
|     // utility for adding raw tokens
 | |
|     auto add_text_chunk = [&output](std::vector<llama_token> && tokens) {
 | |
|         mtmd_input_chunk chunk{
 | |
|             MTMD_INPUT_CHUNK_TYPE_TEXT,
 | |
|             std::move(tokens),
 | |
|             {},
 | |
|         };
 | |
|         output->entries.emplace_back(std::move(chunk));
 | |
|     };
 | |
| 
 | |
|     // utility for splitting batch of multiple images into chunks of batch having single images
 | |
|     auto split_batch_to_chunk = [&ctx](clip_image_f32_batch && batch_f32, const std::string & id) {
 | |
|         std::vector<mtmd_input_chunk> chunks;
 | |
| 
 | |
|         for (auto & entry : batch_f32.entries) {
 | |
|             mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens);
 | |
|             image_tokens->nx = clip_n_output_tokens(ctx->ctx_clip, entry.get());
 | |
|             image_tokens->ny = 1;
 | |
|             image_tokens->batch_f32.entries.push_back(std::move(entry));
 | |
|             image_tokens->id = id;
 | |
| 
 | |
|             mtmd_input_chunk chunk{
 | |
|                 MTMD_INPUT_CHUNK_TYPE_IMAGE,
 | |
|                 {},
 | |
|                 std::move(image_tokens),
 | |
|             };
 | |
|             chunks.emplace_back(std::move(chunk));
 | |
|         }
 | |
| 
 | |
|         return chunks;
 | |
|     };
 | |
| 
 | |
|     for (const auto & part : parts) {
 | |
|         // printf("tokenizing part: %s\n", part.c_str());
 | |
|         bool add_bos = &parts.front() == ∂
 | |
|         auto tokens = mtmd_tokenize_text_internal(vocab, part, text->add_special && add_bos, text->parse_special);
 | |
|         if (tokens.empty()) {
 | |
|             continue;
 | |
|         }
 | |
|         mtmd_input_chunk chunk{
 | |
|             MTMD_INPUT_CHUNK_TYPE_TEXT,
 | |
|             std::move(tokens),
 | |
|             {},
 | |
|         };
 | |
|         output->entries.emplace_back(std::move(chunk));
 | |
| 
 | |
|         if (&parts.back() != &part) {
 | |
|             // add image token to middle of 2 parts
 | |
| 
 | |
|             if (i_img >= n_bitmaps) {
 | |
|                 LOG_ERR("%s: error: not enough images for %d parts\n", __func__, (int)parts.size());
 | |
|                 return 1;
 | |
|             }
 | |
| 
 | |
|             // convert mtmd_bitmap to clip_image_u8
 | |
|             clip_image_u8_ptr img_u8(clip_image_u8_init());
 | |
|             img_u8->nx = bitmaps[i_img]->nx;
 | |
|             img_u8->ny = bitmaps[i_img]->ny;
 | |
|             img_u8->buf.resize(bitmaps[i_img]->data.size());
 | |
|             std::memcpy(img_u8->buf.data(), bitmaps[i_img]->data.data(), img_u8->nx * img_u8->ny * 3);
 | |
| 
 | |
|             // preprocess image
 | |
|             clip_image_f32_batch batch_f32;
 | |
|             bool ok = clip_image_preprocess(ctx->ctx_clip, img_u8.get(), &batch_f32);
 | |
|             if (!ok) {
 | |
|                 LOG_ERR("Unable to preprocess image\n");
 | |
|                 return 2;
 | |
|             }
 | |
| 
 | |
|             // handle llava-uhd style preprocessing
 | |
|             if (
 | |
|                 ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_5
 | |
|                 || ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_6
 | |
|                 || ctx->slice_tmpl == MTMD_SLICE_TMPL_LLAMA4
 | |
|             ) {
 | |
|                 // split batch into chunks of single images
 | |
|                 auto chunks = split_batch_to_chunk(std::move(batch_f32), bitmaps[i_img]->id);
 | |
|                 GGML_ASSERT(chunks.size() > 0);
 | |
| 
 | |
|                 auto ov_chunk = std::move(chunks.front());
 | |
|                 chunks.erase(chunks.begin());
 | |
| 
 | |
|                 // add overview image (first)
 | |
|                 if (ctx->ov_img_first) {
 | |
|                     if (ctx->tok_ov_img_start != LLAMA_TOKEN_NULL) {
 | |
|                         add_text_chunk({ctx->tok_ov_img_start});
 | |
|                     }
 | |
|                     output->entries.emplace_back(std::move(ov_chunk));
 | |
|                     if (ctx->tok_ov_img_end != LLAMA_TOKEN_NULL) {
 | |
|                         add_text_chunk({ctx->tok_ov_img_end});
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 // add slices (or tiles)
 | |
|                 if (!chunks.empty()) {
 | |
|                     const int n_col = batch_f32.grid_x;
 | |
|                     const int n_row = batch_f32.grid_y;
 | |
|                     if (ctx->tok_slices_start != LLAMA_TOKEN_NULL) {
 | |
|                         add_text_chunk({ctx->tok_slices_start});
 | |
|                     }
 | |
|                     for (int y = 0; y < n_row; y++) {
 | |
|                         for (int x = 0; x < n_col; x++) {
 | |
|                             const bool is_last_in_row = (x == n_col - 1);
 | |
|                             if (ctx->tok_sli_img_start != LLAMA_TOKEN_NULL) {
 | |
|                                 add_text_chunk({ctx->tok_sli_img_start});
 | |
|                             }
 | |
|                             output->entries.emplace_back(std::move(chunks[y * n_col + x]));
 | |
|                             if (ctx->tok_sli_img_end != LLAMA_TOKEN_NULL) {
 | |
|                                 add_text_chunk({ctx->tok_sli_img_end});
 | |
|                             }
 | |
|                             if (!is_last_in_row && ctx->tok_sli_img_mid != LLAMA_TOKEN_NULL) {
 | |
|                                 add_text_chunk({ctx->tok_sli_img_mid});
 | |
|                             }
 | |
|                         }
 | |
|                         if ((y != n_row - 1 || ctx->tok_row_end_trail) && ctx->tok_row_end != LLAMA_TOKEN_NULL) {
 | |
|                             add_text_chunk({ctx->tok_row_end});
 | |
|                         }
 | |
|                     }
 | |
|                     if (ctx->tok_slices_end != LLAMA_TOKEN_NULL) {
 | |
|                         add_text_chunk({ctx->tok_slices_end});
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 // add overview image (last)
 | |
|                 if (!ctx->ov_img_first) {
 | |
|                     if (ctx->tok_ov_img_start != LLAMA_TOKEN_NULL) {
 | |
|                         add_text_chunk({ctx->tok_ov_img_start});
 | |
|                     }
 | |
|                     output->entries.emplace_back(std::move(ov_chunk));
 | |
|                     if (ctx->tok_ov_img_end != LLAMA_TOKEN_NULL) {
 | |
|                         add_text_chunk({ctx->tok_ov_img_end});
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|             } else {
 | |
|                 size_t n_tokens = 0;
 | |
|                 for (const auto & entry : batch_f32.entries) {
 | |
|                     n_tokens += clip_n_output_tokens(ctx->ctx_clip, entry.get());
 | |
|                 }
 | |
| 
 | |
|                 mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens);
 | |
|                 if (ctx->use_mrope) {
 | |
|                     // for Qwen2VL, we need this information for M-RoPE decoding positions
 | |
|                     image_tokens->nx = clip_n_output_tokens_x(ctx->ctx_clip, batch_f32.entries[0].get());
 | |
|                     image_tokens->ny = clip_n_output_tokens_y(ctx->ctx_clip, batch_f32.entries[0].get());
 | |
|                     image_tokens->use_mrope_pos = true;
 | |
|                 } else {
 | |
|                     // other models, we only need the total number of tokens
 | |
|                     image_tokens->nx = n_tokens;
 | |
|                     image_tokens->ny = 1;
 | |
|                 }
 | |
|                 image_tokens->batch_f32 = std::move(batch_f32);
 | |
|                 image_tokens->id = bitmaps[i_img]->id; // optional
 | |
| 
 | |
|                 LOG_DBG("image_tokens->nx = %d\n", image_tokens->nx);
 | |
|                 LOG_DBG("image_tokens->ny = %d\n", image_tokens->ny);
 | |
|                 LOG_DBG("batch_f32 size = %d\n", (int)image_tokens->batch_f32.entries.size());
 | |
| 
 | |
|                 mtmd_input_chunk chunk{
 | |
|                     MTMD_INPUT_CHUNK_TYPE_IMAGE,
 | |
|                     {},
 | |
|                     std::move(image_tokens),
 | |
|                 };
 | |
|                 output->entries.emplace_back(std::move(chunk));
 | |
|             }
 | |
| 
 | |
|             i_img++; // move to next image
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void mtmd_image_tokens_free(mtmd_image_tokens * image_tokens) {
 | |
|     if (image_tokens) {
 | |
|         delete image_tokens;
 | |
|     }
 | |
| }
 | |
| 
 | |
| int32_t mtmd_encode(mtmd_context * ctx, const mtmd_image_tokens * image_tokens) {
 | |
|     int n_mmproj_embd = clip_n_mmproj_embd(ctx->ctx_clip);
 | |
|     ctx->image_embd_v.resize(image_tokens->n_tokens() * n_mmproj_embd);
 | |
|     bool ok = false;
 | |
| 
 | |
|     if (clip_is_llava(ctx->ctx_clip) || clip_is_minicpmv(ctx->ctx_clip) || clip_is_glm(ctx->ctx_clip)) {
 | |
|         // TODO @ngxson : llava does not support batched encoding ; this should be fixed inside clip_image_batch_encode()
 | |
|         const auto & entries = image_tokens->batch_f32.entries;
 | |
|         for (size_t i = 0; i < entries.size(); i++) {
 | |
|             int n_tokens_per_image = clip_n_output_tokens(ctx->ctx_clip, entries[i].get());
 | |
|             ok = clip_image_encode(
 | |
|                 ctx->ctx_clip,
 | |
|                 ctx->n_threads,
 | |
|                 entries[i].get(),
 | |
|                 ctx->image_embd_v.data() + i*n_mmproj_embd*n_tokens_per_image);
 | |
|         }
 | |
|     } else {
 | |
|         ok = clip_image_batch_encode(
 | |
|             ctx->ctx_clip,
 | |
|             ctx->n_threads,
 | |
|             &image_tokens->batch_f32,
 | |
|             ctx->image_embd_v.data());
 | |
|     }
 | |
| 
 | |
|     return ok ? 0 : 1;
 | |
| }
 | |
| 
 | |
| float * mtmd_get_output_embd(mtmd_context * ctx) {
 | |
|     return ctx->image_embd_v.data();
 | |
| }
 | |
| 
 | |
| bool mtmd_decode_use_non_causal(mtmd_context * ctx) {
 | |
|     projector_type proj_type = clip_get_projector_type(ctx->ctx_clip);
 | |
|     if (proj_type == PROJECTOR_TYPE_GEMMA3) {
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool mtmd_decode_use_mrope(mtmd_context * ctx) {
 | |
|     return ctx->use_mrope;
 | |
| }
 | |
| 
 | |
| void mtmd_image_tokens_deleter::operator()(mtmd_image_tokens * val) {
 | |
|     mtmd_image_tokens_free(val);
 | |
| }
 | |
| 
 | |
| // these 2 helpers below use internal clip_image_u8_ptr,
 | |
| // so unfortunately they cannot moved to mtmd-helper.h
 | |
| // however, in theory, user can decode image file to bitmap using
 | |
| // whichever library they want, and then use mtmd_bitmap_init() to create bitmap
 | |
| 
 | |
| mtmd_bitmap * mtmd_helper_bitmap_init_from_buf(const unsigned char * buf, size_t len) {
 | |
|     clip_image_u8_ptr img_u8(clip_image_u8_init());
 | |
|     bool ok = clip_image_load_from_bytes(buf, len, img_u8.get());
 | |
|     if (!ok) {
 | |
|         LOG_ERR("Unable to load image from buffer\n");
 | |
|         return nullptr;
 | |
|     }
 | |
|     uint32_t nx, ny;
 | |
|     unsigned char * data = clip_image_u8_get_data(img_u8.get(), &nx, &ny);
 | |
|     return mtmd_bitmap_init(nx, ny, data);
 | |
| }
 | |
| 
 | |
| mtmd_bitmap * mtmd_helper_bitmap_init_from_file(const char * fname) {
 | |
|     clip_image_u8_ptr img_u8(clip_image_u8_init());
 | |
|     bool ok = clip_image_load_from_file(fname, img_u8.get());
 | |
|     if (!ok) {
 | |
|         LOG_ERR("Unable to load image %s\n", fname);
 | |
|         return nullptr;
 | |
|     }
 | |
|     uint32_t nx, ny;
 | |
|     unsigned char * data = clip_image_u8_get_data(img_u8.get(), &nx, &ny);
 | |
|     return mtmd_bitmap_init(nx, ny, data);
 | |
| }
 | |
| 
 | |
| //
 | |
| // public API functions
 | |
| //
 | |
| 
 | |
| // mtmd_bitmap
 | |
| 
 | |
| mtmd_bitmap * mtmd_bitmap_init(uint32_t nx,
 | |
|                                uint32_t ny,
 | |
|                                const unsigned char * data) {
 | |
|     mtmd_bitmap * bitmap = new mtmd_bitmap;
 | |
|     bitmap->nx = nx;
 | |
|     bitmap->ny = ny;
 | |
|     size_t data_size = (size_t)nx * ny * 3;
 | |
|     bitmap->data.resize(data_size);
 | |
|     std::memcpy(bitmap->data.data(), data, data_size);
 | |
|     return bitmap;
 | |
| }
 | |
| 
 | |
| uint32_t mtmd_bitmap_get_nx(const mtmd_bitmap * bitmap) {
 | |
|     return bitmap->nx;
 | |
| }
 | |
| 
 | |
| uint32_t mtmd_bitmap_get_ny(const mtmd_bitmap * bitmap) {
 | |
|     return bitmap->ny;
 | |
| }
 | |
| 
 | |
| const unsigned char * mtmd_bitmap_get_data(const mtmd_bitmap * bitmap) {
 | |
|     return bitmap->data.data();
 | |
| }
 | |
| 
 | |
| const char * mtmd_bitmap_get_id(const mtmd_bitmap * bitmap) {
 | |
|     return bitmap->id.c_str();
 | |
| }
 | |
| 
 | |
| void mtmd_bitmap_set_id(mtmd_bitmap * bitmap, const char * id) {
 | |
|     if (id) {
 | |
|         bitmap->id = std::string(id);
 | |
|     } else {
 | |
|         bitmap->id.clear();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void mtmd_bitmap_free(mtmd_bitmap * bitmap) {
 | |
|     if (bitmap) {
 | |
|         delete bitmap;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // mtmd_input_chunks
 | |
| 
 | |
| mtmd_input_chunks * mtmd_input_chunks_init() {
 | |
|     return new mtmd_input_chunks;
 | |
| }
 | |
| 
 | |
| size_t mtmd_input_chunks_size(const mtmd_input_chunks * chunks) {
 | |
|     return chunks->entries.size();
 | |
| }
 | |
| 
 | |
| const mtmd_input_chunk * mtmd_input_chunks_get(const mtmd_input_chunks * chunks, size_t idx) {
 | |
|     if (idx >= chunks->entries.size()) {
 | |
|         return nullptr;
 | |
|     }
 | |
|     return &chunks->entries[idx];
 | |
| }
 | |
| 
 | |
| void mtmd_input_chunks_free(mtmd_input_chunks * chunks) {
 | |
|     if (chunks) {
 | |
|         delete chunks;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // mtmd_input_chunk
 | |
| 
 | |
| enum mtmd_input_chunk_type mtmd_input_chunk_get_type(const mtmd_input_chunk * chunk) {
 | |
|     return chunk->type;
 | |
| }
 | |
| 
 | |
| const llama_token * mtmd_input_chunk_get_tokens_text(const mtmd_input_chunk * chunk, size_t * n_tokens_output) {
 | |
|     if (chunk->type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
 | |
|         *n_tokens_output = chunk->tokens_text.size();
 | |
|         return chunk->tokens_text.data();
 | |
|     }
 | |
|     *n_tokens_output = 0;
 | |
|     return nullptr;
 | |
| }
 | |
| 
 | |
| const mtmd_image_tokens * mtmd_input_chunk_get_tokens_image(const mtmd_input_chunk * chunk) {
 | |
|     if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
 | |
|         return chunk->tokens_image.get();
 | |
|     }
 | |
|     return nullptr;
 | |
| }
 | |
| 
 | |
| mtmd_input_chunk * mtmd_input_chunk_copy(const mtmd_input_chunk * chunk) {
 | |
|     mtmd_input_chunk * copy = new mtmd_input_chunk{
 | |
|         chunk->type,
 | |
|         chunk->tokens_text,
 | |
|         mtmd_image_tokens_ptr(),
 | |
|     };
 | |
|     if (chunk->tokens_image) {
 | |
|         // copy the image tokens
 | |
|         copy->tokens_image = mtmd_image_tokens_ptr(new mtmd_image_tokens());
 | |
|         *copy->tokens_image = chunk->tokens_image->clone();
 | |
|     }
 | |
|     return copy;
 | |
| }
 | |
| 
 | |
| void mtmd_input_chunk_free(mtmd_input_chunk * chunk) {
 | |
|     if (chunk) {
 | |
|         delete chunk;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // mtmd_image_tokens
 | |
| 
 | |
| size_t mtmd_image_tokens_get_n_tokens(const mtmd_image_tokens * image_tokens) {
 | |
|     return image_tokens->n_tokens();
 | |
| }
 | |
| 
 | |
| size_t mtmd_image_tokens_get_nx(const mtmd_image_tokens * image_tokens) {
 | |
|     return image_tokens->nx;
 | |
| }
 | |
| 
 | |
| size_t mtmd_image_tokens_get_ny(const mtmd_image_tokens * image_tokens) {
 | |
|     return image_tokens->ny;
 | |
| }
 | |
| 
 | |
| const char * mtmd_image_tokens_get_id(const mtmd_image_tokens * image_tokens) {
 | |
|     return image_tokens->id.c_str();
 | |
| }
 | |
| 
 | |
| llama_pos mtmd_image_tokens_get_n_pos(const mtmd_image_tokens * image_tokens) {
 | |
|     if (image_tokens->use_mrope_pos) {
 | |
|         return 1; // for M-RoPE, the whole image is 1 in temporal dimension
 | |
|     }
 | |
|     return image_tokens->n_tokens();
 | |
| }
 | |
| 
 | |
| // test function
 | |
| 
 | |
| mtmd_input_chunks * mtmd_test_create_input_chunks() {
 | |
|     mtmd_input_chunks * chunks = mtmd_input_chunks_init();
 | |
|     if (!chunks) {
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     // create a text chunk
 | |
|     std::vector<llama_token> tokens_text = { 1, 2, 3, 4, 5 };
 | |
|     mtmd_input_chunk chunk_text{
 | |
|         MTMD_INPUT_CHUNK_TYPE_TEXT,
 | |
|         std::move(tokens_text),
 | |
|         {},
 | |
|     };
 | |
|     chunks->entries.emplace_back(std::move(chunk_text));
 | |
| 
 | |
|     // create an image chunk
 | |
|     mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens);
 | |
|     image_tokens->nx = 4;
 | |
|     image_tokens->ny = 4;
 | |
|     image_tokens->batch_f32.entries.resize(16);
 | |
|     image_tokens->id = "image_1";
 | |
|     mtmd_input_chunk chunk_image{
 | |
|         MTMD_INPUT_CHUNK_TYPE_IMAGE,
 | |
|         {},
 | |
|         std::move(image_tokens),
 | |
|     };
 | |
|     chunks->entries.emplace_back(std::move(chunk_image));
 | |
| 
 | |
|     return chunks;
 | |
| }
 |