mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	 e0dbec0bc6
			
		
	
	e0dbec0bc6
	
	
	
		
			
			* llama : refactor llama_context, llama_kv_cache, llm_build_context ggml-ci * graph : don't mutate the KV cache during defrag ggml-ci * context : reduce virtuals + remove test function ggml-ci * context : move interface implementation to source file + factory ggml-ci * graph : move KV cache build functions to llama_context impl ggml-ci * graph : remove model reference from build_pooling ggml-ci * graph : remove llama_model reference ggml-ci * kv_cache : provide rope factors ggml-ci * graph : rework inputs to use only unique_ptr, remove attn input abstraction ggml-ci * context : remove llama_context_i abstraction ggml-ci * context : clean-up ggml-ci * graph : clean-up ggml-ci * llama : remove redundant keywords (struct, enum) ggml-ci * model : adapt gemma3 ggml-ci * graph : restore same attention ops as on master ggml-ci * llama : remove TODO + fix indent ggml-ci
		
			
				
	
	
		
			279 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			279 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "speculative.h"
 | |
| 
 | |
| #include "log.h"
 | |
| #include "common.h"
 | |
| #include "sampling.h"
 | |
| 
 | |
| #include <cstring>
 | |
| #include <algorithm>
 | |
| 
 | |
| #define SPEC_VOCAB_MAX_SIZE_DIFFERENCE  128
 | |
| #define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
 | |
| 
 | |
| struct common_speculative {
 | |
|     struct llama_context * ctx;
 | |
|     struct common_sampler * smpl;
 | |
| 
 | |
|     llama_batch batch;
 | |
|     llama_tokens prompt;
 | |
| };
 | |
| 
 | |
| struct common_speculative * common_speculative_init(
 | |
|         struct llama_context * ctx_dft) {
 | |
|     auto * result = new common_speculative {
 | |
|         /* .ctx    = */ ctx_dft,
 | |
|         /* .smpl   = */ nullptr,
 | |
|         /* .batch  = */ llama_batch_init(llama_n_batch(ctx_dft), 0, 1),
 | |
|         /* .prompt = */ {},
 | |
|     };
 | |
| 
 | |
|     // TODO: optimize or pass from outside?
 | |
| #if 0
 | |
|     {
 | |
|         common_params_sampling params;
 | |
|         params.no_perf = false;
 | |
| 
 | |
|         params.top_k = 40;
 | |
|         params.top_p = 0.9;
 | |
| 
 | |
|         params.samplers = {
 | |
|             COMMON_SAMPLER_TYPE_TOP_K,
 | |
|             COMMON_SAMPLER_TYPE_TOP_P,
 | |
|             COMMON_SAMPLER_TYPE_INFILL,
 | |
|         };
 | |
| 
 | |
|         result->smpl = common_sampler_init(llama_get_model(ctx_dft), params);
 | |
|     }
 | |
| #else
 | |
|     {
 | |
|         common_params_sampling params;
 | |
|         params.no_perf = false;
 | |
| 
 | |
|         params.top_k = 10;
 | |
| 
 | |
|         params.samplers = {
 | |
|             COMMON_SAMPLER_TYPE_TOP_K,
 | |
|         };
 | |
| 
 | |
|         result->smpl = common_sampler_init(llama_get_model(ctx_dft), params);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| void common_speculative_free(struct common_speculative * spec) {
 | |
|     if (spec == nullptr) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     common_sampler_free(spec->smpl);
 | |
| 
 | |
|     llama_batch_free(spec->batch);
 | |
| 
 | |
|     delete spec;
 | |
| }
 | |
| 
 | |
| bool common_speculative_are_compatible(
 | |
|         const struct llama_context * ctx_tgt,
 | |
|         const struct llama_context * ctx_dft) {
 | |
|     const struct llama_model * model_tgt = llama_get_model(ctx_tgt);
 | |
|     const struct llama_model * model_dft = llama_get_model(ctx_dft);
 | |
| 
 | |
|     const struct llama_vocab * vocab_tgt = llama_model_get_vocab(model_tgt);
 | |
|     const struct llama_vocab * vocab_dft = llama_model_get_vocab(model_dft);
 | |
| 
 | |
|     const bool vocab_type_tgt = llama_vocab_type(vocab_tgt);
 | |
|     LOG_DBG("%s: vocab_type tgt: %d\n", __func__, vocab_type_tgt);
 | |
| 
 | |
|     const bool vocab_type_dft = llama_vocab_type(vocab_dft);
 | |
|     LOG_DBG("%s: vocab_type dft: %d\n", __func__, vocab_type_dft);
 | |
| 
 | |
|     if (vocab_type_tgt != vocab_type_dft) {
 | |
|         LOG_ERR("%s: draft model vocab type must match target model to use speculation but "
 | |
|                      "vocab_type_dft = %d while vocab_type_tgt = %d\n", __func__, vocab_type_dft, vocab_type_tgt);
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (llama_vocab_get_add_bos(vocab_tgt) != llama_vocab_get_add_bos(vocab_dft) ||
 | |
|         llama_vocab_get_add_eos(vocab_tgt) != llama_vocab_get_add_eos(vocab_dft) ||
 | |
|         llama_vocab_bos(vocab_tgt) != llama_vocab_bos(vocab_dft) ||
 | |
|         llama_vocab_eos(vocab_tgt) != llama_vocab_eos(vocab_dft)) {
 | |
|         LOG_ERR("%s: draft vocab special tokens must match target vocab to use speculation\n", __func__);
 | |
|         LOG_ERR("%s: tgt: bos = %d (%d), eos = %d (%d)\n", __func__, llama_vocab_bos(vocab_tgt), llama_vocab_get_add_bos(vocab_tgt), llama_vocab_eos(vocab_tgt), llama_vocab_get_add_eos(vocab_tgt));
 | |
|         LOG_ERR("%s: dft: bos = %d (%d), eos = %d (%d)\n", __func__, llama_vocab_bos(vocab_dft), llama_vocab_get_add_bos(vocab_dft), llama_vocab_eos(vocab_dft), llama_vocab_get_add_eos(vocab_dft));
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     {
 | |
|         const int n_vocab_tgt = llama_vocab_n_tokens(vocab_tgt);
 | |
|         const int n_vocab_dft = llama_vocab_n_tokens(vocab_dft);
 | |
| 
 | |
|         const int vocab_diff = std::abs(n_vocab_tgt - n_vocab_dft);
 | |
| 
 | |
|         if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
 | |
|             LOG_ERR("%s: draft model vocab must closely match target model to use speculation but "
 | |
|                          "target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
 | |
|                     __func__, n_vocab_tgt, llama_vocab_n_tokens(vocab_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) {
 | |
|             const char * token_text_tgt = llama_vocab_get_text(vocab_tgt, i);
 | |
|             const char * token_text_dft = llama_vocab_get_text(vocab_dft, i);
 | |
|             if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
 | |
|                 LOG_ERR("%s: draft vocab vocab must match target vocab to use speculation but "
 | |
|                              "token %d content differs - target '%s', draft '%s'\n", __func__, i,
 | |
|                         common_token_to_piece(ctx_tgt, i).c_str(),
 | |
|                         common_token_to_piece(ctx_dft, i).c_str());
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| llama_tokens common_speculative_gen_draft(
 | |
|         struct common_speculative * spec,
 | |
|         struct common_speculative_params params,
 | |
|         const llama_tokens & prompt_tgt,
 | |
|         llama_token id_last) {
 | |
|     auto & batch  = spec->batch;
 | |
|     auto & ctx    = spec->ctx;
 | |
|     auto & smpl   = spec->smpl;
 | |
|     auto & prompt = spec->prompt;
 | |
| 
 | |
|     int reuse_i = 0;
 | |
|     int reuse_n = 0;
 | |
| 
 | |
|     const int n_ctx = llama_n_ctx(ctx) - params.n_draft;
 | |
| 
 | |
|     const int i_start = std::max<int>(0, (int) prompt_tgt.size() - n_ctx);
 | |
| 
 | |
|     // reuse as much as possible from the old draft context
 | |
|     // ideally, the draft context should be as big as the target context and we will always reuse the entire prompt
 | |
|     for (int i = 0; i < (int) prompt.size(); ++i) {
 | |
|         int cur = 0;
 | |
|         while (i_start + cur < (int) prompt_tgt.size() &&
 | |
|                i       + cur < (int) prompt.size() &&
 | |
|                prompt_tgt[i_start + cur] == prompt[i + cur]) {
 | |
|             cur++;
 | |
|         }
 | |
| 
 | |
|         if ((cur >= params.n_reuse || n_ctx >= (int) prompt_tgt.size()) && cur > reuse_n) {
 | |
|             reuse_i = i;
 | |
|             reuse_n = cur;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     LOG_DBG("%s: reuse_i = %d, reuse_n = %d, prompt = %d\n", __func__, reuse_i, reuse_n, (int) prompt.size());
 | |
| 
 | |
|     llama_tokens result;
 | |
|     result.reserve(params.n_draft);
 | |
| 
 | |
|     if (reuse_n == 0) {
 | |
|         llama_kv_self_clear(ctx);
 | |
| 
 | |
|         prompt.clear();
 | |
|     } else {
 | |
|         // this happens when a previous draft has been discarded (for example, due to being too small), but the
 | |
|         // target model agreed with it. in this case, we simply pass back the previous results to save compute
 | |
|         if (reuse_i + reuse_n < (int) prompt.size() && prompt[reuse_i + reuse_n] == id_last) {
 | |
|             for (int i = reuse_i + reuse_n + 1; i < (int) prompt.size(); ++i) {
 | |
|                 result.push_back(prompt[i]);
 | |
| 
 | |
|                 if (params.n_draft <= (int) result.size()) {
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             return result;
 | |
|         }
 | |
| 
 | |
|         if (reuse_i > 0) {
 | |
|             llama_kv_self_seq_rm (ctx, 0, 0, reuse_i);
 | |
|             llama_kv_self_seq_add(ctx, 0, reuse_i, -1, -reuse_i);
 | |
| 
 | |
|             prompt.erase(prompt.begin(), prompt.begin() + reuse_i);
 | |
|         }
 | |
| 
 | |
|         if (reuse_n < (int) prompt.size()) {
 | |
|             llama_kv_self_seq_rm (ctx, 0, reuse_n, -1);
 | |
| 
 | |
|             prompt.erase(prompt.begin() + reuse_n, prompt.end());
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // prepare a batch to evaluate any new tokens in the prompt
 | |
|     common_batch_clear(batch);
 | |
| 
 | |
|     for (size_t i = i_start + reuse_n; i < prompt_tgt.size(); ++i) {
 | |
|         //LOG_DBG("i = %d, i_start = %d, reuse_n = %d, i - i_start = %d, id = %6d\n", i, i_start, reuse_n, i - i_start, prompt_tgt[i]);
 | |
|         common_batch_add(batch, prompt_tgt[i], i - i_start, { 0 }, false);
 | |
| 
 | |
|         prompt.push_back(prompt_tgt[i]);
 | |
|     }
 | |
| 
 | |
|     // we should rarely end-up here during normal decoding
 | |
|     if (batch.n_tokens > 0) {
 | |
|         //LOG_DBG("%s: draft prompt batch: %s\n", __func__, string_from(ctx, batch).c_str());
 | |
| 
 | |
|         llama_decode(ctx, batch);
 | |
|     }
 | |
| 
 | |
|     const llama_pos n_past = prompt.size();
 | |
| 
 | |
|     LOG_DBG("%s: n_past = %d\n", __func__, n_past);
 | |
| 
 | |
|     common_batch_clear(batch);
 | |
|     common_batch_add  (batch, id_last, n_past, { 0 }, true);
 | |
| 
 | |
|     prompt.push_back(id_last);
 | |
| 
 | |
|     //LOG_DBG("%s: draft prompt: %s\n", __func__, string_from(ctx, prompt).c_str());
 | |
| 
 | |
|     llama_decode(ctx, batch);
 | |
| 
 | |
|     common_sampler_reset(smpl);
 | |
| 
 | |
|     // sample n_draft tokens from the draft model
 | |
|     for (int i = 0; i < params.n_draft; ++i) {
 | |
|         common_batch_clear(batch);
 | |
| 
 | |
|         common_sampler_sample(smpl, ctx, 0, true);
 | |
| 
 | |
|         const auto * cur_p = common_sampler_get_candidates(smpl);
 | |
| 
 | |
|         for (int k = 0; k < std::min(3, (int) cur_p->size); ++k) {
 | |
|             LOG_DBG(" - draft candidate %3d, pos %3d: %6d (%8.3f) '%s'\n",
 | |
|                     k, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx, cur_p->data[k].id).c_str());
 | |
|         }
 | |
| 
 | |
|         // add drafted token for each sequence
 | |
|         const llama_token id = cur_p->data[0].id;
 | |
| 
 | |
|         common_sampler_accept(smpl, id, true);
 | |
| 
 | |
|         result.push_back(id);
 | |
| 
 | |
|         if (params.n_draft <= (int) result.size()) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         // only collect very high-confidence draft tokens
 | |
|         if (cur_p->data[0].p < params.p_min) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         common_batch_add(batch, id, n_past + i + 1, { 0 }, true);
 | |
| 
 | |
|         // evaluate the drafted tokens on the draft model
 | |
|         llama_decode(ctx, batch);
 | |
| 
 | |
|         prompt.push_back(id);
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 |