mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	 d283d02bf2
			
		
	
	d283d02bf2
	
	
	
		
			
			Warning types fixed (observed under MSYS2 GCC 14.2.0): * format '%ld' expects argument of type 'long int', but argument has type 'size_t' * llama.cpp/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp:81:46: warning: missing initializer for member '_STARTUPINFOA::lpDesktop' [-Wmissing-field-initializers] (emitted for all struct field except first)
		
			
				
	
	
		
			422 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			422 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "arg.h"
 | |
| #include "common.h"
 | |
| #include "ggml.h"
 | |
| #include "ggml-alloc.h"
 | |
| 
 | |
| #include <map>
 | |
| #include <vector>
 | |
| #include <string>
 | |
| #include <thread>
 | |
| #include <fstream>
 | |
| 
 | |
| static bool g_verbose = false;
 | |
| 
 | |
| struct tensor_transformation {
 | |
|     struct ggml_tensor * in;
 | |
|     struct ggml_tensor * out;
 | |
|     bool is_copy;
 | |
| };
 | |
| 
 | |
| static std::string get_kv_str(struct gguf_context * ctx_gguf, const std::string & key){
 | |
|     int id = gguf_find_key(ctx_gguf, key.c_str());
 | |
|     return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf, id));
 | |
| }
 | |
| 
 | |
| static float get_kv_f32(struct gguf_context * ctx_gguf, const std::string & key) {
 | |
|     int id = gguf_find_key(ctx_gguf, key.c_str());
 | |
|     return id < 0 ? 0.0f : gguf_get_val_f32(ctx_gguf, id);
 | |
| }
 | |
| 
 | |
| static void zeros(std::ofstream & file, size_t n) {
 | |
|     char zero = 0;
 | |
|     for (size_t i = 0; i < n; ++i) {
 | |
|         file.write(&zero, 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static std::string ggml_ne_string(const ggml_tensor * t) {
 | |
|     std::string str;
 | |
|     for (int i = 0; i < GGML_MAX_DIMS; ++i) {
 | |
|         str += std::to_string(t->ne[i]);
 | |
|         if (i + 1 < GGML_MAX_DIMS) {
 | |
|             str += ", ";
 | |
|         }
 | |
|     }
 | |
|     return str;
 | |
| }
 | |
| 
 | |
| static struct gguf_context * load_gguf(std::string & fname, struct ggml_context ** ctx_ggml) {
 | |
|     struct gguf_init_params params = {
 | |
|         /*.no_alloc = */ true,
 | |
|         /*.ctx      = */ ctx_ggml,
 | |
|     };
 | |
|     struct gguf_context * ctx_gguf = gguf_init_from_file(fname.c_str(), params);
 | |
|     if (!ctx_gguf) {
 | |
|         throw std::runtime_error("failed to load input GGUF from " + fname);
 | |
|     }
 | |
|     return ctx_gguf;
 | |
| }
 | |
| 
 | |
| struct file_input {
 | |
|     struct ggml_context * ctx_meta = nullptr;
 | |
|     struct gguf_context * ctx_gguf = nullptr;
 | |
|     std::ifstream f_in;
 | |
|     std::map<std::string, ggml_tensor *> tensors;
 | |
|     float alpha;
 | |
|     float scale;
 | |
| 
 | |
|     file_input(std::string & fname, float scale): f_in(fname, std::ios::binary), scale(scale) {
 | |
|         if (!f_in.is_open()) {
 | |
|             throw std::runtime_error("failed to open input gguf from " + fname);
 | |
|         }
 | |
| 
 | |
|         ctx_gguf = load_gguf(fname, &ctx_meta);
 | |
|         alpha = get_kv_f32(ctx_gguf, "adapter.lora.alpha");
 | |
|         printf("%s: loaded gguf from %s\n", __func__, fname.c_str());
 | |
| 
 | |
|         for (ggml_tensor * cur = ggml_get_first_tensor(ctx_meta); cur; cur = ggml_get_next_tensor(ctx_meta, cur)) {
 | |
|             std::string name(cur->name);
 | |
|             tensors[name] = cur;
 | |
|             if (g_verbose) {
 | |
|                 printf("%s: %s\n", __func__, cur->name);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ggml_tensor * get_tensor(std::string name) {
 | |
|         if (tensors.find(name) == tensors.end()) {
 | |
|             return nullptr;
 | |
|         }
 | |
|         return tensors[name];
 | |
|     }
 | |
| 
 | |
|     void read_tensor_data(std::string name, std::vector<uint8_t> & buf) {
 | |
|         if (tensors.find(name) == tensors.end()) {
 | |
|             throw std::runtime_error("cannot find tensor with name: " + name);
 | |
|         }
 | |
|         auto len = ggml_nbytes(tensors[name]);
 | |
|         if (buf.size() < len) {
 | |
|             buf.resize(len);
 | |
|         }
 | |
|         auto i_tensor_in = gguf_find_tensor(ctx_gguf, name.c_str()); // idx of tensor in the input file
 | |
|         auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor_in);
 | |
|         f_in.seekg(offset);
 | |
|         f_in.read((char* )buf.data(), len);
 | |
|     }
 | |
| 
 | |
|     ~file_input() {
 | |
|         gguf_free(ctx_gguf);
 | |
|         ggml_free(ctx_meta);
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct lora_merge_ctx {
 | |
|     // input base model + adapters
 | |
|     file_input base_model;
 | |
|     std::vector<std::unique_ptr<file_input>> adapters;
 | |
| 
 | |
|     // for computing merged tensor
 | |
|     int n_threads;
 | |
|     ggml_backend_t backend = nullptr;
 | |
|     ggml_gallocr_t allocr = nullptr;
 | |
|     std::vector<uint8_t> read_buf;
 | |
| 
 | |
|     // output file
 | |
|     struct gguf_context * ctx_out;
 | |
|     struct ggml_context * ctx_out_ggml;
 | |
|     std::ofstream fout;
 | |
| 
 | |
|     lora_merge_ctx(
 | |
|             std::string & base_fname,
 | |
|             std::vector<common_lora_adapter_info> & lora_files,
 | |
|             std::string & outfile,
 | |
|             int n_threads) : base_model(base_fname, 0), n_threads(n_threads), fout(outfile, std::ios::binary) {
 | |
|         fout.exceptions(std::ofstream::failbit); // fail fast on write errors
 | |
| 
 | |
|         if (gguf_find_key(base_model.ctx_gguf, LLM_KV_SPLIT_COUNT) >= 0) {
 | |
|             throw std::runtime_error("split model is not yet supported");
 | |
|         }
 | |
| 
 | |
|         for (auto & lora_inp : lora_files) {
 | |
|             auto fname = lora_inp.path;
 | |
|             auto scale = lora_inp.scale;
 | |
|             std::unique_ptr<file_input> adapter(new file_input(fname, scale));
 | |
|             check_metadata_lora(adapter.get());
 | |
|             adapters.push_back(std::move(adapter));
 | |
|         }
 | |
| 
 | |
|         ctx_out = gguf_init_empty();
 | |
|         struct ggml_init_params params = {
 | |
|             /*.mem_size   =*/ gguf_get_n_tensors(base_model.ctx_gguf)*ggml_tensor_overhead(),
 | |
|             /*.mem_buffer =*/ NULL,
 | |
|             /*.no_alloc   =*/ true,
 | |
|         };
 | |
|         ctx_out_ggml = ggml_init(params);
 | |
|         backend = ggml_backend_cpu_init();
 | |
|         allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend));
 | |
|     }
 | |
| 
 | |
|     void check_metadata_lora(file_input * adapter) {
 | |
|         auto general_type = get_kv_str(adapter->ctx_gguf, "general.type");
 | |
|         if (general_type != "adapter") {
 | |
|             throw std::runtime_error("expect general.type to be 'adapter', but got: " + general_type);
 | |
|         }
 | |
| 
 | |
|         auto adapter_type = get_kv_str(adapter->ctx_gguf, "adapter.type");
 | |
|         if (adapter_type != "lora") {
 | |
|             throw std::runtime_error("expect adapter.type to be 'lora', but got: " + adapter_type);
 | |
|         }
 | |
| 
 | |
|         auto general_arch_base = get_kv_str(base_model.ctx_gguf, "general.architecture");
 | |
|         auto general_arch_lora = get_kv_str(adapter->ctx_gguf,   "general.architecture");
 | |
|         if (general_arch_base != general_arch_lora) {
 | |
|             throw std::runtime_error("model arch and LoRA arch mismatch");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ggml_type get_out_tensor_type(struct ggml_tensor * t) {
 | |
|         if (t->type == GGML_TYPE_F32) {
 | |
|             return GGML_TYPE_F32;
 | |
|         } else {
 | |
|             return GGML_TYPE_F16;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void run_merge() {
 | |
|         // prepare metadata
 | |
|         gguf_set_kv(ctx_out, base_model.ctx_gguf);
 | |
|         // output is forced to f16 for now
 | |
|         gguf_set_val_u32(ctx_out, "general.file_type", LLAMA_FTYPE_MOSTLY_F16);
 | |
| 
 | |
|         // check if all lora adapters have the same tensors
 | |
|         // TODO: remove this when we can support merging subset of adapters. Ref: https://github.com/ggerganov/llama.cpp/pull/8607#discussion_r1686027777
 | |
|         static const char * err_no_subset_adapter = "Input adapters do not have the same list of tensors. This is not yet supported. Please merge the adapter one-by-one instead of merging all at once.";
 | |
|         if (adapters.size() > 1) {
 | |
|             for (size_t i = 1; i < adapters.size(); ++i) {
 | |
|                 if (adapters[0]->tensors.size() != adapters[i]->tensors.size()) {
 | |
|                     throw std::runtime_error(err_no_subset_adapter);
 | |
|                 }
 | |
|                 for (auto & it : adapters[i]->tensors) {
 | |
|                     if (adapters[0]->get_tensor(it.first) == nullptr) {
 | |
|                         throw std::runtime_error(err_no_subset_adapter);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // mapping base tensor to out tensor (same shape with base, but different type)
 | |
|         std::vector<tensor_transformation> trans;
 | |
|         for (auto & it : base_model.tensors) {
 | |
|             bool t_a = true;
 | |
|             bool t_b = true;
 | |
|             for (auto & adapter : adapters) {
 | |
|                 t_a &= nullptr != adapter->get_tensor(it.first + ".lora_a");
 | |
|                 t_b &= nullptr != adapter->get_tensor(it.first + ".lora_b");
 | |
|             }
 | |
|             auto base_tensor = it.second;
 | |
|             if (!t_a && !t_b) {
 | |
|                 // only copy
 | |
|                 struct ggml_tensor * cpy_tensor = ggml_dup_tensor(ctx_out_ggml, base_tensor);
 | |
|                 ggml_set_name(cpy_tensor, base_tensor->name);
 | |
|                 trans.push_back({
 | |
|                     cpy_tensor,
 | |
|                     cpy_tensor,
 | |
|                     true,
 | |
|                 });
 | |
|                 gguf_add_tensor(ctx_out, cpy_tensor);
 | |
|             } else if (t_a && t_b) {
 | |
|                 // need merging
 | |
|                 struct ggml_tensor * out_tensor = ggml_new_tensor(
 | |
|                     ctx_out_ggml, get_out_tensor_type(base_tensor), GGML_MAX_DIMS, base_tensor->ne);
 | |
|                 ggml_set_name(out_tensor, base_tensor->name);
 | |
|                 trans.push_back({
 | |
|                     base_tensor,
 | |
|                     out_tensor,
 | |
|                     false,
 | |
|                 });
 | |
|                 gguf_add_tensor(ctx_out, out_tensor);
 | |
|             } else {
 | |
|                 throw std::runtime_error("tensor " + it.first + " missing either lora_a or lora_b");
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // placeholder for the meta data
 | |
|         {
 | |
|             size_t meta_size = gguf_get_meta_size(ctx_out);
 | |
|             zeros(fout, meta_size);
 | |
|         }
 | |
| 
 | |
|         // process base model tensors
 | |
|         size_t n_merged = 0;
 | |
|         for (auto & it : trans) {
 | |
|             if (!it.is_copy) {
 | |
|                 merge_tensor(it.in, it.out);
 | |
|                 n_merged++;
 | |
|             } else {
 | |
|                 copy_tensor(it.in);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // write output metadata
 | |
|         {
 | |
|             std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
 | |
|             gguf_get_meta_data(ctx_out, data.data());
 | |
|             fout.seekp(0);
 | |
|             fout.write((const char *)data.data(), data.size());
 | |
|         }
 | |
| 
 | |
|         printf("%s : merged %zu tensors with lora adapters\n", __func__, n_merged);
 | |
|         printf("%s : wrote %zu tensors to output file\n", __func__, trans.size());
 | |
|     }
 | |
| 
 | |
|     void copy_tensor(struct ggml_tensor * base) {
 | |
|         printf("%s :  %s [%s]\n", __func__, base->name, ggml_ne_string(base).c_str());
 | |
|         size_t len = ggml_nbytes(base);
 | |
|         base_model.read_tensor_data(base->name, read_buf);
 | |
|         fout.write((char* )read_buf.data(), len);
 | |
|         zeros(fout, GGML_PAD(len, GGUF_DEFAULT_ALIGNMENT) - len);
 | |
|     }
 | |
| 
 | |
|     void merge_tensor(struct ggml_tensor * base, struct ggml_tensor * out) {
 | |
|         std::string name_base(base->name);
 | |
|         std::string name_lora_a = name_base + ".lora_a";
 | |
|         std::string name_lora_b = name_base + ".lora_b";
 | |
| 
 | |
|         printf("%s : %s [%s]\n", __func__, base->name, ggml_ne_string(base).c_str());
 | |
| 
 | |
|         // context for input tensor
 | |
|         std::vector<struct ggml_tensor *> inp_a(adapters.size());
 | |
|         std::vector<struct ggml_tensor *> inp_b(adapters.size());
 | |
|         struct ggml_init_params params {
 | |
|             /*.mem_size   =*/ ggml_tensor_overhead()*(2+adapters.size()*2),
 | |
|             /*.mem_buffer =*/ NULL,
 | |
|             /*.no_alloc   =*/ true,
 | |
|         };
 | |
|         struct ggml_context * ctx = ggml_init(params);
 | |
| 
 | |
|         // alloc tensors
 | |
|         struct ggml_tensor * inp_base = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, base->ne);
 | |
|         for (size_t i = 0; i < adapters.size(); ++i) {
 | |
|             auto t_a = adapters[i]->get_tensor(name_lora_a);
 | |
|             auto t_b = adapters[i]->get_tensor(name_lora_b);
 | |
|             // TODO: add support for quantized lora
 | |
|             if (ggml_is_quantized(t_a->type) || ggml_is_quantized(t_b->type)) {
 | |
|                 throw std::runtime_error("quantized LoRA adapters is not supported, please retry with f16 or f32");
 | |
|             }
 | |
|             inp_a[i] = ggml_dup_tensor(ctx, t_a);
 | |
|             inp_b[i] = ggml_dup_tensor(ctx, t_b);
 | |
|         }
 | |
|         ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend);
 | |
| 
 | |
|         // load base tensor to backend buffer
 | |
|         base_model.read_tensor_data(name_base, read_buf);
 | |
|         if (base->type != GGML_TYPE_F32) {
 | |
|             // optionally dequantize it
 | |
|             printf("%s :   + dequantize base tensor from %s to F32\n", __func__, ggml_type_name(base->type));
 | |
|             auto nels = ggml_nelements(inp_base);
 | |
|             const auto * qtype = ggml_get_type_traits(base->type);
 | |
|             std::vector<uint8_t> dequant_buf(nels * sizeof(float));
 | |
|             qtype->to_float(read_buf.data(), (float *)dequant_buf.data(), nels);
 | |
|             ggml_backend_tensor_set(inp_base, dequant_buf.data(), 0, dequant_buf.size());
 | |
|         } else {
 | |
|             ggml_backend_tensor_set(inp_base, read_buf.data(), 0, ggml_nbytes(inp_base));
 | |
|         }
 | |
| 
 | |
|         // load lora tensors to backend buffer
 | |
|         for (size_t i = 0; i < adapters.size(); ++i) {
 | |
|             adapters[i]->read_tensor_data(name_lora_a, read_buf);
 | |
|             ggml_backend_tensor_set(inp_a[i], read_buf.data(), 0, ggml_nbytes(inp_a[i]));
 | |
|             adapters[i]->read_tensor_data(name_lora_b, read_buf);
 | |
|             ggml_backend_tensor_set(inp_b[i], read_buf.data(), 0, ggml_nbytes(inp_b[i]));
 | |
|         }
 | |
| 
 | |
|         // build graph
 | |
|         struct ggml_cgraph * gf;
 | |
|         {
 | |
|             static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead();
 | |
|             static std::vector<uint8_t> buf(buf_size);
 | |
|             struct ggml_init_params params0 = {
 | |
|                 /*.mem_size   =*/ buf_size,
 | |
|                 /*.mem_buffer =*/ buf.data(),
 | |
|                 /*.no_alloc   =*/ true,
 | |
|             };
 | |
|             struct ggml_context * ctx0 = ggml_init(params0);
 | |
|             gf = ggml_new_graph(ctx0);
 | |
|             struct ggml_tensor * cur = inp_base;
 | |
|             for (size_t i = 0; i < adapters.size(); ++i) {
 | |
|                 struct ggml_tensor * a_T = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_cast(ctx0, inp_a[i], GGML_TYPE_F32)));
 | |
|                 struct ggml_tensor * delta = ggml_mul_mat(ctx0, a_T, ggml_cast(ctx0, inp_b[i], GGML_TYPE_F32));
 | |
|                 // scale
 | |
|                 const float alpha = adapters[i]->alpha;
 | |
|                 const float rank  = (float) inp_b[i]->ne[0];
 | |
|                 const float scale = alpha ? adapters[i]->scale * alpha / rank : adapters[i]->scale;
 | |
|                 delta = ggml_scale(ctx0, delta, scale);
 | |
|                 cur = ggml_add(ctx0, delta, cur);
 | |
|                 printf("%s :   + merging from adapter[%zu] type=%s\n", __func__, i, ggml_type_name(inp_a[i]->type));
 | |
|                 printf("%s :     input_scale=%f calculated_scale=%f rank=%d\n", __func__, adapters[i]->scale, scale, (int) inp_b[i]->ne[0]);
 | |
|             }
 | |
|             cur = ggml_cast(ctx0, cur, out->type);
 | |
|             printf("%s :   + output type is %s\n", __func__, ggml_type_name(out->type));
 | |
|             ggml_build_forward_expand(gf, cur);
 | |
|             ggml_free(ctx0);
 | |
|         }
 | |
| 
 | |
|         // compute
 | |
|         {
 | |
|             ggml_gallocr_alloc_graph(allocr, gf);
 | |
|             ggml_backend_cpu_set_n_threads(backend, n_threads);
 | |
|             ggml_backend_graph_compute(backend, gf);
 | |
|         }
 | |
| 
 | |
|         // write data to output file
 | |
|         {
 | |
|             auto * result = ggml_graph_node(gf, -1);
 | |
|             size_t len = ggml_nbytes(result);
 | |
|             if (read_buf.size() < len) {
 | |
|                 read_buf.resize(len);
 | |
|             }
 | |
|             ggml_backend_tensor_get(result, read_buf.data(), 0, len);
 | |
|             fout.write((char* )read_buf.data(), len);
 | |
|             zeros(fout, GGML_PAD(len, GGUF_DEFAULT_ALIGNMENT) - len);
 | |
|         }
 | |
| 
 | |
|         ggml_free(ctx);
 | |
|         ggml_backend_buffer_free(buffer);
 | |
|     }
 | |
| 
 | |
|     ~lora_merge_ctx() {
 | |
|         ggml_gallocr_free(allocr);
 | |
|         ggml_backend_free(backend);
 | |
|         gguf_free(ctx_out);
 | |
|         ggml_free(ctx_out_ggml);
 | |
|     }
 | |
| };
 | |
| 
 | |
| static void print_usage(int, char ** argv) {
 | |
|     printf("\nexample usage:\n");
 | |
|     printf("\n  %s -m base-model.gguf --lora lora-file.gguf -o merged-model-f16.gguf\n", argv[0]);
 | |
|     printf("\nNOTE: output model is F16\n");
 | |
|     printf("\n");
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     common_params params;
 | |
| 
 | |
|     if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_EXPORT_LORA, print_usage)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     g_verbose = (params.verbosity > 1);
 | |
|     try {
 | |
|         lora_merge_ctx ctx(params.model, params.lora_adapters, params.lora_outfile, params.cpuparams.n_threads);
 | |
|         ctx.run_merge();
 | |
|     } catch (const std::exception & err) {
 | |
|         fprintf(stderr, "%s\n", err.what());
 | |
|         exit(EXIT_FAILURE);
 | |
|     }
 | |
| 
 | |
|     printf("done, output file is %s\n", params.lora_outfile.c_str());
 | |
| 
 | |
|     return 0;
 | |
| }
 |