mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-28 08:31:25 +00:00 
			
		
		
		
	 1d36b3670b
			
		
	
	1d36b3670b
	
	
	
		
			
			* llama : move end-user examples to tools directory --------- Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
		
			
				
	
	
		
			584 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			584 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "ggml.h"
 | |
| #include "gguf.h"
 | |
| #include "llama.h"
 | |
| #include "common.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cinttypes>
 | |
| #include <climits>
 | |
| #include <cstdio>
 | |
| #include <cstdlib>
 | |
| #include <stdexcept>
 | |
| #include <cstring>
 | |
| #include <fstream>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| #if defined(_WIN32)
 | |
|     #include <windows.h>
 | |
|     #ifndef PATH_MAX
 | |
|         #define PATH_MAX MAX_PATH
 | |
|     #endif
 | |
|     #include <io.h>
 | |
| #endif
 | |
| 
 | |
| enum split_operation : uint8_t {
 | |
|     OP_NONE,
 | |
|     OP_SPLIT,
 | |
|     OP_MERGE,
 | |
| };
 | |
| 
 | |
| enum split_mode : uint8_t {
 | |
|     MODE_NONE,
 | |
|     MODE_TENSOR,
 | |
|     MODE_SIZE,
 | |
| };
 | |
| 
 | |
| struct split_params {
 | |
|     split_operation operation = OP_NONE;
 | |
|     split_mode mode = MODE_NONE;
 | |
|     size_t n_bytes_split = 0;
 | |
|     int n_split_tensors = 128;
 | |
|     std::string input;
 | |
|     std::string output;
 | |
|     bool no_tensor_first_split = false;
 | |
|     bool dry_run = false;
 | |
| };
 | |
| 
 | |
| static void split_print_usage(const char * executable) {
 | |
|     const split_params default_params;
 | |
|     printf("\n");
 | |
|     printf("usage: %s [options] GGUF_IN GGUF_OUT\n", executable);
 | |
|     printf("\n");
 | |
|     printf("Apply a GGUF operation on IN to OUT.");
 | |
|     printf("\n");
 | |
|     printf("options:\n");
 | |
|     printf("  -h, --help              show this help message and exit\n");
 | |
|     printf("  --version               show version and build info\n");
 | |
|     printf("  --split                 split GGUF to multiple GGUF (enabled by default)\n");
 | |
|     printf("  --merge                 merge multiple GGUF to a single GGUF\n");
 | |
|     printf("  --split-max-tensors     max tensors in each split (default: %d)\n", default_params.n_split_tensors);
 | |
|     printf("  --split-max-size N(M|G) max size per split\n");
 | |
|     printf("  --no-tensor-first-split do not add tensors to the first split (disabled by default)\n");
 | |
|     printf("  --dry-run               only print out a split plan and exit, without writing any new files\n");
 | |
|     printf("\n");
 | |
| }
 | |
| 
 | |
| // return convert string, for example "128M" or "4G" to number of bytes
 | |
| static size_t split_str_to_n_bytes(std::string str) {
 | |
|     size_t n_bytes = 0;
 | |
|     int n;
 | |
|     if (str.back() == 'M') {
 | |
|         sscanf(str.c_str(), "%d", &n);
 | |
|         n_bytes = (size_t)n * 1000 * 1000; // megabytes
 | |
|     } else if (str.back() == 'G') {
 | |
|         sscanf(str.c_str(), "%d", &n);
 | |
|         n_bytes = (size_t)n * 1000 * 1000 * 1000; // gigabytes
 | |
|     } else {
 | |
|         throw std::invalid_argument("error: supported units are M (megabytes) or G (gigabytes), but got: " + std::string(1, str.back()));
 | |
|     }
 | |
|     if (n <= 0) {
 | |
|         throw std::invalid_argument("error: size must be a positive value");
 | |
|     }
 | |
|     return n_bytes;
 | |
| }
 | |
| 
 | |
| static void split_params_parse_ex(int argc, const char ** argv, split_params & params) {
 | |
|     std::string arg;
 | |
|     const std::string arg_prefix = "--";
 | |
|     bool invalid_param = false;
 | |
| 
 | |
|     int arg_idx = 1;
 | |
|     for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
 | |
|         arg = argv[arg_idx];
 | |
|         if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
 | |
|             std::replace(arg.begin(), arg.end(), '_', '-');
 | |
|         }
 | |
| 
 | |
|         bool arg_found = false;
 | |
|         if (arg == "-h" || arg == "--help") {
 | |
|             split_print_usage(argv[0]);
 | |
|             exit(0);
 | |
|         } else if (arg == "--version") {
 | |
|             fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
 | |
|             fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
 | |
|             exit(0);
 | |
|         } else if (arg == "--dry-run") {
 | |
|             arg_found = true;
 | |
|             params.dry_run = true;
 | |
|         } else if (arg == "--no-tensor-first-split") {
 | |
|             arg_found = true;
 | |
|             params.no_tensor_first_split = true;
 | |
|         } else if (arg == "--merge") {
 | |
|             arg_found = true;
 | |
|             if (params.operation != OP_NONE && params.operation != OP_MERGE) {
 | |
|                 throw std::invalid_argument("error: either --split or --merge can be specified, but not both");
 | |
|             }
 | |
|             params.operation = OP_MERGE;
 | |
|         } else if (arg == "--split") {
 | |
|             arg_found = true;
 | |
|             if (params.operation != OP_NONE && params.operation != OP_SPLIT) {
 | |
|                 throw std::invalid_argument("error: either --split or --merge can be specified, but not both");
 | |
|             }
 | |
|             params.operation = OP_SPLIT;
 | |
|         } else if (arg == "--split-max-tensors") {
 | |
|             if (++arg_idx >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             arg_found = true;
 | |
|             if (params.mode != MODE_NONE && params.mode != MODE_TENSOR) {
 | |
|                 throw std::invalid_argument("error: either --split-max-tensors or --split-max-size can be specified, but not both");
 | |
|             }
 | |
|             params.mode = MODE_TENSOR;
 | |
|             params.n_split_tensors = atoi(argv[arg_idx]);
 | |
|         } else if (arg == "--split-max-size") {
 | |
|             if (++arg_idx >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             arg_found = true;
 | |
|             if (params.mode != MODE_NONE && params.mode != MODE_SIZE) {
 | |
|                 throw std::invalid_argument("error: either --split-max-tensors or --split-max-size can be specified, but not both");
 | |
|             }
 | |
|             params.mode = MODE_SIZE;
 | |
|             params.n_bytes_split = split_str_to_n_bytes(argv[arg_idx]);
 | |
|         }
 | |
| 
 | |
|         if (!arg_found) {
 | |
|             throw std::invalid_argument("error: unknown argument: " + arg);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // the operation is split if not specified
 | |
|     if (params.operation == OP_NONE) {
 | |
|         params.operation = OP_SPLIT;
 | |
|     }
 | |
|     // the split mode is by tensor if not specified
 | |
|     if (params.mode == MODE_NONE) {
 | |
|         params.mode = MODE_TENSOR;
 | |
|     }
 | |
| 
 | |
|     if (invalid_param) {
 | |
|         throw std::invalid_argument("error: invalid parameter for argument: " + arg);
 | |
|     }
 | |
| 
 | |
|     if (argc - arg_idx != 2) {
 | |
|         throw std::invalid_argument("error: bad arguments");
 | |
|     }
 | |
| 
 | |
|     params.input = argv[arg_idx++];
 | |
|     params.output = argv[arg_idx++];
 | |
| }
 | |
| 
 | |
| static bool split_params_parse(int argc, const char ** argv, split_params & params) {
 | |
|     bool result = true;
 | |
|     try {
 | |
|         split_params_parse_ex(argc, argv, params);
 | |
|     }
 | |
|     catch (const std::invalid_argument & ex) {
 | |
|         fprintf(stderr, "%s\n", ex.what());
 | |
|         split_print_usage(argv[0]);
 | |
|         exit(EXIT_FAILURE);
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static void zeros(std::ofstream & file, size_t n) {
 | |
|     char zero = 0;
 | |
|     for (size_t i = 0; i < n; ++i) {
 | |
|         file.write(&zero, 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| struct split_strategy {
 | |
|     const split_params params;
 | |
|     std::ifstream & f_input;
 | |
|     struct gguf_context * ctx_gguf;
 | |
|     struct ggml_context * ctx_meta = NULL;
 | |
|     const int n_tensors;
 | |
| 
 | |
|     // one ctx_out per one output file
 | |
|     std::vector<struct gguf_context *> ctx_outs;
 | |
| 
 | |
|     // temporary buffer for reading in tensor data
 | |
|     std::vector<uint8_t> read_buf;
 | |
| 
 | |
|     split_strategy(const split_params & params,
 | |
|             std::ifstream & f_input,
 | |
|             struct gguf_context * ctx_gguf,
 | |
|             struct ggml_context * ctx_meta) :
 | |
|         params(params),
 | |
|         f_input(f_input),
 | |
|         ctx_gguf(ctx_gguf),
 | |
|         ctx_meta(ctx_meta),
 | |
|         n_tensors(gguf_get_n_tensors(ctx_gguf)) {
 | |
| 
 | |
|         // because we need to know list of tensors for each file in advance, we will build all the ctx_out for all output splits
 | |
|         int i_split = -1;
 | |
|         struct gguf_context * ctx_out = NULL;
 | |
|         auto new_ctx_out = [&](bool allow_no_tensors) {
 | |
|             i_split++;
 | |
|             if (ctx_out != NULL) {
 | |
|                 if (gguf_get_n_tensors(ctx_out) == 0 && !allow_no_tensors) {
 | |
|                     fprintf(stderr, "error: one of splits have 0 tensors. Maybe size or tensors limit is too small\n");
 | |
|                     exit(EXIT_FAILURE);
 | |
|                 }
 | |
|                 ctx_outs.push_back(ctx_out);
 | |
|             }
 | |
|             ctx_out = gguf_init_empty();
 | |
|             // Save all metadata in first split only
 | |
|             if (i_split == 0) {
 | |
|                 gguf_set_kv(ctx_out, ctx_gguf);
 | |
|             }
 | |
|             gguf_set_val_u16(ctx_out, LLM_KV_SPLIT_NO, i_split);
 | |
|             gguf_set_val_u16(ctx_out, LLM_KV_SPLIT_COUNT, 0); // placeholder
 | |
|             gguf_set_val_i32(ctx_out, LLM_KV_SPLIT_TENSORS_COUNT, n_tensors);
 | |
|         };
 | |
| 
 | |
|         // initialize ctx_out for the first split
 | |
|         new_ctx_out(false);
 | |
| 
 | |
|         // skip first split if no_tensor_first_split is set
 | |
|         if (params.no_tensor_first_split) {
 | |
|             new_ctx_out(true);
 | |
|         }
 | |
| 
 | |
|         // process tensors one by one
 | |
|         size_t curr_tensors_size = 0; // current size by counting only tensors size (without metadata)
 | |
|         for (int i = 0; i < n_tensors; ++i) {
 | |
|             struct ggml_tensor * t = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_gguf, i));
 | |
|             // calculate the "imaginary" size = the current size + next tensor size
 | |
|             size_t n_bytes = GGML_PAD(ggml_nbytes(t), GGUF_DEFAULT_ALIGNMENT);
 | |
|             size_t next_tensors_size = curr_tensors_size + n_bytes;
 | |
|             if (should_split(i, next_tensors_size)) {
 | |
|                 new_ctx_out(false);
 | |
|                 curr_tensors_size = n_bytes;
 | |
|             } else {
 | |
|                 curr_tensors_size = next_tensors_size;
 | |
|             }
 | |
|             gguf_add_tensor(ctx_out, t);
 | |
|         }
 | |
| 
 | |
|         // push the last ctx_out
 | |
|         ctx_outs.push_back(ctx_out);
 | |
| 
 | |
|         // set the correct n_split for all ctx_out
 | |
|         for (auto & ctx : ctx_outs) {
 | |
|             gguf_set_val_u16(ctx, LLM_KV_SPLIT_COUNT, ctx_outs.size());
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ~split_strategy() {
 | |
|         for (auto & ctx_out : ctx_outs) {
 | |
|             gguf_free(ctx_out);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     bool should_split(int i_tensor, size_t next_size) {
 | |
|         if (params.mode == MODE_SIZE) {
 | |
|             // split by max size per file
 | |
|             return next_size > params.n_bytes_split;
 | |
|         } else if (params.mode == MODE_TENSOR) {
 | |
|             // split by number of tensors per file
 | |
|             return i_tensor > 0 && i_tensor < n_tensors && i_tensor % params.n_split_tensors == 0;
 | |
|         }
 | |
|         // should never happen
 | |
|         GGML_ABORT("invalid mode");
 | |
|     }
 | |
| 
 | |
|     void print_info() {
 | |
|         printf("n_split: %zu\n", ctx_outs.size());
 | |
|         int i_split = 0;
 | |
|         for (auto & ctx_out : ctx_outs) {
 | |
|             // re-calculate the real gguf size for each split (= metadata size + total size of all tensors)
 | |
|             size_t total_size = gguf_get_meta_size(ctx_out);
 | |
|             for (int i = 0; i < gguf_get_n_tensors(ctx_out); ++i) {
 | |
|                 struct ggml_tensor * t = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_out, i));
 | |
|                 total_size += ggml_nbytes(t);
 | |
|             }
 | |
|             total_size = total_size / 1000 / 1000; // convert to megabytes
 | |
|             printf("split %05d: n_tensors = %" PRIi64 ", total_size = %zuM\n", i_split + 1, gguf_get_n_tensors(ctx_out), total_size);
 | |
|             i_split++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void write() {
 | |
|         int i_split = 0;
 | |
|         int n_split = ctx_outs.size();
 | |
|         for (auto & ctx_out : ctx_outs) {
 | |
|             // construct file path
 | |
|             char split_path[PATH_MAX] = {0};
 | |
|             llama_split_path(split_path, sizeof(split_path), params.output.c_str(), i_split, n_split);
 | |
| 
 | |
|             // open the output file
 | |
|             printf("Writing file %s ... ", split_path);
 | |
|             fflush(stdout);
 | |
|             std::ofstream fout = std::ofstream(split_path, std::ios::binary);
 | |
|             fout.exceptions(std::ofstream::failbit); // fail fast on write errors
 | |
| 
 | |
|             // write metadata
 | |
|             std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
 | |
|             gguf_get_meta_data(ctx_out, data.data());
 | |
|             fout.write((const char *)data.data(), data.size());
 | |
| 
 | |
|             // write tensors
 | |
|             for (int i = 0; i < gguf_get_n_tensors(ctx_out); ++i) {
 | |
|                 // read tensor meta and prepare buffer
 | |
|                 const char * t_name = gguf_get_tensor_name(ctx_out, i);
 | |
|                 struct ggml_tensor * t = ggml_get_tensor(ctx_meta, t_name);
 | |
|                 auto n_bytes = ggml_nbytes(t);
 | |
|                 read_buf.resize(n_bytes);
 | |
| 
 | |
|                 // calculate offset
 | |
|                 auto i_tensor_in = gguf_find_tensor(ctx_gguf, t_name); // idx of tensor in the input file
 | |
|                 auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor_in);
 | |
| 
 | |
|                 // copy tensor from input to output file
 | |
|                 copy_file_to_file(f_input, fout, offset, n_bytes);
 | |
|                 zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes);
 | |
|             }
 | |
| 
 | |
|             printf("done\n");
 | |
|             // close the file
 | |
|             fout.close();
 | |
|             i_split++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void copy_file_to_file(std::ifstream & f_in, std::ofstream & f_out, const size_t in_offset, const size_t len) {
 | |
|         // TODO: detect OS and use copy_file_range() here for better performance
 | |
|         if (read_buf.size() < len) {
 | |
|             read_buf.resize(len);
 | |
|         }
 | |
|         f_in.seekg(in_offset);
 | |
|         f_in.read((char *)read_buf.data(), len);
 | |
|         f_out.write((const char *)read_buf.data(), len);
 | |
|     }
 | |
| };
 | |
| 
 | |
| static void gguf_split(const split_params & split_params) {
 | |
|     struct ggml_context * ctx_meta = NULL;
 | |
| 
 | |
|     struct gguf_init_params params = {
 | |
|         /*.no_alloc = */ true,
 | |
|         /*.ctx      = */ &ctx_meta,
 | |
|     };
 | |
| 
 | |
|     std::ifstream f_input(split_params.input.c_str(), std::ios::binary);
 | |
|     if (!f_input.is_open()) {
 | |
|         fprintf(stderr, "%s:  failed to open input GGUF from %s\n", __func__, split_params.input.c_str());
 | |
|         exit(EXIT_FAILURE);
 | |
|     }
 | |
| 
 | |
|     auto * ctx_gguf = gguf_init_from_file(split_params.input.c_str(), params);
 | |
|     if (!ctx_gguf) {
 | |
|         fprintf(stderr, "%s:  failed to load input GGUF from %s\n", __func__, split_params.input.c_str());
 | |
|         exit(EXIT_FAILURE);
 | |
|     }
 | |
| 
 | |
|     // prepare the strategy
 | |
|     split_strategy strategy(split_params, f_input, ctx_gguf, ctx_meta);
 | |
|     int n_split = strategy.ctx_outs.size();
 | |
|     strategy.print_info();
 | |
| 
 | |
|     if (!split_params.dry_run) {
 | |
|         // write all output splits
 | |
|         strategy.write();
 | |
|     }
 | |
| 
 | |
|     // done, clean up
 | |
|     gguf_free(ctx_gguf);
 | |
|     f_input.close();
 | |
| 
 | |
|     fprintf(stderr, "%s: %d gguf split written with a total of %d tensors.\n",
 | |
|             __func__, n_split, strategy.n_tensors);
 | |
| }
 | |
| 
 | |
| static void gguf_merge(const split_params & split_params) {
 | |
|     fprintf(stderr, "%s: %s -> %s\n",
 | |
|             __func__, split_params.input.c_str(),
 | |
|             split_params.output.c_str());
 | |
|     int n_split = 1;
 | |
|     int total_tensors = 0;
 | |
| 
 | |
|     // avoid overwriting existing output file
 | |
|     if (std::ifstream(split_params.output.c_str())) {
 | |
|         fprintf(stderr, "%s: output file %s already exists\n", __func__, split_params.output.c_str());
 | |
|         exit(EXIT_FAILURE);
 | |
|     }
 | |
| 
 | |
| 
 | |
|     auto * ctx_out = gguf_init_empty();
 | |
| 
 | |
|     std::vector<uint8_t> read_data;
 | |
|     std::vector<ggml_context *> ctx_metas;
 | |
|     std::vector<gguf_context *> ctx_ggufs;
 | |
| 
 | |
|     char split_path[PATH_MAX] = {0};
 | |
|     strncpy(split_path, split_params.input.c_str(), sizeof(split_path) - 1);
 | |
|     char split_prefix[PATH_MAX] = {0};
 | |
| 
 | |
|     // First pass to find KV and tensors metadata
 | |
|     for (int i_split = 0; i_split < n_split; i_split++) {
 | |
|         struct ggml_context * ctx_meta = NULL;
 | |
| 
 | |
|         struct gguf_init_params params = {
 | |
|             /*.no_alloc = */ true,
 | |
|             /*.ctx      = */ &ctx_meta,
 | |
|         };
 | |
| 
 | |
|         if (i_split > 0) {
 | |
|             llama_split_path(split_path, sizeof(split_path), split_prefix, i_split, n_split);
 | |
|         }
 | |
|         fprintf(stderr, "%s: reading metadata %s ...", __func__, split_path);
 | |
| 
 | |
|         auto * ctx_gguf = gguf_init_from_file(split_path, params);
 | |
|         if (!ctx_gguf) {
 | |
|             fprintf(stderr, "\n%s:  failed to load input GGUF from %s\n", __func__, split_params.input.c_str());
 | |
|             exit(EXIT_FAILURE);
 | |
|         }
 | |
|         ctx_ggufs.push_back(ctx_gguf);
 | |
|         ctx_metas.push_back(ctx_meta);
 | |
| 
 | |
|         if (i_split == 0) {
 | |
|             auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
 | |
|             if (key_n_split < 0) {
 | |
|                 fprintf(stderr,
 | |
|                         "\n%s: input file does not contain %s metadata\n",
 | |
|                         __func__,
 | |
|                         LLM_KV_SPLIT_COUNT);
 | |
|                 gguf_free(ctx_gguf);
 | |
|                 ggml_free(ctx_meta);
 | |
|                 gguf_free(ctx_out);
 | |
|                 exit(EXIT_FAILURE);
 | |
|             }
 | |
| 
 | |
|             n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
 | |
|             if (n_split < 1) {
 | |
|                 fprintf(stderr,
 | |
|                         "\n%s: input file does not contain a valid split count %d\n",
 | |
|                         __func__,
 | |
|                         n_split);
 | |
|                 gguf_free(ctx_gguf);
 | |
|                 ggml_free(ctx_meta);
 | |
|                 gguf_free(ctx_out);
 | |
|                 exit(EXIT_FAILURE);
 | |
|             }
 | |
| 
 | |
|             // Verify the file naming and extract split_prefix
 | |
|             if (!llama_split_prefix(split_prefix, sizeof (split_prefix), split_path, i_split, n_split)) {
 | |
|                 fprintf(stderr, "\n%s: unexpected input file name: %s"
 | |
|                                 " i_split=%d"
 | |
|                                 " n_split=%d\n", __func__,
 | |
|                         split_path, i_split, n_split);
 | |
|                 gguf_free(ctx_gguf);
 | |
|                 ggml_free(ctx_meta);
 | |
|                 gguf_free(ctx_out);
 | |
|                 exit(EXIT_FAILURE);
 | |
|             }
 | |
| 
 | |
|             // Do not trigger merge if we try to merge again the output
 | |
|             gguf_set_val_u16(ctx_gguf, LLM_KV_SPLIT_COUNT, 0);
 | |
| 
 | |
|             // Set metadata from the first split
 | |
|             gguf_set_kv(ctx_out, ctx_gguf);
 | |
|         }
 | |
| 
 | |
|         auto n_tensors = gguf_get_n_tensors(ctx_gguf);
 | |
|         for (int i_tensor = 0; i_tensor < n_tensors; i_tensor++) {
 | |
|             const char * t_name = gguf_get_tensor_name(ctx_gguf, i_tensor);
 | |
|             struct ggml_tensor * t = ggml_get_tensor(ctx_meta, t_name);
 | |
|             gguf_add_tensor(ctx_out, t);
 | |
|         }
 | |
|         total_tensors += n_tensors;
 | |
| 
 | |
|         fprintf(stderr, "\033[3Ddone\n");
 | |
|     }
 | |
|     std::ofstream fout;
 | |
|     if (!split_params.dry_run) {
 | |
|         fout.open(split_params.output.c_str(), std::ios::binary);
 | |
|         fout.exceptions(std::ofstream::failbit); // fail fast on write errors
 | |
|         // placeholder for the meta data
 | |
|         auto meta_size = gguf_get_meta_size(ctx_out);
 | |
|         ::zeros(fout, meta_size);
 | |
|     }
 | |
| 
 | |
|     // Write tensors data
 | |
|     for (int i_split = 0; i_split < n_split; i_split++) {
 | |
|         llama_split_path(split_path, sizeof(split_path), split_prefix, i_split, n_split);
 | |
|         std::ifstream f_input(split_path, std::ios::binary);
 | |
|         if (!f_input.is_open()) {
 | |
|             fprintf(stderr, "%s:  failed to open input GGUF from %s\n", __func__, split_path);
 | |
|             for (uint32_t i = 0; i < ctx_ggufs.size(); i++) {
 | |
|                 gguf_free(ctx_ggufs[i]);
 | |
|                 ggml_free(ctx_metas[i]);
 | |
|             }
 | |
|             gguf_free(ctx_out);
 | |
|             if (!split_params.dry_run) {
 | |
|                 fout.close();
 | |
|             }
 | |
|             exit(EXIT_FAILURE);
 | |
|         }
 | |
|         fprintf(stderr, "%s: writing tensors %s ...", __func__, split_path);
 | |
| 
 | |
|         auto * ctx_gguf = ctx_ggufs[i_split];
 | |
|         auto * ctx_meta = ctx_metas[i_split];
 | |
| 
 | |
|         auto n_tensors = gguf_get_n_tensors(ctx_gguf);
 | |
|         for (int i_tensor = 0; i_tensor < n_tensors; i_tensor++) {
 | |
|             const char * t_name = gguf_get_tensor_name(ctx_gguf, i_tensor);
 | |
|             struct ggml_tensor * t = ggml_get_tensor(ctx_meta, t_name);
 | |
| 
 | |
|             auto n_bytes = ggml_nbytes(t);
 | |
| 
 | |
|             if (read_data.size() < n_bytes) {
 | |
|                 read_data.resize(n_bytes);
 | |
|             }
 | |
| 
 | |
|             auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor);
 | |
|             f_input.seekg(offset);
 | |
|             f_input.read((char *)read_data.data(), n_bytes);
 | |
|             if (!split_params.dry_run) {
 | |
|                 // write tensor data + padding
 | |
|                 fout.write((const char *)read_data.data(), n_bytes);
 | |
|                 zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         gguf_free(ctx_gguf);
 | |
|         ggml_free(ctx_meta);
 | |
|         f_input.close();
 | |
|         fprintf(stderr, "\033[3Ddone\n");
 | |
|     }
 | |
| 
 | |
|     if (!split_params.dry_run) {
 | |
|         // go back to beginning of file and write the updated metadata
 | |
|         fout.seekp(0);
 | |
|         std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
 | |
|         gguf_get_meta_data(ctx_out, data.data());
 | |
|         fout.write((const char *)data.data(), data.size());
 | |
|         fout.close();
 | |
|     }
 | |
|     gguf_free(ctx_out);
 | |
| 
 | |
|     fprintf(stderr, "%s: %s merged from %d split with %d tensors.\n",
 | |
|             __func__, split_params.output.c_str(), n_split, total_tensors);
 | |
| }
 | |
| 
 | |
| int main(int argc, const char ** argv) {
 | |
|     split_params params;
 | |
|     split_params_parse(argc, argv, params);
 | |
| 
 | |
|     switch (params.operation) {
 | |
|         case OP_SPLIT: gguf_split(params);
 | |
|             break;
 | |
|         case OP_MERGE: gguf_merge(params);
 | |
|             break;
 | |
|         default: split_print_usage(argv[0]);
 | |
|             exit(EXIT_FAILURE);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 |