mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1571 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1571 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "llama.h"
 | |
| 
 | |
| #include "ggml.h"
 | |
| 
 | |
| #include <cinttypes>
 | |
| #include <fstream>
 | |
| #include <random>
 | |
| #include <unordered_map>
 | |
| #include <queue>
 | |
| #include <regex>
 | |
| #include <cassert>
 | |
| #include <cstring>
 | |
| 
 | |
| // determine number of model parts based on the dimension
 | |
| static const std::unordered_map<int, int> LLAMA_N_PARTS = {
 | |
|     { 4096, 1 },
 | |
|     { 5120, 2 },
 | |
|     { 6656, 4 },
 | |
|     { 8192, 8 },
 | |
| };
 | |
| 
 | |
| // default hparams (LLaMA 7B)
 | |
| struct llama_hparams {
 | |
|     int32_t n_vocab = 32000;
 | |
|     int32_t n_ctx   = 512;   // this is provided as user input?
 | |
|     int32_t n_embd  = 4096;
 | |
|     int32_t n_mult  = 256;
 | |
|     int32_t n_head  = 32;
 | |
|     int32_t n_layer = 32;
 | |
|     int32_t n_rot   = 64;
 | |
|     int32_t f16     = 1;
 | |
| };
 | |
| 
 | |
| struct llama_layer {
 | |
|     // normalization
 | |
|     struct ggml_tensor * attention_norm;
 | |
| 
 | |
|     // attention
 | |
|     struct ggml_tensor * wq;
 | |
|     struct ggml_tensor * wk;
 | |
|     struct ggml_tensor * wv;
 | |
|     struct ggml_tensor * wo;
 | |
| 
 | |
|     // normalization
 | |
|     struct ggml_tensor * ffn_norm;
 | |
| 
 | |
|     // ff
 | |
|     struct ggml_tensor * w1;
 | |
|     struct ggml_tensor * w2;
 | |
|     struct ggml_tensor * w3;
 | |
| };
 | |
| 
 | |
| struct llama_model {
 | |
|     llama_hparams hparams;
 | |
| 
 | |
|     struct ggml_tensor * tok_embeddings;
 | |
| 
 | |
|     struct ggml_tensor * norm;
 | |
|     struct ggml_tensor * output;
 | |
| 
 | |
|     std::vector<llama_layer> layers;
 | |
| 
 | |
|     // key + value memory
 | |
|     struct ggml_tensor * memory_k;
 | |
|     struct ggml_tensor * memory_v;
 | |
| 
 | |
|     //
 | |
|     struct ggml_context * ctx;
 | |
|     std::unordered_map<std::string, struct ggml_tensor *> tensors;
 | |
| };
 | |
| 
 | |
| struct llama_vocab {
 | |
|     using id    = int32_t;
 | |
|     using token = std::string;
 | |
| 
 | |
|     struct token_score {
 | |
|         token tok;
 | |
|         float score;
 | |
|     };
 | |
| 
 | |
|     std::unordered_map<token, id> token_to_id;
 | |
|     std::vector<token_score> id_to_token;
 | |
| };
 | |
| 
 | |
| struct llama_context {
 | |
|     std::mt19937 rng;
 | |
| 
 | |
|     int64_t t_load_us = 0;
 | |
|     int64_t t_start_us = 0;
 | |
| 
 | |
|     int64_t t_sample_us = 0;
 | |
|     int64_t t_eval_us   = 0;
 | |
| 
 | |
|     int32_t n_sample = 0; // number of tokens sampled
 | |
|     int32_t n_eval   = 0; // number of eval calls
 | |
| 
 | |
|     llama_model model;
 | |
|     llama_vocab vocab;
 | |
| 
 | |
|     size_t mem_per_token = 0;
 | |
| 
 | |
|     // decode output (2-dimensional array: [n_tokens][n_vocab])
 | |
|     std::vector<float> logits;
 | |
|     bool logits_all = false;
 | |
| };
 | |
| 
 | |
| struct llama_context_params llama_context_default_params() {
 | |
|     struct llama_context_params result = {
 | |
|         /*.n_ctx      =*/ 512,
 | |
|         /*.n_parts    =*/ -1,
 | |
|         /*.seed       =*/ 0,
 | |
|         /*.f16_kv     =*/ false,
 | |
|         /*.logits_all =*/ false,
 | |
|         /*.vocab_only =*/ false,
 | |
|     };
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| //
 | |
| // model loading
 | |
| //
 | |
| 
 | |
| static bool llama_model_load(
 | |
|         const std::string & fname,
 | |
|         llama_context & lctx,
 | |
|         int n_ctx,
 | |
|         int n_parts,
 | |
|         ggml_type memory_type,
 | |
|         bool vocab_only) {
 | |
|     fprintf(stderr, "%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
 | |
| 
 | |
|     const int64_t t_start_us = ggml_time_us();
 | |
| 
 | |
|     lctx.t_start_us = t_start_us;
 | |
| 
 | |
|     std::vector<char> f_buf(1024*1024);
 | |
| 
 | |
|     auto & model = lctx.model;
 | |
|     auto & vocab = lctx.vocab;
 | |
| 
 | |
|     auto fin = std::ifstream(fname, std::ios::binary);
 | |
|     fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
 | |
|     if (!fin) {
 | |
|         fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // verify magic
 | |
|     {
 | |
|         uint32_t magic;
 | |
|         fin.read((char *) &magic, sizeof(magic));
 | |
|         if (magic == LLAMA_FILE_MAGIC_UNVERSIONED) {
 | |
|             fprintf(stderr, "%s: invalid model file '%s' (too old, regenerate your model files!)\n",
 | |
|                     __func__, fname.c_str());
 | |
|             return false;
 | |
|         }
 | |
|         if (magic != LLAMA_FILE_MAGIC) {
 | |
|             fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         uint32_t format_version;
 | |
|         fin.read((char *) &format_version, sizeof(format_version));
 | |
| 
 | |
|         if (format_version != LLAMA_FILE_VERSION) {
 | |
|             fprintf(stderr, "%s: invalid model file '%s' (unsupported format version %" PRIu32 ", expected %d)\n",
 | |
|                     __func__, fname.c_str(), format_version, LLAMA_FILE_VERSION);
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     int n_ff = 0;
 | |
| 
 | |
|     // load hparams
 | |
|     {
 | |
|         auto & hparams = model.hparams;
 | |
| 
 | |
|         fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
 | |
|         //fin.read((char *) &hparams.n_ctx,   sizeof(hparams.n_ctx));
 | |
|         fin.read((char *) &hparams.n_embd,  sizeof(hparams.n_embd));
 | |
|         fin.read((char *) &hparams.n_mult,  sizeof(hparams.n_mult));
 | |
|         fin.read((char *) &hparams.n_head,  sizeof(hparams.n_head));
 | |
|         fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
 | |
|         fin.read((char *) &hparams.n_rot,   sizeof(hparams.n_rot));
 | |
|         fin.read((char *) &hparams.f16,     sizeof(hparams.f16));
 | |
| 
 | |
|         hparams.n_ctx = n_ctx;
 | |
| 
 | |
|         n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
 | |
| 
 | |
|         if (n_parts < 1) {
 | |
|             n_parts = LLAMA_N_PARTS.at(hparams.n_embd);
 | |
|         }
 | |
| 
 | |
|         // temp warning to tell the user to use "--n_parts"
 | |
|         if (hparams.f16 == 4 && n_parts != 1) {
 | |
|             fprintf(stderr, "%s: GPTQ model detected - are you sure n_parts should be %d? we normally expect it to be 1\n", __func__, n_parts);
 | |
|             fprintf(stderr, "%s: use '--n_parts 1' if necessary\n", __func__);
 | |
|         }
 | |
| 
 | |
|         fprintf(stderr, "%s: n_vocab = %d\n", __func__, hparams.n_vocab);
 | |
|         fprintf(stderr, "%s: n_ctx   = %d\n", __func__, hparams.n_ctx);
 | |
|         fprintf(stderr, "%s: n_embd  = %d\n", __func__, hparams.n_embd);
 | |
|         fprintf(stderr, "%s: n_mult  = %d\n", __func__, hparams.n_mult);
 | |
|         fprintf(stderr, "%s: n_head  = %d\n", __func__, hparams.n_head);
 | |
|         fprintf(stderr, "%s: n_layer = %d\n", __func__, hparams.n_layer);
 | |
|         fprintf(stderr, "%s: n_rot   = %d\n", __func__, hparams.n_rot);
 | |
|         fprintf(stderr, "%s: f16     = %d\n", __func__, hparams.f16);
 | |
|         fprintf(stderr, "%s: n_ff    = %d\n", __func__, n_ff);
 | |
|         fprintf(stderr, "%s: n_parts = %d\n", __func__, n_parts);
 | |
|     }
 | |
| 
 | |
|     // load vocab
 | |
|     {
 | |
|         std::string word;
 | |
|         vocab.id_to_token.resize(model.hparams.n_vocab);
 | |
|         std::vector<char> tmp(64);
 | |
| 
 | |
|         for (int i = 0; i < model.hparams.n_vocab; i++) {
 | |
|             uint32_t len;
 | |
|             fin.read((char *) &len, sizeof(len));
 | |
| 
 | |
|             word.resize(len);
 | |
|             if (len > 0) {
 | |
|                 tmp.resize(len);
 | |
|                 fin.read(tmp.data(), len);
 | |
|                 word.assign(tmp.data(), len);
 | |
|             } else {
 | |
|                 word.clear();
 | |
|             }
 | |
| 
 | |
|             float score;
 | |
|             fin.read((char *) &score, sizeof(score));
 | |
| 
 | |
|             vocab.token_to_id[word] = i;
 | |
| 
 | |
|             auto &tok_score = vocab.id_to_token[i];
 | |
|             tok_score.tok = word;
 | |
|             tok_score.score = score;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (vocab_only) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     // for the big tensors, we have the option to store the data in 16-bit floats or quantized
 | |
|     // in order to save memory and also to speed up the computation
 | |
|     // wtype is for per-layer weights, while vtype is for other weights
 | |
|     ggml_type wtype, vtype;
 | |
|     switch (model.hparams.f16) {
 | |
|         case 0: wtype = vtype = GGML_TYPE_F32;  break;
 | |
|         case 1: wtype = vtype = GGML_TYPE_F16;  break;
 | |
|         case 2: wtype = vtype = GGML_TYPE_Q4_0; break;
 | |
|         case 3: wtype = vtype = GGML_TYPE_Q4_1; break;
 | |
|         case 4: wtype = GGML_TYPE_Q4_1; vtype = GGML_TYPE_F16; break;
 | |
|         default:
 | |
|                 {
 | |
|                     fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
 | |
|                             __func__, fname.c_str(), model.hparams.f16);
 | |
|                     return false;
 | |
|                 }
 | |
|     }
 | |
| 
 | |
|     auto & ctx = model.ctx;
 | |
| 
 | |
|     size_t ctx_size = 0;
 | |
| 
 | |
|     {
 | |
|         const auto & hparams = model.hparams;
 | |
| 
 | |
|         const int n_embd  = hparams.n_embd;
 | |
|         const int n_layer = hparams.n_layer;
 | |
|         const int n_ctx   = hparams.n_ctx;
 | |
|         const int n_vocab = hparams.n_vocab;
 | |
| 
 | |
|         ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // tok_embeddings
 | |
| 
 | |
|         ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // norm
 | |
| 
 | |
|         ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // output
 | |
| 
 | |
|         ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // attention_norm
 | |
| 
 | |
|         ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wq
 | |
|         ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wk
 | |
|         ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wv
 | |
|         ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wo
 | |
| 
 | |
|         ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ffn_norm
 | |
| 
 | |
|         ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w1
 | |
|         ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w2
 | |
|         ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w3
 | |
| 
 | |
|         ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_k
 | |
|         ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_v
 | |
| 
 | |
|         ctx_size += (5 + 10*n_layer)*256; // object overhead
 | |
| 
 | |
|         fprintf(stderr, "%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
 | |
|     }
 | |
| 
 | |
|     // create the ggml context
 | |
|     {
 | |
|         struct ggml_init_params params = {
 | |
|             /*.mem_size   =*/ ctx_size,
 | |
|             /*.mem_buffer =*/ NULL,
 | |
|         };
 | |
| 
 | |
|         model.ctx = ggml_init(params);
 | |
|         if (!model.ctx) {
 | |
|             fprintf(stderr, "%s: ggml_init() failed\n", __func__);
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // prepare memory for the weights
 | |
|     {
 | |
|         const auto & hparams = model.hparams;
 | |
| 
 | |
|         const int n_embd  = hparams.n_embd;
 | |
|         const int n_layer = hparams.n_layer;
 | |
|         const int n_vocab = hparams.n_vocab;
 | |
| 
 | |
|         model.layers.resize(n_layer);
 | |
| 
 | |
|         model.tok_embeddings = ggml_new_tensor_2d(ctx, vtype, n_embd, n_vocab);
 | |
| 
 | |
|         model.norm   = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
 | |
|         model.output = ggml_new_tensor_2d(ctx, vtype,         n_embd, n_vocab);
 | |
| 
 | |
|         // map by name
 | |
|         model.tensors["tok_embeddings.weight"] = model.tok_embeddings;
 | |
| 
 | |
|         model.tensors["norm.weight"]   = model.norm;
 | |
|         model.tensors["output.weight"] = model.output;
 | |
| 
 | |
|         for (int i = 0; i < n_layer; ++i) {
 | |
|             auto & layer = model.layers[i];
 | |
| 
 | |
|             layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
 | |
| 
 | |
|             layer.wq = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
 | |
|             layer.wk = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
 | |
|             layer.wv = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
 | |
|             layer.wo = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
 | |
| 
 | |
|             layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
 | |
| 
 | |
|             layer.w1 = ggml_new_tensor_2d(ctx, wtype, n_embd,   n_ff);
 | |
|             layer.w2 = ggml_new_tensor_2d(ctx, wtype,   n_ff, n_embd);
 | |
|             layer.w3 = ggml_new_tensor_2d(ctx, wtype, n_embd,   n_ff);
 | |
| 
 | |
|             // map by name
 | |
|             model.tensors["layers." + std::to_string(i) + ".attention_norm.weight"] = layer.attention_norm;
 | |
| 
 | |
|             model.tensors["layers." + std::to_string(i) + ".attention.wq.weight"] = layer.wq;
 | |
|             model.tensors["layers." + std::to_string(i) + ".attention.wk.weight"] = layer.wk;
 | |
|             model.tensors["layers." + std::to_string(i) + ".attention.wv.weight"] = layer.wv;
 | |
|             model.tensors["layers." + std::to_string(i) + ".attention.wo.weight"] = layer.wo;
 | |
| 
 | |
|             model.tensors["layers." + std::to_string(i) + ".ffn_norm.weight"] = layer.ffn_norm;
 | |
| 
 | |
|             model.tensors["layers." + std::to_string(i) + ".feed_forward.w1.weight"] = layer.w1;
 | |
|             model.tensors["layers." + std::to_string(i) + ".feed_forward.w2.weight"] = layer.w2;
 | |
|             model.tensors["layers." + std::to_string(i) + ".feed_forward.w3.weight"] = layer.w3;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // key + value memory
 | |
|     {
 | |
|         const auto & hparams = model.hparams;
 | |
| 
 | |
|         const int n_embd  = hparams.n_embd;
 | |
|         const int n_layer = hparams.n_layer;
 | |
|         const int n_ctx   = hparams.n_ctx;
 | |
| 
 | |
|         const int n_mem      = n_layer*n_ctx;
 | |
|         const int n_elements = n_embd*n_mem;
 | |
| 
 | |
|         model.memory_k = ggml_new_tensor_1d(ctx, memory_type, n_elements);
 | |
|         model.memory_v = ggml_new_tensor_1d(ctx, memory_type, n_elements);
 | |
| 
 | |
|         const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
 | |
| 
 | |
|         fprintf(stderr, "%s: memory_size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem);
 | |
|     }
 | |
| 
 | |
|     const size_t file_offset = fin.tellg();
 | |
| 
 | |
|     fin.close();
 | |
| 
 | |
|     std::vector<uint8_t> tmp;
 | |
| 
 | |
|     for (int i = 0; i < n_parts; ++i) {
 | |
|         const int part_id = i;
 | |
|         //const int part_id = n_parts - i - 1;
 | |
| 
 | |
|         std::string fname_part = fname;
 | |
|         if (i > 0) {
 | |
|             fname_part += "." + std::to_string(i);
 | |
|         }
 | |
| 
 | |
|         fprintf(stderr, "%s: loading model part %d/%d from '%s'\n", __func__, i+1, n_parts, fname_part.c_str());
 | |
| 
 | |
|         fin = std::ifstream(fname_part, std::ios::binary);
 | |
|         fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
 | |
|         fin.seekg(file_offset);
 | |
| 
 | |
|         // load weights
 | |
|         {
 | |
|             int n_tensors = 0;
 | |
|             size_t total_size = 0;
 | |
| 
 | |
|             fprintf(stderr, "%s: ", __func__);
 | |
| 
 | |
|             while (true) {
 | |
|                 int32_t n_dims;
 | |
|                 int32_t length;
 | |
|                 int32_t ftype;
 | |
| 
 | |
|                 fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
 | |
|                 fin.read(reinterpret_cast<char *>(&length), sizeof(length));
 | |
|                 fin.read(reinterpret_cast<char *>(&ftype),  sizeof(ftype));
 | |
| 
 | |
|                 if (fin.eof()) {
 | |
|                     break;
 | |
|                 }
 | |
| 
 | |
|                 int32_t nelements = 1;
 | |
|                 int32_t ne[2] = { 1, 1 };
 | |
|                 for (int i = 0; i < n_dims; ++i) {
 | |
|                     fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
 | |
|                     nelements *= ne[i];
 | |
|                 }
 | |
| 
 | |
|                 std::string name(length, 0);
 | |
|                 fin.read(&name[0], length);
 | |
| 
 | |
|                 if (model.tensors.find(name.data()) == model.tensors.end()) {
 | |
|                     fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
 | |
|                     return false;
 | |
|                 }
 | |
| 
 | |
|                 // split_type = 0: split by columns
 | |
|                 // split_type = 1: split by rows
 | |
|                 int split_type = 0;
 | |
| 
 | |
|                 // split_type = 0:
 | |
|                 // regex:
 | |
|                 //   - tok_embeddings.*
 | |
|                 //   - layers.*.attention.wo.weight
 | |
|                 //   - layers.*.feed_forward.w2.weight
 | |
| 
 | |
|                 // split_type = 1:
 | |
|                 // regex:
 | |
|                 //   - output.*
 | |
|                 //   - layers.*.attention.wq.weight
 | |
|                 //   - layers.*.attention.wk.weight
 | |
|                 //   - layers.*.attention.wv.weight
 | |
|                 //   - layers.*.feed_forward.w1.weight
 | |
|                 //   - layers.*.feed_forward.w3.weight
 | |
|                 if (name.find("tok_embeddings") != std::string::npos) {
 | |
|                     split_type = 0;
 | |
|                 } else if (name.find("layers") != std::string::npos) {
 | |
|                     if (name.find("attention.wo.weight") != std::string::npos) {
 | |
|                         split_type = 0;
 | |
|                     } else if (name.find("feed_forward.w2.weight") != std::string::npos) {
 | |
|                         split_type = 0;
 | |
|                     } else {
 | |
|                         split_type = 1;
 | |
|                     }
 | |
|                 } else if (name.find("output") != std::string::npos) {
 | |
|                     split_type = 1;
 | |
|                 }
 | |
| 
 | |
|                 auto tensor = model.tensors[name.data()];
 | |
| 
 | |
|                 if (n_dims == 1) {
 | |
|                     if (ggml_nelements(tensor) != nelements) {
 | |
|                         fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
 | |
|                         return false;
 | |
|                     }
 | |
|                 } else {
 | |
|                     if (ggml_nelements(tensor)/n_parts != nelements) {
 | |
|                         fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
 | |
|                         return false;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 if (n_dims == 1) {
 | |
|                     if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
 | |
|                         fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
 | |
|                                 __func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
 | |
|                         return false;
 | |
|                     }
 | |
|                 } else {
 | |
|                     if (split_type == 0) {
 | |
|                         if (tensor->ne[0]/n_parts != ne[0] || tensor->ne[1] != ne[1]) {
 | |
|                             fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
 | |
|                                     __func__, name.data(), tensor->ne[0]/n_parts, tensor->ne[1], ne[0], ne[1]);
 | |
|                             return false;
 | |
|                         }
 | |
|                     } else {
 | |
|                         if (tensor->ne[0] != ne[0] || tensor->ne[1]/n_parts != ne[1]) {
 | |
|                             fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
 | |
|                                     __func__, name.data(), tensor->ne[0], tensor->ne[1]/n_parts, ne[0], ne[1]);
 | |
|                             return false;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 if (0) {
 | |
|                     static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
 | |
|                     fprintf(stderr, "%24s - [%5d, %5d], type = %6s, split = %d\n", name.data(), ne[0], ne[1], ftype_str[ftype], split_type);
 | |
|                 }
 | |
| 
 | |
|                 size_t bpe = 0;
 | |
| 
 | |
|                 switch (ftype) {
 | |
|                     case 0: bpe = ggml_type_size(GGML_TYPE_F32);  break;
 | |
|                     case 1: bpe = ggml_type_size(GGML_TYPE_F16);  break;
 | |
|                     case 2: bpe = ggml_type_size(GGML_TYPE_Q4_0); assert(ne[0] % 64 == 0); break;
 | |
|                     case 3: bpe = ggml_type_size(GGML_TYPE_Q4_1); assert(ne[0] % 64 == 0); break;
 | |
|                     default:
 | |
|                             {
 | |
|                                 fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype);
 | |
|                                 return false;
 | |
|                             }
 | |
|                 };
 | |
| 
 | |
|                 if (n_dims == 1 || n_parts == 1) {
 | |
|                     if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
 | |
|                         fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
 | |
|                                 __func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
 | |
|                         return false;
 | |
|                     }
 | |
| 
 | |
|                     if (part_id == 0) {
 | |
|                         fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
 | |
|                     } else {
 | |
|                         fin.seekg(ggml_nbytes(tensor), std::ios::cur);
 | |
|                     }
 | |
| 
 | |
|                     total_size += ggml_nbytes(tensor);
 | |
|                 } else {
 | |
|                     if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)/n_parts) {
 | |
|                         fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
 | |
|                                 __func__, name.data(), ggml_nbytes(tensor)/n_parts, nelements*bpe);
 | |
|                         return false;
 | |
|                     }
 | |
| 
 | |
|                     if (split_type == 0) {
 | |
|                         const int np0 = ne[0];
 | |
| 
 | |
|                         const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
 | |
|                         assert(row_size == tensor->nb[1]);
 | |
| 
 | |
|                         for (int i1 = 0; i1 < ne[1]; ++i1) {
 | |
|                             const size_t offset_row = i1*row_size;
 | |
|                             const size_t offset = offset_row + ((part_id*np0)/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
 | |
|                             fin.read(reinterpret_cast<char *>(tensor->data) + offset, row_size/n_parts);
 | |
|                         }
 | |
|                     } else {
 | |
|                         const int np1 = ne[1];
 | |
| 
 | |
|                         const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
 | |
| 
 | |
|                         for (int i1 = 0; i1 < ne[1]; ++i1) {
 | |
|                             const size_t offset_row = (i1 + part_id*np1)*row_size;
 | |
|                             fin.read(reinterpret_cast<char *>(tensor->data) + offset_row, row_size);
 | |
|                         }
 | |
|                     }
 | |
| 
 | |
|                     total_size += ggml_nbytes(tensor)/n_parts;
 | |
|                 }
 | |
| 
 | |
|                 //fprintf(stderr, "%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
 | |
|                 if (++n_tensors % 8 == 0) {
 | |
|                     fprintf(stderr, ".");
 | |
|                     fflush(stderr);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             fprintf(stderr, " done\n");
 | |
| 
 | |
|             fprintf(stderr, "%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors);
 | |
|         }
 | |
| 
 | |
|         fin.close();
 | |
|     }
 | |
| 
 | |
|     lctx.logits.reserve(lctx.model.hparams.n_ctx);
 | |
| 
 | |
|     lctx.t_load_us = ggml_time_us() - t_start_us;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| // evaluate the transformer
 | |
| //
 | |
| //   - lctx:      llama context
 | |
| //   - tokens:    new batch of tokens to process
 | |
| //   - n_past:    the context size so far
 | |
| //   - n_threads: number of threads to use
 | |
| //
 | |
| static bool llama_eval_internal(
 | |
|         llama_context & lctx,
 | |
|     const llama_token * tokens,
 | |
|             const int   n_tokens,
 | |
|             const int   n_past,
 | |
|             const int   n_threads) {
 | |
|     const int64_t t_start_us = ggml_time_us();
 | |
| 
 | |
|     const int N = n_tokens;
 | |
| 
 | |
|     const auto & model   = lctx.model;
 | |
|     const auto & hparams = model.hparams;
 | |
| 
 | |
|     const int n_embd  = hparams.n_embd;
 | |
|     const int n_layer = hparams.n_layer;
 | |
|     const int n_ctx   = hparams.n_ctx;
 | |
|     const int n_head  = hparams.n_head;
 | |
|     const int n_vocab = hparams.n_vocab;
 | |
|     const int n_rot   = hparams.n_embd/hparams.n_head;
 | |
| 
 | |
|     auto & mem_per_token = lctx.mem_per_token;
 | |
| 
 | |
|     // TODO: fix this hardcoded size
 | |
|     static size_t buf_size = 512u*1024*1024;
 | |
|     static void * buf = malloc(buf_size);
 | |
| 
 | |
|     if (mem_per_token > 0 && mem_per_token*N > buf_size) {
 | |
|         const size_t buf_size_new = 1.3*(mem_per_token*N); // add 30% to account for ggml object overhead
 | |
|         //fprintf(stderr, "\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
 | |
| 
 | |
|         // reallocate
 | |
|         buf_size = buf_size_new;
 | |
|         buf = realloc(buf, buf_size);
 | |
|         if (buf == nullptr) {
 | |
|             fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     struct ggml_init_params params = {
 | |
|         /*.mem_size   =*/ buf_size,
 | |
|         /*.mem_buffer =*/ buf,
 | |
|     };
 | |
| 
 | |
|     struct ggml_context * ctx0 = ggml_init(params);
 | |
|     ggml_cgraph gf = {};
 | |
|     gf.n_threads = n_threads;
 | |
| 
 | |
|     struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
 | |
|     memcpy(embd->data, tokens, N*ggml_element_size(embd));
 | |
| 
 | |
|     struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);
 | |
| 
 | |
|     for (int il = 0; il < n_layer; ++il) {
 | |
|         struct ggml_tensor * inpSA = inpL;
 | |
| 
 | |
|         struct ggml_tensor * cur;
 | |
| 
 | |
|         // norm
 | |
|         {
 | |
|             cur = ggml_rms_norm(ctx0, inpL);
 | |
| 
 | |
|             // cur = attention_norm*cur
 | |
|             cur = ggml_mul(ctx0,
 | |
|                         ggml_repeat(ctx0, model.layers[il].attention_norm, cur),
 | |
|                         cur);
 | |
|         }
 | |
| 
 | |
|         // self-attention
 | |
|         {
 | |
|             struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
 | |
|             struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
 | |
|             struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
 | |
| 
 | |
|             // store key and value to memory
 | |
|             if (N >= 1) {
 | |
|                 struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
 | |
|                 struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past));
 | |
| 
 | |
|                 ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
 | |
|                 ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
 | |
|             }
 | |
| 
 | |
|             // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
 | |
|             struct ggml_tensor * Q =
 | |
|                 ggml_permute(ctx0,
 | |
|                         ggml_rope(ctx0,
 | |
|                             ggml_cpy(ctx0,
 | |
|                                 Qcur,
 | |
|                                 ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),
 | |
|                             n_past, n_rot, 0),
 | |
|                         0, 2, 1, 3);
 | |
| 
 | |
|             // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
 | |
|             struct ggml_tensor * K =
 | |
|                 ggml_permute(ctx0,
 | |
|                         ggml_rope(ctx0,
 | |
|                             ggml_reshape_3d(ctx0,
 | |
|                                 ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
 | |
|                                 n_embd/n_head, n_head, n_past + N),
 | |
|                             n_past, n_rot, 1),
 | |
|                         0, 2, 1, 3);
 | |
| 
 | |
|             // K * Q
 | |
|             struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
 | |
| 
 | |
|             // KQ_scaled = KQ / sqrt(n_embd/n_head)
 | |
|             struct ggml_tensor * KQ_scaled =
 | |
|                 ggml_scale(ctx0,
 | |
|                         KQ,
 | |
|                         ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
 | |
|                         );
 | |
| 
 | |
|             // KQ_masked = mask_past(KQ_scaled)
 | |
|             struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
 | |
| 
 | |
|             // KQ = soft_max(KQ_masked)
 | |
|             struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
 | |
| 
 | |
|             // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
 | |
|             struct ggml_tensor * V_trans =
 | |
|                 ggml_permute(ctx0,
 | |
|                         ggml_reshape_3d(ctx0,
 | |
|                             ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
 | |
|                             n_embd/n_head, n_head, n_past + N),
 | |
|                         1, 2, 0, 3);
 | |
| 
 | |
|             // KQV = transpose(V) * KQ_soft_max
 | |
|             struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
 | |
| 
 | |
|             // KQV_merged = KQV.permute(0, 2, 1, 3)
 | |
|             struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
 | |
| 
 | |
|             // cur = KQV_merged.contiguous().view(n_embd, N)
 | |
|             cur = ggml_cpy(ctx0,
 | |
|                     KQV_merged,
 | |
|                     ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
 | |
| 
 | |
|             // projection (no bias)
 | |
|             cur = ggml_mul_mat(ctx0,
 | |
|                     model.layers[il].wo,
 | |
|                     cur);
 | |
|         }
 | |
| 
 | |
|         struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
 | |
| 
 | |
|         // feed-forward network
 | |
|         {
 | |
|             // norm
 | |
|             {
 | |
|                 cur = ggml_rms_norm(ctx0, inpFF);
 | |
| 
 | |
|                 // cur = ffn_norm*cur
 | |
|                 cur = ggml_mul(ctx0,
 | |
|                         ggml_repeat(ctx0, model.layers[il].ffn_norm, cur),
 | |
|                         cur);
 | |
|             }
 | |
| 
 | |
|             struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
 | |
|                     model.layers[il].w3,
 | |
|                     cur);
 | |
| 
 | |
| 
 | |
|             cur = ggml_mul_mat(ctx0,
 | |
|                     model.layers[il].w1,
 | |
|                     cur);
 | |
| 
 | |
|             // SILU activation
 | |
|             cur = ggml_silu(ctx0, cur);
 | |
| 
 | |
|             cur = ggml_mul(ctx0, cur, tmp);
 | |
| 
 | |
|             cur = ggml_mul_mat(ctx0,
 | |
|                     model.layers[il].w2,
 | |
|                     cur);
 | |
|         }
 | |
| 
 | |
|         cur  = ggml_add(ctx0, cur, inpFF);
 | |
| 
 | |
|         // input for next layer
 | |
|         inpL = cur;
 | |
|     }
 | |
| 
 | |
|     // norm
 | |
|     {
 | |
|         inpL = ggml_rms_norm(ctx0, inpL);
 | |
| 
 | |
|         // inpL = norm*inpL
 | |
|         inpL = ggml_mul(ctx0,
 | |
|                     ggml_repeat(ctx0, model.norm, inpL),
 | |
|                     inpL);
 | |
|     }
 | |
| 
 | |
|     // lm_head
 | |
|     {
 | |
|         inpL = ggml_mul_mat(ctx0, model.output, inpL);
 | |
|     }
 | |
| 
 | |
|     // logits -> probs
 | |
|     //inpL = ggml_soft_max(ctx0, inpL);
 | |
| 
 | |
|     // run the computation
 | |
|     ggml_build_forward_expand(&gf, inpL);
 | |
|     ggml_graph_compute       (ctx0, &gf);
 | |
| 
 | |
|     //if (n_past%100 == 0) {
 | |
|     //    ggml_graph_print   (&gf);
 | |
|     //    ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
 | |
|     //}
 | |
| 
 | |
|     //embd_w.resize(n_vocab*N);
 | |
|     //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
 | |
| 
 | |
|     auto & logits_out = lctx.logits;
 | |
| 
 | |
|     if (lctx.logits_all) {
 | |
|         logits_out.resize(n_vocab * N);
 | |
|         memcpy(logits_out.data(), (float *) ggml_get_data(inpL), sizeof(float)*n_vocab*N);
 | |
|     } else {
 | |
|         // return result for just the last token
 | |
|         logits_out.resize(n_vocab);
 | |
|         memcpy(logits_out.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
 | |
|     }
 | |
| 
 | |
|     if (mem_per_token == 0) {
 | |
|         mem_per_token = ggml_used_mem(ctx0)/N;
 | |
|     }
 | |
|     //fprintf(stderr, "used_mem = %zu\n", ggml_used_mem(ctx0));
 | |
| 
 | |
|     ggml_free(ctx0);
 | |
| 
 | |
|     // measure the performance only for the single-token evals
 | |
|     if (N == 1) {
 | |
|         lctx.t_eval_us += ggml_time_us() - t_start_us;
 | |
|         lctx.n_eval++;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| //
 | |
| // tokenizer
 | |
| //
 | |
| 
 | |
| static size_t utf8_len(char src) {
 | |
|     const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
 | |
|     uint8_t highbits = static_cast<uint8_t>(src) >> 4;
 | |
|     return lookup[highbits];
 | |
| }
 | |
| 
 | |
| struct llama_sp_symbol {
 | |
|     using index = int;
 | |
|     index prev;
 | |
|     index next;
 | |
|     const char * text;
 | |
|     size_t n;
 | |
| };
 | |
| 
 | |
| struct llama_sp_bigram {
 | |
|     struct comparator {
 | |
|         bool operator()(llama_sp_bigram & l, llama_sp_bigram & r) {
 | |
|             return (l.score < r.score) || (l.score == r.score && l.left > r.left);
 | |
|         }
 | |
|     };
 | |
|     using queue_storage = std::vector<llama_sp_bigram>;
 | |
|     using queue = std::priority_queue<llama_sp_bigram, queue_storage, comparator>;
 | |
|     llama_sp_symbol::index left;
 | |
|     llama_sp_symbol::index right;
 | |
|     float score;
 | |
|     size_t size;
 | |
| };
 | |
| 
 | |
| // original implementation:
 | |
| // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
 | |
| struct llama_tokenizer {
 | |
|     llama_tokenizer(const llama_vocab & vocab): vocab_(vocab) {}
 | |
| 
 | |
|     void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
 | |
|         // split string into utf8 chars
 | |
|         int index = 0;
 | |
|         size_t offs = 0;
 | |
|         while (offs < text.size()) {
 | |
|             llama_sp_symbol sym;
 | |
|             size_t char_len = std::min(text.size() - offs, utf8_len(text[offs]));
 | |
|             sym.text = text.c_str() + offs;
 | |
|             sym.n = char_len;
 | |
|             offs += char_len;
 | |
|             sym.prev = index - 1;
 | |
|             sym.next = offs == text.size() ? -1 : index + 1;
 | |
|             index++;
 | |
|             symbols_.emplace_back(std::move(sym));
 | |
|         }
 | |
| 
 | |
|         // seed the work queue with all possible 2-character tokens.
 | |
|         for (size_t i = 1; i < symbols_.size(); ++i) {
 | |
|             try_add_bigram(i - 1, i);
 | |
|         }
 | |
| 
 | |
|         // keep substituting the highest frequency pairs for as long as we can.
 | |
|         while (!work_queue_.empty()) {
 | |
|             auto bigram = work_queue_.top();
 | |
|             work_queue_.pop();
 | |
| 
 | |
|             auto & left_sym = symbols_[bigram.left];
 | |
|             auto & right_sym = symbols_[bigram.right];
 | |
| 
 | |
|             // if one of the symbols already got merged, skip it.
 | |
|             if (left_sym.n == 0 || right_sym.n == 0 ||
 | |
|                 left_sym.n + right_sym.n != bigram.size) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             // merge the right sym into the left one
 | |
|             left_sym.n += right_sym.n;
 | |
|             right_sym.n = 0;
 | |
| 
 | |
|             //printf("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
 | |
| 
 | |
|             // remove the right sym from the chain
 | |
|             left_sym.next = right_sym.next;
 | |
|             if (right_sym.next >= 0) {
 | |
|                 symbols_[right_sym.next].prev = bigram.left;
 | |
|             }
 | |
| 
 | |
|             // find more substitutions
 | |
|             try_add_bigram(left_sym.prev, bigram.left);
 | |
|             try_add_bigram(bigram.left, left_sym.next);
 | |
|         }
 | |
| 
 | |
|         for (int i = 0; i != -1; i = symbols_[i].next) {
 | |
|             auto & symbol = symbols_[i];
 | |
|             auto token = vocab_.token_to_id.find(std::string(symbol.text, symbol.n));
 | |
| 
 | |
|             if (token == vocab_.token_to_id.end()) {
 | |
|                 // output any symbols that did not form tokens as bytes.
 | |
|                 for (int j = 0; j < (int) symbol.n; ++j) {
 | |
|                     llama_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3;
 | |
|                     output.push_back(token_id);
 | |
|                 }
 | |
|             } else {
 | |
|                 output.push_back((*token).second);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     void try_add_bigram(int left, int right) {
 | |
|         if (left == -1 || right == -1) {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         const std::string text = std::string(symbols_[left].text, symbols_[left].n + symbols_[right].n);
 | |
|         auto token = vocab_.token_to_id.find(text);
 | |
| 
 | |
|         if (token == vocab_.token_to_id.end()) {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if (static_cast<size_t>((*token).second) >= vocab_.id_to_token.size()) {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         const auto &tok_score = vocab_.id_to_token[(*token).second];
 | |
| 
 | |
|         llama_sp_bigram bigram;
 | |
|         bigram.left = left;
 | |
|         bigram.right = right;
 | |
|         bigram.score = tok_score.score;
 | |
|         bigram.size = text.size();
 | |
|         work_queue_.push(bigram);
 | |
|     }
 | |
| 
 | |
|     const llama_vocab & vocab_;
 | |
|     std::vector<llama_sp_symbol> symbols_;
 | |
|     llama_sp_bigram::queue work_queue_;
 | |
| };
 | |
| 
 | |
| static std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos) {
 | |
|     llama_tokenizer tokenizer(vocab);
 | |
|     std::vector<llama_vocab::id> output;
 | |
| 
 | |
|     if (text.size() == 0) {
 | |
|         return output;
 | |
|     }
 | |
| 
 | |
|     if (bos) {
 | |
|         output.push_back(1);
 | |
|     }
 | |
| 
 | |
|     tokenizer.tokenize(text, output);
 | |
|     return output;
 | |
| }
 | |
| 
 | |
| //
 | |
| // sampling
 | |
| //
 | |
| 
 | |
| static void sample_top_k(std::vector<std::pair<double, llama_vocab::id>> & logits_id, int top_k) {
 | |
|     // find the top k tokens
 | |
|     std::partial_sort(
 | |
|             logits_id.begin(),
 | |
|             logits_id.begin() + top_k, logits_id.end(),
 | |
|             [](const std::pair<double, llama_vocab::id> & a, const std::pair<double, llama_vocab::id> & b) {
 | |
|         return a.first > b.first;
 | |
|     });
 | |
| 
 | |
|     logits_id.resize(top_k);
 | |
| }
 | |
| 
 | |
| static llama_vocab::id llama_sample_top_p_top_k(
 | |
|         llama_context & lctx,
 | |
|         const std::vector<llama_vocab::id> & last_n_tokens,
 | |
|         int top_k,
 | |
|         double top_p,
 | |
|         double temp,
 | |
|         double repeat_penalty) {
 | |
|     auto & rng = lctx.rng;
 | |
| 
 | |
|     const auto & vocab = lctx.vocab;
 | |
|     const auto & logits = lctx.logits;
 | |
| 
 | |
|     int n_logits = vocab.id_to_token.size();
 | |
| 
 | |
|     std::vector<std::pair<double, llama_vocab::id>> logits_id;
 | |
|     logits_id.reserve(n_logits);
 | |
| 
 | |
|     {
 | |
|         const double scale = 1.0/temp;
 | |
|         for (int i = 0; i < n_logits; ++i) {
 | |
|             // repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)
 | |
|             // credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
 | |
|             if (std::find(last_n_tokens.begin(), last_n_tokens.end(), i) != last_n_tokens.end()) {
 | |
|                 // if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
 | |
|                 if (logits[i] < 0.0) {
 | |
|                     logits_id.push_back(std::make_pair(logits[i]*scale*repeat_penalty, i));
 | |
|                 } else {
 | |
|                     logits_id.push_back(std::make_pair(logits[i]*scale/repeat_penalty, i));
 | |
|                 }
 | |
|             } else {
 | |
|                 logits_id.push_back(std::make_pair(logits[i]*scale, i));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     sample_top_k(logits_id, top_k);
 | |
| 
 | |
|     double maxl = -std::numeric_limits<double>::infinity();
 | |
|     for (const auto & kv : logits_id) {
 | |
|         maxl = std::max(maxl, kv.first);
 | |
|     }
 | |
| 
 | |
|     // compute probs for the top k tokens
 | |
|     std::vector<double> probs;
 | |
|     probs.reserve(logits_id.size());
 | |
| 
 | |
|     double sum = 0.0;
 | |
|     for (const auto & kv : logits_id) {
 | |
|         double p = exp(kv.first - maxl);
 | |
|         probs.push_back(p);
 | |
|         sum += p;
 | |
|     }
 | |
| 
 | |
|     // normalize the probs
 | |
|     for (auto & p : probs) {
 | |
|         p /= sum;
 | |
|     }
 | |
| 
 | |
|     if (top_p < 1.0f) {
 | |
|         double cumsum = 0.0f;
 | |
|         for (int i = 0; i < (int) probs.size(); i++) {
 | |
|             cumsum += probs[i];
 | |
|             if (cumsum >= top_p) {
 | |
|                 probs.resize(i + 1);
 | |
|                 logits_id.resize(i + 1);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         cumsum = 1.0/cumsum;
 | |
|         for (int i = 0; i < (int) probs.size(); i++) {
 | |
|             probs[i] *= cumsum;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     //printf("\n");
 | |
|     //for (int i = 0; i < (int) 10; i++) {
 | |
|     //    printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
 | |
|     //}
 | |
|     //printf("\n\n");
 | |
|     //exit(0);
 | |
| 
 | |
|     std::discrete_distribution<> dist(probs.begin(), probs.end());
 | |
|     int idx = dist(rng);
 | |
| 
 | |
|     return logits_id[idx].second;
 | |
| }
 | |
| 
 | |
| //
 | |
| // quantization
 | |
| //
 | |
| 
 | |
| // TODO: reuse code from the llama_model_load() somehow
 | |
| bool llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, int itype, int qk) {
 | |
|     ggml_type type = GGML_TYPE_Q4_1;
 | |
| 
 | |
|     switch (itype) {
 | |
|         case 2: type = GGML_TYPE_Q4_0; break;
 | |
|         case 3: type = GGML_TYPE_Q4_1; break;
 | |
|         default: fprintf(stderr, "%s: invalid quantization type %d\n", __func__, itype); return 1;
 | |
|     };
 | |
| 
 | |
|     if (type != GGML_TYPE_Q4_0 && type != GGML_TYPE_Q4_1) {
 | |
|         fprintf(stderr, "%s: invalid quantization type %d\n", __func__, type);
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     llama_vocab vocab;
 | |
| 
 | |
|     printf("%s: loading model from '%s'\n", __func__, fname_inp.c_str());
 | |
| 
 | |
|     auto finp = std::ifstream(fname_inp, std::ios::binary);
 | |
|     if (!finp) {
 | |
|         fprintf(stderr, "%s: failed to open '%s' for reading\n", __func__, fname_inp.c_str());
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     auto fout = std::ofstream(fname_out, std::ios::binary);
 | |
|     if (!fout) {
 | |
|         fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname_out.c_str());
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // verify magic
 | |
|     {
 | |
|         uint32_t magic;
 | |
|         finp.read((char *) &magic, sizeof(magic));
 | |
|         if (magic == LLAMA_FILE_MAGIC_UNVERSIONED) {
 | |
|             fprintf(stderr, "%s: invalid model file '%s' (too old, regenerate your model files!)\n",
 | |
|                     __func__, fname_inp.c_str());
 | |
|             return false;
 | |
|         }
 | |
|         if (magic != LLAMA_FILE_MAGIC) {
 | |
|             fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname_inp.c_str());
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         fout.write((char *) &magic, sizeof(magic));
 | |
| 
 | |
|         uint32_t format_version;
 | |
|         finp.read((char *) &format_version, sizeof(format_version));
 | |
| 
 | |
|         if (format_version != LLAMA_FILE_VERSION) {
 | |
|             fprintf(stderr, "%s: invalid model file '%s' (unsupported format version %" PRIu32 ", expected %d)\n",
 | |
|                     __func__, fname_inp.c_str(), format_version, LLAMA_FILE_VERSION);
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         fout.write((char *) &format_version, sizeof(format_version));
 | |
|     }
 | |
| 
 | |
|     llama_hparams hparams;
 | |
| 
 | |
|     // load hparams
 | |
|     {
 | |
|         finp.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
 | |
|         //finp.read((char *) &hparams.n_ctx,   sizeof(hparams.n_ctx));
 | |
|         finp.read((char *) &hparams.n_embd,  sizeof(hparams.n_embd));
 | |
|         finp.read((char *) &hparams.n_mult,  sizeof(hparams.n_mult));
 | |
|         finp.read((char *) &hparams.n_head,  sizeof(hparams.n_head));
 | |
|         finp.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
 | |
|         finp.read((char *) &hparams.n_rot,   sizeof(hparams.n_rot));
 | |
|         finp.read((char *) &hparams.f16,     sizeof(hparams.f16));
 | |
| 
 | |
|         printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
 | |
|         printf("%s: n_ctx   = %d\n", __func__, hparams.n_ctx);
 | |
|         printf("%s: n_embd  = %d\n", __func__, hparams.n_embd);
 | |
|         printf("%s: n_mult  = %d\n", __func__, hparams.n_mult);
 | |
|         printf("%s: n_head  = %d\n", __func__, hparams.n_head);
 | |
|         printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
 | |
|         printf("%s: f16     = %d\n", __func__, hparams.f16);
 | |
| 
 | |
|         fout.write((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
 | |
|         //fout.write((char *) &hparams.n_ctx,   sizeof(hparams.n_ctx));
 | |
|         fout.write((char *) &hparams.n_embd,  sizeof(hparams.n_embd));
 | |
|         fout.write((char *) &hparams.n_mult,  sizeof(hparams.n_mult));
 | |
|         fout.write((char *) &hparams.n_head,  sizeof(hparams.n_head));
 | |
|         fout.write((char *) &hparams.n_layer, sizeof(hparams.n_layer));
 | |
|         fout.write((char *) &hparams.n_rot,   sizeof(hparams.n_rot));
 | |
|         fout.write((char *) &itype,           sizeof(hparams.f16));
 | |
|     }
 | |
| 
 | |
|     // load vocab
 | |
|     {
 | |
|         const int32_t n_vocab = hparams.n_vocab;
 | |
| 
 | |
|         if (n_vocab != hparams.n_vocab) {
 | |
|             fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
 | |
|                     __func__, fname_inp.c_str(), n_vocab, hparams.n_vocab);
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         std::string word;
 | |
|         vocab.id_to_token.resize(n_vocab);
 | |
|         for (int i = 0; i < n_vocab; i++) {
 | |
|             uint32_t len;
 | |
|             finp.read ((char *) &len, sizeof(len));
 | |
|             fout.write((char *) &len, sizeof(len));
 | |
| 
 | |
|             word.resize(len);
 | |
|             finp.read ((char *) word.data(), len);
 | |
|             fout.write((char *) word.data(), len);
 | |
| 
 | |
|             float score;
 | |
|             finp.read ((char *) &score, sizeof(score));
 | |
|             fout.write((char *) &score, sizeof(score));
 | |
| 
 | |
|             vocab.token_to_id[word] = i;
 | |
| 
 | |
|             auto &tok_score = vocab.id_to_token[i];
 | |
|             tok_score.tok = word;
 | |
|             tok_score.score = score;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // load weights
 | |
|     {
 | |
|         size_t total_size_org = 0;
 | |
|         size_t total_size_new = 0;
 | |
| 
 | |
|         std::vector<float> work;
 | |
| 
 | |
|         std::vector<uint8_t>     data_u8;
 | |
|         std::vector<ggml_fp16_t> data_f16;
 | |
|         std::vector<float>       data_f32;
 | |
| 
 | |
|         std::vector<int64_t> hist_all(1 << 4, 0);
 | |
| 
 | |
|         while (true) {
 | |
|             int32_t n_dims;
 | |
|             int32_t length;
 | |
|             int32_t ftype;
 | |
| 
 | |
|             finp.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
 | |
|             finp.read(reinterpret_cast<char *>(&length), sizeof(length));
 | |
|             finp.read(reinterpret_cast<char *>(&ftype),  sizeof(ftype));
 | |
| 
 | |
|             if (finp.eof()) {
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             int32_t nelements = 1;
 | |
|             int32_t ne[2] = { 1, 1 };
 | |
|             for (int i = 0; i < n_dims; ++i) {
 | |
|                 finp.read (reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
 | |
|                 nelements *= ne[i];
 | |
|             }
 | |
| 
 | |
|             std::string name(length, 0);
 | |
|             finp.read (&name[0], length);
 | |
| 
 | |
|             {
 | |
|                 static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
 | |
|                 printf("%48s - [%5d, %5d], type = %6s ", name.data(), ne[0], ne[1], ftype_str[ftype]);
 | |
|             }
 | |
| 
 | |
|             // regexes of tensor names to be quantized
 | |
|             const std::vector<std::string> k_names = {
 | |
|                 ".*weight",
 | |
|             };
 | |
| 
 | |
|             bool quantize = false;
 | |
|             for (const auto & s : k_names) {
 | |
|                 if (std::regex_match(name, std::regex(s))) {
 | |
|                     quantize = true;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // quantize only 2D tensors
 | |
|             quantize &= (n_dims == 2);
 | |
| 
 | |
|             if (quantize) {
 | |
|                 if (ftype != 0 && ftype != 1) {
 | |
|                     fprintf(stderr, "%s: unsupported ftype %d for integer quantization\n", __func__, ftype);
 | |
|                     return false;
 | |
|                 }
 | |
| 
 | |
|                 if (ftype == 1) {
 | |
|                     data_f16.resize(nelements);
 | |
|                     finp.read(reinterpret_cast<char *>(data_f16.data()), nelements * sizeof(ggml_fp16_t));
 | |
|                     data_f32.resize(nelements);
 | |
|                     for (int i = 0; i < nelements; ++i) {
 | |
|                         data_f32[i] = ggml_fp16_to_fp32(data_f16[i]);
 | |
|                     }
 | |
|                 } else {
 | |
|                     data_f32.resize(nelements);
 | |
|                     finp.read(reinterpret_cast<char *>(data_f32.data()), nelements * sizeof(float));
 | |
|                 }
 | |
| 
 | |
|                 ftype = itype;
 | |
|             } else {
 | |
|                 const int bpe = (ftype == 0) ? sizeof(float) : sizeof(uint16_t);
 | |
| 
 | |
|                 data_u8.resize(nelements*bpe);
 | |
|                 finp.read(reinterpret_cast<char *>(data_u8.data()), nelements * bpe);
 | |
|             }
 | |
| 
 | |
|             fout.write(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
 | |
|             fout.write(reinterpret_cast<char *>(&length), sizeof(length));
 | |
|             fout.write(reinterpret_cast<char *>(&ftype),  sizeof(ftype));
 | |
|             for (int i = 0; i < n_dims; ++i) {
 | |
|                 fout.write(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
 | |
|             }
 | |
|             fout.write(&name[0], length);
 | |
| 
 | |
|             if (quantize) {
 | |
|                 printf("quantizing .. ");
 | |
|                 work.resize(nelements); // for quantization
 | |
| 
 | |
|                 size_t cur_size = 0;
 | |
|                 std::vector<int64_t> hist_cur(1 << 4, 0);
 | |
| 
 | |
|                 switch (type) {
 | |
|                     case GGML_TYPE_Q4_0:
 | |
|                         {
 | |
|                             cur_size = ggml_quantize_q4_0(data_f32.data(), work.data(), nelements, ne[0], qk, hist_cur.data());
 | |
|                         } break;
 | |
|                     case GGML_TYPE_Q4_1:
 | |
|                         {
 | |
|                             cur_size = ggml_quantize_q4_1(data_f32.data(), work.data(), nelements, ne[0], qk, hist_cur.data());
 | |
|                         } break;
 | |
|                     default:
 | |
|                         {
 | |
|                             fprintf(stderr, "%s: unsupported quantization type %d\n", __func__, type);
 | |
|                             return false;
 | |
|                         }
 | |
|                 }
 | |
| 
 | |
|                 fout.write(reinterpret_cast<char *>(work.data()), cur_size);
 | |
|                 total_size_new += cur_size;
 | |
| 
 | |
|                 printf("size = %8.2f MB -> %8.2f MB | hist: ", nelements * sizeof(float)/1024.0/1024.0, cur_size/1024.0/1024.0);
 | |
|                 for (int i = 0; i < (int) hist_cur.size(); ++i) {
 | |
|                     hist_all[i] += hist_cur[i];
 | |
|                 }
 | |
| 
 | |
|                 for (int i = 0; i < (int) hist_cur.size(); ++i) {
 | |
|                     printf("%5.3f ", hist_cur[i] / (float)nelements);
 | |
|                 }
 | |
|                 printf("\n");
 | |
|             } else {
 | |
|                 printf("size = %8.3f MB\n", data_u8.size()/1024.0/1024.0);
 | |
|                 fout.write(reinterpret_cast<char *>(data_u8.data()), data_u8.size());
 | |
|                 total_size_new += data_u8.size();
 | |
|             }
 | |
| 
 | |
|             total_size_org += nelements * sizeof(float);
 | |
|         }
 | |
| 
 | |
|         printf("%s: model size  = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
 | |
|         printf("%s: quant size  = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
 | |
| 
 | |
|         {
 | |
|             int64_t sum_all = 0;
 | |
|             for (int i = 0; i < (int) hist_all.size(); ++i) {
 | |
|                 sum_all += hist_all[i];
 | |
|             }
 | |
| 
 | |
|             printf("%s: hist: ", __func__);
 | |
|             for (int i = 0; i < (int) hist_all.size(); ++i) {
 | |
|                 printf("%5.3f ", hist_all[i] / (float)sum_all);
 | |
|             }
 | |
|             printf("\n");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     finp.close();
 | |
|     fout.close();
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| //
 | |
| // interface implementation
 | |
| //
 | |
| 
 | |
| struct llama_context * llama_init_from_file(
 | |
|                              const char * path_model,
 | |
|             struct llama_context_params   params) {
 | |
|     ggml_time_init();
 | |
| 
 | |
|     llama_context * ctx = new llama_context;
 | |
| 
 | |
|     if (params.seed <= 0) {
 | |
|         params.seed = time(NULL);
 | |
|     }
 | |
| 
 | |
|     ctx->rng = std::mt19937(params.seed);
 | |
|     ctx->logits_all = params.logits_all;
 | |
| 
 | |
|     ggml_type type_memory = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
 | |
| 
 | |
|     if (!llama_model_load(path_model, *ctx, params.n_ctx, params.n_parts, type_memory, params.vocab_only)) {
 | |
|         fprintf(stderr, "%s: failed to load model\n", __func__);
 | |
|         delete ctx;
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     return ctx;
 | |
| }
 | |
| 
 | |
| void llama_free(struct llama_context * ctx) {
 | |
|     ggml_free(ctx->model.ctx);
 | |
| 
 | |
|     delete ctx;
 | |
| }
 | |
| 
 | |
| int llama_model_quantize(
 | |
|         const char * fname_inp,
 | |
|         const char * fname_out,
 | |
|                int   itype,
 | |
|                int   qk) {
 | |
|     if (!llama_model_quantize_internal(fname_inp, fname_out, itype, qk)) {
 | |
|         fprintf(stderr, "%s: failed to quantize\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int llama_eval(
 | |
|         struct llama_context * ctx,
 | |
|            const llama_token * tokens,
 | |
|                          int   n_tokens,
 | |
|                          int   n_past,
 | |
|                          int   n_threads) {
 | |
|     if (!llama_eval_internal(*ctx, tokens, n_tokens, n_past, n_threads)) {
 | |
|         fprintf(stderr, "%s: failed to eval\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int llama_tokenize(
 | |
|         struct llama_context * ctx,
 | |
|                   const char * text,
 | |
|                  llama_token * tokens,
 | |
|                          int   n_max_tokens,
 | |
|                         bool   add_bos) {
 | |
|     auto res = llama_tokenize(ctx->vocab, text, add_bos);
 | |
| 
 | |
|     if (n_max_tokens < (int) res.size()) {
 | |
|         fprintf(stderr, "%s: too many tokens\n", __func__);
 | |
|         return -((int) res.size());
 | |
|     }
 | |
| 
 | |
|     for (size_t i = 0; i < res.size(); i++) {
 | |
|         tokens[i] = res[i];
 | |
|     }
 | |
| 
 | |
|     return res.size();
 | |
| }
 | |
| 
 | |
| int llama_n_vocab(struct llama_context * ctx) {
 | |
|     return ctx->vocab.id_to_token.size();
 | |
| }
 | |
| 
 | |
| int llama_n_ctx(struct llama_context * ctx) {
 | |
|     return ctx->model.hparams.n_ctx;
 | |
| }
 | |
| 
 | |
| float * llama_get_logits(struct llama_context * ctx) {
 | |
|     return ctx->logits.data();
 | |
| }
 | |
| 
 | |
| const char * llama_token_to_str(struct llama_context * ctx, llama_token token) {
 | |
|     if (token >= llama_n_vocab(ctx)) {
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     return ctx->vocab.id_to_token[token].tok.c_str();
 | |
| }
 | |
| 
 | |
| llama_token llama_token_bos() {
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| llama_token llama_token_eos() {
 | |
|     return 2;
 | |
| }
 | |
| 
 | |
| llama_token llama_sample_top_p_top_k(
 | |
|           llama_context * ctx,
 | |
|       const llama_token * last_n_tokens_data,
 | |
|                     int   last_n_tokens_size,
 | |
|                     int   top_k,
 | |
|                  double   top_p,
 | |
|                  double   temp,
 | |
|                  double   repeat_penalty) {
 | |
|     const int64_t t_start_sample_us = ggml_time_us();
 | |
| 
 | |
|     llama_token result = 0;
 | |
| 
 | |
|     // TODO: avoid this ...
 | |
|     const auto last_n_tokens = std::vector<llama_token>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_size);
 | |
| 
 | |
|     result = llama_sample_top_p_top_k(
 | |
|             *ctx,
 | |
|             last_n_tokens,
 | |
|             top_k,
 | |
|             top_p,
 | |
|             temp,
 | |
|             repeat_penalty);
 | |
| 
 | |
|     ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
 | |
|     ctx->n_sample++;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| void llama_print_timings(struct llama_context * ctx) {
 | |
|     const int64_t t_end_us = ggml_time_us();
 | |
| 
 | |
|     const int32_t n_sample = std::max(1, ctx->n_sample);
 | |
|     const int32_t n_eval   = std::max(1, ctx->n_eval);
 | |
| 
 | |
|     fprintf(stderr, "\n");
 | |
|     fprintf(stderr, "%s:     load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0f);
 | |
|     fprintf(stderr, "%s:   sample time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3f * ctx->t_sample_us, n_sample, 1e-3f * ctx->t_sample_us / n_sample);
 | |
|     fprintf(stderr, "%s:     eval time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3f * ctx->t_eval_us,   n_eval,   1e-3f * ctx->t_eval_us   / n_eval);
 | |
|     fprintf(stderr, "%s:    total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0f);
 | |
| }
 | |
| 
 | |
| void llama_reset_timings(struct llama_context * ctx) {
 | |
|     ctx->t_start_us = ggml_time_us();
 | |
| 
 | |
|     ctx->t_sample_us = ctx->n_sample = 0;
 | |
|     ctx->t_eval_us   = ctx->n_eval   = 0;
 | |
| }
 | |
| 
 | |
| const char * llama_print_system_info(void) {
 | |
|     static std::string s;
 | |
| 
 | |
|     s  = "";
 | |
|     s += "AVX = "       + std::to_string(ggml_cpu_has_avx())       + " | ";
 | |
|     s += "AVX2 = "      + std::to_string(ggml_cpu_has_avx2())      + " | ";
 | |
|     s += "AVX512 = "    + std::to_string(ggml_cpu_has_avx512())    + " | ";
 | |
|     s += "FMA = "       + std::to_string(ggml_cpu_has_fma())       + " | ";
 | |
|     s += "NEON = "      + std::to_string(ggml_cpu_has_neon())      + " | ";
 | |
|     s += "ARM_FMA = "   + std::to_string(ggml_cpu_has_arm_fma())   + " | ";
 | |
|     s += "F16C = "      + std::to_string(ggml_cpu_has_f16c())      + " | ";
 | |
|     s += "FP16_VA = "   + std::to_string(ggml_cpu_has_fp16_va())   + " | ";
 | |
|     s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
 | |
|     s += "BLAS = "      + std::to_string(ggml_cpu_has_blas())      + " | ";
 | |
|     s += "SSE3 = "      + std::to_string(ggml_cpu_has_sse3())      + " | ";
 | |
|     s += "VSX = "       + std::to_string(ggml_cpu_has_vsx())       + " | ";
 | |
| 
 | |
|     return s.c_str();
 | |
| }
 | |
| 
 | 
