mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* added `llama_model_token_*` variants to all the `llama_token_*` functions. * added `LLAMA_API` * formatting Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * removed old `llama_token` functions * changed 3 more functions to take in model - `llama_token_get_text` - `llama_token_get_score` - `llama_token_get_type` * added back docs * fixed main.cpp * changed token functions to use new model variants * changed token functions to use new model variants --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			193 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			193 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "common.h"
 | 
						|
#include "llama.h"
 | 
						|
 | 
						|
#include <cmath>
 | 
						|
#include <cstdio>
 | 
						|
#include <string>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
int main(int argc, char ** argv) {
 | 
						|
    gpt_params params;
 | 
						|
 | 
						|
    if (argc == 1 || argv[1][0] == '-') {
 | 
						|
        printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]);
 | 
						|
        return 1 ;
 | 
						|
    }
 | 
						|
 | 
						|
    if (argc >= 2) {
 | 
						|
        params.model = argv[1];
 | 
						|
    }
 | 
						|
 | 
						|
    if (argc >= 3) {
 | 
						|
        params.prompt = argv[2];
 | 
						|
    }
 | 
						|
 | 
						|
    if (params.prompt.empty()) {
 | 
						|
        params.prompt = "Hello my name is";
 | 
						|
    }
 | 
						|
 | 
						|
    // total length of the sequence including the prompt
 | 
						|
    const int n_len = 32;
 | 
						|
 | 
						|
    // init LLM
 | 
						|
 | 
						|
    llama_backend_init(params.numa);
 | 
						|
 | 
						|
    // initialize the model
 | 
						|
 | 
						|
    llama_model_params model_params = llama_model_default_params();
 | 
						|
 | 
						|
    // model_params.n_gpu_layers = 99; // offload all layers to the GPU
 | 
						|
 | 
						|
    llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
 | 
						|
 | 
						|
    if (model == NULL) {
 | 
						|
        fprintf(stderr , "%s: error: unable to load model\n" , __func__);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    // initialize the context
 | 
						|
 | 
						|
    llama_context_params ctx_params = llama_context_default_params();
 | 
						|
 | 
						|
    ctx_params.seed  = 1234;
 | 
						|
    ctx_params.n_ctx = 2048;
 | 
						|
    ctx_params.n_threads = params.n_threads;
 | 
						|
    ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
 | 
						|
 | 
						|
    llama_context * ctx = llama_new_context_with_model(model, ctx_params);
 | 
						|
 | 
						|
    if (ctx == NULL) {
 | 
						|
        fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    // tokenize the prompt
 | 
						|
 | 
						|
    std::vector<llama_token> tokens_list;
 | 
						|
    tokens_list = ::llama_tokenize(ctx, params.prompt, true);
 | 
						|
 | 
						|
    const int n_ctx    = llama_n_ctx(ctx);
 | 
						|
    const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size());
 | 
						|
 | 
						|
    LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, n_kv_req);
 | 
						|
 | 
						|
    // make sure the KV cache is big enough to hold all the prompt and generated tokens
 | 
						|
    if (n_kv_req > n_ctx) {
 | 
						|
        LOG_TEE("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__);
 | 
						|
        LOG_TEE("%s:        either reduce n_parallel or increase n_ctx\n", __func__);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    // print the prompt token-by-token
 | 
						|
 | 
						|
    fprintf(stderr, "\n");
 | 
						|
 | 
						|
    for (auto id : tokens_list) {
 | 
						|
        fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
 | 
						|
    }
 | 
						|
 | 
						|
    fflush(stderr);
 | 
						|
 | 
						|
    // create a llama_batch with size 512
 | 
						|
    // we use this object to submit token data for decoding
 | 
						|
 | 
						|
    llama_batch batch = llama_batch_init(512, 0, 1);
 | 
						|
 | 
						|
    // evaluate the initial prompt
 | 
						|
    batch.n_tokens = tokens_list.size();
 | 
						|
 | 
						|
    for (int32_t i = 0; i < batch.n_tokens; i++) {
 | 
						|
        batch.token[i]  = tokens_list[i];
 | 
						|
        batch.pos[i]    = i;
 | 
						|
        batch.seq_id[i] = 0;
 | 
						|
        batch.logits[i] = false;
 | 
						|
    }
 | 
						|
 | 
						|
    // llama_decode will output logits only for the last token of the prompt
 | 
						|
    batch.logits[batch.n_tokens - 1] = true;
 | 
						|
 | 
						|
    if (llama_decode(ctx, batch) != 0) {
 | 
						|
        LOG_TEE("%s: llama_decode() failed\n", __func__);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    // main loop
 | 
						|
 | 
						|
    int n_cur    = batch.n_tokens;
 | 
						|
    int n_decode = 0;
 | 
						|
 | 
						|
    const auto t_main_start = ggml_time_us();
 | 
						|
 | 
						|
    while (n_cur <= n_len) {
 | 
						|
        // sample the next token
 | 
						|
        {
 | 
						|
            auto   n_vocab = llama_n_vocab(model);
 | 
						|
            auto * logits  = llama_get_logits_ith(ctx, batch.n_tokens - 1);
 | 
						|
 | 
						|
            std::vector<llama_token_data> candidates;
 | 
						|
            candidates.reserve(n_vocab);
 | 
						|
 | 
						|
            for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
 | 
						|
                candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
 | 
						|
            }
 | 
						|
 | 
						|
            llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
 | 
						|
 | 
						|
            // sample the most likely token
 | 
						|
            const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
 | 
						|
 | 
						|
            // is it an end of stream?
 | 
						|
            if (new_token_id == llama_token_eos(model) || n_cur == n_len) {
 | 
						|
                LOG_TEE("\n");
 | 
						|
 | 
						|
                break;
 | 
						|
            }
 | 
						|
 | 
						|
            LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
 | 
						|
            fflush(stdout);
 | 
						|
 | 
						|
            // prepare the next batch
 | 
						|
            batch.n_tokens = 0;
 | 
						|
 | 
						|
            // push this new token for next evaluation
 | 
						|
            batch.token [batch.n_tokens] = new_token_id;
 | 
						|
            batch.pos   [batch.n_tokens] = n_cur;
 | 
						|
            batch.seq_id[batch.n_tokens] = 0;
 | 
						|
            batch.logits[batch.n_tokens] = true;
 | 
						|
 | 
						|
            batch.n_tokens += 1;
 | 
						|
 | 
						|
            n_decode += 1;
 | 
						|
        }
 | 
						|
 | 
						|
        n_cur += 1;
 | 
						|
 | 
						|
        // evaluate the current batch with the transformer model
 | 
						|
        if (llama_decode(ctx, batch)) {
 | 
						|
            fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    LOG_TEE("\n");
 | 
						|
 | 
						|
    const auto t_main_end = ggml_time_us();
 | 
						|
 | 
						|
    LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
 | 
						|
            __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
 | 
						|
 | 
						|
    llama_print_timings(ctx);
 | 
						|
 | 
						|
    fprintf(stderr, "\n");
 | 
						|
 | 
						|
    llama_batch_free(batch);
 | 
						|
 | 
						|
    llama_free(ctx);
 | 
						|
    llama_free_model(model);
 | 
						|
 | 
						|
    llama_backend_free();
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 |